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Preface

In this second volume, nineteen new papers on the Evans unified field theory
are collected. These papers deal with different aspects of physics, and are in-
tended to catalyze further research in each area by indicating the major points
of progress in each case.

The first paper develops the objective laws of classical electrodynamics. By
objective in this context is implied that the equations are those of general rel-
ativity, and are therefore generally covariant. They retain their form to any
observer moving arbitrarily with respect to any other observer. The well known
Maxwell-Heaviside (MH) equations of the standard model are covariant only un-
der the Lorentz transformation of special relativity, in which one frame moves
with respect to another at constant velocity. By making the MH equations ob-
jective equations the interaction of gravitation with electromagnetism can be
analyzed objectively for the first time. This ability has major implications for
the acquisition of electric power from Evans spacetime, and for the ability to
control gravity with electromagnetism in the aerospace industries. Importantly
for fundamental physics, the Evans spin field observed in the inverse Faraday
effect is shown to be a direct consequence of general relativity.

Paper two develops the basics of the first and second order Aharonov Bohm
(AB) effects in terms of the spinning spacetime of the Evans unified field the-
ory. In this way the AB effects are explained straightforwardly without the
need for multiply connected topology. The second order AB effect (the electro-
magnetic AB effect) is expected to be important in novel RADAR and stealth
technologies.

Paper three develops the theory of the inverse Faraday effect and shows that
the magnetization of matter by electromagnetism is due to the Evans spin field
in general relativity (i.e. in objective physics). The quantized equivalent of the
inverse Faraday effect is radiatively induced fermion resonance (RFR), which is
expected to be important for MRI technology without permanent magnets, and
in the development of portable MRI apparatus for clinics and hospitals.

Paper four discusses the origin of polarization and magnetization in the
generally covariant electrodynamics of the Evans unified field theory. The visible
part of a laser beam is shown to be due to the time and space variations of the
potential four-vector, but this is always accompanied by an invisible region
which is the swirling or spinning spacetime of general relativity defined by the
spin connection, and which is the origin of polarization and magnetization, the
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PREFACE

inverse Faraday effect, and the electromagnetic AB effect.
Paper five is an analysis of the Eddington type of experiments in terms of

refraction in the electromagnetic sector of the Evans field theory, thus showing
that the Eddington experiments are not purely gravitational in nature. There
is a number of electromagnetic effects expected from the unified field theory.

Paper six expresses the Coulomb and Ampère Maxwell laws in terms of the
Schwarzschild metric as an illustration of the fact that the Evans unified field
theory is a theory of both classical electromagnetism and classical gravitation.
In the standard model this type of analysis does not exist, because the MH
equations are developed in a Minkowski or flat spacetime in which gravitation
is undefined. This paper in particular indicates the need to develop and apply
the Evans unified field theory with the Schwarzschild and other known metrics,
and with computational methods.

Paper seven develops a generally covariant or objective interpretation of the
Heisenberg commutator equation for angular momentum and suggests why re-
cent experiments show that the Heisenberg uncertainty principle is qualitatively
incorrect (by many orders of magnitude in certain experimental configurations).
These results are explained using angular momentum densities of general rela-
tivity defined by the torsion form of Cartan geometry.

Paper eight proves the tetrad postulate of Cartan geometry using seven in-
dependent methods. This is intended as a rigorous and self checking proof of the
geometrical fundamentals of the Evans unified field theory. Paper nine contin-
ues the mathematical proof of Cartan geometry by deriving the Evans Lemma
directly from the first Cartan structure equation of differential geometry and
gives another proof of the tetrad postulate. The Evans Lemma is the subsidiary
proposition of geometry that leads to the Evans wave equation of physics. Pa-
pers ten and eleven rigorously self check the proof of the Evans Lemma from the
tetrad postulate and apply the Lemma to the generally covariant or objective
Dirac equation.

Paper twelve applies the Evans unified field theory to the quark gluon theory
of the standard model, and introduces considerations of gravitation into the
quantum chromodynamics of special relativity. This paper is, as usual, intended
as a sketch of what is possible in this area of physics.

Paper thirteen shows that the origin of intrinsic spin in physics is the basis
set of elements in the tangent spacetime (Minkowski spacetime) to the base
manifold (Evans spacetime) in Cartan’s differential geometry. This finding is
illustrated with electromagnetism, fermionic matter fields of the Dirac equation,
strong fields (quarks) and the Majorana Weinberg spin equations. This paper
shows with particular clarity that the Evans field theory is a true unified field
theory in which the fundamental field is the tetrad. This is true for all radiated
and matter fields.

Paper fourteen suggests that dark matter may be due to the effect of space-
time torsion on the well known Einstein Hilbert theory of gravitation of 1915.
The gravitational sector of the Evans unified field theory is in general based
on a Cartan geometry where torsion and curvature are both well defined. The
neglect of torsion in the conventional general relativity of gravitation is ade-
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quate in earthbound experiments and in the solar system, but in general there
is no reason to expect torsion to be absent. Thus there are well documented
anomalies, data which indicate that the 1915 theory does not hold in general in
cosmological contexts. Dark matter is a well known example.

Finally, paper fifteen develops a generally covariant quantum mechanics and
defines the correctly objective conjugate variables needed in the Heisenberg
equation. These are densities such as energy density and momentum density.
The fundamental quantum of angular momentum density is shown to be the
reduced Planck constant divided by the Evans rest volume of any particle or
field.

The camera-ready form of this book we owe to the patient and meticulous
labor of Linda Caravelli and Franklin Amador. The superb job they have done
is herewith gratefully acknowledged.

Craigcefnparc, Wales Myron W. Evans
15 May 2005 Alpha Institude for Advanced Study

Civil List Pensioner (2005)
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Chapter 1

The Objective Laws Of

Classical Electrodynamics:

The Effect Of Gravitation

On Electromagnetism

by
Myron W. Evans,

Alpha Foundation’s Institutute for Advance Study (AIAS).
(emyrone@oal.com, www.aias.us, www.atomicprecision.com)

Abstract

The four fundamental laws of classical electrodynamics are given in generallyco-
variant form using the principles of differential geometry. In so doing it becomes
possible to analyze in detail the effect of gravitation on electromagnetism. This
developmentcompletes Einstein’s generally covariant field theory of gravitation
and shows that there is present in nature a source of electric power from the
general four dimensional manifold. It is also shown that an electromagnetic field
can influence gravitation, and there are majorimplications for power engineering
and aerospace industries.

Key words: generally covariant classical electrodynamics; Evans field theory;
electric powerfrom spacetime; the interaction of gravitation and electromag-
netism.
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1.1. INTRODUCTION

1.1 Introduction

In order that physics be an objective subject it must be a theory of general rela-
tivity, in which ALL the equations of physics must be generally covariant. This
is a well known and well accepted principle of natural philosophy first proposed
by Einstein [1] who based his development on the philosophical ideas of Mach.
Without this most fundamental principle there can be no objective knowledge
(or science) of nature. However, the contemporary standard model does not con-
form correctly to this principle, because only gravitation is treated objectively.
Classical electrodynamics in the standard model is a theory of special relativity,
covariant only under the Lorentz transform [2]– [4] and unobjective under any
other type of coordinate transformation. In other words electrodynamics in the
standard model in general means different things to different observers. This
is fundamentally unacceptable to natural philosophy and science, the objective
observation of nature. In science, nature is objective to all observers, and if
not we have no science (from the Latin word for knowledge). Furthermore the
field theories of gravitation and electromagnetism in the standard model are
conceptually different [4]. Gravitation is essentially a special case of Riemann
geometry within Einsteins constant k, electromagnetism is a distinct, abstract,
entity superimposed on the Minkowski (flat) spacetime. It is well known that
the origins of contemporary classical electrodynamics go back to the eighteenth
century, to an era when space and time were also considered as distinct philo-
sophical entities, not yet unified into spacetime. The contemporary standard
model is still based on this mixture of concepts and is the result of history rather
than reason.

In order to unify electromagnetism and gravitation in a correctly objective
manner, it has been shown recently [5]– [36] that physics must be developed in
a four dimensional manifold defined by the well known principles of differential
geometry, notably the two Maurer Cartan structure equations, the two Bianchi
identities, and the tetrad postulate [3]. The Einstein field theory of gravitation
is essentially a special case of differential geometry, and electromagnetism is de-
scribed by the first Bianchi identity within a fundamental voltage. Gravitation
and electromagnetism are unified naturally by the structure of differential geom-
etry itself. This means that one type of field can influence the other, leading to
the possibility of new technology as well as being a major philosophical advance.
In the last analysis gravitation and electromagnetism are different manifesta-
tions of the same thing, geometry. This is hardly a new idea in physics, but the
Evans theory [5]– [36] is the first correct unified field theory to be based on well
accepted Einsteinian principles.

In this paper the four laws of classical electrodynamics are developed in cor-
rectly covariant form from the first Bianchi identity of differential geometry. In
the standard model these four laws together constitute the Maxwell Heaviside
theory of the electromagnetic sector. The standard model is fundamentally or
qualitatively unable to analyze the important effects of gravitation on electro-
dynamics because the two fields are treated differently as described already.
String theory makes matters worse by the introduction of adjustable mathe-
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matical parameters known optimistically as dimensions. These have no physical
significance and this basic and irremediable flaw in string theory originated a
few years after the Einstein theory of 1916 in the fundamentally incorrect in-
troduction of an unphysical fifth dimension in an attempt to unify gravitation
with electromagnetism. The Evans field theory [5]– [35] achieves this aim by
correctly using only the four physical dimensions of relativity, the four dimen-
sions of spacetime. String theory should therefore be abandoned in favor of the
simpler and much more powerful Evans field theory, which is the direct and
logical outcome of Einsteins own work.

In Section 1.2 the correctly objective laws of classical electrodynamics are
developed straightforwardly from the first Bianchi identity. The objective form
of the Gauss law applied to magnetism and of the Faraday law of induction is
obtained from the Bianchi identity itself, and the objective form of the Coulomb
law and Ampere Maxwell law is obtained from the appropriate Hodge duals used
in the Bianchi identity. Therefore all four laws become a direct consequence of
the first Bianchi identity of differential geometry. Within a scalar A(0) with the
units of volt s/m the electromagnetic field is the torsion form and the electro-
magnetic potential is the tetrad form. In Section 1.3 a discussion is given of some
of the major consequences of these objective laws of classical electrodynamics.

1.2 The Objective Laws of Classical Electrody-

namics

The first Bianchi identity of differential geometry is well known to be [3]:

D ∧ T a = Ra
b ∧ qb (1.1)

Here D∧ denotes the covariant exterior derivative, d∧ is the exterior derivative,
T a is the torsion form and Ra

b is the curvature form, also known as the Riemann
form. The covariant exterior derivative is defined [3] as:

D ∧ T a = d ∧ T a + ωa
b ∧ T b, (1.2)

where ωa
b is the spin connection of differential geometry. As is customary in

differential geometry [3] the indices of the base manifold are suppressed (not
written out), because they are always the same on both sides of any equation
of differential geometry. Therefore only the indices of the tangent bundle are
given in Eq.(1.1). The first Bianchi identity is therefore:

d ∧ T a = −
(
qb ∧ Ra

b + ωa
b ∧ T b

)
(1.3)

which implies the existence of the base manifold indices as follows:

d ∧ T a
µν = −

(
qb ∧ Ra

bµν + ωa
b ∧ T b

µν

)
(1.4)

The basic axiom of differential geometry is that in a given base manifold there
is a tangent bundle to that base manifold at a given point [3]. The tangent
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1.2. THE OBJECTIVE LAWS OF CLASSICAL ELECTRODYNAMICS

bundle was not used by Einstein in his field theory of gravitation, Einstein
considered and needed only the restricted base manifold geometry defined by the
Christoffel symbol and metric compatibility condition [3]. These considerations
of Einstein were sufficient to describe gravitation, but not to unify gravitation
with electromagnetism. No one knew this better than Einstein himself, who
spent thirty years (1925 - 1955) in attempting objective field unification in
various ways.

The Bianchi identity (1.3) becomes the equations of electrodynamics using
the following fundamental rules or laws:

Aa
µ = A(0)qa

µ (1.5)

F a
µν = A(0)T a

µν (1.6)

defining the electromagnetic potential Aa
µ, and the electromagnetic field F a

µν .
These appellations are used only out of habit, because both Aa

µ and F a
µν have

now become parts of the unified field, i.e. of electromagnetism influenced by
gravitation (or vice versa). The homogeneous field equation of the Evans field
theory (HE equation) is therefore:

d ∧ F a = −A(0)
(
qb ∧ Ra

b + ωa
b ∧ T b

)
(1.7)

and the homogeneous current of the HE is:

ja = −A
(0)

µ0

(
qb ∧ Ra

b + ωa
b ∧ T b

)
(1.8)

When this current vanishes the HE becomes:

d ∧ F a = 0 (1.9)

and is for each index a the homogeneous field equation of the Maxwell Heaviside
theory:

d ∧ F = 0. (1.10)

Equation (1.10) is a combination in differential form notation [3] of the Gauss
law applied to magnetism:

∇ · B = 0 (1.11)

and of the Faraday law of induction:

∇ ×E +
∂B

∂t
= 0. (1.12)

These two laws are well tested experimentally so the homogeneous current must
be very small or zero within contemporary instrumental precision. These ex-
perimental considerations define the free space condition:

Ra
b ∧ qb = ωa

b ∧ T b. (1.13)
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In general relativity however the homogeneous current may be different from
zero, and so general relativity means that the Gauss law and Faraday induction
law are special cases of a more general theory. This is the objective theory
given by the HE. Similarly it will be shown that the Coulomb and Ampère
Maxwell laws are special cases of the inhomogeneous equation (IE) of the Evans
field theory. The IE is deduced from the HE using the appropriate Hodge
duals, those of F a and Ra

b. Therefore objective classical electrodynamics is
deduced entirely from the Bianchi identity (1.1) using the rules (1.5) and (1.6).
Within contemporary instrumental precision the HE can therefore be written
in differential form notation as Eq. (1.9).

In tensor notation Eq. (1.7) becomes:

∂µF
a
νρ + ∂ρF

a
µν + ∂νF

a
ρµ = µ0

(
ja

µνρ + ja
ρµν + ja

νρµ

)
(1.14)

and this is the same equation as:

∂µF̃
aµν = µ0j̃

aν (1.15)

where:

F̃ aµν =
1

2
|g|1/2

εµνρσF a
ρσ (1.16)

is the Hodge dual tensor defined [3] by:

|g| = |gµν | (1.17)

In Eq.(1.17) |g|1/2
is the positive square root of the metric determinant [3].

However the Hodge dual of the current on the right hand side is defined by:

j̃aσ := 3

(
1

6
|g|1/2

εµνρσja
µνρ

)
(1.18)

and so |g|1/2 cancels out on either side of Eq.(1.15). The simplest form of the
homogeneous field equation is therefore:

∂µF̃
aµν ∼ 0 (1.19)

and in vector notation this becomes:

∇ ·Ba ∼ 0 (1.20)

and
∂Ba

∂t
+ ∇ ×Ea ∼ 0 . (1.21)

Experimentally it is found that the homogeneous current j̃a is very tiny. Geo-
metrically this implies that:

Ra
b ∧ qb = −1

2
κωa

b ∧ T b. (1.22)
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1.2. THE OBJECTIVE LAWS OF CLASSICAL ELECTRODYNAMICS

Using the Maurer Cartan structure relations

T a = D ∧ qa (1.23)

Ra
b = D ∧ ωa

b (1.24)

eq.(1.22) becomes:

(D ∧ ωa
b) ∧ qb = ωa

b ∧
(
D ∧ qb

)
. (1.25)

A possible solution of this equation is:

ωa
b = −1

2
κεabcq

c (1.26)

in which the Levi-Civita symbol is defined by:

εabc = gadεdbc. (1.27)

Here gad is the metric in the orthonormal tangent bundle spacetime. This
defines the geometry of the Gauss Law and of the Faraday Law of induction in
the Evans unified field theory.

In order to deduce the inhomogeneous field equations of the unified field
theory it is first noted that the inhomogeneous field equations of the Maxwell-
Heaviside field theory are encapsulated in the well known:

d ∧ F = 0 (1.28)

d ∧ F̃ = µ0J (1.29)

where F̃ is the Hodge dual of F and where J is the charge current density
three-form. The appropriate Hodge dual of Eq.(1.7) is:

d ∧ F̃ a = −A(0)
(
qb ∧ R̃a

b + ωa
b ∧ T̃ b

)
(1.30)

and this is the inhomogeneous field equation of the Evans unified field theory
(denoted IE). When there is no field matter interaction the appropriate inho-
mogeneous field equation is:

d ∧ F̃ a = 0. (1.31)

Therefore for electromagnetic radiation in free space:

(
qb ∧ R̃a

b + ωa
b ∧ T̃ b

)

e/m
= 0. (1.32)

For centrally directed gravitation (Einstein / Newton gravitation):

T a = 0 (1.33)

Ra
b ∧ qb = 0 (1.34)

R̃a
b ∧ qb 6= 0. (1.35)
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If it is assumed that Eq.(1.32) continues to be true approximately in the presence
of field matter interaction then the only term that contributes to the right hand
side of the IE is that from the gravitational Eq.(1.35). (This approximation is
analogous to the well known minimal prescription:

pµ −→ pµ + eAµ (1.36)

in which it is seen that the electromagnetic property (Aµ) is unchanged by the
field matter interaction.) Therefore the IE becomes:

d ∧ F̃ a = −A(0)
(
R̃a

b ∧ qb
)

grav
. (1.37)

This is the inhomogeneous field equation linking electromagnetism to gravi-
tation. Any type of electromagnetic field matter interaction is described by
Eq.(1.37) provided Eq.(1.32) remains true for the electromagnetic field when
the latter interacts with matter.

In tensor notation Eq.(1.37) is

∂µF̃
a
νρ +∂ρF̃

a
µν +∂νF̃

a
ρµ = −A(0)

(
qb

µR̃
a
bνρ + qb

ρR̃
a
bµν + qb

ν R̃
a
bρµ

)
(1.38)

which is the same equation as:

∂µF
aµν = −A(0)Ra µν

µ (1.39)

where we have used:
Ra

λνµ = qb
λR

a
bνµ. (1.40)

Eq.(1.39) is the simplest tensor formulation of the IE.
In vector notation Eq.(1.39) becomes the Coulomb law of the Evans unified

field theory and the Ampère Maxwell law of the Evans unified field theory. The
Coulomb law is derived using

ν = 0, µ = 1, 2, 3 (1.41)

to give:
∂1F

a10 + ∂2F
a20 + ∂3F

a30 = −A(0)Ra i0
i (1.42)

where summation over repeated indices i is implied. Now denote the fundamen-
tal voltage

φ(0) = cA(0) (1.43)

to obtain:

∇ ·Ea = −φ(0)Ra i0
i (1.44)

with charge density:
ρa = −ε0φ(0)Ra i0

i . (1.45)

Eq.(1.44) is the Coulomb law unified with the Newton inverse square law in the
Evans unified field theory.
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The units on both sides of Eq.(1.44) are volt m−2 and it is seen in Eq.(1.45)
that charge density originates in Ra i0

i , the sum of three Riemann curvature
elements. These elements are calculated from the Einstein field theory of gravi-
tation in our approximation (1.32). In the weak field limit it is well known that
the Einstein field equation reduces to the Newton inverse square law and so
Eq.(1.44) unifies the Newton and Coulomb laws in the weak field limit. Given
the existence of φ(0) it is seen from Eq.(1.44) and (1.45) that an electric field
can be generated from gravitation.

Similarly the Ampère-Maxwell law in the Evans unified field theory is:

∇ ×Ba =
1

c2
∂Ea

∂t
+ µ0J

a (1.46)

where
Ja = Ja

x i + Ja
y j + Ja

z k (1.47)

and where:

Ja
x = −A

(0)

µ0

(
Ra 10

0 +Ra 12
2 +Ra 13

3

)
(1.48)

Ja
y = −A

(0)

µ0

(
Ra 20

0 +Ra 21
1 +Ra 23

3

)
(1.49)

Ja
z = −A

(0)

µ0

(
Ra 30

0 +Ra 31
1 +Ra 32

2

)
(1.50)

From Eqs.(1.47) to (1.50) it is seen that current density also originates in sums
over different Riemann tensor elements. This finding has the important con-
sequence that electric current can be generated by spacetime curvature, the
relevant Riemann tensor elements are again calculated from the Einstein theory
of gravitation. The unified Coulomb/Newton law (1.44) can be further simpli-
fied to:

∇ ·Ea = −φ(0)Ra (1.51)

where
Ra = Ra 10

1 +Ra 20
2 +Ra 30

3 . (1.52)

Here the units of φ(0) are volts and the units of Ra are inverse square meters.
The index a denotes a state of polarization and originates in the index of the
tangent bundle spacetime. For example if Ea is in the Z axis and if we use the
complex circular basis a = (1), (2), (3) then:

Ez = E(3) (1.53)

and we obtain:

∂Ez

∂z
= −φ(0)Rz

= −φ(0)
(
R

(3) 10
1 +R

(3) 20
2 +R

(3) 30
3

) (1.54)
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Using the antisymmetry properties of the Riemann tensor gives the simple equa-
tion:

∂Ez

∂z
= −φ(0)Rz (1.55)

where

Rz = R
(3) 10

1 +R
(3) 20

2 . (1.56)

Eq.(1.55) is therefore the law that governs the interaction between two charges
placed on two masses, and this law shows in the simplest way that an electric
field is always generated by the scalar curvature R multiplied by the fundamental
voltage φ(0). This product defines the charge density as:

ρ = −ε0φ(0)Rz . (1.57)

The minus sign in Eq.(1.55) indicates that charge density is a compression of
spacetime. The Einstein field equation indicates that:

Rz = −k1Tz (1.58)

where k1 is a constant proportional to the Newton constant G and where TZ

is an index contracted (i.e. scalar) canonical energy-momentum tensor. (The
constant k1 In Eq.(1.58) I snot the same numerically as the Einstein constant
k because RZ in Eq.(1.58) is not defined in the same way as the original R of
the Einstein field theory.) Therefore Eq.(1.55) can be written as:

∂Ez

∂z
= φ

(0)
1 GTz (1.59)

where φ
(0)
1 is a fundamental voltage numerically different from φ(0). Eq.(1.59)

shows that the Coulomb law derives in the last analysis from spacetime energy
momentum denoted T, and T can be transferred to an electric circuit. The cur-
vature R is greatest near an electron and for a point electron R becomes infinite.
There are however no infinities in nature so point electrons are idealizations of
the traditional theory of electrodynamics. The Evans field theory removes this
infinity and also removes the need for renormalization and Feynman calculus in
quantum electrodynamics.

If we repeat our consideration of the a = (3) index in the Ampère-Maxwell
law it is seen that current density is generated in the simplest way by a time
varying electric field:

Jz = −ε0
∂Ez

∂z
= −A

(0)

µ0
Rz (1.60)

because for a = (3):

∇ ×Bz = 0. (1.61)

It is seen that current density is generated by different curvature components
from those that generate charge density in the Coulomb/Newton law (1.55) of
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the Evans unified field theory. More generally the transverse a = (1) and (2)
components are given by:

∇ ×B(1) =
1

c2
∂E(1)

∂t
+ µ0J

(1) (1.62)

∇ ×B(2) =
1

c2
∂E(2)

∂t
+ µ0J

(2). (1.63)

In free space there is no current density due to mass and so Eqs.(1.62) and
(1.63) reduce to:

∇ ×B(1) =
1

c2
∂E(1)

∂t
(1.64)

∇ ×B(2) =
1

c2
∂E(2)

∂t
(1.65)

1.3 Discussion

It has been shown that classical electromagnetism and classical gravitation can
be unified with the well known methods of differential geometry, notably the
Maurer-Cartan structure relations and the Bianchi identities. The end result
produces in this paper the four classical laws of electrodynamics unified with
the classical laws of gravitation as given in the Einstein field theory. Charge
density in the Coulomb law and current density in the Ampère-Maxwell law
have been shown to originate in sums over scalar components of the Riemann
tensor of the Einstein gravitational theory. This result shows, for example,
that the curl of a magnetic field and the time derivative of an electric field
can produce gravitation through the current density of the Ampère-Maxwell
law. The gradient of an electric field produces gravitation through the charge
density through the Coulomb law. Therefore an electromagnetic device can
counter gravitation, and this is of clear importance to the aerospace industry.
Conversely the curvature of spacetime as embodied in the Riemann tensor of
gravitation can produce electromagnetic current density through the Ampère-
Maxwell law and charge density through the Coulomb law, and so can produce
electric power. This is of clear interest to the electric power industry, because
circuits can be designed in principle to produce electric power from gravitation
in an original way. The vector formulation produced in this paper of the four
laws of classical electrodynamics shows this clearly.

In deriving the simplest possible expressions of the unified field theory as
given in this paper a type of minimal prescription has been used where it has
been assumed that the electromagnetic field is unchanged in the interaction with
matter. This produces a simple and clear result as described already. If this
minimal prescription is not used the unified field equations become more com-
plicated but still soluble numerically given the initial and boundary conditions.

In deriving the unified field equations in this paper no account has been
taken of polarization and magnetization. The development of these properties
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in the unified field theory will be the subject of future work. Essentially both
polarization and magnetization become spacetime properties, and the electro-
magnetic field interacts with matter through molecular property tensors which
are also spacetime properties and which in the unified field theory, incorporate
the effects of gravitation. This is the subject of generally covariant non-linear
optics.
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Chapter 2

First And Second Order

Aharonov Bohm Effect In

The Evans Unified Field

Theory

by
Myron W. Evans,
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Abstract

The first and second order Aharonov Bohm effects are explained straightfor-
wardly in the Evans unified field theory using the spin connection generated by
electromagnetism as spinning spacetime.

Key words: Evans unified field theory; first and second order Aharonov Bohm
effects.

2.1 Introduction

The class of first order Aharonov Bohm (AB) effects [1] (those due to a static
magnetic field) can be defined as AB effects in which the wavenumber (κ) of a
matter beam such as an electron beam is shifted by the electromagnetic potential
A acting at first order in the minimal prescription:

κ −→ κ+
e

~
A. (2.1)
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Figure 2.1: Area Overlapping

Here −e is the charge on the electron and ~ the reduced Planck constant.
Experiments on the AB effect can be summarized schematically with reference
to Fig. 2.1, which defines one area within another as follows: In the well known
Chambers experiment [2] for example the outer area is that enclosed by the
interacting electron beams in a Young diffraction set up, and the inner area
is that enclosed by an iron whisker within which is trapped a static magnetic
flux density B. In the standard model, electromagnetism always is a theory of
special relativity and:

B = ∇ ×A (2.2)

where A is the vector potential. The AB effect is observed in the Chambers
experiment as a shift in the diffraction pattern of the electron beams, a shift
that is proportional to:

Φ =

∫

s

d ∧ A (outer) (2.3)

in which the surface integral is around the OUTER boundary defined by the
paths of the two electron beams. This is despite the fact that B and therefore
∇×A are confined to the INNER boundary [2]– [3] defined by the circumference
of the iron whisker. The latter is placed between the openings of the Young
interferometer. In the standard model, if B vanishes then so does d∧A. This is
clearly stated in a standard textbook such as ref. [2]. Therefore in the standard
model there cannot be regions in which d ∧ A exists and in which B does not
exist. Despite this simple inference it is often claimed confusingly that the first
order AB effect is due to the effect of non-zero d ∧ A where B is zero or that
the AB effect is a pure quantum effect with no classical counterpart. Other
attempts [2] at explaining the first order AB effect in the standard model rely
on the classical concept of gauge transforming A. This confusion shows that the
standard model does not explain the first order AB effect satisfactorily, or at
all. This much is evidenced by over fifty years of theoretical controversy, all
caused by the use of special relativity where general relativity is needed. The
Evans field theory [3]– [6] is the first successful unified field theory that develops
electromagnetism unified with gravitation as a correctly objective field theory
of general relativity.

In Section 2.2 it is argued that the gauge transform theory of the standard
model violates Stokes’ Theorem in non-simply connected regions, and so is er-
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roneous and unable to explain correctly the first order AB effect. In Section 2.3,
the first order AB effect is explained correctly and straightforwardly using the
spin connection of the Evans field theory. The latter is therefore preferred ex-
perimentally and mathematically to the standard model. Finally in Section 2.4
the second order or electromagnetic Aharonov Bohm effect is explained through
the conjugate product of potentials in the Evans field theory, a conjugate prod-
uct that defines the well known Evans spin field and which is observed in the
inverse Faraday effect IFE [7]. The IFE is explained from the first principles
of general relativity in the Evans unified field theory [3]– [6] but cannot be ex-
plained in the standard model without the empirical or ad hoc introduction of
the conjugate product [8] in non-linear optics. Similarly for the second order
AB effect which is implied by the well observed IFE.

2.2 Argument Against The Standard Model

Adopting the well known [9] notation of differential geometry the following
three equations summarize the attempted description of the first order Aharonov
Bohm effect in the standard model:

F = d ∧A (2.4)

d ∧ F = 0 (2.5)

κ −→ κ+ e
~
A. (2.6)

Experimentally the observed Aharonov Bohm effect in an experiment such
as that of Chambers is proportional to the magnetic flux (in weber) within the
outer boundary of Fig 2.1 (the boundary defined by the paths of the electron
beams):

Φ =

∫

S

d ∧ A =

∫

S

F =

∮
A (outer boundary) (2.7)

However, the magnetic flux density of the iron whisker is at the same time
confined within the inner boundary

Φ =

∫

S

d ∧ A =

∫

S

F =

∮
A (inner boundary) (2.8)

and d ∧ A is also confined within the inner boundary in the standard model.
There is a contradiction between Eqs.(2.7) and (2.8) because the experimentally
measured flux is given by Eq.(2.7) but the physical magnetic flux is given by
Eq.(2.8). In a standard model textbook such as ref. [2], pp. 101 ff. an attempt
is made to explain this contradiction in the first order Aharonov Bohm effect
using the gauge transformation:

A −→ A+ dχ. (2.9)

The standard model uses the Stokes Theorem to argue that:
∮
dχ 6= 0 ? (2.10)
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Figure 2.2: Integration Over Circumferences

in the region between the inner and outer boundary of Fig 2.1 and that the
Aharonov Bohm effect is due to the integral over dχ in Eq.(2.10). However,
the basis of electromagnetic gauge theory in the standard model is the Poincaré
Lemma:

d ∧ (dχ) := 0 (2.11)

which is true for simply AND multiply connected spaces. The integrated form
of the Poincaré Lemma is the Stokes Theorem:

Φ =

∫

S

F =

∫

S

d ∧ (dχ) =

∮
dχ := 0 (2.12)

which is also true for multiply connected spaces [10]. The standard model [2]
attempts to explain the first order AB effect by asserting INCORRECTLY that:

Φ =

∫

S

F =

∫

S

d ∧ (dχ) =

∮
dχ 6= 0. (2.13)

In order to apply the Stokes Theorem to Fig 2.1 for example, a cut [10] is
made to join the outer and inner boundaries as follows: and contour integration
proceeds in one direction around the inner boundary, across the cut, in the op-
posite direction around the outer boundary, and back across the cut. Examples
of such procedures are to be found in a standard textbook on vector algebra [10],
in problems on the application of the Stokes Theorem.

We must look to general relativity and the Evans unified field theory for first
correct explanation of the first order Aharonov Bohm effect.

2.3 Explanation of the First Order AB Effect in

Evans Theory

In the correctly objective description of the first order AB effect [11] the elec-
tromagnetic field is defined by the first Maurer Cartan structure equation:

F a = D ∧Aa = d ∧ Aa + ωa
b ∧ Ab (2.14)

where D∧ is the covariant exterior derivative, d∧ is the exterior derivative,
ωa

b is the spin connection in the well known Palatini formulation of general
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relativity [12,13] in which the tetrad qa
µ is the fundamental field. (In the original

Einstein Hilbert formulation of general relativity the metric is the fundamental
field.) The electromagnetic potential field is the fundamental tetrad field within
a primordial or universal scalar A(0), where cA(0) has the units of volts, and
where c is the speed of light in vacuo:

Aa
µ = A(0)qa

µ . (2.15)

It is seen that this gives a natural field unification scheme, because the metric
used by Einstein and Hilbert is well known [9, 14] to be the dot product of two
tetrads:

gµν = qa
µq

b
νηab (2.16)

where ηab is the Minkowski metric of the tangent bundle whose index is a. The
latter becomes essentially a polarization index [3]– [6] in the Evans field theory.
For example:

a = (1), (2), (3) (2.17)

describes circular polarization where ((1), (2), (3)) is the well known [15] complex
circular basis. Again, it is well known [16] that the tetrad is developed into the
spin 3/2 gravitino in supersymmetry theory, and that the Einstein Hilbert and
Palatini variations of general relativity are inter-related by the tetrad postulate
[9, 16]:

Dνq
a
µ = 0. (2.18)

One of the major inferences of the Evans field theory is that the tetrad field
is the fundamental entity of objective (i.e. generally covariant) unified field
theory, a unified field theory which satisfies the fundamental requirements of
objectivity and general covariance in physics, the principles of general relativity.
Electromagnetism in the standard model is a theory of special relativity, and is
Lorentz covariant only. So the standard model is not a correctly objective theory
of physics. This is the fundamental reason why it cannot describe the first order
Aharonov Bohm effect, and gauge theory in special relativity [2] suffers from
the same fundamental defect.

From Eq.(2.14) the magnetic flux in weber from the Evans field theory is
defined as:

Φa =

∫

S

F a =

∮
Aa +

∫

S

ωa
b ∧ Ab (2.19)

and is in general the sum of two terms, one involving the spin connection ωa
b

of general relativity. It is ωa
b that gives rise to the first (and second) order

Aharonov Bohm effects. The fundamental reason is that the second term on
the right hand side of Eq.(2.19) exists in the outer region of Fig 2.1 even though
the magnetic flux density F a is confined to the inner region and so is zero in the
region between the inner and outer boundaries. The second term on the right
hand side of Eq.(2.19) does not vanish, and gives rise to the AB effects. In the
Chambers experiment, for example, the observed shift in the electron diffraction
pattern is:

δ = x

∫

S

ωa
b ∧ Ab (2.20)
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where x is a proportionality constant. The integration in Eq.(2.20) is around
the outer boundary as required experimentally, the boundary defined by the
diffracting electron beams in the Young interferometer of the Chambers exper-
iment. The latter therefore observes the spin connection of the Evans theory
directly. The spin connection is not present in the standard model, which has
no explanation (Section 2.2) for the AB effects. The spin connection is a direct
consequence of the major discovery of the Evans field theory that electromag-
netism is the spinning of spacetime [3, 6, 17] - the spinning spacetime gives rise
directly to the spin connection in the Palatini variation of general relativity.

The homogeneous field equation of the Evans field theory is [3]– [6]:

d ∧ F a = 0 (2.21)

implying that:

ωa
b = −1

2
κεabcq

c. (2.22)

In the complex circular basis:

Φ(3)∗ =

∫

S

F (3)∗ =

∮
A(3)∗ − i

e

~

∫

S

A(1) ∧A(2). (2.23)

From Eq.(2.23) it is seen that F (3)∗ and A(3)∗ are confined to the iron whisker
(being in the Z axis of the iron whisker perpendicular to the plane of the paper),
but A(1) and A(2) exist outside the iron whisker (i.e. in the plane of the paper)
and interact with the electron beams. The observed fringe shift is proportional
to Φ(3)∗. The electron wavenumber is shifted by:

κ −→ κ+
e

~
A(0) (2.24)

where

A(0) = −i
(
A(1) ∧ A(2)

)1/2

. (2.25)

Here
eA(0) = ~κ. (2.26)

2.4 Electromagnetic or Second Order Aharonov

Bohm Effect

The existence of the reproducible and repeatable inverse Faraday effect [3]– [6]
implies that there is an electromagnetic or second order Aharonov Bohm effect.
This is not a shift in the electron wave function but is due to magnetization by
the Evans spin field B(3) [3]– [6]:

B(3)∗ = −igA(1) ∧ A(2). (2.27)

In generally covariant unified field theory [3]– [6] the B(3) field is a funda-
mental manifestation of the fact that electromagnetism is spinning spacetime.

22



CHAPTER 2. FIRST AND SECOND ORDER AHARONOV BOHM. . .

The latter gives rise to the spin connection in Eq.(2.14), and the second term in
this equation gives the B(3) spin field using Eqs.(2.22) and (2.27). The magne-
tization of the inverse Faraday effect is to second order in the potential, so gives
rise to a second order electromagnetic Aharonov Bohm effect (EAB) [3]– [6].
In a Chambers type experiment the EAB would be due to a circularly polar-
ized electromagnetic beam directed between the interfering electron beams but
isolated from the electron beams. The resulting fringe shift would be propor-
tional [3]– [6] to the magnetic flux:

Φ(3)∗ = µ0

∫

S

M (3)∗ (outer) (2.28)

where integration again occurs around the outer boundary in Fig 2.1. The EAB
has important consequences for RADAR and stealth technology because objects
can be detected outside the width of the RADAR beam using the EAB.

2.5 Discussion

The explanation of the EAB is simply that the second term on the right hand
side of Eq.(2.14) exists when it is arranged experimentally that the first term,
the exterior derivative of the potential, is zero. This explanation means that
an electromagnetic beam of given diameter will interact with an electron placed
outside the electron beam. If so, the diameter of the electromagnetic beam must
be defined. In the standard model there is no answer to this question because the
standard explanation of the AB effects violates the Poincaré Lemma. The latter
is identically zerofor any function in both simply and non-simply connected
spaces because:

∇ × ∇ := 0 (2.29)

is an identity independent of the function or topology. A laser beam at visible
frequencies has a definite diameter and color, it can be focused or expanded,
reflected and so on. However, the term ωa

b ∧ Ab is invisible, for the first time
in physics it is seen that there is something more to an electromagnetic beam
than d∧Aa. Similarly the Chambers experiment shows that there is something
more to a magnetic field than the curl of a vector potential. Again, this is the
ωa

b ∧ Ab of general relativity, caused by the spinning of spacetime itself.
The beam diameter must therefore have been defined by the way that the

beam was originally created, or radiated by the source charge-current density
Ja in the inhomogeneous Evans field equation (IE):

d ∧ F̃ a = µ0J
a. (2.30)

For example if the beam is radiated by a non-relativistic electron in a circular
orbit, the diameter of the beam is the diameter of the orbit. A laser is more com-
plicated than this but this illustration gives the principle. The circling electron
causes a spacetime spinning. The radiated magnetic and electric components of
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the laser beam are confined within the laser beam diameter by Eq.(2.30) and
its Hodge dual in free space, the homogeneous Evans field equation (HE):

d ∧ F a = 0. (2.31)

The invisible term ωa
b ∧ Ab exists both inside and outside the laser beam

and outside the laser beam interacts with the electron in the Aharonov Bohm
effect.

So what we see as the visible laser beam is defined by the exterior DERIVA-
TIVES of F a, its Hodge dual F̃ a, and the potential Aa. The exterior derivative
summarizes the time and space variation of these entities within the diameter
defined by the circling electron in the source term Ja of Eq.(2.30). Outside of
this diameter there is no visible radiation. However, the spacetime spinning in-
dicated by ωa

b∧Ab exists outside the visible laser beam because spacetime itself
exists outside the laser beam. The spatial and temporal variations of Aa are
also confined within the beam diameter. Only ωa

b ∧Ab exists outside the beam,
and this contains no spatial or temporal variations of Aa. In the Chambers
experiment the latter interacts with an electron at first order, and the second
order AB is indicated by the existence of the inverse Faraday effect (IFE). This
is the first correct explanation of the Aharonov Bohm effects, the important new
principle at work is that the diameter of a beam of electromagnetic radiation
is always defined by spatial and temporal variations of the potential, electric
and magnetic fields. Similarly a static magnetic field is defined by the curl of
a magnetic potential inside the iron whisker or solenoid, but spacetime outside
the iron whisker is spun by the magnetic field. A useful analogy is to think
of the electromagnetic beam or iron whisker as a stirring rod and the spinning
spacetime as the whirlpool set up by the rod at its center.

Acknowledgments The Ted Annis Foundation, Craddock Inc, John B. Hart
and other scholars are thanked for generous funding and the staff of AIAS for
many interesting discussions.

24



Bibliography

[1] M. W. Evans, J.-P. Vigier at alii, The Enigmatic Photon (Kluwer, Dor-
drecht, 1994 to 2002 in hardback and softback), five volumes.

[2] L. H. Ryder, Quantum Field Theory, (Cambridge, 1996, 2nd ed.).

[3] M. W. Evans (ed.), Modern Nonlinear Optics, a special topical issue in
three parts of I. Prigogine and S. A. Rice (series eds.), Modern Nonlinear
Optics, (Wiley Interscience, New York, 2001, 2nd ed., hardback and e book,
1st ed 1992, 1993, 1997 (softback)), vols 119 and 85.

[4] M. W. Evans, Generally Covariant Unified Field Theory (WS Publishing,
2005), preprint on www.aias.us and www.atomicprecision.com.

[5] L. Felker, The Evans Equations of Unified Field Theory, preprint on
www.aias.us and www.atomicprecision.com.

[6] M. W. Evans, a series of twenty six papers in Foundations of Physics Let-
ters, 2003-present, reprints and preprints on www.aias.us.

[7] M. W. Evans, Physica B, 182, 227, 237 (1992).

[8] M. W. Evans and L. B. Crowell, Classical and Quantum Electrodynamics
and the B(3) Field (World Scientific, Singapore, 2001); M. W. Evans and
A. A. Hasanein, The Photomagneton in Quantum Field Theory, (World
Scientific, Singapore, 1994).

[9] S. P. Carroll, Lecture Notes in general Relativity, (a graduate course at
Harvard, UC Santa Barbara and Univ Chicago, public domain, arXiv: gr-
gc973019 v1 Dec 1997).

[10] E. G. Milewski (ed.), The Vector Analysis Problem Solver (Research and
Education Association, New York, 1987, revised printing), Problem 17-27,
page 790.

[11] M. W. Evans, Found. Phys. Lett., 17, 301, 393 (2004).

[12] D. N. Vollack, On the Dirac Field in the Palatini Form of 1/R Gravitation,
arXiv, gr- gc / 0409068 v1 (2004).

25



BIBLIOGRAPHY

[13] E. E. Flanagan, Phys. Rev. Lett., 92, 071101 (2004).

[14] E. Bertschinger, www.ocw.mit.edu, physics 8.962 course at M.I.T., Spring
2002.

[15] B. L. Silver, Irreducible Tensorial Sets, (Academic, New York, 1976).

[16] M. W. Evans, The Spinning and Curving of Spacetime, The Electromag-
netic and Gravitational Fields in the Evans Unified Field Theory, Journal of
New Energy, in press, 2005 or 2006, the four technical appendices, preprint
on www.aias.us and and www.atomicprecision.com, books and papers on
supersymmetry theory.

[17] M. W. Evans, The Objective Laws of Classical Electrodynamics, The Effect
of Gravitation on Electromagnetism, Journal of New Energy, submitted,
preprint on www.aias.us and www.atomicprecision.com

26



Chapter 3

The Spinning Of Spacetime

As Seen In The Inverse

Faraday Effect

by
Myron W. Evans,

Alpha Foundation’s Institutute for Advance Study (AIAS).
(emyrone@oal.com, www.aias.us, www.atomicprecision.com)

Abstract

The inverse Faraday effect is the observation of spinning spacetime in general
relativity. The spinning gives rise to a spin connection in the Palatini varia-
tion of general relativity and in the Evans unified field theory. For the free
electromagnetic field the spin connection is the dual of the tetrad field in the
tangent spacetime, and from this inference the Evans spin field B(3) is deduced
straightforwardly. The spin field is a magnetic flux density which is observed
in the reproducible and repeatable inverse Faraday effect as a magnetization
occurring in all materials, in the simplest instance one electron.

Key words: Inverse Faraday effect; Evans field theory, general relativity, Evans
spin field, spin connection, tetrad field, Palatini variation.

3.1 Introduction

In the Evans unified field theory [1]– [5] the electromagnetic field is spinning
spacetime in general relativity and the gravitational field is curving spacetime
in general relativity. The two fields are unified and inter-related by standard
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differential geometry as first developed by Cartan and others. The fundamen-
tal field is the tetrad form of the standard Palatini variation [6]– [9] of general
relativity. In this paper the concept of spinning spacetime is established ex-
perimentally by reference to the reproducible and repeatable inverse Faraday
effect [10]– [12], the magnetization of matter by the circularly polarized compo-
nent of electromagnetic radiation at any frequency. In the standard model the
electromagnetic sector is Lorentz covariant only, and is not therefore objective
to all observers, or generally covariant. In consequence, the effect of gravita-
tion on electromagnetism and vice versa cannot be analyzed with the standard
model. In the latter, electromagnetism is a spinning and propagating entity
superimposed on the Minkowski spacetime of special relativity. The Minkowski
spacetime itself does not spin, and in consequence there is no spin connection in
the standard models description of electromagnetism. The result is that there
is no Evans spin field B(3) [1]– [5] in the standard model, and no generally co-
variant or objective explanation in the standard model for the inverse Faraday
effect. Available explanations [13, 14] of the inverse Faraday effect in the stan-
dard model rely on the conjugate product of transverse potentials or transverse
electric or magnetic fields. The conjugate product is introduced empirically [15]
and in the standard model it is not realized that the conjugate product de-
fines the Evans spin field. For this, general relativity is needed as explained
straightforwardly and simply in this paper.

In Section 3.2 the spin field is defined for the free electromagnetic field using
the first Maurer Cartan structure equation of standard differential geometry. In
Section 3.3 the inverse Faraday effect is explained from first principles of Evans
unified field theory for one electron, and suggestions made for further work on
atomic and molecular materials, where the inverse Faraday effect is mediated
by a hyperpolarizability which is also a property of differential geometry in the
Evans field theory. In this way a self consistent unified field theory of non-linear
optics in general can be built up from differential geometry.

This paper therefore emphasizes a key difference between Evans field theory
and the obsolete standard model, the spin field exists in the former but not in
the latter. The spin field is observed experimentally, so the Evans field theory
is preferred because it explains the spin field in a generally covariant manner as
required of any valid theory of physics. To be valid, a theory must be objective
to all observers, the principle of general relativity.

3.2 Derivation of the Evans Spin Field from First

Principles

The starting point is the first Maurer Cartan structure equation of standard dif-
ferential geometry [1]– [5], which defines the torsion form (T a) as the covariant
exterior derivative (D∧) of the tetrad form (qa). In the standard Palatini varia-
tion of general relativity the tetrad form becomes the fundamental field. (In the
Einstein Hilbert variation of general relativity the symmetric metric becomes
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the fundamental field.) In the standard notation [16] of differential geometry
the first Maurer Cartan structure equation is:

T a = D ∧ qa = d ∧ qa + ωa
b ∧ qb (3.1)

where ωa
b is the spin connection one-form and where d∧ denotes the exterior

derivative of Cartan. The indices in Eq.(3.1) are those of the tangent spacetime.
The indices of the base manifold in differential geometry are always the same on
both sides of any equation of differential geometry, so are customarily omitted
[16]. Reinstating the base manifold indices we obtain:

T a
µν = (d ∧ qa)µν + ωa

µb ∧ qb
ν . (3.2)

Therefore differential geometry consists of equations of the tangent bundle valid
for each and every index such as µ and ν of the base manifold. This inference
provides us with one of the fundamental principles of Evans field theory: equa-
tions of physics such as the Dirac equation can be written in the tangent bundle
and the effect of gravitation on these equations is measured by the way in which
the tangent bundle and base manifold are related geometrically. The fundamen-
tal field is the tetrad because the latter is defined by:

V a = qa
µV

µ (3.3)

where V a is any vector or spinor in the tangent bundle and where V µ is the cor-
responding vector or spinor in the base manifold. The latter is defined by Evans
spacetime [1]– [5] and the tangent bundle by the Minkowski spacetime. So the
tetrad inter-relates the tangent bundle and base manifold and gives the infor-
mation required to measure the effect of a curving base manifold: gravitation;
or the effect of a spinning base manifold: electromagnetism.

In electromagnetism and electrodynamics the Evans Ansatz [1]– [5] defines
the potential field (Aa

µ) as the tetrad field within a scalar-valued factor A(0)

with the units of volt s/m. Thus cA(0) has the units of volts, and cA(0) is
a primordial quantity (analogous to Feynman′s well known [17] description of
electromagnetic potential in special relativity as the universal influence). Thus:

Aa
µ = A(0)qa

µ (3.4)

from which the anti-symmetric electromagnetic field tensor is defined as:

F a
µν = (d ∧ Aa)µν + ωa

µb ∧ Ab
ν

= ∂µA
a
ν − ∂νA

a
µ + ωa

µbA
b
ν − ωa

νbA
b
µ.

(3.5)

In the standard model the Lorentz covariant equivalent of Eq.(3.5) is:

Fµν = ∂µAν − ∂νAµ (3.6)

In the correctly objective or generally covariant description of electrodynamics
(Eq.(3.5)) there appears an extra magnetic flux density for the free field:

Ba
µν = ωa

µbA
b
ν − ωa

νbA
b
µ. (3.7)
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When the magnetic flux density (3.7) interacts with matter it produces the
magnetization of the inverse Faraday effect [1]– [5]. Evidently, the standard
model’s Eq.(3.6) does not produce an inverse Faraday effect. The latter is due
to the Evans spin field (3.7) and to the spin connection ωa

µb set up by the
spinning spacetime that we know as electromagnetism.

By free electromagnetic field we mean the propagating field in the absence of
mass (material matter). The free field is defined by the homogeneous Evans field
equation, (HE), which is simply Eq.(3.5) developed into the Bianchi identity [1]–
[5]:

d ∧ F a = µ0j
a

= A(0)
(
Ra

b ∧ qb − ωa
b ∧ T b

)
.

(3.8)

The HE is a combination [18] of the Gauss Law applied to magnetism and the
Faraday law of induction. Both laws are well known to hold to high precision in
the laboratory, from which it is deduced that the homogeneous current ja is zero
within contemporary experimental precision in the laboratory. (In cosmological
contexts in contrast ja may be measurable experimentally.) Therefore we may
write:

ja ∼ 0. (3.9)

Eq.(3.9) in geometrical terms is:

(D ∧ ωa
b) ∧ qb = ωa

b ∧
(
D ∧ qb

)
(3.10)

and a solution of Eq.(3.10) is [1]– [5]:

ωa
µb = −κ

2
εabcq

c
µ (3.11)

where κ is the free space wavenumber of the electromagnetic radiation. It follows
[18] from Eq.(3.11) that for the free field the Evans spin field is:

B(3)∗ = −i κ

A(0)
A(1) ×A(2) (3.12)

in vector notation and in the complex circular basis [1]– [5]. In Eq.(3.12) the
vector cross product on the right hand side is the well known conjugate product
of non-linear optics [19]. The conjugate product has therefore been derived from
the first principles of general relativity and defines the Evans spin field B(3). In
the standard model the conjugate product is introduced empirically and cannot
be related to the Evans spin field because in special relativity the spin field
does not exist (Eq.(3.6)). It does not exist because the Minkowski spacetime of
special relativity does not spin.

If we accept general relativity we must accept the Evans spin field and ob-
jectivity in physics. If we reject the Evans spin field we must reject general
relativity and objectivity in physics.
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3.3 The Inverse Faraday Effect in One Electron

and Atomic and Molecular Material

The interaction of the spin field with one electron produces the observable mag-
netization of the inverse Faraday effect as follows:

M(3)∗ = − i

µ0

κ′

A(0)
A(1) ×A(2) =

1

µ0

κ′

κ
B(3)∗ (3.13)

where [15]:
κ′

κ
=
N

V

(
µ0e

2c2

2mω2

)
. (3.14)

Here N is the number of electrons in a sample of volume V,−e is the charge
on the electron, m is the mass of the electron, and ω is the angular frequency
2πf of the electromagnetic radiation where f is its frequency in hertz. (Here
ω should not be confused with the spin connection ωa

µb .) In order to calculate
Eq.(3.14) in the Evans field theory a minimal prescription method may be used
as follows:

pa
µ = pa

µ + eAa
µ (3.15)

and the angular momentum imposed to the electron by the circularly polarized
electromagnetic field calculated in the non-relativistic limit [15]. If we wish to
include relativistic effects the Hamilton-Jacobi method may be used [15].

The key point is that the observable magnetization of the one electron inverse
Faraday effect directly observes the Evans spin field from Eq.(3.13) within the
factor κ′/κ.

It is observed from Eq.(3.11) that the inverse Faraday effect in samples of
many electrons, such as atomic and molecular samples, arises from the particular
form taken by the three index spin connection in the atom or molecule. Only
in free space is the spin connection dual to the tetrad through Eq.(3.11). In the
interaction of a circularly polarized field with one electron Eq.(3.11) becomes:

ωa
µb = −1

2
κ′εabcq

c
µ (3.16)

but in more complicated samples the simple Eq.(3.16) no longer applies, and
the inverse Faraday effect is defined by hyperpolarizabilities constructed from
the spin connection. In other words hyperpolarizabilities are properties of dif-
ferential geometry. This deduction is generalized finally to the basic principle
of Evans unified field theory: physics is differential geometry.
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Abstract

The origin of magnetization and polarization in the Evans field theory is traced
to the spin connection term in the first Maurer Cartan structure equation of
differential geometry. The spin connection term originates in the spinning or
swirling of spacetime, which sets up a spacetime magnetization around for exam-
ple a visible laser beam. Spacetime magnetization is not visible but is detectable
experimentally in the electromagnetic (and other) Aharonov Bohm effects and
in non-local phenomena in general. Magnetization and polarization in material
matter is then a change in the spacetime magnetization, i.e a change in the spin
connection of the Evans unified field theory.

Key words: Evans unified field theory, magnetization, polarization, spacetime
magnetization, spin connection, field matter interaction, magnetization and po-
larization of matter.

4.1 Introduction

Recently the Evans field theory has provided a workable framework upon which
to unify the theories of gravitation and electromagnetism [1]– [6]. In this paper
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the theory is used to trace the origin of magnetization and polarization in the
spin connection term of the definition of the electromagnetic field tensor. The in-
ference is made of a novel spacetime magnetization Ma, a magnetization caused
by the swirling or spinning of spacetime around a propagating electromagnetic
field. If the latter is a visible laser for example, Ma is an invisible region of
magnetization around the visible electromagnetic field, the latter being always
defined by the spatial or temporal derivatives of the electromagnetic potential
Aa. In the Evans field theory Aa is the fundamental tetrad field [7]– [10] within a
primordial or universal factor A(0) = φ(0)/c where φ(0) has the units of volts and
where c is the speed of light. The presence of Ma is detected experimentally by a
novel electromagnetic or second order Aharonov Bohm effect (EAB) [7,8]. If the
laser is replaced by a static magnetic field the spacetime magnetization around
the magnetic field is detected with the original first order (magnetic) Aharonov
Bohm effect first demonstrated by Chambers [9]. Similarly there is a spacetime
polarization P a around a static electric field (a polarization detectable in the
Aharonov Bohm effect due to a static electric field), and a spacetime polariza-
tion also accompanies the EAB. Magnetization and polarization in matter is
then a change in the spin connection defining the fundamental spacetime mag-
netization and polarization. This is a correctly objective or generally covariant
description as required by the principle of general relativity and as such is a ma-
jor advance on the standard model. In the latter, electromagnetism is a theory
of special relativity and is Lorentz covariant only, and not generally covariant
as required of any objective theory of physics. In consequence the effect of grav-
itation (curved spacetime) on electromagnetism (flat spacetime in the standard
model) cannot be analyzed in the standard model, and the concept of spacetime
magnetization and polarization is missing. The standard model attempts [10]
to explain the class of AB effects with non-simply connected regions of space in
special relativity, but it has been shown recently [11] that such an explanation
must always violate the fundamental Poincaré Lemma for any type of space.

In Section 4.2 spacetime magnetization and polarization is defined from
the first Maurer Cartan structure equation of differential geometry, which in
the Evans field theory becomes [1]– [6] the fundamental definition of the anti-
symmetric field tensor. In section 4.3 it is argued that spacetime magnetization
and polarization becomes the magnetization and polarization of matter through
a change in the spin connection of the Evans field theory. This traces the origin
of magnetization and polarization to differential geometry and general relativity.
Finally in Section 4.4 a discussion is given of the description of magnetization
and polarization in the standard model, whereupon it becomes clear that the
Evans field theory has several theoretical and experimental advantages over the
standard model.
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4.2 Definition of Spacetime Magnetization and

Polarization

In the correctly objective (i.e. generally covariant) unified field theory of Evans
[1]– [6] the anti-symmetric electromagnetic field tensor is defined by the following
vector valued two-form:

F a = D ∧ Aa = d ∧ Aa + ωa
b ∧ Ab. (4.1)

Here D∧ denotes the covariant exterior derivative, d∧ the exterior derivative,
Aa the vector valued potential one-form and ωa

b is the spin connection of the
Palatini variation of general relativity [12]– [14]. The homogeneous Evans field
equation (HE) is the correctly objective form [1]– [6] of the standard model’s [10]
homogeneous Maxwell-Heaviside field equation (HME). The HE is:

d ∧ F a = −A(0)
(
qb ∧ Ra

b + ωa
b ∧ T b

)
. (4.2)

Here Ra
b is the tensor valued Riemann or curvature two-form [14], T a is the

vector valued torsion two-form, and qa is the vector valued tetrad one-form. In
the Palatini variation the tetrad is the fundamental field of general relativity
[12]– [14]. In the original Einstein - Hilbert variation [14] the symmetric metric
gµν is the fundamental field. The symmetric metric is factorized [14] into the
dot product of two tetrads as follows:

gµν = qa
µq

b
νηab (4.3)

where ηab is the Minkowski metric of the tangent bundle spacetime at any point
P in the base manifold (Evans spacetime).

The Evans Ansatz [1]– [6] is as follows:

Aa = A(0)qa. (4.4)

From Eq.(4.4):
F a = A(0)T a (4.5)

Eqs. (4.4) and (4.5) show that electromagnetism in the Evans unified field
theory is differential geometry within a factor A(0), a fundamental, C negative,
universal and primordial influence, the vector potential magnitude. Within this
factor A(0) the field tensor (4.5) is the first Maurer Cartan structure equation
[14] of standard differential geometry:

T a = D ∧ qa = d ∧ qa + ωa
b ∧ qb (4.6)

and within the factor A(0), the HE is the first Bianchi identity of standard
differential geometry:

D ∧ T a = Ra
b ∧ qb. (4.7)

Eq.(4.7) can be rewritten as:

d ∧ T a = −
(
qb ∧ Ra

b + ωa
b ∧ T b

)
(4.8)
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The homogeneous electromagnetic current of the unified field theory is defined
as:

ja = −A
(0)

µ0

(
qb ∧ Ra

b + ωa
b ∧ T b

)
(4.9)

where µ0 is the vacuum permeability in S.I. units. Under laboratory conditions:

ja ∼ 0 (4.10)

because Eq.(4.2) is the correctly objective combined expression of the Faraday
Law of induction and the Gauss Law of magnetism [1]– [6]. Both these laws
appear to hold within contemporary experimental precision under laboratory
conditions. In a cosmological context however, for example the deflection of light
grazing an intensely gravitating object in an Eddington experiment, ja is already
known to be observable, because it is the electromagnetic current responsible
for this deflection of light. In other words ja is a measurable influence of intense
gravitation on electromagnetism propagating in free space. It is well known that
Einstein predicted the deflection of light by intense gravitation using a purely
gravitational theory, the photon being assumed implicitly to be a mass that
is attracted gravitationally by the mass of the sun. In the Evans unified field
theory this SAME influence or mutual interaction appears classically through ja.
Therefore the Evans field theory correctly predicts the results of the Eddington
experiment, (deflection of light by the sun), and in addition, the Evans theory
shows that the Faraday Law of induction and Gauss Law of magnetism no
longer hold in the presence of intense gravitation. In order to realize this a
UNIFIED field theory is evidently needed, a purely gravitational theory such
as that used originally by Einstein, is not enough to give us the homogeneous
current ja. The fact that the well known Gauss and Faraday laws appear
always to hold in the laboratory is due to the fact that the gravitation of the
Earth is too small to detect ja. Therefore in the unified field theory there are
experimentally verifiable effects such as the Eddington experiment which do
not exist in the standard model. Another example is the well known relativistic
pulsar radiation [15], and this will be the subject of future work to analyze the
effect of intense gravitation on synchrotron radiation. A pulsar is essentially a
synchrotron located on a rotating and very intensely gravitating neutron star.

A third example (out of many) is the subject of this paper and is defined in
this section - spacetime magnetization and polarization.

In the unified field theory a visible frequency laser beam, for example, is
defined on the classical level by:

F a = d ∧ Aa + ωa
b ∧ Ab (4.11)

d ∧ F a = µ0j
a ∼ 0. (4.12)

The first term in Eq.(4.11) describes the visible part of the beam, and the
invisible second term in Eq.(4.11) describes spacetime swirling around the beam
in analogy to a whirlpool set up by a stirring rod. The latter is the analogy for
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the beam, and the water of the whirlpool is the analogy for swirling or spinning
spacetime ITSELF. This produces SPACETIME MAGNETIZATION:

Ma =
1

µ0
ωa

b ∧Ab. (4.13)

It is concluded that: 1) The visible light of a laser is defined by d ∧ Aa, i.e.
by the spatial and temporal DERIVATIVES of the potential or tetrad field Aa.
These derivatives define the electric and magnetic fields of the laser beam. 2)
The spacetime magnetization Ma surrounding the laser beam is invisible but
gives rise to an Aharonov Bohm effect at second order - the electromagnetic
Aharonov Bohm effect (EAB) [7, 8].

The EAB occurs in regions where:

d ∧ Aa = 0 (4.14)

but where:
Ma 6= 0. (4.15)

Similarly in the well known Chambers experiment [9] the magnetic field inside
the iron whisker is defined by Eq.(4.11) and the well known Chambers effect or
magnetic Aharonov Bohm effect is due to the spacetime magnetization set up
by the static magnetic field rather than by the laser (electromagnetic field). 3)
It is seen that the origin of magnetization (and also polarization) is differential
geometry, the existence of spinning or swirling spacetime.

Spacetime magnetization is defined by the Evans spin field [1]– [6]:

Ma =
1

µ0
Ba (4.16)

and the Ba Field is observed directly in the inverse Faraday effect [16]. Both
Ma and Ba are due to the spinning of spacetime in general relativity. In the
standard model bothMa and Ba are undefined from first principles because elec-
tromagnetism in the standard model is a theory of special relativity in which the
Minkowski spacetime is flat and static. Since Ma and Ba are both experimen-
tal observables, the Evans theory is preferred experimentally to the standard
model. The Evans theory is also preferred philosophically and theoretically be-
cause it is correctly objective and generally covariant and because it is a unified
field theory of all radiated and matter fields.

4.3 Magnetization and Polarization in Field Mat-

ter Interaction

When there is field matter interaction, magnetization and polarization are de-
fined by the following changes in the spin connection and field tensor:

ωa
b −→ Ωa

b (4.17)
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F a −→ Ga, (4.18)

so Eq.(4.1) becomes:
Ga = d ∧ Aa + Ωa

b ∧ Ab (4.19)

and Ωa
b is seen to be the origin of magnetization and polarization of matter by

an electromagnetic field. The interaction process is described by the inhomoge-
neous Evans field equation (IE) [1]– [6]:

d ∧ G̃a = µ0J
a (4.20)

in which the inhomogeneous current is defined by:

Ja = −A
(0)

µ0

(
qb ∧ R̃a

b + Ωa
b ∧ T̃ b

)
. (4.21)

Here R̃a
b is the Hodge dual of Ra

b and T̃ b is the Hodge dual of T b. In the
absence of magnetization and polarization of matter, the spin connection Ωa

b

reverts to ωa
b and eqn.(4.20) becomes:

d ∧ F̃ a = µ0J
a
0 (4.22)

where the inhomogeneous current is now defined by:

Ja
0 = −A

(0)

µ0

(
qb ∧ R̃a

b + ωa
b ∧ T̃ b

)
. (4.23)

Eqn.(4.21) therefore describes an idealized or mathematical type of field matter
interaction which does not produce magnetization or polarization. In situations
of interest to physics however, magnetization and polarization are always pro-
duced in matter by an electromagnetic field, even on the one electron level [17].
The HE (Eq.(4.2)) describes the propagation of electromagnetic radiation in
free space.

It is seen that a concise and rigorously objective description of magnetization
and polarization is given by differential geometry in the Evans field theory.

4.4 Magnetization and Polarization in the Stan-

dard Model

In the standard model classical electromagnetism is a theory of special relativity
and the electromagnetic field is a mathematical or abstract entity superimposed
on a flat and static Minkowski spacetime. Magnetization (M in Am−1) and
polarization (P in Cm−2) are introduced phenomenologically (i.e. from the
existence of the phenomenon and not by reasoning or deduction from a first
principle) in the constitutive equations that define the magnetic field strength
H (in Am−1) and the electric displacement D (in Cm−2):

H =
1

µ0
B −M (4.24)
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D = ε0E + P. (4.25)

Here E is the free space electric field strength (in volt m−1) and B is the free
space magnetic flux density (in tesla). In Eqs.(4.24) and (4.25) the permittivity
in vacuo (ε0) and permeability in vacuo (µ0) have the S.I. values:

ε0 = 8.854188× 10−12J−1C−2m−1 (4.26)

µ0 = 4π × 10−7Js2C−2m−1. (4.27)

The equivalents of Eq.(4.2) in the standard model are:

∇ ·B = 0 (4.28)

∇×E +
∂B

∂t
= 0, (4.29)

and the equivalents of Eq.(4.20) in the standard model are:

∇ · D = ρ (4.30)

∇×H =
∂D

∂t
+ J. (4.31)

Here ρ is charge density (in Cm−3) and J is current density (in Am−2). Eq(4.28)
is the Gauss law applied to magnetism; Eq.(4.29) is the Faraday law of induction;
Eq.(4.29) is the Coulomb law and Eq. (4.31) is the Ampère Maxwell law.

The standard model’s description of electromagnetism is not generally co-
variant and in consequence cannot analyze the effect of gravitation on elec-
tromagnetism or vice versa. Evidently the notion of spacetime curvature and
torsion is absent from the standard model entirely, whereas they are present in
the Evans theory through Ra

b and T a. The spin connection ωa
b is missing from

the standard model because the latter describes electromagnetism with a static
Minkowski spacetime. In consequence the Evans spin field Ba and the spacetime
magnetization Ma are missing from the standard model. This means in turn
that the standard model is not able to describe the inverse Faraday effect or the
Aharonov Bohm effects from the first principle of objective physics, the princi-
ple of general relativity. The standard model’s description of electromagnetism
is not able, again, to describe the Eddington experiment and gravitational lens-
ing: the deflection of light by gravitation. In the standard model a beam of
light in vacuo (the ”source free” region of the standard model) is described by
Eqs.(4.28) and (4.29), the Gauss and Faraday laws, and if this beam of light
grazes an intensely gravitating object such as the sun no effect is expected in
the standard models Eqs.(4.28) and (4.29). Yet it is observed that the light is
deflected by the mass of the sun during an eclipse (the original Eddington exper-
iment). Einstein’s well known explanation of this phenomenon uses or implies
the concept of particulate photon mass but the very concept of the photon as
quantum of electromagnetic energy is missing entirely from Eqs.(4.28) to (4.31).
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In the Evans field theory the Eddington experiment can be described on a
classical level from Eq.(4.2), the HE. This result can be seen qualitatively as fol-
lows. Einstein’s essentially quantum and particulate explanation of the Edding-
ton experiment is based on Riemann geometry with a symmetric or Christoffel
or Levi-Civita connection. This geometry is summarized succinctly by:

qb ∧ Ra
b = 0. (4.32)

ωa
b ∧ T b = 0. (4.33)

Eq.(4.32) is the Bianchi identity used by Einstein [14], and Eq.(4.33) follows
from the fact that in Einsteins 1916 theory of general relativity the torsion form
is zero:

T b = 0. (4.34)

It follows from Eqs.(4.32) and (4.33) that:

d ∧ F a = µ0j
a = 0. (4.35)

This result is due to the fact that in the Einstein theory gravitation is not
unified with electromagnetism on the classical level and there can never be any
mutual influence of one field on another if we use the geometry defined by
Eqs. (4.32) to (4.34). Eq.(4.35) means that the beam of light is not deflected.
Electromagnetism uninfluenced by gravitation is defined [1]– [6] in the Evans
field theory by the free space condition:

qb ∧ Ra
b + ωa

b ∧ T b = 0 (4.36)

and Eq.(4.36) again leads to Eq. (4.35). Again there is no deflection of the
beam of light by the sun. This result is again due to the fact that gravitation
and electromagnetism are not mutually influential.

In order for the beam of light to be deflected by the sun in an Eddington
experiment, the homogeneous current ja must be non-zero. Conversely the
experimental observation of deflection of light by the sun means that the Evans
field theory is verified on a classical level, and the standard model is invalidated
on a classical level. The geometry needed for this deflection is, from Eq.(4.2),
defined by:

ja = −A
(0)

µ0

(
qb ∧ Ra

b + ωa
b ∧ T b

)
6= 0. (4.37)

The presence of the sun therefore has the effect of changing:

d ∧ F a = 0 (4.38)

to
d ∧ F a = µ0j

a 6= 0. (4.39)

This means that the beam is refracted by mass, i.e. its path is deflected. Sim-
ilarly a beam of light is refracted when it interacts with matter (e.g. water).
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The refraction by mass is described by the homogeneous current ja, the refrac-
tion by water is described by the inhomogeneous current Ja. The refraction
is accompanied in general by a change in polarization from the circular polar-
ization of Eq.(4.38) to a modified polarization in Eq.(4.39). To calculate these
changes quantitatively needs a computer in general, but the results can be seen
qualitatively as described without any further calculation.
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Abstract

The Evans unified field theory offers a classical explanation of the refraction of
electromagnetic radiation by gravitation (the Eddington effect or gravitational
lensing). In so doing a number of other electromagnetic effects of gravitation
are predicted by the theory.

Key words: Evans unified field theory, Eddington experiment, gravitational
lensing, electromagnetic effects of gravitation.

5.1 Introduction

The Eddington experiment (1919 - 1922) [1] observed refraction of light by
starlight in regions near the sun during an eclipse. The effect was a confirma-
tion of the Einstein/Hilbert theory of general relativity [2] because the orbit of a
photon around the sun is Einsteinian rather than Newtonian. Although based on
the classical field theory of generally covariant gravitation, the Einstein/Hilbert
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explanation of the Eddington effect does not involve classical electrodynamics.
In this paper a straightforward classical explanation of the Eddington effect
(gravitational lensing) is offered using the Evans unified field theory [3]– [10].
In Section 5.2 the equations needed to explain the Eddington effect are writ-
ten out in terms of standard differential geometry. These are the homogeneous
Evans field equation (HE) and the inhomogeneous Evans field equation (IE). In
general the electromagnetic effects of gravitation are found by solving these two
equations simultaneously with initial and boundary conditions. The equations
show that in general, gravitation will cause all the kinematic and electrodynamic
effects familiar from the phenomena observed in the interaction of electromag-
netic radiation with a dielectric [11]. These include refraction, the deflection of
light (visible frequency electromagnetic radiation) by gravitation, the Eddington
effect.

In Section 5.3 a short discussion is given of the origin of the fundamental
vector potential magnitude A(0) of the Evans field theory.

5.2 Classical Field Theory on the Eddington Ef-

fect

The classical explanation of the Evans unified field theory is based in general
on the solution of the HE and IE simultaneously, given initial and boundary
conditions. The explanation is summarized as follows:

d ∧ F a = 0 −→ d ∧ F a = µ0j
a (5.1)

d ∧ F̃ a = 0 −→ d ∧ F̃ a = µ0J
a. (5.2)

Here F a is the differential two-form [12] representing the electromagnetic field

tensor and F̃ a is its Hodge dual. The symbol d∧ denotes the exterior derivative
of differential geometry. The effect of gravitation on light grazing the sun is
analyzed by the homogeneous current:

ja = −A(0)
(
qb ∧ Ra

b + ωa
b ∧ T b

)
(5.3)

and the inhomogeneous current:

Ja = −A(0)
(
qb ∧ R̃a

b + ωa
b ∧ T̃ b

)
(5.4)

of the Evans field theory [3]– [10]. Here µ0 is the S.I. permeability in vacuo,
T a is the torsion form of differential geometry [12], Ra

b is the Riemann form of
differential geometry, ωa

b is the spin connection of differential geometry and qa

is the tetrad form of differential geometry. The scalar valued A(0) is a primordial
vector potential magnitude with the units of volt s/m. Its origin and meaning
is discussed further in Section 5.3.

In the absence of gravitation (in regions far from the sun) the currents ja

and Ja are vanishingly small, but for light grazing the sun the currents become
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finite and cause the Eddington effect. The origin of the currents is spacetime
itself and this inference means that spacetime itself can act as a source for an
electromagnetic field given the primordial vector potential magnitude A(0). The
existence of the latter is also indicated by the Eddington effect on the classical
level. The very fact that a light beam is refracted (i.e. deflected) by mass (the
sun) proves the Evans unified field theory qualitatively on the classical level.
Einsteins famous explanation of the Eddington effect is implicitly quantum in
nature because the explanation is based on the gravitational attraction of the
particulate photon by the sun. The light beam is made up of an ensemble
of photons. This explanation does not use classical electrodynamics and kine-
matics because the explanation is based on a theory of gravitation only, and
not on a unified field theory as required for a fuller understanding of the phe-
nomenon. In the Maxwell-Heaviside (MH) theory of the contemporary standard
model refraction by mass does not occur at all, because mass and gravitation do
not occur in classical MH electrodynamics, in which the source of electromag-
netism is accelerated charge. The charge is considered in MH theory as a point
charge without mass and without volume. The latter is introduced only through
the charge density. Similarly the current in MH theory is the motion of point
charges, and volume is introduced only through current density. These nine-
teenth century concepts predate general relativity and are not compatible with
general covariance or objectivity in physics. In consequence the MH equations
are Lorentz covariant equations of special relativity but not generally covariant
as required by general relativity. The standard model is therefor flawed funda-
mentally in several ways [3]– [10]. The inability of classical electrodynamics to
explain the Eddington effect is a clear indication of these flaws.

In the Evans field theory ja and Ja are properties of spacetime with both
curvature and torsion, so gravitation can cause the refraction of light. There
are also other effects predicted by the Evans unified field theory, effects such as
absorption and dispersion due to gravitation, and in general any classical elec-
trodynamical effect of a ”dielectric”. The ”dielectric” in this case is spacetime
ITSELF, specifically the Evans spacetime [3]– [10] defined by the presence of
both curvature and torsion.

The simplest approximation to Eqs.(5.2) and (5.2) is:

ja = 0 (5.5)

Ja = −A(0)qb ∧ R̃a
b (5.6)

i.e.:

d ∧ F a = 0 (5.7)

d ∧ F̃ a = µ0J
a = −A(0)qb ∧ R̃a

b (5.8)

In this approximation

qb ∧ Ra
b = 0 (5.9)

ωa
b ∧ T a = 0 (5.10)
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for gravitation and

qb ∧ Ra
b + ωa

b ∧ T a = 0 (5.11)

for electromagnetism. Eqs.(5.9) and (5.10) define the differential geometry ap-
propriate to the Einstein field theory of gravitation [3]– [10], and Eq.(5.11)
defines the differential geometry of electromagnetism in free space [3]– [10].

In this simplest approximation the Eddington effect is caused by Eqs.(5.7)
and (5.8), which must be solved simultaneously with given initial and boundary
conditions. Written out in vector notation [13] these equations are as follows:

∇ ·Ba = 0 (5.12)

∇×Ea +
∂Ba

∂t
= 0 (5.13)

∇ · Ea = −cA(0)
(
Ra 10

1 +Ra 20
2 +Ra 30

3

)
(5.14)

∇×Ba =
1

c2
∂Ea

∂t
− A(0)

µ0

((
Ra 10

0 +Ra 12
2 +Ra 13

3

)
i

+
(
Ra 20

0 +Ra 21
1 +Ra 23

3

)
j +
(
Ra 30

0 +Ra 31
1 +Ra 32

2

)
k
) (5.15)

A quantitative explanation of the Eddington effect in the Evans field theory
therefore requires a knowledge of the scalar-valued Riemann components in
Eqs.(5.14) to (5.15), and a knowledge of A(0). The Riemann scalar elements
can be calculated from the Einstein field theory for a given metric, notably the
Schwarzschild metric [12] for the sun. All the kinematic and electrodynamic
effects normally associated with a dielectric are also expected from Eqs.(5.12)
to (5.15) and this inference illustrates the predictive power of the Evans field
theory. The standard model is unable to make these predictions.

It is helpful to summarize the above explanation in a barebones notation
which suppresses all indices to leave the basic structure of the equations.

The Eddington effect therefore is the refraction of light by Evans spacetime
near the sun. The spacetime is considered to be a dielectric defined by two
differential equations:

d ∧ F = µ0j (5.16)

d ∧ F̃ = µ0J. (5.17)

In the simplest approximation we assume that the interaction of electromag-
netism with gravitation does not change the free space fields E and B, respec-
tively the electric field strength and the magnetic flux density of the electro-
magnetic field. This is a standard approximation used also in MH theory, in
which the homogeneous equations are written in terms of E and B and the in-
homogeneous equations in terms of D and H, respectively electric displacement
and magnetic field strength. This approximation, when used in the Evans field
theory, means that we assume:

q ∧ R+ ω ∧ T = 0 (5.18)
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in the HE and we assume:

q ∧ R̃+ ω ∧ T̃ = 0 (5.19)

in the IE. This approximation is equivalent to a standard minimal prescription
[13] and simplifies Eq.(5.17) to:

d ∧ F̃ = µ0J = −A(0)q ∧ R̃ (5.20)

where q ∧ R̃ in Eq.(5.20) indicates the gravitational geometry of the Einstein
field theory. The latter is defined geometrically [2]– [10] by:

q ∧ R = 0 (5.21)

ω ∧ T = 0 (5.22)

but:
q ∧ R̃ 6= 0. (5.23)

In general J of Eq.(5.20) is the sum of two terms:

J = Jc + Jp (5.24)

where Jc is due to free charges and Jp is due to polarization and magnetization
in the dielectric (i.e. Evans spacetime). This deduction can be seen from the
structure of the MH inhomogeneous equations [14]:

∇ · D = ρ (5.25)

∇×H =
∂D

∂t
+ J (5.26)

where
D = ε0E + P (5.27)

H =
1

µ0
B −M. (5.28)

Here ε0 is the S.I. vacuum permittivity, µ0 is the S.I. vacuum permeability, ρ is
charge density, J is current density, P is polarization and M is magnetization.

Eq.(5.26) can be rewritten in terms of the free fields E and B as:

∇×B =
1

c2
∂E

∂t
+ µ0 (J + Jp) (5.29)

where:

Jp =
∂P

∂t
+ ∇×M. (5.30)

In the absence of free charges (i.e. in a dielectric such as glass):

J = 0 (5.31)
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and

∇×B =
1

c2
∂E

∂t
+ µ0Jp. (5.32)

This equation may be generalized to:

d ∧ F̃ = µ0Jp (5.33)

Finally we assume that:

Jp = −A
(0)
p

µ0
q ∧ R̃ (5.34)

where A
(0)
p is the equivalent of A(0) for an uncharged dielectric.

The Eddington effect is described by Eqs. (5.33) and (5.34) as the refraction
of light in a dielectric, a well known problem solved in many standard texts [15].

The mass of the sun creates q ∧ R̃ in the regions of Evans spacetime where
starlight grazes the sun in an eclipse. Conceptually the Eddington effect be-
comes the familiar refraction seen for example in a prism or lens. As for any
dielectric such as glass or water the refraction is accompanied by reflection, dis-
persion, and frequency shifts of the radiation. The frequency shifts in the Evans
field theory are frequency shifts of light caused by gravitation. There are also
polarization changes of electromagnetic radiation due to gravitation expected
in general. The Evans spacetime is characterized by a refractive index, as for
any dielectric such as glass or water. The permittivity ε and permeability µ of
the dielectric (i.e. the Evans spacetime with curvature and torsion) are different
from ε0 and µ0 defined in S.I. units by:

ε0µ0 =
1

c2
. (5.35)

These differences are again due to gravitation. None of these effects occur
in the MH theory, and none occur in the Einstein field theory of gravitation.
They occur only in a unified field theory, and clearly illustrate the predictive
power of the Evans field theory. The Eddington effect then follows from the
standard textbook theory of refraction, i.e. from the fact that ε and µ are
different from ε0 and µ0 in regions close to the sun in a solar eclipse. Thus
the terminology gravitational lensing - the Evans spacetime around the sun is
a giant lens through which starlight passes before reaching the observer.

5.3 The Fundamental Vector Potential Magni-

tude A
(0)

A classical expression can be derived for A(0) starting from the standard defini-
tion [15] of total electromagnetic field energy En within the volume of radiation
V :

En =
1

µ0

∫
B2dV (5.36)
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a definition which can be found in the standard texts [15] of classical electrody-
namics. Now use dimensionality to find that:

B = κA =
ω

c
A (5.37)

where κ has the dimensions of wavenumber (inverse meters). From Eqs.(5.36)
and (5.37)

A2 =
µ0

κ2

∂En

∂V
(5.38)

and it is possible to define the root mean square:

A(0) =
c

ω
µ

1/2
0

〈(
∂En

∂V

)1/2
〉
. (5.39)

Therefore A(0) is seen to originate in the root mean square of the derivative of
En with respect to V , a pure classical definition.

The quantity En is defined in terms of the electromagnetic energy density
U :

En =

∫
UdV (5.40)

where

U =
κ2

µ0
A2. (5.41)

Therefore
A(0) =

〈
A2
〉1/2

= µ
1/2
0

c

ω
U1/2 (5.42)

and it is seen that A(0) can be defined as being proportional to the square root
of the electromagnetic energy density U . The latter can be related to the power
density I of the electromagnetic field:

I = cU (5.43)

so:

A(0) = µ
1/2
0 c1/2

(
I1/2

ω

)
(5.44)

where I is measured in watts per square meter. Therefore A(0) is proportional
in free space to the square root of I and inversely proportional to the angular
frequency ω of the beam in radians per second.

A quantum classical equivalence can be forged for an electromagnetic beam
consisting of one photon occupying a volume V . In this case the total electro-
magnetic field energy is that of the photon, i.e. ~ω, and so:

~ω =
1

c

∫
IdV (5.45)

and A(0) can be expressed in terms of the energy of one photon in a volume of
radiation V . In classical electrodynamics A and B are entities superimposed on
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a Minkowski spacetime, but in the Evans field theory A and B are properties
of spinning spacetime [3]– [10]. The electromagnetic field in the Evans theory
is generally covariant and the electromagnetic field is spinning spacetime itself.
An index contracted canonical energy - momentum density T can be defined for
the Evans unified field, and is proportional to scalar curvature:

R = −kT. (5.46)

Here k is the Einstein constant. It is deduced that A(0) originates classically
in R [3]– [10]. It is seen from Eq.(5.42) that electromagnetic energy density
U is proportional to A(0)2. This equation indicates that there are two signs of
A(0) for one sign of energy density. A(0) may be positive (positive charge) or
negative (negative charge), and this is the origin of the fact that there are two
signs of charge in nature. The fundamental reason is that energy density U is
quadratic in A(0), and therefore R is also quadratic in A(0) in the Evans unified
field theory.

The Eddington effect shows that gravitation can deflect light on the classi-
cal level. This phenomenon can be understood in terms of Ja, a charge current
density three-form, so the phenomenon is clear and important proof that elec-
tric power can be generated by Evans spacetime acting as Ja, the source of
the power. This has very important technological consequences which must be
worked out by computer simulation, i.e. by solving the HE and IE simultane-
ously in a circuit designed to amplify the available power to practical levels.
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Abstract

The Schwarzschild metric is used in the Evans unified field theory to calculate
the slowing of the speed of light and angle of deflection of light by a gravitating
object such as the sun. Thus, Einsteins well known gravitational explanation
of this effect in terms of the photon mass is completed within the context of
a unified field theory in which electromagnetism is considered to be at once
particulate and undulatory.

Key words: Evans unified field theory; gravitational lensing; diffraction of light
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6.1. INTRODUCTION

by gravitation; Eddington experiment; Schwarzschild metric.

6.1 Introduction

The diffraction of electromagnetism by gravitation appears to be precisely ex-
plained for the sun and some stars by the Einstein/Hilbert gravitational theory
of general relativity [1]. The theory is however incomplete, as Einstein pointed
out, because it does not involve classical electromagnetism. In consequence
there are anomalous gravitational shifts which cannot be explained by the Ein-
stein Hilbert theory [2]. The latter explanation is based on the gravitational
attraction of the photon by the sun, and was originally verified by Eddington
et al. [3]. In this paper the diffraction of electromagnetic waves by mass is cal-
culated both in classical electrodynamics and with the Einstein/Hilbert theory
using the Evans unified field theory [4]– [10]. The structure of the latter theory
is based solidly on universally accepted Cartan differential geometry [11], the
homogeneous and inhomogeneous equations of classical electrodynamics being
derived from the first Bianchi identity. The relation between the potential and
the field is derived from the first Cartan structure equation, and all the wave
equations of physics are derived from Cartans tetrad postulate, which links
Cartan differential geometry to Riemann geometry and which is a universally
accepted fact of geometry like the Pythagoras Theorem.

The Coulomb and Ampère-Maxwell laws from the Evans unified field theory
are set up in Section 6.2, the charge current density being calculated using the
Schwarzschild metric for the sake of illustration. Other metrics can be used if
preferred. In Section 3 the slowing of the speed of light by the suns gravitational
attraction is calculated straightforwardly with the Einstein/Hilbert field theory
directly from the Schwarzschild metric and the result is compared with that
of Newtonian dynamics. This is part of the Evans unified field theory, which
reduces to the Einstein/Hilbert field theory when the torsion form of Cartan
vanishes [4]– [10]. Another part of the Evans field theory is then used to calculate
straightforwardly the refraction expected in classical electrodynamics by the
slowing of the speed of light. This is a first qualitative calculation using the
suns equatorial radius, a calculation which may refined and extended within
the context of the unified field theory.

6.2 The Coulomb and Ampère-Maxwell Laws

From The Unified Field Theory

The Coulomb and Ampère-Maxwell laws in the unified field theory are derived
from the first structure equation of Cartan:

T a = D ∧ qa (6.1)

and the first Bianchi identity:

D ∧ T a = Ra
b ∧ qb. (6.2)
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Here D∧ denotes the covariant exterior derivative:

D∧ = d ∧ +ωa
b∧ (6.3)

where d∧ is the exterior derivative of Cartan. In Eq.(6.3) ωa
b is the spin con-

nection, T a is the torsion form, and Ra
b is the Riemann form. Eqs.(6.1) and

(6.2) become the homogeneous field equations using the basic ansatz:

Aa = A(0)qa (6.4)

where A(0) is a primordial quantity with the units of volt sm−1, and Aa is the
vector potential of the unified field theory, a vector valued one-form.

The antisymmetric field tensor of the unified field theory is a vector-valued
two form which is derived from the potential using the Cartan structure equa-
tion:

d ∧ F a = µ0j
a = −A(0)

(
qb ∧ Ra

b + ωa
b ∧ T b

)
,

F a = d ∧ Aa + ωa
b ∧ Ab.

(6.5)

Therefore electrodynamics becomes a geometrically based theory as required
by the basic philosophy of general relativity. Finally the temporal and spatial
dependence of the electromagnetic field tensor is determined by the first Bianchi
identity of differential geometry:

D ∧ T a = Ra
b ∧ qb

↓
D ∧ F a = Ra

b ∧ Ab

(6.6)

This equation is the homogeneous field equation (HE) of the Evans unified field
theory and the current ja is the homogeneous current. The HE is a condensed
version of the Gauss law applied to magnetism and of the Faraday law of in-
duction, which are known to hold to high precision in the laboratory. The
experimental data in the laboratory therefore [4]– [10] imply that there is no
interaction between gravitation and electromagnetism measurable by the Gauss
and Faraday laws in the laboratory, i.e. the homogeneous current vanishes
within instrumental precision in the laboratory:

ja ∼ 0. (6.7)

However in a cosmological context gravitational fields may become very intense,
and the homogeneous current is non-zero in general.

The inhomogeneous field equation (IE) of the Evans unified field theory is
obtained by Hodge dual transformation [4]– [10] of the HE, giving:

d ∧ F̃ a = µ0J
a = −A(0)

(
qb ∧ R̃a

b + ωa
b ∧ T̃ b

)
(6.8)

The IE is a condensed summary of the properly covariant inhomogeneous laws
of electrodynamics, the Coulomb and Ampère-Maxwell laws. In general the
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inhomogeneous current Ja is made up of both spacetime curvature and tor-
sion, reflecting the interaction of electromagnetism and gravitation. In order
to describe gravitational lensing in general, the HE and IE must be solved si-
multaneously with given initial and boundary conditions. This is in general a
problem for the computer.

However, if a minimal prescription is used, i.e. if it is assumed [4]– [10] that
the electromagnetic geometry of the IE is described by:

(
qb ∧ R̃a

b + ωa
b ∧ T̃ b

)

e/m
= 0 (6.9)

then the IE reduces to:

d ∧ F̃ a = −A(0)
(
qb ∧ R̃a

b

)

grav
. (6.10)

Eq.(6.10) is a combination of the Coulomb Law:

∇ · E0 = −φ(0)
(
R0 10

1 +R0 20
2 +R0 30

3

)
(6.11)

where
E0 = E0

xi +E0
yj +E0

zk (6.12)

and the Ampère-Maxwell law

∇×Ba =
1

c2
∂Ea

∂t
+ µ0J

a (6.13)

where the components of the current term are given by:

J1
x = −A

(0)

µ0

(
R1 10

0 +R1 12
2 +R1 13

3

)
(6.14)

J2
y = −A

(0)

µ0

(
R2 20

0 +R2 21
1 +R2 23

3

)
(6.15)

J3
z = −A

(0)

µ0

(
R3 30

0 +R3 31
1 +R3 32

2

)
. (6.16)

The electric and magnetic fields appearing in the Ampère-Maxwell law are:

Ea = E1
xi +E2

yj +E3
zk, (6.17)

Ba = B1
xi +B2

yj +B3
zk. (6.18)

In order to proceed in this minimal approximation the Riemann elements ap-
pearing in equations (6.11) to (6.18) must be calculated for a given metric such
as the Schwarzschild metric [12] (SM). The SM is well known to be the first so-
lution discovered of the Einstein/Hilbert field equation of 1915 - the spherically
symmetric solution to:

Gµν = 0 (6.19)
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and known as the vacuum solution. Here Gµν is the Einstein field tensor. The
SM therefore describes the spacetime around a gravitating mass of any kind. In
the Eddington experiment this is the sun of mass M and in general relativity M
is a parameter of curved spacetime. The SM is a metric solution corresponding
to the Riemann geometry used by Einstein and Hilbert. In the notation of
differential geometry this is:

Ra
b ∧ qb = 0 (6.20)

T a = 0 (6.21)

R̃a
b ∧ qb 6= 0 (6.22)

Eq.(6.20) is the first Bianchi identity of Riemann geometry used by Einstein and
Hilbert. The identity is true if and only if the connection is symmetric in its
lower two indices: if and only if the torsion tensor vanishes. It is this geometry
that was used by Einstein in his explanation of the Eddington experiment [13].
The explanation by Einstein [13] was based on the gravitational attraction of
a photon of mass m a distance r from the sun of mass M . This is a purely
dynamical explanation without reference to classical electromagnetism. In this
paper we give a fuller explanation than Einstein/Hilbert in terms of generally
covariant unified field theory [4]– [10].

The SM is given in spherical polar coordinates by [11, 12]:

ds2 =

(
1− 2

GM

rc2

)
(cdt)

2 −
(

1 − 2
GM

rc2

)
−1

dr2

−r2dθ2 − r2 sin2 θdφ2

(6.23)

where G is Newtons universal gravitational constant and where c is the speed
of light, a universal constant. The velocity v0 of an object in orbit around the
sun is given in the frame of the observer by:

v0 =
dr

dt
=

(
1 − 2GM

rc2

)1/2

(
1 − 2GM

rc2

)−1/2

dr′

dt′
=

(
1 − 2

GM

rc2

)

v′

. (6.24)

For a photon:

v0 =

(
1 − 2

GM

rc2

)
c. (6.25)

Therefore the photon appears to be slowed by:

v0
c

= 1 − 2
GM

rc2
. (6.26)

From this result the observed diffraction of light by the sun can be calculated
with the general relativistic theory of gravitation of Einstein and Hilbert. The
Evans theory reduces to this theory when:

qb ∧ Ra
b + ωa

b ∧ T b −→ 0 (6.27)
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T a −→ 0, (6.28)

so the Einstein/Hilbert field theory is a well defined limit of the Evans unified
field theory [4]– [10], a limit in which classical electrodynamics is not considered
at all.

Einsteinś explanation of the Eddington experiment is accepted because it
is repeatable for some stars to within 0.02% uncertainty. The corresponding
Newtonian result is calculated from the Newton inverse square law:

F = −mM
r2

k. (6.29)

Integrating Eq.(6.29) we obtain:

v2 = 2
MG

r
. (6.30)

This gives:

c2 − v2 = (c− v) (c+ v) = c2
(

1 − 2
MG

rc2

)
(6.31)

and:
(
c2 − v2

)1/2
= c

(
1 − 2

MG

rc2

)1/2

(6.32)

If v << c then:

v0 = c− v

2
∼
(

1 − mG

rc2

)
c. (6.33)

Therefore the Newtonian result is half the result from the Schwarzschild
metric.

6.3 Refraction Of Electromagnetic Radiation By

Gravitation

It is first shown that the elements of the Riemann tensor appearing in equations
(6.11) to (6.16) are self-consistently the non-vanishing elements of the Riemann
tensor from the Schwarzschild metric. These elements are:

R0
101 = e2(β−α)

[
∂2
0β + (∂0β)2 − ∂0α∂0β

]

+
[
∂1α∂1β − ∂2

1α− (∂1α)2
] (6.34)

R1
212 = re−2β∂1β/r

2 (6.35)

R1
313 =

(
1 − e−2β

)
sin2 θ/r2 (6.36)

R2
323 =

(
1 − e−2β

)
sin2 θ/r2 (6.37)

R0
202 = − re−2β∂1α/r

2 (6.38)

R0
303 = − re−2β sin2 θ∂1α/r

2. (6.39)
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(Note that in ref. [12] these elements are given incorrectly in an otherwise useful
book.) In the notation of Eqs.(6.34)–(6.39):

e2α = e−2β = 1 − 2
GM

rc2
. (6.40)

Furthermore:
∂0β = 0, ∂0∂1α = 0, (6.41)

e2α (2r∂1α+ 1) = 1, (6.42)

∂1α+ ∂1β = 0. (6.43)

From Eq.(6.42):

∂1α =
1

2r

(
e−2α − 1

)
(6.44)

therefore:

R0
202 = −re−2β 1

2r

(
e−2α − 1

)
/r2

= −GM
c2r3

.

(6.45)

It follows that:
R0

303 = R0
202 sin2 θ (6.46)

in the spherical polar coordinate system. Therefore:

R0
202 +R0

303 = −GM
c2r3

(
1 + sin2θ

)
. (6.47)

The R0
101 element is given by:

R0
101 = e−4α

(
− (∂1α)2 − ∂2

1α− (∂1α)2
)

(6.48)

where:

∂1α =
1

2r

(
1

1 − 2GM
rc2

− 1

)
. (6.49)

In the weak field limit

M −→ 0 (6.50)

and the inverse square law of Newton must be obtained. In the weak field limit
the Schwarzschild metric reduces to the Minkowski metric:

ds2 = c2dt2 − dr2 − r2dθ2 − r2 sin2 θdφ2 (6.51)

of special relativity. The Newtonian limit of special relativity is the one where
v << c, in which case the scalar curvature reduces to:

R = −2
GM

c2r3
. (6.52)
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Also in the limit of special relativity it is possible to raise and lower indices with
the Minkowski metric, so we obtain:

R0 02
2 = η00η22R0

202 = −R0
202 (6.53)

R0 03
3 = η00η33R0

303 = −R0
303. (6.54)

By antisymmetry:
R0 20

2 = −R0 02
2 = R0

202 (6.55)

R0 30
3 = −R0 03

3 = R0
303 (6.56)

and so:

R0 20
2 +R0 30

3 = −GM
c2r3

(
1 + sin2 θ

)
. (6.57)

If we choose
φ =

π

2
, θ =

π

2
(6.58)

in the spherical polar coordinate system then the vector points along the y axis
and:

R0 20
2 +R0 30

3 = −2
GM

c2r3
. (6.59)

Finally the Newton inverse square law is obtained from:

∇ · g = −c2
(
R0 20

2 +R0 30
3

)
= −2

GM

r3
(6.60)

assuming that
R0 10

1 −→ 0 (6.61)

in the weak field limit. From Eq.(6.60) we obtain:

g =
F

m
= −GM

r2
k (6.62)

which is the Newton inverse square law:

F = −GmM
r2

k. (6.63)

Eq.(6.60) can be expressed as:

∇ · g = −Gρm = −6.67× 10−11ρm (6.64)

and the Coulomb inverse square law as:

∇ · E0 = − 1

ε0
ρe = −1.129× 1011ρe. (6.65)

Here g is the acceleration due to gravity, ρm0
is the mass density in kgm−3,

is the charge density in Cm3 . In Eq.(6.65) E is the electric field strength in
volt m−1 and ε0 is the vacuum permittivity. From these well known equations
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it is clear that the electric field is twenty two orders of magnitude stronger in
an earthbound laboratory than g for unit ρm and ρe. In the Evans field theory
these laws are unified in terms of the scalar curvature R as follows:

∇ ·E0 = − 1

ε0
ρe = −φ(0)R (6.66)

∇ · g = −Gρm = −c2R. (6.67)

Here φ(0) is a fundamental voltage, c is the speed of light in vacuo, and R is
scalar curvature in inverse square metres. Therefore unification is achieved in
terms of geometry, represented by scalar curvature R. This is the curvature
of spacetime. The notions of mass density and charge density are replaced by
geometry of spacetime.

The basic structure of Eqs.(6.66) and (6.67) is clear, but their interpretation
requires reference to experimental data as follows.

If we use the Newtonian curvature R of Eq.(6.59) we obtain the Newton
inverse square law (6.63) and also the Coulomb inverse square law:

∇ ·E0 = 2φ(0)GM

c2r3
(6.68)

from which the static electric field is given by:

E0 =
F

e1
= −φ(0)GM

c2r2
. (6.69)

However, the Newton and Coulomb inverse square laws originate in different
aspects of geometry. The former originates in curvature and the latter in torsion.
The Newton law is obtained from the differential geometry:

qb ∧ R̃a
b 6= 0 (6.70)

T a = 0 (6.71)

with the constraints:

qb ∧Ra
b = 0 (6.72)

D ∧ ωa
b = 0. (6.73)

The Newton law is obtained from Eq.(6.70), which translates into Eq.(6.10) in
the Schwarzschild metric. If it is assumed that there is a quantity g defined
by R according to Eq.(6.67) then the inverse square law of Newton follows as
Eqs.(6.62) and (6.63). The Newton law also follows, self-consistently, from the
Evans wave equation in the non-relativistic limit. The quantity g may therefore
be identified as the acceleration due to gravity.

The Coulomb law on the other hand is obtained from the geometry:

T a 6= 0 (6.74)

d ∧ T̃ a ∼ −qb ∧ R̃a
b (6.75)
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which is an approximation to the IE [4]– [10]. It is seen that the spacetime
torsion is zero in the Newton law and non-zero in the Coulomb law. However
both laws have an inverse square dependence because both depend on scalar
curvature R. The geometrical quantity common to both laws is R̃a

b ∧ qb. In the
Schwarzschild metric this gives Eq.(6.52). Therefore from Eq.(6.69) the force
between two charges is:

F = −e1
r2

(
φ(0)GM

c2

)
k =

e1e2
4πε0r2

k. (6.76)

By convention the Coulomb law of electrostatics is written without a minus sign
and with a factor 4π in the denominator. The Newton inverse square law of
dynamics is written with a minus sign.

From Eq.(6.76) we may express e2 in terms of the parameter M :

e2 = −4πε0Gφ
(0)M

c2
= −8.25× 10−38φ(0)M (6.77)

using:

4πε0 = 1.112650× 10−10J−1C2m−1

G = 6.67× 10−11m3kg−1s−2

c = 2.997925× 108ms−1.

(6.78)

Eq.(6.77) is a fundamental result which shows that charge in general relativity
originates in spacetime. Eq.(6.77) means that for unit φ(0) it takes 1038 units of
mass to be equivalent to one unit of charge. This result has also been obtained
self-consistently from the Evans wave equation [4]– [10]. The interpretation of
this result is that in order for electromagnetism and gravitation to be mutually
influential to any significant degree the homogeneous current ja must be non-
zero:

ja = −A
(0)

µ0

(
ωa

b ∧ T b + qb ∧ Ra
b

)
6= 0. (6.79)

In the laboratory the Newton and Coulomb inverse square laws hold to within
contemporary experimental precision so the interaction of gravitation and elec-
tromagnetism must be sought for in other ways. It is insufficient simply to
change mass M in Eq.(6.77). If two charged objects of mass m and M are in-
vestigated in the laboratory then changing M has no effect on the Coulomb law
to within experimental precision. This result means that the product φ(0)M is
a constant in the Coulomb law. Similarly, changing a charge on one of the two
masses will have no effect on the Newton inverse square law. In the approxi-
mation used here this experimental fact has already been assumed in using the
minimal prescription. In other words this calculation has been carried out in the
approximation that the IE can be written as Eq.(6.10). This means that scalar
curvature R is given by the Einstein/Hilbert theory and the SM. In this approx-
imation it can be seen from Eq.(6.67) that the electric field has no influence on
g, as found experimentally.
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Figure 6.1: Refraction

To obtain such an influence one must use the geometry defined by the most
general Bianchi identity of differential geometry [4]– [12]:

d ∧ T a = −
(
ωa

b ∧ T b + qb ∧ Ra
b

)
(6.80)

d ∧ T̃ a = −
(
ωa

b ∧ T̃ b + qb ∧ R̃a
b

)
. (6.81)

In this geometry the torsion and curvature are both non-zero. The correspond-
ing field equations in this geometry are:

d ∧ F a = −A(0)
(
ωa

b ∧ T b + qb ∧ Ra
b

)
(6.82)

d ∧ F̃ a = −A(0)
(
ωa

b ∧ T̃ b + qb ∧ R̃a
b

)
. (6.83)

Only in this situation will electromagnetism have any effect on gravitation and
vice-versa. The Newton and Coulomb inverse square laws are only approx-
imations to these more general laws. The approximation is excellent in the
laboratory but not in general in cosmology.

In the approximation to the IE given by Eq. [10], it is possible to estimate
the angle of refraction in the Eddington experiment from the fact that the speed
of the photon has been slowed from c to v. The resultant angle of deflection
(Fig. (6.1)) from general relativity is:

θ =
4MG

rc2
(6.84)

and this result has been verified experimentally to one part in 100,000. The
same precision is obtained from the IE as a refraction problem (Fig (6.2)).
With reference to the geometry of Fig (6.2) we obtain:

sin(r − θ)

sin r
=
c

v
=

(
1 − 2MG

rc2

)
−1

. (6.85)
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Figure 6.2: Refraction & Defraction

Using the formula:

sin(r − θ) = sin r sin θ − cos r cos θ (6.86)

in the limit θ << 1 radian we obtain

θ ∼ 1 + tan r +
2MG

rc2
(6.87)

The result of general relativity is finally obtained using:

1 + tan r =
2MG

rc2
. (6.88)

This means that the equivalent angle of refraction is almost exactly −45◦ . The
minus sign means rotating in a certain direction, which is arbitrary. In other
words the Eddington effect is explained using the IE to one part in one hundred
thousand by using a set of axes inclined at almost exactly 45◦ to the incident
light. This is an explanation based on classical electrodynamics within a unified
field theory, and is missing entirely from Einsteinś analysis.

In the case of the sun therefore the approximation, Eq.(6.10), to the Evans
field theory is justified within contemporary instrumental precision, meaning
that our minimal prescription is in this case an excellent approximation. In the
latter it has also been assumed that there is no gravitational torsion present,
only gravitational curvature, and this again is an excellent approximation, the
suns gravitation produces curvature and in the weak field limit is described by
the Newton inverse square law. However, for objects such as pulsars, which are
much more intensely gravitating than the sun, departures from this approxi-
mation must be expected, leading to anomalous gravitational shifts as observed
experimentally [2, 4]– [10].
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Abstract

A generally covariant form of the Heisenberg equation is derived from the Car-
tan structure equation of differential geometry. This equation is used to suggest
why the conventional Heisenberg uncertainty principle has been observed to fail
qualitatively in three independent experiments, the reason is that the conven-
tional Heisenberg equation is not generally covariant, and does not contain the
correctly covariant densities of general relativity. This derivation is an illustra-
tion of the fact that general relativity and quantum mechanics are unified in
the Evans field theory.

Key words: Evans field theory; Heisenberg equation; Heisenberg uncertainty
principle.
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7.1 Introduction

Recently the Heisenberg uncertainty principle has been shown experimentally
to fail completely. Three independent experiments have demonstrated this in
the past few years and all three types of experiment are rigorously reproducible
and repeatable. The advanced microscopy work of Croca [1] has shown that
even at moderate resolution the principle fails by nine orders of magnitude.
As the resolution is increased the principle becomes more and more incorrect.
Afshar [2] has carried out a series of reproducible and repeatable experiments
which show that the photon and the associated electromagnetic wave can be
observed simultaneously. This result implies that the commutator of conjugate
variables in the uncertainty principle is zero, a more complete violation of the
principles of complementarity and uncertainty is not possible. Yet this is what
is observed. Thirdly a series of reproducible and repeatable experiments [3]
have shown that two dimensional materials when cooled to within a millikelvin
of absolute zero become conductors, whereas the uncertainty principle predicts
that they become insulators. Therefore the uncertainty principle has been shown
to fail completely in three entirely independent sets of experiments, all of which
are rigorously reproducible and repeatable.

Theoretical advances in unified field theory have resulted in the development
of a generally covariant unified field theory [4]– [12] based on differential geom-
etry and the well known Palatini variation of general relativity in which the
tetrad is the fundamental field [13]– [15]. In supersymmetry theory for example
the tetrad becomes the gravitino. The tetrad postulate [13]– [15] of the Palatini
variation is the metric compatibility condition of the Einstein Hilbert variation
of general relativity and gravitational general relativity has recently been verified
to one part in a hundred thousand by long baseline interferometric experiments
at NASA [16]. This is therefore the experimental precision of the tetrad postu-
late in the gravitational theory. In the Evans unified field theory [4]– [12] the
tetrad postulate is developed into the Evans Lemma and wave equation, from
which the Dirac equation may be derived in the special relativistic limit. The
Schrodinger equation is the non-relativistic limit of the Dirac equation, and the
Heisenberg equation is the commutator variation of the Schrodinger equation.
Therefore the conventional Heisenberg equation is a non-relativistic equation. It
turns out that this is the root cause of the qualitative failure of the Heisenberg
uncertainty principle described already.

In Section 7.2 a generally covariant Heisenberg equation is developed from
the Cartan structure equation of differential geometry [4]– [15] by defining an an-
gular momentum form from the torsion form defined by the structure equation.
The angular momentum form is then used to construct a generally covariant
commutator equation between angular momenta or rotation generators. This
is the type of commutator equation which the basis of conventional quantum
mechanics in the non-relativistic limit [17]. However, in the non-relativistic
limit the concept of angular momentum density is missing entirely, whereas in
general relativity the basic Einstein equation is a proportionality between the
Einstein field tensor Gµν and the canonical energy-momentum density Tµν . The

74



CHAPTER 7. GENERALLY COVARIANT HEISENBERG . . .

latter is a density, so is defined with respect to volume. By introducing appro-
priate angular momentum densities a commutator relation is obtained which is
qualitatively in accord with the experiments cited already.

Finally a discussion is given of the need to overhaul the Heisenberg uncer-
tainty principle (the principle of indeterminacy) in the light of new experimental
data.

7.2 Angular Momentum Forms And Densities

The starting point for the derivation of the generally covariant Heisenberg equa-
tion is the Cartan structure equation:

T a = D ∧ qa = d ∧ qa + ωa
b ∧ qb (7.1)

where T a is the torsion form, D∧ is the covariant exterior derivative, qa is the
tetrad form, is the spin connection and d∧ is the ordinary exterior derivative.
The torsion form is related to the Riemann form Ra

b through the Bianchi iden-
tity:

D ∧ T a = Ra
b ∧ qb. (7.2)

Reinstating the indices of the base manifold [4]– [15]:

T a
µν = −T a

νµ = (D ∧ qa)µν . (7.3)

Similarly the Riemann form is defined by the second Cartan structure equation:

Ra
bµν = −Ra

bνµ = (D ∧ ωa
b)µν . (7.4)

Both the torsion and Riemann forms are antisymmetric in the indices of the
base manifold. The torsion form is a vector-valued two-form and the Riemann
form is a tensor valued two form.

The angular momentum two-form is introduced in this paper as:

Ja
µν = −Ja

νµ =
~

κ
T a

µν (7.5)

where ~ is the reduced Planck constant, the least angular momentum or action
in the universe, and κ is a wavenumber. Therefore:

Ea = cκJa = ωJa = c~T a (7.6)

is a two form with the units of energy, where c is the speed of light in vacuo.
Eq.(7.6) can be interpreted as a generally covariant version of the fundamental
Planck quantization:

E = ~ω (7.7)

where ω is the angular frequency in radians per second. Thus:

Ea
µν = −Ea

νµ (7.8)
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is a vector valued energy two form with time-like and space-like components.
More precisely it is an angular-energy / angular-momentum two form. In order
to make the antisymmetric Ea generally covariant it has to be converted into a
density, denoted εa, in analogy with the symmetric canonical energy momentum
density appearing in the Einstein equation. The densities εa are vector valued
two forms with the units of Jm−3, energy divided by volume. Due to the
antisymmetric structure of εa, there exist cyclic relations of the type:

εa ∧ εb = ε0ε
c

et cyclicum
(7.9)

where εa is the least energy density magnitude of a given elementary particle.
The conventional Heisenberg equation can be expressed [17] in the non-

relativistic limit as a cyclic relation between angular momenta:

[Jx, Jy] = i~Jz

et cyclicum
(7.10)

an equation which is independent of the choice of operator representation.
Within the factor ~ Eq.(7.10) is the fundamental commutator relation between
rotation generators [18]. In special relativity these are generators of the Poincarè
group and in general relativity of the Einstein group. They are torsion forms
within the factor h/κ Defined in Eq.(7.5). Therefore the generally covariant
Heisenberg equation is a cyclic relation between torsion forms defined by the
Cartan structure equation.

It is seen that volume does not enter into Eq.(7.10) in the non-relativistic
limit in which this equation is written. Reinstating the wavefunction, ψ, the
Heisenberg equation is usually written as:

[Jx, Jy]ψ = i~Jzψ (7.11)

and is equivalent to the Schrodinger equation. However Eq.(7.11) is not a cor-
rectly objective or generally covariant equation of physics because it is not cor-
rectly derived from differential geometry. The wavefunction ψ is not recognized
to be the correctly covariant wavefunction of the Palatini variation of general
relativity, the tetrad qa

µ [4]– [15]. In all situations of interest to physics the
latter obeys the tetrad postulate:

Dνq
a
µ = 0 (7.12)

which is fundamental to differential geometry and can be proven rigorously in
several ways. From Eq.(7.12) we obtain the identity:

Dν
(
Dνq

a
µ

)
:= 0 (7.13)

or
�qa

µ = Rqa
µ (7.14)
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where R is a well defined [4]– [12] scalar curvature. Eq.(7.14) is the Evans
Lemma, the subsidiary proposition leading to the Evans wave equation:

(� + kT ) qa
µ = 0 (7.15)

where:
R = −kT. (7.16)

Here k is Einsteinś constant and T is an index contracted canonical energy-
momentum density. The Lemma and wave equation are valid for all radiated
and matter fields because the tetrad postulate is valid for any connection. Thus
the Evans wave equation is the fundamental wave equation of generally covariant
unified field theory [4]– [12] from which all the major equations of physics are
derived in well defined limits. This procedure should therefore also be used to
derive the Heisenberg equation in its generally covariant or rigorously objective
form. In so doing the Heisenberg uncertainty principle is abandoned, because
the principle is acausal and diametrically at odds with causal and objective
general relativity. The Heisenberg uncertainty principle is not objective because
it asserts unknowability [17]. This is a subjective assertion introduced by Bohr
and Heisenberg on the grounds of then incomplete or restricted experimental
data.

The contemporary experiments with vastly improved data cited in the intro-
duction now show that the Heisenberg uncertainty principle must be abandoned
in favor of Einsteinian physics, i.e. objective and causal physics.

So in using the correctly covariant Evans wave equation, based directly on the
Einsteinian principles of rigorous objectivity and rigorous causality the concept
of canonical energy momentum density is introduced through T and R. The
wavefunction is also correctly identified as the tetrad, the fundamental field in
the Palatini variation [4]– [15] of general relativity. The correspondence principle
shows that Eq.(7.15) must reduce to the Dirac equation when one particle is
considered in the special relativistic limit:

(
� +

m2c2

~2

)
qa

µ = 0 (7.17)

where m is the mass of the particle. Therefore in this limit:

kT =
m2c2

~2
. (7.18)

In the rest frame of one particle:

T =
m

V0
=

E0

c2V0
(7.19)

where the rest energy is:
E0 = mc2 (7.20)

and where V0 is a new concept [4]– [12], the REST VOLUME:

V0 =
k~

2

mc2
=
k~

2

E0
. (7.21)
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For the electron:
V0 = 2.56× 10−81m3. (7.22)

Every elementary particle, including the photon and the neutrinos, has a rest
volume inversely proportional to its mass. This is a new law of physics derived
from the Evans unified field theory.

Using the de Broglie equation for the rest frequency ω0:

E0 = mc2 = ~ω0 (7.23)

we obtain:

V0 =
~k

ω0
(7.24)

a simple inverse proportionality between V0 and ω0 and a new statement of wave
particle duality: a particle with rest volume V0 is also a wave of rest frequency
ω0. In the rest frame in the special relativistic limit therefore:

ε0 =
~ω

V0
(7.25)

which is the quantum of energy density for an elementary particle, including the
photon. The energy densities εa, εb, εc appearing in Eq.(7.9) must in general
be defined with respect to a volume V . It is plausible to define V in the special
relativistic limit as the sample volume or volume occupied by the apparatus,
while V0 is the particles rest volume, or minimum volume. Therefore:

εa = Ea/V (7.26)

and so on, where:
Ea = ωJa (7.27)

and so on. The fundamental rotation generator relation at the root of the
Heisenberg equation is therefore expressed as:

[
V εa, V εb

]
= i (V0ε0) (V εc) (7.28)

or [
Ja, Jb

]
= i~

V0

V
Jc. (7.29)

Eq.(7.29) is a plausible development of the Heisenberg equation to include the
concept of angular momentum density. Essentially the geometry is proportional
to a density in physics through Eq.(7.16). In general:

V � V0 (7.30)

and so it is possible that: [
Ja, Jb

]
∼ 0 (7.31)

as observed in the experiments cited already. Eq.(7.31) means that a particle
and wave may be observed simultaneously for all practical purposes, as in the
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Afshar experiments. If for example V is one cubic meter V0 for the photon
is many orders of magnitude smaller, so V0/V is essentially zero as observed
experimentally [1]– [3]. In the Afshar experiments for example the volume used
for the photon is V0, and V is the effective volume of the apparatus. The wave
spreads throughout the apparatus as also observed in the Croca experiments
and in the Aspect experiments [19], but the volume associated with the photon
as particle is V0. The photon therefore appears simultaneously as a particle and
also as a wave, as observed experimentally. The Croca and Aspect experiments
show that the wave can occupy the whole of the apparatus and spread out
indefinitely. In the conventional Copenhagen interpretation a photon is either
a particle or a wave, but never a particle and wave simultaneously. This idea
leads to all kinds of difficulties as is well known, and so should be abandoned..

7.3 Discussion

In this discussion we give a brief summary of the three types of experiment which
show independently that the Heisenberg uncertainty principle fails qualitatively.
The Croca experiments are summarized in ref. (1). A tunneling super-resolution
microscope and apertureless optical microscope are used to demonstrate conclu-
sively that the principle fails even at moderate resolutions. The experiments are
summarized in pp. 109 ff. of ref. (1). Other types of experiment summarized
by Croca include a photon ring experiment and Franson type experiments. In
eq. (4.7.9), for example, of ref. (1) it is shown experimentally that:

δxδv = 10−9 ~

2m
(7.32)

where x is position and v is velocity. The theoretical result according to the
Heisenberg uncertainty principle is:

δxδv >
~

2m
. (7.33)

Therefore ref. (1) is in itself the source of several independent tests of the
Heisenberg uncertainty principle and these tests all violate the principle dra-
matically.

The Afshar experiments were reproduced at Harvard University and are
summarized in ref. (2) and are rigorously reproducible and repeatable, showing
that a photon and a wave can be observed simultaneously. One of them is a
modified Young experiment. It is well known that a beam consisting of one
photon produces interference in a Young experiment [2], therefore a photon
cannot be a localized particle, it is both particulate and wavelike. In one of the
Afshar experiments [2] a laser is directed at two pinholes in an opaque screen
in a Young experiment. Photon detectors are used to record the rate at which
photons are coming through each pinhole. An interference pattern is observed
SIMULTANEOUSLY by use of wire grids. The latter are arranged so that
the wires coincide precisely with the dark fringes of the interference pattern.
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One pinhole is then closed, and the interference pattern disappears. The light
spreads out from the one open pinhole, some of the light hits the wire grid and
is scattered. Less light reaches the photon detector corresponding to the open
pinhole.

The pinhole is now reopened and it is observed that the light intensity at
each detector returns to its value before the wires were set in place. This is
because the wires coincide precisely with the dark fringes, or minima of the
interferogram and so little or no light is reflected from the wire grids. This
proves experimentally the existence of an interference pattern or interferogram
coming from the wave-like nature of the laser light. At the same time the
intensity of light from each slit can be measured by the photon detectors, so it
is possible to count the number of photons emerging from each pinhole. So it is
possible to observe both the particulate and wavelike components of the laser
light.

The Bohr Heisenberg complementarity principle on the other hand asserts
that these experimental results are NOT possible, because a photon and wave
cannot be measured at the same time. The principle asserts that physics is not
causal, in direct contradiction of Einsteinś causal general relativity. According
to Bohr nothing exists until it is measured. This means that physics is not
objective, again in direct contradiction of rigorously objective general relativ-
ity. Bohr claimed that observations always influence results, so that results are
different according to the way they are measured or differently influenced. Ein-
stein rejected this assertion and recent data at NASA [16]show that the 1915
gravitational general relativity is indeed accurate to one part on one hundred
thousand as discussed in the introduction of this paper. The Afshar [2] and
Croca [1] experiments show that Bohr and Heisenberg were entirely (i.e. qual-
itatively) incorrect. The tetrad postulate of the Palatini variation of general
relativity is therefore accurate experimentally to one part in one hundred thou-
sand. Therefore the Evans unified field theory is based on the tetrad postulate
and produces causal and objective quantum mechanics unified with general rel-
ativity. The Afshar experiment is explained as in Section 7.2 of this paper.

The third independent type of experiment [3] is based on the wave parti-
cle duality of electrons. The experiments were carried out by Kravchenko et
al. at Northeastern University on two dimensional silicon films and are rigor-
ously reproducible and repeatable. Within millikelvins of absolute zero these
silicon films become conductors. The Heisenberg uncertainty principle asserts
the complete opposite, that the films should become perfect insulators [3]. The
same result is obtained with superconductors [3], which become metals within
millikelvins of absolute zero, again in violation of the Heisenberg uncertainty
principle. The latter asserts [3] that there are only two possibilities for Cooper
pairs in superconductors: insulating or superconducting. The conjugate vari-
ables in this case are phase and particle number, so the Heisenberg uncertainty
principle asserts that of the phase is known exactly the particle number is com-
pletely unknown. The latter is interpreted conventionally as indicating large
fluctuations in particle number or flow of electrons as in a superconductor.
However within millikelvins of absolute zero this is not observed, an ordinary
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metallic conductor is observed [3].
The Evans unified field theory would attempt to explain this in terms of

general relativity, and abandons the Heisenberg uncertainty principle and the
principle of complementarity.
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Abstract

The metric compatibility condition of Riemann geometry and the tetrad postu-
late of differential geometry are cornerstones of general relativity in respectively
its Einstein Hilbert and Palatini variations. In the latter the tetrad tensor is
the fundamental field, in the former the metric tensor is the fundamental field.
In the Evans unified field theory the tetrad becomes the fundamental field for
all types of matter and radiation, and the tetrad postulate leads to the Evans
Lemma, the Evans wave equation, and to all the fundamental wave equations
of physics in various well defined limits. The tetrad postulate is a fundamental
requirement of differential geometry, and this is proven in this paper in seven
ways. For centrally directed gravitation therefore both the metric compatibility
condition and the tetrad postulate are accurate experimentally to one part in
one hundred thousand.

Key words: Metric compatibility; tetrad postulate; Einstein Hilbert variation
of general relativity; Palatini variation of general relativity; Evans unified field
theory.
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8.1 Introduction

The theory of general relativity was formulated originally in 1915 by Einstein
and independently by Hilbert. It was developed for centrally directed gravi-
tation, and was first verified by the Eddington experiment [1]. Recently [2]
the precision of the Eddington experiment has been improved to one part in
one hundred thousand. Therefore the basic geometrical assumptions used by
Einstein and Hilbert have also been verified experimentally to one part in one
hundred thousand. One of these is the metric compatibility condition [3]– [5]
of Riemann geometry, a condition which asserts that the covariant derivative of
the metric tensor vanishes. The metric tensor is the fundamental field in the
Einstein Hilbert variation of general relativity. It is defined by:

gµν = qa
µq

b
νηµν (8.1)

where qa
µ is the tetrad [3]– [5], a mixed index rank two tensor. The Latin

superscript of the tetrad tensor refers to the spacetime of the tangent bundle at
a point P of the base manifold indexed by the Greek subscript of the tetrad. In
eqn.(8.1) ηab is the Minkowski metric:

ηab =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (8.2)

The metric compatibility condition is then [3]– [5], for any spacetime:

Dρg
µν = Dρgµν = 0. (8.3)

Using the Leibnitz Theorem [3]– [5]Eq.(8.1) and (8.3) imply:

qb
νDρq

a
µ + qa

µDρq
b
ν = 0 (8.4)

one possible solution of which is:

Dρq
a
µ = Dρq

b
ν = 0. (8.5)

Eq.(8.5) is the tetrad postulate of the Palatini variation [3]– [8] of general rel-
ativity. In Section 8.2 it will be shown in various complementary ways that
Eq.(8.5) is the unique solution of Eq.(8.4). It follows that for central gravita-
tion, the tetrad postulate has been verified experimentally [2] to one part in one
hundred thousand.

In Section 8.3 a brief discussion is given of the physical meaning of the met-
ric compatibility condition used by Einstein and Hilbert in 1915 to describe
centrally directed gravitation. In 1915 the original metric compatibility con-
dition was supplemented by the additional assumption that the spacetime of
gravitational general relativity is free of torsion:

T κ
µν = Γκ

µν − Γκ
νµ = 0 (8.6)
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where T κ
µν is the torsion tensor and where Γκ

µν is the Christoffel symbol.
The latter is symmetric in its lower two indices and is also known as the Levi-
Civita or Riemann connection [3]– [5]. For the centrally directed gravitation
of the sun these assumptions hold to one part in one hundred thousand [2].
However, the Evans unified field theory [9]– [15] has recently recognized that
electromagnetism is the torsion form of differential geometry [3]– [5], gravitation
being the Riemann form, and has shown how electromagnetism interacts with
gravitation in a spacetime in which the torsion tensor is not in general zero.
Therefore in Section 8.3 we discuss the implications for the metric compatibility
condition of the 1915 theory, and summarize the conditions needed for the
interaction of gravitation and electromagnetism.

8.2 Seven Proofs Of The Tetrad Postulate

It has been shown in the introduction that for any spacetime (whether torsion
free or not) the tetrad postulate is a possible solution of the metric compatibility
condition. In this section it is shown in seven ways that it is the unique solution.

1. Proof from Fundamental Matrix Invertibility.

Consider the following basic properties of the tetrad tensor [3]– [5]:

qb
νq

ν
b = 1 (8.7)

qa
µq

µ
a = 1 (8.8)

qµ
aq

a
ν = δµ

ν (8.9)

qa
µq

µ
b = δa

b (8.10)

where δµ
ν and δa

b are Kronecker delta functions. Differentiate Eqs.(8.7)
to (8.10) covariantly with the Leibnitz Theorem:

qν
bDρq

b
ν + qb

νDρq
ν
b = 0 (8.11)

qa
µDρq

µ
a + qµ

aDρq
a
µ = 0 (8.12)

qµ
aDρq

a
ν + qa

νDρq
µ
a = 0 (8.13)

qa
µDρq

µ
b + qµ

bDρq
a
µ = 0. (8.14)

Rearranging dummy indices in Eq(8.11) (a→ b, µ→ ν):

qµ
aDρq

a
µ + qb

νDρq
ν
b = 0. (8.15)

Rearranging dummy indices in Eq.(8.14) (µ→ ν):

qµ
bDρq

a
µ + qa

νDρq
ν
b = 0. (8.16)

Multiply Eq.(8.15) by qa
µ :

Dρq
a
µ + qa

µq
b
νDρq

ν
b = 0. (8.17)
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Multiply Eq.(8.16) by qb
µ :

Dρq
a
µ + qb

µq
a
νDρq

ν
b = 0. (8.18)

It is seen that Eq.(8.17) is of the form:

x+ ay = 0 (8.19)

and Eq.(8.18) is of the form:

x+ by = 0 (8.20)

where

a 6= b. (8.21)

The only possible solution is:

x = y = 0. (8.22)

This gives the tetrad postulate, Q.E.D.:

Dρq
a
µ = Dρq

ν
b = 0, (8.23)

which is therefore the unique solution of Eq.(8.4). Note the tetrad postu-
late is true for any connection, whether torsion free or not.

2. Proof from Coordinate Independence of Tensors.

A tensor of any kind is independent of the way it is written [3]– [5].
Consider the covariant derivative of any tensor X in two different bases 1
and 2. It follows that:

(DX)1 = (DX)2. (8.24)

In the coordinate basis [3]:

(DX)1 = (DµX
ν)dxµ ⊗ ∂ν

= (∂µX
ν + Γν

µλX
λ)dxµ ⊗ ∂ν .

(8.25)

In the mixed basis:

(DX)2 = (DµX
a) dxµ ⊗ ê(a)

=
(
∂µX

a + ωa
µbX

b
)
dxµ ⊗ ê(a)

= qσ
a (qa

ν∂µX
ν +Xν∂µq

a
ν

+ ωa
µbq

b
λX

λ
)
dxµ ⊗ ∂σ

(8.26)

where we have used the commutation rule for tensors. Now switch dummy
indices σ to µ and use:

qν
aq

a
ν = 1 (8.27)
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to obtain:

(DX)1 =
(
∂µX

ν + qν
a∂µq

a
λX

λ + qν
aq

b
λω

a
µbX

λ
)
dxµ ⊗ ∂ν (8.28)

Now compare Eq.(8.25) and Eq.(8.28) to give:

Γν
µλ = qν

a∂µq
a
λ + qν

aq
b
λω

a
µb (8.29)

Multiply both sides of Eq.(8.29) by qa
ν :

qa
νΓν

µλ = ∂µq
a
λ + qb

λω
a
µb (8.30)

to obtain the tetrad postulate, Q. E. D.:

Dµq
a
λ = ∂µq

a
λ + ωa

µbq
b
λ − Γν

µλq
a
ν = 0. (8.31)

3. Proof from Basic Definition.

For any vector V a [3]:
V a = qa

νV
ν (8.32)

and using the Leibnitz Theorem:

DµV
a = qa

νDµV
ν + V νDµq

a
ν . (8.33)

Using the result:
Dµq

a
ν = 0 (8.34)

obtained in proofs (1) and (2), it is proven here that Eqs.(8.32) and (8.34)
imply:

Dµq
a
λ = ∂µq

a
λ + ωa

µbq
b
λ − Γν

µλq
a
ν (8.35)

From Eqs.(8.33) and (8.34):

∂µV
a + ωa

µbV
b = qa

ν

(
∂µV

ν + Γν
µλV

λ
)
. (8.36)

From Eq.(8.32):
∂µV

a = V ν∂µq
a
ν + qa

ν∂µV
ν (8.37)

and
ωa

µbV
b = ωa

µbq
b
νV

ν . (8.38)

Add Eqs.(8.37) and (8.38):

∂µV
a + ωa

µbV
b = qa

ν∂µV
ν + V ν∂µq

a
ν + ωa

µbq
b
νV

ν (8.39)

Comparing Eqs.(8.36) and (8.39):

qa
νΓν

µλV
λ = V ν

(
∂µq

a
ν + ωa

µbq
b
ν

)
(8.40)

and switching dummy indices ν → λ, we obtain:

∂µq
a
λ + ωa

µbq
b
λ − qa

νΓν
µλ = 0. (8.41)

This equation has been obtained from the assumption (8.34), so it follows
that:

Dµq
a
ν = ∂µq

a
λ + ωa

µbq
b
λ − qa

νΓν
µλ = 0 (8.42)

Q.E.D.
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4. Proof from the First Cartan Structure Equation [9].

This proof has been given in all detail in ref. [9] and is summarized here
for convenience. Similarly for Proofs (5) to (7). The first Cartan structure
equation [3]– [8] is a fundamental equation of differential geometry first
derived by Cartan. It defines the torsion form as the covariant exterior
derivative of the tetrad form:

T a = d ∧ qa + ωa
b ∧ qb (8.43)

i.e.

T a
µν = ∂µq

a
ν − ∂νq

a
µ + ωa

µbq
b
ν − ωa

νbq
b
µ . (8.44)

Here T a
µν is the torsion two-form, qa

µ is the tetrad one-form and ωa
µb is

the spin connection. The torsion tensor of Riemann geometry is defined
[3]– [5] as:

T λ
µν = qλ

aT
a
µν . (8.45)

Using the tetrad postulate (8.31) in the form:

Γλ
µν = qλ

a∂µq
a
ν + qλ

aq
b
νω

a
µb (8.46)

it is seen from Eqs.(8.44) to (8.46) that:

T λ
µν = qλ

a

(
∂µq

a
ν + ωa

µbq
b
ν

)

− qλ
a

(
∂νq

a
µ + ωa

νbq
b
µ

)

= Γλ
µν − Γλ

νµ.

(8.47)

Eq.(8.47) is the torsion tensor of Riemann geometry Q.E.D. Given the
Cartan structure equation (8.43), therefore, the tetrad postulate is needed
to derive the torsion tensor of Riemann geometry. The converse is also
true.

5. Proof from the Second Cartan Structure Equation [3].

Similarly this proof has been given in complete detail elsewhere [9]– [15]
and is an elegant illustration of the tetrad postulate being used as the link
between differential and Riemann geometry. The second Cartan structure
equation defines the Riemann form as the covariant exterior derivative of
the spin connection:

Ra
b = D ∧ ωa

b (8.48)

or

Ra
bνµ = ∂νω

a
µb − ∂µω

a
νb + ωa

νcω
c
µb − ωa

µcω
c
νb . (8.49)

To establish this link the tetrad postulate is used in the form:

ωa
µb = qa

νq
λ
bΓ

ν
µλ − qλ

b∂µq
a
λ (8.50)

90



CHAPTER 8. METRIC COMPATIBILITY CONDITION AND . . .

to write the spin connection in terms of the gamma connection. The
Riemann tensor is defined as [3]– [5]:

Rσ
λνµ = qσ

aq
b
λR

a
bνµ (8.51)

and using the invertibility property of the tetrad tensor [3]:

qλ
cq

c
λ = 1 (8.52)

the Riemann tensor is correctly obtained [9]– [15] as:

Rσ
λνµ = ∂νΓσ

µλ − ∂µΓσ
νλ + Γσ

νρΓ
ρ
µλ − Γσ

µρΓ
ρ
νλ (8.53)

Q. E. D. Therefore it has been shown that the Riemann form and the
Riemann tensor are linked by the tetrad postulate. The Riemann form
is defined by the second Cartan structure equation (8.48). The first and
second Cartan structure equations are also known as the first and second
Maurer - Cartan structure equations [3]. They are true for any type of
spin connection.

6. Proof from the First Bianchi Identity.

The first Bianchi identity of differential geometry [3] is:

D ∧ T a = Ra
b ∧ qb. (8.54)

This condensed notation denotes [9]– [15]:

(d ∧ T )a
µνρ = ∂µT

a
νρ + ∂νT

a
ρµ + ∂ρT

a
µν (8.55)

(ω ∧ T )
a
µνρ = ωa

µbT
b
νρ + ωa

νbT
b
ρµ + ωa

ρbT
b
µν . (8.56)

The torsion form is defined as:

T a
µν =

(
Γλ

µν − Γλ
νµ

)
qa

λ . (8.57)

Similarly:
Ra

b ∧ qb =
(
Rσ

µνρ +Rσ
νρµ +Rσ

ρµν

)
qa

σ . (8.58)

Use of the Leibnitz Theorem and the tetrad postulate in the form:

∂µq
a
σ + ωa

µbq
b
σ = Γλ

µσq
a
λ (8.59)

leads correctly [9]– [15] to:

∂µΓλ
νρ − ∂νΓλ

µρ + Γλ
µσΓσ

νρ − Γλ
νσΓσ

µρ

+∂νΓλ
ρµ − ∂ρΓ

λ
νµ + Γλ

νσΓσ
ρµ − Γλ

ρσΓσ
νµ

+∂ρΓ
λ

νν − ∂µΓλ
ρν + Γλ

ρσΓσ
µν − Γλ

νσΓσ
ρν

= Rλ
ρµν +Rλ

µνρ +Rλ
νρµ

(8.60)
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allowing the identification of the Riemann tensor for any gamma connec-
tion:

Rλ
ρµν = ∂µΓλ

νρ − ∂νΓλ
µρ + Γλ

µσΓσ
νρ − Γλ

νσΓσ
µρ (8.61)

Q.E.D. Therefore it has been shown that the tetrad postulate is the nec-
essary and sufficient condition to link the first Bianchi identity (8.54) and
the equivalent in Riemann geometry, Eq.(8.60).

7. Proof from the Second Bianchi Identity

The second Bianchi identity of differential geometry is [3, 9]– [15]:

D ∧Ra
b = d ∧ Ra

b + ωa
c ∧ Rc

b + ωc
b ∧ Ra

c

= 0.
(8.62)

Using the results of Proof (7), and using by implication the tetrad pos-
tulate again, we correctly obtain [9]– [15] the second Bianchi identity of
Riemann geometry:

DρR
κ
σµν +DµR

κ
σνρ +DνR

κ
σρµ = 0 (8.63)

Q. E.D. Therefore it has been shown that the tetrad postulate is the neces-
sary and sufficient link between the second Bianchi identity of differential
geometry [3] and the second Bianchi identity of Riemann geometry.

8.3 Physical Meaning Of The Metric Compati-

bility Condition And The Tetrad Postulate

The metric compatibility condition of Riemann geometry means that the metric
tensor is covariantly constant [3, 9]– [15]: the covariant derivative of the metric
tensor vanishes. If the metric is not covariantly constant then the metric is not
compatible. The Einstein Hilbert variation of general relativity (the original
1915 theory) is based on metric compatibility [3,9]– [15]. The theory is accurate
for central gravitation of the sun to one part in one hundred thousand [2].
Metric compatibility is used and also the assumption that the torsion tensor
vanishes. These assumptions lead to the definition of the Christoffel symbol used
by Einstein in his original theory of general relativity. Metric compatibility can
also be assumed without the assumption of zero torsion. In this case we obtain
the Palatini variation of general relativity in which metric compatibility becomes
the tetrad postulate as described in Sections 8.1 and 8.2. The advantages of
the Palatini variation are well known and the tetrad postulate has recently been
shown to be the geometrical origin of all the wave equations of physics [9]– [15].
In a unified field theory a non-zero torsion form and torsion tensor are always
needed to describe the electromagnetic sector. Only when the gravitational and
electromagnetic sectors become independent can we use the original Einstein
Hilbert variation of gravitational general relativity, with its vanishing torsion
tensor and symmetric or Christoffel connection.
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Abstract

A new theorem of differential geometry is proven: the first Cartan structure
equation is the commutator of the tetrad postulate. Conversely the appropriate
interchange of base manifold indices in the tetrad postulate gives the first Car-
tan structure equation. The latter can be written as an equality of two tetrad
postulates with reversed indices. Therefore the Evans Lemma and wave equa-
tion can be obtained directly from the first Cartan structure equation, which
is thereby shown to be the source of all wave equations in generally covariant
physics, both relativity and quantum mechanics.

Key words: Cartan structure equation; tetrad postulate; Evans Lemma; Evans
wave equation.
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9.1. INTRODUCTION

9.1 Introduction

Recently a generally covariant unified field theory has been developed which uni-
fies general relativity and quantum mechanics in terms of standard differential
geometry [1]– [12]. In this theory the wave equations of physics are derived from
the tetrad postulate and the field equations of electrodynamics and gravitation
from the Cartan structure equations and the Bianchi identities of differential ge-
ometry [13]. In this paper a simple theorem of differential geometry is proven in
Section 9.2 which shows that the first Cartan structure equation is an equality of
two tetrad postulates. If the appropriate base manifold indices are interchanged
in the tetrad postulate, the result is the first Cartan structure equation. The
tetrad postulate is the source of the Evans Lemma of differential geometry [1]–
[12], an identity which states that scalar curvature is the eigenvalue of the tetrad
eigenfunction. The Eigen operator in the Evans Lemma is the d’Alembertian
and the tetrad is the fundamental field of the Palatini variation of general rela-
tivity [1, 15]. The Lemma is a theorem of differential geometry which serves as
the subsidiary proposition that gives the Evans wave equation using the Einstein
field equation in index contracted form. The Evans wave equation gives all the
well known wave equations of physics in appropriate limits [1]– [12], notably the
Dirac equation in the special relativistic limit.

Therefore it is shown in this paper that the source of all the wave equations
of quantum mechanics is the first Cartan structure equation itself. The latter is
also the source of the tetrad postulate and vice versa. This means that physics
is geometry, as inferred by Einstein and many others.

In Section 9.3 an example of this new inference at work is given in the
context of the Aharonov Bohm effects, which are described straightforwardly in
the Evans unified field theory [1]– [12].

9.2 Proof Of The Theorem

In condensed notation the first Cartan structure equation is

D ∧ qa = T a (9.1)

which is shorthand for
d ∧ qa + ωa

b ∧ qb = T a. (9.2)

Reinstating the unwritten [13] indices of the base manifold

d ∧ qa
λ + ωa

µb ∧ qb
λ = T a

µλ (9.3)

and writing out Eq.(9.3) in full we obtain

∂µq
a
λ − ∂λq

a
µ + ωa

µbq
b
λ − ωa

λbq
b
µ = T a

µλ . (9.4)

In these equations D∧ is the covariant exterior derivative, qa is the tetrad one-
form and T a is the torsion two-form of differential geometry. Therefore the
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first Cartan structure equation states that the torsion form is the covariant
exterior derivative of the tetrad form. Eq.(9.4) is Eq.(9.1) written out in full
using the spin connection ωa

µb . In order to define the torsion form correctly the
spin connection must be identically non-zero. It is seen from Eq.(9.4) that the
torsion form T a

µν is defined in terms of commutators or wedge products.
Now express the torsion form in terms of the torsion tensor T ν

µλ of Riemann
geometry [13]:

T ν
µλ = Γν

µλ − Γν
λµ. (9.5)

The relation between the torsion form T a
µλ of differential geometry and the

torsion tensor T ν
µλ of Riemann geometry is [13]

T a
µλ = T ν

µλ q
a
ν (9.6)

i.e.
T a

µλ = Γν
µλq

a
ν − Γν

λµq
a
ν . (9.7)

From Eqs.(9.4) and (9.7):

∂µq
a
λ − ∂λq

a
µ + ωa

µbq
b
λ − ωa

λbq
b
µ

= Γν
µλq

a
ν − Γν

λµq
a
ν .

(9.8)

Eq.(9.8) is the difference of two tetrad postulates [1]– [15]:

∂µq
a
λ + ωa

µbq
b
λ = Γν

µλq
a
ν (9.9)

and
∂λq

a
µ + ωa

λbq
b
µ = Γν

λµq
a
ν . (9.10)

Eqs.(9.9) and (9.10) are respectively:

Dµq
a
λ = 0 (9.11)

and
Dλq

a
µ = 0. (9.12)

Therefore the first Cartan structure equation is a commutator of two tetrad
postulates

Dµq
a
λ −Dλq

a
µ = 0 (9.13)

i.e.
Dµq

a
λ = Dλq

a
µ = 0 (9.14)

Q.E.D.
The Evans Lemma is obtained [1]– [12] from the identity:

DµDµq
a
λ = DλDλq

a
µ := 0 (9.15)

and so the Lemma is obtained directly from the first Cartan structure equation.
The Lemma is the subsidiary geometrical proposition:

�qa
λ = Rqa

λ (9.16)
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where R is a the scalar curvature defined in the Einstein field equation [13]. The
index contracted form of the latter equation is [13]:

R = −kT (9.17)

where T is the index contracted canonical energy-momentum tensor and where
k is the Einstein constant. Note that Eq.(9.17) is valid for all radiated and
matter fields [16] not just gravitation. Using Eq.(9.17) in Eq.(9.16) gives the
Evans wave equation of generally covariant unified field theory [1]– [12]:

(� + kT ) qa
µ = 0. (9.18)

The source of the Evans wave equation has therefore been shown in this paper
to be the first Cartan structure equation itself.

9.3 Application To The Class Of Aharonov Bohm

Effects

The fundamental ansatz that transforms from geometry to physics in the unified
field theory is [1]– [12]:

Aa
µ = A(0)qa

µ (9.19)

where Aa
µ is the vector potential magnitude. Similarly the electromagnetic field

tensor follows from Eq.(9.19):

F a
µν = A(0)T a

µν . (9.20)

Thus, the electromagnetic potential Aa
µ is the tetrad form within a premul-

tiplier A(0),and the electromagnetic field is the torsion form within the same
premultiplier A(0). Using the the ansatz (9.19) the first Cartan structure equa-
tion gives the relation between field and potential in two ways. Firstly

F a
µν = (d ∧ Aa)µν + ωa

µb ∧Ab
ν (9.21)

and secondly, using Eq.(9.6):

F a
µν = T ρ

µν A
a
ρ. (9.22)

The class of Aharonov Bohm effects have been explained straightforwardly [1]–
[12] using Eq.(9.21) as being due to the term ωa

µb ∧ Ab
ν . This term is also

responsible for the Evans spin field [1]– [12] and is the origin of polarization
and magnetization [1]– [12]. In simple analogy, the iron whisker of the Cham-
bers experiment, for example, acts as a stirring rod, and sets up a whirlpool of
spacetime in its vicinity, i.e. in regions where the magnetic field does not ex-
ist, the term ωa

µb ∧Ab
ν results in the observed electron diffraction fringe shift.

This explanation means that there exists a hitherto unobserved electromagnetic
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Aharonov Bohm effect due to the Evans spin field [1]– [12]. This is a close rela-
tive of the inverse Faraday effect and would be of probable interest for RADAR
and stealth technology.

The additional inference into the Aharonov Bohm effects given by the new
geometrical theorem of this paper is summarized in Eq.(9.22), which shows that
the electromagnetic field is the inner product of the torsion tensor and the elec-
tromagnetic potential. The torsion tensor vanishes in the Maxwell Heaviside
field theory, because the latter is constructed in a flat or Minkowski spacetime,
but Eq.(9.22) is generally covariant as required by relativity theory. The com-
bined result of Eqs.(9.21) and (9.22) is therefore:

F a
µν = T ρ

µν A
a
ρ = (d ∧Aa)µν + ωa

µb ∧ Ab
ν (9.23)

and shows that the Aharonov Bohm effects are due to a term ωa
µb ∧Ab

ν which
does not exist in Maxwell Heaviside theory and does not exist in the standard
model. Nevertheless this term is the result of a rigorously objective theory of
electromagnetism based on general relativity, not special relativity. This is the
generally covariant unified field theory, which is therefore preferred experimen-
tally and philosophically over the Maxwell Heaviside field theory.
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Abstract

Two rigorous proofs of the Evans Lemma are developed from the fundamental
tetrad postulate of differential geometry. Both proofs show that the Lemma
is the subsidiary geometrical proposition upon which is based the Evans wave
equation. The latter is the source of all wave equations in physics and generally
covariant quantum mechanics.

Key words: Evans lemma; tetrad postulate; unified field theory; Evans wave
equation.

10.1 Introduction

Recently a generally covariant unified field theory has been developed [1]– [12],
a theory which is based rigorously on standard differential geometry. The basic
theorems of standard differential geometry [13]– [15] include the Cartan struc-
ture relations, the Bianchi identities, and the tetrad postulate. Recently it has
been proven [16] that the first Cartan structure equation is an equality of two
tetrad postulates. Cartan geometry seems to be entirely sufficient for a uni-
fied field theory based on Einstein’s idea that physics is geometry. This is the
fundamental idea of relativity theory - that all physics must be both objec-
tive to all observers and rigorously causal. This includes quantum mechanics,
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10.2. ADVANTAGES OF CARTAN GEOMETRY

and it has recently been shown experimentally in many ways, summarized in
ref [10], that the Heisenberg uncertainty principle is incorrect qualitatively. The
generally covariant unified field theory [1]– [12] suggests a causal quantum me-
chanics based on differential geometry, and suggests a development [10] of the
Heisenberg uncertainty principle to make it compatible with experimental data.

Section 10.2 gives an outline of the advantages of Cartan geometry over
Riemann geometry in the development of a unified field theory. Section 10.3
gives the first proof of the Lemma, and this is followed in Section 10.4 by a
second proof which reveals the existence of a subsidiary condition.

10.2 Advantages Of Cartan Geometry

Without Cartan geometry it is much more difficult, if not impossible, to develop
an objective unified field theory. The reason is that the fundamental structure
equations of Cartan, and the fundamental Bianchi identities, are easily rec-
ognized as having the structure of generally covariant electromagnetic theory.
This is by no means clear in Riemann geometry. To illustrate the advantage
of Cartan geometry we discuss the four fundamental equations below, first in
Cartan geometry and then in Riemann geometry.

The first Cartan structure equation gives the relation between the electro-
magnetic field and the electromagnetic potential [1]– [12]. In Cartan geometry
it is:

T a = D ∧ qa = d ∧ qa + ωa
b ∧ qb (10.1)

and in Riemann geometry it is:

T κ
µν = Γκ

µν − Γκ
νµ. (10.2)

Here T a is the torsion form, qa is the tetrad form, ωa
b is the spin connection,

T κ
µν is the torsion tensor and Γκ

µν is the gamma connection of Riemann geom-
etry. Eq.(10.1) in generally covariant electromagnetic theory [1]– [12] becomes:

F a = D ∧Aa = d ∧ Aa + ωa
b ∧ Ab (10.3)

where F a is the electromagnetic field two-form and Aa is the electromagnetic
potential. In the special relativistic limit Eq.(10.3) reduces to the familiar rela-
tion between field and potential in Maxwell Heaviside field theory [17]:

F = d ∧ A. (10.4)

It is seen by comparison of Eq.(10.1) and (10.3) that Cartan geometry leads al-
most directly to the correctly and generally covariant theory of electrodynamics,
Eq.(10.3). However the equivalent of Eq.(10.1) in Riemann geometry, Eq.(10.2),
leads to no such inference.

The field equations of electrodynamics in the Evans unified field theory are
based on the first Bianchi identity of differential geometry, which in its most
condensed form may be written as:

D ∧ T a = Ra
b ∧ qb. (10.5)
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Eq.(10.5) is equivalent to:

d ∧ T a = −
(
qb ∧Ra

b + ωa
b ∧ T b

)
. (10.6)

Here Ra
b is the Riemann form [1]– [15]. Using the Evans ansatz

Aa = A(0)qa (10.7)

Eq.(10.6) becomes the homogeneous field equation of generally covariant elec-
trodynamics:

d ∧ F a = −A(0)
(
qb ∧Ra

b + ωa
b ∧ T b

)
= µ0j

a (10.8)

where ja is the homogeneous current. Eq.(10.8) leads to the Faraday law of
induction and the Gauss law of magnetism when ja is very small:

ja ∼ 0. (10.9)

Eq.(10.9) in turn leads to the free space condition:

Ra
b ∧ qb = ωa

b ∧ T b (10.10)

one possible solution of which is circular polarization [1]– [12].
None of these inferences are clear, however, from the equivalent of Eq.(10.5)

in Riemann geometry [1]– [15]:

Rλ
ρµν = ∂µΓλ

νρ − ∂νΓλ
µρ + Γλ

µσΓσ
νσ − Γλ

νσΓσ
µρ

et cyclicum
(10.11)

and so it would be difficult if not impossible to construct a unified field theory
from Riemann geometry.

Cartan geometry also helps to clarify and simplify the structure of Einstein’s
original gravitational theory. This is accomplished using the second Cartan
structure equation and the second Bianchi identity of Cartan geometry. The
former is:

Ra
b = D ∧ ωa

b = d ∧ ωa
b + ωa

c ∧ ωc
b (10.12)

and the latter is:

D ∧ Ra
b = d ∧ Ra

b + ωa
c ∧ Rc

b + ωc
b ∧ Ra

c = 0. (10.13)

Eq.(10.12) bears an obvious similarity to Eq.(10.1) and again this is indicative
of the fact that electromagnetism and gravitation are parts of a unified field
based on Cartan geometry. The equivalent of Eq.(10.12) in Riemann geometry
is, however:

Rσ
λνµ = ∂νΓσ

µλ − ∂µΓσ
νλ + Γσ

νρΓ
ρ
µλ − Γσ

νρΓ
ρ
νλ (10.14)

and there is no resemblance to Eq.(10.2), the first Cartan structure equation
written in terms of Riemann geometry. The same is true of the second Bianchi
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identity (10.13) of Cartan geometry, which is closely similar to the first Bianchi
identity (10.5). However, the equivalent of Eq.(10.13) in Riemann geometry is:

DρR
κ
σµν +DµR

κ
σνρ +DνR

κ
σρµ = 0 (10.15)

and is entirely different in structure form Eq.(10.11), the first Bianchi identity
in Riemann geometry.

10.3 First Proof Of The Evans Lemma From

The Tetrad Postulate

This first proof of the Evans Lemma [1]– [12] is based on the tetrad postulate of
Cartan geometry [13]– [16], which is proven in eight ways in refs. [12] and [16].
The proof in ref (10.16) is a particularly clear demonstration of the fundamental
nature of the tetrad postulate, because it is basically a restatement of the first
Cartan structure equation without which there would be no Cartan geometry.
The tetrad postulate is:

Dµq
a
ν = 0 (10.16)

where Dµ denotes covariant derivative [13] and may be thought of as the equiv-
alent in Cartan geometry of the metric compatibility condition of Riemann
geometry [1]– [16]. The metric compatibility condition has been tested experi-
mentally to one part in one hundred thousand [16] by the NASA Cassini exper-
iments designed to test the original 1915 theory of general relativity. The latter
is based on the metric compatibility condition and the concomitant relation be-
tween the symmetric Christoffel symbol and the symmetric metric. However,
the tetrad postulate is more generally applicable and is valid for all types of
connection [1]– [16].

The Evans Lemma [1]– [12] is obtained from the identity:

Dµ (Dµq
a
ν ) := 0 (10.17)

i.e. from:
Dµ (0) := 0. (10.18)

Eq (10.18) implies [1]– [13] that:

∂µ (0) := 0 (10.19)

and so we obtain:
∂µ (Dµq

a
ν ) := 0 (10.20)

or
∂µ
(
∂µq

a
λ + ωa

µbq
b
λ − Γν

µλq
a
ν

)
:= 0 (10.21)

where ωa
µb is the spin connection and Γν

µλ is the general gamma connection
[1]– [16]. The specialized Christoffel connection of the 1915 theory is obtained
when the gamma connection is symmetric in its lower two indices; in order
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to develop a unified field theory we need the most general gamma connection,
which is asymmetric in its lower two indices. Thus, for a given upper index, the
most general gamma connection is a sum of a gamma connection symmetric in
its lower two indices and a gamma connection antisymmetric in its lower two
indices. The former is the Christoffel connection of gravitation and the latter is
the gamma connection for electromagnetism [1]– [16].

To obtain the Evans Lemma rewrite Eq.(10.21) as follows:

�qa
µ = ∂µ

(
Γν

µλq
a
ν − ωa

µbq
b
λ

)
:= Rqa

µ (10.22)

where
R = qλ

a∂
µ
(
Γν

µλq
a
µ − ωa

µbq
b
λ

)
(10.23)

is scalar curvature, with units of inverse square metres. The Evans Lemma is
therefore the prototypical wave equation of Cartan geometry:

�qa
µ = Rqa

µ (10.24)

Q.E.D.
Now consider the Einstein field equation [13]:

Rµν − 1

2
Rgµν = kTνµ (10.25)

where Rµν is the Ricci tensor, gµν is the symmetric metric tensor, Tµν is the
symmetric canonical energy momentum tensor, and k is the Einstein constant.
Multiply both sides of Eq. (10.25) by gµν and define the following scalars by
index contraction:

R = gµνRµν (10.26)

T = gµνTµν (10.27)

Use:
gµνgµν = 4 (10.28)

to obtain:
R = −kT. (10.29)

From Eq.(10.24) and (10.29) we obtain the Evans wave equation [1]– [12]:

(� + kT ) qa
µ = 0 (10.30)

where:
R = −kT = gµνRµν = qλ

a∂
µ
(
Γν

µλq
a
ν − ωa

µbq
b
λ

)
(10.31)

From the correspondence principle the Dirac equation is obtained in the limit:

kT −→
(mc

~

)2

(10.32)

with
T =

m

V0
(10.33)
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giving the volume of the elementary particle in its rest frame:

V0 =
~

2k

mc2
=

~
2k

En0
(10.34)

This procedure also shows that the Dirac spinor is derived from the tetrad, which
is the fundamental field [1]– [16] of the Palatini variation of general relativity
[13]– [15]. In the unified field theory [1]– [12, 16] the tetrad is the fundamental
field for all radiated and matter fields, (gravitation, electromagnetism, weak and
strong fields and particle fields).

The Lemma is therefore a subsidiary condition based on Cartan geometry, a
condition that leads via Eq.(10.29) to the Evans wave equation of physics. The
various fields of physics are all defined by various tetrads [1]– [12], and all sectors
of the unified field theory are generally covariant and rigorously objective. The
need for general covariance in electrodynamics for example introduces the spin
connection into electrodynamics, and with it the Evans spin field observed in
the inverse Faraday effect [1]– [12]. Thereby electrodynamics is recognized as
spinning spacetime, gravitation as curving spacetime. The two fields interact
when the homogeneous current ja is non zero [1]– [12]. A non-zero ja however
implies the experimental violation of the Faraday Law of induction and Gauss
law of magnetism, and within contemporary experimental precision, this has
not been observed in the laboratory.

10.4 Second Proof Of The Evans Lemma From

The Tetrad Postulate

Rewrite Eq.(10.17) as:

Dµ
(
∂µq

a
λ + ωa

µbq
b
λ − Γν

µλq
a
ν

)
= 0 (10.35)

and use the Leibnitz Theorem for covariant derivatives [13] to obtain:

(Dµ∂µ) qa
λ + ∂µ (Dµqa

λ) +
(
Dµωa

µb

)
+ ωa

µb

(
Dµqb

λ

)

−
(
DµΓν

µλ

)
qa

ν − Γν
µλ (Dµqa

ν ) = 0.
(10.36)

Using Eq.(10.16) in Eq. (10.36) we obtain:

(Dµ∂µ) qa
λ +

(
Dµωa

µb

)
qb

λ −
(
DµΓν

µλ

)
qa

ν = 0. (10.37)

Now use:
Dµ∂µ = ∂µ∂µ + . . . (10.38)

Dµωa
µb = ∂µωa

µb + . . . (10.39)

DµΓν
µλ = ∂µΓν

µλ + . . . (10.40)

to rewrite Eq.(10.37) as

∂µ
(
∂µq

a
λ + ωa

µbq
b
λ − Γν

µλq
a
ν

)
+ . . . = 0 (10.41)
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i.e.
∂µ (Dµq

a
λ) + . . . = 0 (10.42)

By comparison of Eq.(10.20) and (10.42) it is seen that there must be a sub-
sidiary condition which ensures that the remainder term on the left hand side
of Eq.(10.42) be zero. This condition provides a useful analytical constraint on
the geometry of the Lemma.

In order to proceed we define the covariant derivatives:

DµV
ν = ∂µV

ν + Γν
µλV

λ (10.43)

DµVν = ∂µVν − Γ λ
νµ Vλ (10.44)

Therefore if
V ν = 0 (10.45)

then
V 0 = V 1 = V 2 = V 3 = 0 (10.46)

and in Eq.(10.46):

DµV
0 = ∂µV

0 + Γν
µλV

λ

...

DµV
3 = ∂µV

3 + Γν
µλV

λ.

(10.47)

However:
V λ = 0, λ = 0, 1, 2, 3 (10.48)

which implies
DµV

0 = ∂µV
0 = 0

...

DµV
3 = ∂µV

3 = 0

(10.49)

and implies the subsidiary condition:

Γν
µλV

λ = 0. (10.50)

The same reasoning applies to the subsidiary condition in Eq.(10.42). Therefore
when all components of a vector or tensor are zero:

DµDµ = ∂µDµ. (10.51)

The components of a vector or tensor are not scalars, so in general Dµ acting
on a vector component or tensor component is not the same as ∂µ acting on the
same component. This is clear from Eqs.(10.43) and (10.44).

The covariant divergence is now defined from the expression for the covariant
divergence of a vector:

DµV
µ = ∂µV

µ + Γµ
µλV

λ (10.52)
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i.e.:
Dµ∂

µ = ∂µ∂
µ + Γµ

µλ∂
λ. (10.53)

Rewriting dummy indices inside the connection:

Dµ∂
µ = � + Γν

νµ∂
µ. (10.54)

The wave equation (10.37) is therefore:

(
� + Γν

νµ∂
µ
)
qa

λ −R1q
a
λ = 0 (10.55)

where:
−R1q

a
λ :=

(
Dµωa

µb

)
qb

λ −
(
DµΓν

µλ

)
qa

ν . (10.56)

Using the tetrad postulate:

∂µq
a
λ = −ωa

µbq
b
λ + Γν

µλq
a
ν (10.57)

so
∂µqa

λ = −ωµa
bq

b
λ + Γµν

λq
a
ν . (10.58)

Therefore in Eq.(10.55):

�qa
λ − Γν

νµω
µa

bq
b
λ + Γν

νµΓµν
λq

a
ν −R1q

a
λ . (10.59)

Finally define:
−R2q

a
λ := −Γν

νµω
µa

bq
b
λ + Γν

νµΓµν
λq

a
ν (10.60)

to obtain the Evans Lemma:

�qa
λ = Rqa

λ ,

R = R1 +R2,
(10.61)

Q.E.D.

10.5 Discussion

The Evans lemma is an eigenequation for R, and is accompanied by Eq.(10.23),
which is a subsidiary condition for R. These geometrical equations provide a
source for all the wave equations of physics in general relativity. Such a concept
does not exist in the standard model, where quantum mechanics and general
relativity are mutually incompatible. Develop Eq.(10.23) using [13]:

∂µ = gµσ∂σ (10.62)

to give:

R = gµσqλ
a

(
Γν

µλ∂σq
a
ν + qa

ν∂σΓν
µλ − ωa

µb∂σq
b
λ − qb

λ∂σω
a
µb

)
. (10.63)

Now use the tetrad postulates:

∂σq
a
ν + ωa

σbq
b
ν − Γρ

σνq
a
ρ = 0, (10.64)
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∂σq
b
λ + ωb

σcq
c
λ − Γν

σλq
a
ν = 0, (10.65)

to find:
R = gµσ

(
qλ

aq
a
ρΓν

µλΓρ
σν − qλ

aq
b
νΓν

µλω
a
σb

+qλ
aq

a
ν∂σΓν

µλ − qλ
aq

b
νω

a
µbΓ

ν
σλ

+qλ
aq

c
λω

a
µbω

b
σc − qλ

aq
b
λ∂σω

a
µb

)
.

(10.66)

Eliminate the tetrads using:

Rσ
λνµ = qσ

aq
b
λR

a
bνµ (10.67)

Ra
bνµ = qa

σq
λ
bR

σ
λνµ (10.68)

Ra
bνµ = ∂νω

a
µb − ∂µω

a
νb + ωa

νcω
c
µb − ωa

µcω
c
νb (10.69)

Rσ
λνµ = ∂νΓσ

µλ − ∂µΓσ
νλ + Γσ

νρΓ
ρ
µλ − Γσ

µρΓ
ρ
νλ. (10.70)

The Riemann tensor Rσ
λνµ and the Riemann form Ra

bνµ are antisymmetric
respectively in σ and λ and in a and b. Using this antisymmetry Eq.(10.66)
reduces to:

R = −gµσqλ
aq

b
ν

(
Γν

µλω
a
σb + ωa

µbΓ
ν
σλ

)
. (10.71)

Now simplify and remove the tetrads using:

qλ
aΓν

µλ = Γν
µa (10.72)

qb
νω

a
σb = ωa

σν (10.73)

qλ
aω

a
µb = ωλ

µb (10.74)

qb
νΓν

σλ = Γb
σλ (10.75)

to give:
R = −gµσ

(
Γν

µaω
a
σν + ωλ

µbΓ
b
σλ

)
. (10.76)

Finally re-arrange dummy indices b→ a, λ→ ν to give:

R = −gµσ
(
Γν

µaω
a
σν + ων

µbΓ
a
σν

)
. (10.77)

Eq.(10.77) is the required generalization to unified field theory of the equation
for the scalar curvature R used in the original 1915 theory of gravitational
general relativity, i.e. is the generalization of

R = gµσRµσ (10.78)

where Rµσ is the Ricci tensor.
Comparing Eqs.(10.77) and (10.78):

Rµσ = −
(
Γν

µaω
a
σν + ων

µaΓa
σν

)
(10.79)

is the Ricci tensor in the unified field theory. Using Eq.(10.29) it is found that:

kT = gµσ
(
Γν

µaω
a
σν + ων

µaΓa
σν

)
(10.80)
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Eq.(10.80) is the subsidiary condition for the Evans wave equation (10.30), which
in general relativity must be solved simultaneously with Eq.(10.80). In the limit
of special relativity however, there is only one equation to solve - the Dirac
equation - because:

gµσ
(
Γν

µaω
a
σν + ων

µaΓa
σν

)
=
(mc

~

)2

. (10.81)

In conclusion the Evans lemma and wave equation have been derived rigor-
ously form Cartan geometry and the Einstein equation (10.29). As inferred
by Einstein (10.17) the latter must be interpreted as being valid for all fields,
not only the gravitational field. Eq.(10.29) is more fundamental than the more
well known Einstein field equation (10.25) because various field equation can be
constructed [1]– [12] from Eq. (10.29).
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Chapter 11
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Equation
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Abstract

The self consistency of two derivations of the Evans Lemma is demonstrated
rigorously and the Evans wave equation derived therefrom. The wave equa-
tion is reduced to the Dirac equation in the appropriate limit and the meaning
discussed of the generally covariant Dirac and Pauli spinors. The effect of grav-
itation on particle physics may be investigated with the Evans equation.

Key words : Evans unified field theory, lemma and wave equation; generally
covariant Dirac equation; effect of gravitation on particle physics.

11.1 Introduction

Recently a generally covariant unified field theory has been developed [1]–
[14]which gives a plausible description of all radiated and matter fields in terms
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of the tetrad. The latter is the fundamental field of the Palatini variation of
general relativity [15]– [17]. The Evans lemma [3, 4] is an identity of Cartan
geometry which is the subsidiary proposition to the Evans wave equation. The
latter unifies general relativity and quantum mechanics and is a wave equation
of causal and objective physics [3, 4]. It has been demonstrated experimen-
tally [11,12] beyond reasonable doubt that the Heisenberg uncertainty principle
is an intellectual aberration, so should be abandoned in favor of a causal and gen-
erally covariant interpretation [1]– [14] of quantum mechanics based on Cartan
geometry. The lemma and wave equation are therefore fundamentally impor-
tant to a consistent interpretation of natural philosophy as an objective subject
in which every event has a cause. It is therefore necessary to demonstrate the
lemma rigorously in more than one way, and to demonstrate its geometrical self
consistency.

In Section 11.2 the self consistency of the Lemma is demonstrated with two
independent methods. In Section 11.3 the Lemma is transformed into a wave
equation using the index contracted form of the Einstein field equation, and the
resulting equation reduced to the single particle Dirac equation in the appropri-
ate limit, proving that the origin of the Dirac four spinor is Cartan geometry.
The effect of gravitation on the single particle Dirac equation can therefore be
calculated from the generally covariant single particle Dirac equation derived
directly from the Evans wave equation.

11.2 Geometrical Self Consistency Of The Evans

Lemma

The lemma is an identity which is derived from the standard tetrad postulate
of Cartan geometry [18]:

Dµq
a
ν = 0. (11.1)

Covariant differentiation of Eq.(11.1) gives the identity:

Dµ (Dµq
a
ν ) := 0. (11.2)

The covariant derivative is defined [18] such that:

Dµ (φ) = ∂µ (φ) (11.3)

where φ is a scalar. Thus for every scalar element defined in Eq.(11.1), Eq.(11.3)
applies. It follows that:

∂µ (Dµq
a
ν ) := 0. (11.4)

The tetrad postulate is expanded out next as follows [18]:

Dµq
a
λ = ∂µq

a
λ + ωa

µbq
b
λ − Γν

µλq
a
ν = 0 (11.5)

where ωa
µb is the spin connection and where Γν

µλ is the gamma connection for
a spacetime both with curvature and torsion. Using the inverse tetrad relation:

qa
µq

µ
a = 1 (11.6)

118



CHAPTER 11. SELF CONSISTENT DERIVATION OF THE EVANS . . .

it follows directly from Eq.(11.4) that:

�qa
µ = Rqa

µ (11.7)

where
R = qλ

a∂
µ
(
Γν

µλq
a
ν − ωa

µbq
b
λ

)
(11.8)

and where the d’Alembertian operator is defined by:

� = ∂µ∂µ. (11.9)

Eq.(11.7) is the lemma, or subsidiary geometrical proposition, that leads to
the Evans wave equation. It is a simple identity of Cartan geometry and is the
structure that leads directly to the generally covariant, causal and thus objective
wave equations of physics. From the tetrad postulate (11.1):

Γν
µλq

a
ν − ωa

µbq
b
λ = ∂µq

a
λ (11.10)

and using Eq.(11.10) in Eq.(11.8) it is found self-consistently that:

R = qλ
a∂

µ (∂µq
a
λ) = qλ

a�qa
λ (11.11)

which leads back self consistently to Eq. (11.7) upon use of Eq.(11.6). It
has therefore been shown that the most basic structure of Cartan geometry
is the wave equation (11.7). This wave equation of geometry is the source of
quantum mechanics in physics. The importance of the lemma is therefore clear,
it indicates that all of physics is derived from Cartan geometry. Geometry is
transformed into physics using:

R = −kT. (11.12)

Eq.(11.12) is the most fundamental equation of relativity, and is the simplest
way in which geometry can be translated into physics via the scalar energy-
momentum density T and the Einstein constant k. Here R is the scalar cur-
vature in inverse square meters. Eq.(11.12) applies to all radiated and matter
fields as intended originally by Einstein himself [19]. Not only can we recover
the Einstein Hilbert field equation from Eq.(11.12) but also a number of other
field equations [1]– [14]. The Einstein Hilbert field equation is derived from
the second Bianchi identity of Riemann geometry on the assumption [18] of the
Christoffel connection which is symmetric in its lower two indices. This assump-
tion implies that the torsion tensor is zero. Therefore the Einstein Hilbert field
theory assumes that there is spacetime curvature but no spacetime torsion. In
some circumstances this assumption is perfectly adequate, for example for the
sun (Cassini experiments at NASA, 2002 to present), but in other circumstances
it is well known that there are cosmological anomalies [20], some of them appear
to be very large anomalies. So the Einstein Hilbert field equation appears to
be only partially successful in a cosmological context when we take all the data
into account.
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In the Evans field theory on the other hand curvature and torsion are both
present in general [1]– [14] and the connection is the spin connection of the
Palatini variation of general relativity in which the fundamental field is the
tetrad and not the symmetric metric of the EinsteinHilbert field theory. The
symmetric metric is the dot product of two tetrads, as is well known [18]:

gµν = qa
µq

b
νηab (11.13)

where ηab is the Minkowski metric of the tangent spacetime. It follows immedi-
ately that there always exists an antisymmetric metric - the wedge product of
two tetrads:

gc
µν = qa

µ ∧ qb
ν . (11.14)

The antisymmetric metric is a vector valued two-form of differential geometry.
The most general metric is the outer product of two tetrads [1]– [14]. The outer
product is a matrix, and therefore can always be written [21] as the sum of a
symmetric and antisymmetric matrix. The trace of the symmetric matrix is
essentially the dot product and the antisymmetric traceless part is essentially
the cross product. A simple example is vector analysis in three dimensional
Euclidean space. If the dot product A·B is defined of two vectors, we can always
define a cross product A×B. This rule can be generalized to n dimensional non-
Euclidean geometry through the use of tetrads. The dot product is generalized
to Eq.(11.13) and the cross product is generalized to Eq.(11.14).

The antisymmetric metric is missing from the Einstein Hilbert field theory
of gravitation, but is a special case of the Evans field theory when the spin
connection is dual to the tetrad [3, 4]. In this special case the wedge product
of the spin connection and the tetrad that appears in the first Cartan structure
equation:

T a
µν = (d ∧ qa)µν + ωa

µb ∧ qb
ν (11.15)

reduces to the antisymmetric metric within a factor κ with the dimensions of
wavenumber. This duality condition:

ωa
µb = −1

2
κεabcq

c
µ (11.16)

defines free space electromagnetic radiation [1]– [14] decoupled from gravitation
- a special case of the general Evans unified field theory. T a

µν is the torsion form
(a vector valued two-form) d∧ denotes the exterior derivative, and ωa

µb denotes
the spin connection of the well known Palatini variation [15]– [17] of relativity
theory. Therefore the Einstein-Hilbert field theory of gravitation, although well
known and well used, is severely constrained by its fundamental geometrical
assumption of a Christoffel (symmetric) connection:

Γκ
µν = Γκ

νµ. (11.17)

This could well be the source of the well observed [20] anomalies of cosmology
and the Evans field theory should be used to address these anomalies. If rela-
tivity theory is abandoned, objective physics is abandoned, leaving essentially
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no physics at all. The use of the Christoffel connection means that:

Rρσµν +Rρµνσ +Rρνσµ = 0 (11.18)

whereas more generally [1]– [14] Eq.(11.18) is the first Bianchi identity of Cartan
geometry:

(d ∧ T a)µνσ + ωa
µb ∧ T b

νσ := Ra
bµν ∧ qb

σ . (11.19)

It has been shown [1]– [14] that Eq.(11.19) is the same as the following identity
of Riemann geometry:

∂µΓλ
µρ − ∂νΓλ

µρ + Γλ
µσΓσ

νρ − Γλ
νσΓσ

µρ

+∂νΓλ
ρµ − ∂ρΓ

λ
νµ + Γλ

νσΓσ
ρµ − Γλ

ρσΓσ
νµ

+∂ρΓ
λ

µν − ∂µΓλ
ρν + Γλ

ρσΓσ
µν − Γλ

µσΓσ
ρν

:= Rλ
ρµν +Rλ

µνρ +Rλ
νρµ

(11.20)

using both the Riemann and torsion tensors, both being non-zero in general. In
general the Riemann form of Cartan geometry is [1]– [14]:

Ra
bµν = qa

σq
τ
bR

σ
τµν (11.21)

where Rσ
τµν is the Riemann tensor of Riemann geometry. The symmetries:

Ra
bµν = −Ra

bνµ (11.22)

Rσ
τµν = −Rσ

τνµ (11.23)

are always true, but in general the Riemann form and Riemann tensor are asym-
metric in their first two indices. The Riemann tensor becomes antisymmetric
in its first two indices if and only if Eq.(11.18) is true [18]. This is another
illustration of the rather severe geometrical constraints on the Einstein Hilbert
field theory. In the Evans field theory these constraints are lifted and a lot of
new physics awaits exploration.

A simple example of a new field equation from Eq.(11.12) is:

Rqa
µ = −kTqa

µ (11.24)

which is a classical field equation closely similar to the Evans wave equation of
generally covariant quantum mechanics:

(� + kT ) qa
µ = 0 (11.25)

obtained from Eqs.(11.7) and (11.12). Therefore the Evans lemma of geometry
translates into physics using Eq.(11.12). To solve Eq.(11.25) it is possible for
example to first define T and then derive the eigenfunctions qa

µ if possible
analytically or otherwise computationally. There are various model situations
that may be used for T . One of the simplest is the single particle special
relativistic limit where:

T −→ m

V0
(11.26)
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in the particle rest frame. Here m is the mass of an elementary particle and
V0 is its rest volume, a new fundamental concept introduced by the Evans field
theory [1]– [14]. The correspondence principle states essentially that general
relativity reduces to special relativity under well defined conditions. The wave
equation of special relativistic quantum mechanics is the experimentally well
tested Dirac equation: (

� +
m2c2

~2

)
qa

µ = 0 (11.27)

where c is the speed of light in vacuo and ~ the reduced Planck constant. It
is deduced therefore that the Dirac four spinor, the wavefunction of the Dirac
equation, is a tetrad. The latter is the fundamental field of the Palatini variation
of general relativity and as such must remain the fundamental field in special
relativity. This important conclusion is a direct consequence of the correspon-
dence principle.

Using this argument and comparing Eqs.(11.25) and (11.27) it follows that
the fundamental rest volume is defined by:

V0 =
~

2k

mc2
:=

~
2k

En0
(11.28)

for all elementary particles, including the photon, neutrinos, gravitons and grav-
itinos. This is one of the major discoveries of the Evans field theory because
it removes the necessity for Feynman calculus and renormalization in quantum
electrodynamics and quantum chromodynamics. It also removes the unphysical
infinities of classical electrodynamics, infinities which originate in the notion
of point electron without volume. From Eq.(11.28) it is deduced from general
relativity that there are no point particles in nature, and that every elementary
particle must have mass. From this deduction it follows that the Higgs mech-
anism must be abandoned and that theories based on the Higgs mechanism,
such as the GWS theory, must be modified. The first steps towards such a
modification have been taken [1]– [14].

By deriving the Dirac equation from Cartan geometry spin has been in-
troduced into general relativity, and this is a key step towards towards the
unification of gravitational theory with electromagnetic theory and the theory
of the weak and strong fields. Spin enters into consideration through the tetrad.
The four fundamental fields of physics presently thought to exist: gravitation,
electromagnetic, the weak and strong, are all mathematical representations of
the fundamental tetrad field.

By use of the Leibnitz Theorem [1]– [14, 18] we also obtain from the tetrad
postulate:

(Dµ∂µ) qa
λ +

(
Dµωa

µb

)
qb

λ −
(
DµΓν

µλ

)
qa

ν = 0. (11.29)

Eqs.(11.4) and (11.29) may be used to cross check the derivation of the Evans
Lemma as follows. In Eq.(11.29) use the results:

Dµ∂
µ = � + Γµ

µλ∂
λ (11.30)
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Dµ = gµνDν (11.31)

∂µ = gµν∂
ν (11.32)

implying that:
Dµ∂µ = gµνDνgµν∂

ν = 4Dµ∂
µ. (11.33)

From Eq.(11.33) in Eq.(11.29):

4 (Dµ∂µ) qa
λ +

(
Dµωa

µb

)
qb

λ −
(
DµΓν

µλ

)
qa

ν = 0. (11.34)

Using the Leibnitz rule:

(Dµ∂
µ) qa

λ = Dµ (∂µqa
λ) + ∂µ (Dµq

a
λ) , (11.35)

therefore in Eq.(11.34)

4 (Dµ (∂µqa
λ) + ∂µ (Dµq

a
λ)) +

(
Dµωa

µb

)
qb

λ −
(
DµΓν

µλ

)
qa

ν = 0. (11.36)

By comparison of Eq.(11.36) and (11.4):

4Dµ (∂µqa
λ) +Dµωa

µb −
(
DµΓν

µλ

)
qa

ν = 0 (11.37)

i.e.
Dµ
(
∂νq

a
λ + ωa

µbq
b
λ − Γν

µλq
a
ν

)
= 0 (11.38)

which is
Dµ (Dµq

a
λ) = 0. (11.39)

Eq.(11.2) is recovered self consistently, Q.E.D., thus proving the self consistency
and correctness of both derivations of the Evans Lemma.

Therefore the set of equations to solve in Cartan geometry is as follows:

�qa
µ = Rqa

λ (11.40)

T a = d ∧ qa + ωa
b ∧ qb (11.41)

d ∧ T a = Ra
b ∧ qb − ωa

b ∧ T b (11.42)

Ra
b = d ∧ ωa

b + ωa
c ∧ ωc

b (11.43)

D ∧ Ra
b = 0. (11.44)

There are five equations, and the unknowns are R, qa and ωa
b . Eqs.(11.41) and

(11.42) give a relation between qa and ωa
b :

d ∧
(
d ∧ qa + ωa

b ∧ qb
)

+ωa
b ∧
(
d ∧ qb + ωb

c ∧ qc
)

= (d ∧ ωa
b + ωa

c ∧ ωc
b) ∧ qb.

(11.45)

Eq.(11.44) is an equation in ωa
b :

D ∧ (d ∧ ωa
b + ωa

c ∧ ωc
b) = 0. (11.46)
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If for a simple model, ωa
b is found from Eq.(11.46), the second Bianchi identity,

then qa may be found from Eq.(11.45). Given this qa, R and T may be found
as eigenvalues of Eq.(11.40). In order to translate this Cartan geometry into
electrodynamics we use the Evans Ansatz:

Aa
µ = A(0)qa

µ , (11.47)

F a
µν = A(0)T a

µν , (11.48)

where A(0) is the scalar magnitude of the vector potential of electrodynamics.

11.3 Structure Of The Dirac Equation

The wave equation (11.25) becomes the generally covariant Dirac equation when
the appropriate representation space is used. In n dimensional non-Euclidean
geometry the tetrad is defined in general [18] by:

V a = qa
µV

µ (11.49)

where V a is a vector in the tangent spacetime, and V µ is a vector in the base
manifold. These vectors are in general n dimensional. The tetrad appropriate
to the Dirac equation is given by n = 2. Thus V a and V µ are two-vectors and
the tetrad is a 2 × 2 matrix. For electrodynamics on the other hand n = 4,
and V a and V µ are four-vectors. The potential field of generally covariant
electrodynamics is:

Aa
µ = A(0)qa

µ . (11.50)

The intrinsic spin of the electromagnetic field can be described by the three
space-like components of Aa

µ and so we can restrict attention to n = 3 for
this illustrative purpose. More generally, Aa

µ always has a fourth, time-like
dimension which defines the scalar potential.

The three dimensional (n = 3) representation space can be characterized by
two sets of basis vectors, each with O(3) symmetry in contrast with the SU(2)
symmetry of the n = 2 representation space of the Dirac equation. The first
basis of the n = 3 space is the Cartesian (X,Y, Z) and the second is the complex
circular [1]– [14] ((1), (2), (3)). The intrinsic spin of electrodynamics is therefore
described by assigning:

a = (1), (2), (3), (11.51)

µ = X,Y, Z, (11.52)

and the electromagnetic potential is, within A(0), the tetrad constructed from
Eqs.(11.51) and (11.52), with components such as:

A
(1)

X , . . . , A
(3)

Z . (11.53)

By introduction of the electromagnetic phase factor eiφ, one frame spins and
translates with respect to the other. This is electromagnetism - spinning space-
time. Gravitation is curving spacetime. For electromagnetism, the tangent
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spacetime labeled a is a static Minkowski spacetime and the base manifold la-
beled µ is a spacetime that spins and translates with respect to the Minkowski
spacetime. For gravitation the tangent spacetime is the same, but the base man-
ifold curves with respect to the tangent spacetime. For the unified field the base
manifold, spins, translates and curves with respect to the tangent spacetime.

The experimentally observed circular polarization of electromagnetism is
described by the following type of tetrad in vector notation [1]– [14]:

A(1) =
A(0)

√
2

(i− ij) eiφ, (11.54)

A(2) =
A(0)

√
2

(i + ij) e−iφ, (11.55)

together with:

A(3) = A(0)k. (11.56)

Here i, j and k are Cartesian unit vectors defined by the O(3) symmetry rule:

i× j = k. (11.57)

These are related to the unit vectors of the complex circular basis by:

e(1) =
1√
2

(i− ij) (11.58)

e(2) =
1√
2

(i + ij) (11.59)

e(3) = k. (11.60)

implying the O(3) symmetry rule:

e(1) × e(2) = ie(3)∗ (11.61)

The tetrads in vector notation are therefore:

q(1) = e(1)eiφ, (11.62)

q(2) = e(2)e−iφ, (11.63)

q(3) = e(3), (11.64)

and obey the O(3) symmetry rule:

q(1) × q(2) = iq(3)∗. (11.65)

The electromagnetic phase φ is in general the generally covariant Evans phase
[1]– [14]. Thus the tetrad can be used straightforwardly for electromagnetism
as well as for gravitation. This is the key to the unified field theory.
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These considerations can now be applied to the single particle Dirac equa-
tion, in which n = 2. As for the intrinsic spin of the electromagnetic field, qa

µ

in the Dirac equation represents a spinning and translating of spacetime, the
helicity of the elementary fermion. The photon of the electromagnetic field is
a boson. In the generally covariant Dirac equation the spin is superimposed on
a curving of the base manifold (the Evans spacetime [1]– [14]), and this curv-
ing is gravitation. The generally covariant Dirac equation therefore describes
the effect of gravitation on the fermion, i.e. the influence of gravitation on
elementary particles and anti-particles that are fermions. The famous Dirac
equation of special relativity is recovered as discussed already in this paper, i.e.
in the limit defined by Eq.(11.26). As for electrodynamics the spin is introduced
through a phase factor eiφ and as for electrodynamics there are right and left
handed helicities. For the electromagnetic potential right and left handed senses
of circular polarization are defined by:

A
(1)
R =

A(0)

√
2

(i− ij) eiφ, (11.66)

A
(2)
L =

A(0)

√
2

(i + ij) eiφ. (11.67)

For the same phase factor eiφ , the right basis vector is (i− ij) /
√

2 and the left
basis vector is (i + ij) /

√
2. These are complex conjugate basis vectors for the

same phase factor eiφ, and therefore for a given phase factor a right left basis
may be defined being the complex conjugate basis defined by (i− ij) /

√
2 and

(i + ij) /
√

2
It follows that such a basis can also be defined for the Dirac equation, and

that there exists a two-dimensional column vector in the tangent spacetime with
complex conjugate components:

V a =

[
V R

V L

]
. (11.68)

In the base manifold there exists a column vector:

V µ =

[
V1

V2

]
(11.69)

which is spinning and translating with respect to V a. The column vectors are
linked by: [

V R

V L

]
=

[
qR

1 qR
2

qL
1 qL

2

] [
V1

V2

]
(11.70)

where the tetrad is:

qa
µ =

[
qR

1 qR
2

qL
1 qL

2

]
(11.71)

This is a matrix consisting of a row vector
[
qR

1 qR
2

]
superimposed on a row

vector
[
qL

1 qL
2

]
. Transposition of the two row vectors gives the left and right
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Pauli spinors in the limit defined by Eq.(11.26):

ξR =

[
qR

1

qR
2

]
, ξL =

[
qL

1

qL
2

]
(11.72)

and the Dirac spinor is:

ψ =

[
ξR

ξL

]
. (11.73)

Since: (
� +

m2c2

~2

)[
qR

1 qR
2

qL
1 qL

2

]
= 0 (11.74)

it follows that:

(
� +

m2c2

~2

)



qR
1

qR
2

qL
1

qL
2


 = 0 (11.75)

and this is the single particle Dirac equation. This equation is generalized in
the Evans field theory to:

(� + kT )ψ = 0 (11.76)

The whole of Dirac algebra may be recovered from Cartan geometry as exem-
plified by:

ψψ = ξL+ξR + ξR+ξL (11.77)

where ψ is the adjoint of the Dirac spinor ψ. In order to investigate the effect
of gravitation on the single particle Dirac equation a model is chosen for T and
Eq.(11.76) solved for the eigenfunctions, which are components of the Dirac
spinor. The Dirac equation in general relativity is a matter field equation and
reduces in the non-relativistic limit to the Schrodinger equation and in the
classical limit to the Newton equation of motion. Through the Poisson equation
we recover simultaneously the Newton inverse square law in the appropriate
weak field and non-relativistic limit. This shows why gravitational and inertial
acceleration are identical, both are derived from Cartan geometry.
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Abstract

The interaction of quarks and gluons inside a given elementary particle is de-
scribed through the use of two or more simultaneous Evans wave equations and
the equivalent minimal prescription. Approximate quark flavor symmetry in
the quark gluon standard model is replaced by the mathematically required
exact quark flavor symmetry perturbed by quark gluon momentum exchange.
Therefore the apparently different observed quark masses are the result of the
interaction of a confined quark with a massive gluon field inside an elementary
particle or between confined quarks in different elementary particles. There-
fore the six quarks initially have the same mass but different flavors in the
hypothetical free state (single quark state of the Evans wave equation), but the
different interactions of quark and gluon inside a given elementary particle re-
sult in the apparently different confined quark masses observed experimentally.
These masses are more accurately the average result of different and transient
momentum exchanges of massive quark and massive gluon. Quarks have only
been observed to date in a confined state, where quark gluon interaction is al-
ways present inside an elementary particle or between two elementary particles.
This is essentially a multi particle momentum exchange problem between quark
and gluon. Many such interactions are possible because there are six quark fla-
vors of SU(n) symmetry and three quark colors of SU(3) symmetry in general,
giving rise to many possible permutations and combinations and therefore to
many types of elementary particle as observed experimentally. The Evans uni-
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fied field theory is rigorously objective (i.e. generally covariant) throughout and
in consequence there can be no massless particles, the radiated gluon is therefore
massive and not massless as in the standard model. The gluon field has SU(3)
symmetry and is also described by an Evans wave equation. The many possible
types of interaction between quarks and gluons is therefore always described
by simultaneous Evans wave equations defining momentum exchange. These
equations must be solved numerically and simultaneously in general with given
initial and boundary conditions.

Keywords: Evans unified field theory, quark gluon model, flavor symmetry, color
symmetry, gluon potential field.

12.1 Introduction

In the standard model of quark gluon interaction [1] there are six quark flavors
u, d, s, c, t and b and three quark colors R,W, and B. The quarks are matter
fields. The potential of the radiated gluon field also has SU(3) symmetry [1]
and in the standard model the various gluons are considered to be a massless
particles. The masses of the six quarks are not the same experimentally: u
and d for example have approximately the same mass but the mass of s is very
different. In contrast the masses of the left and right electron appearing in the
Dirac equation and observed in the Stern Gerlach experiment [2] (the effect of a
magnetic field of right design on an electron beam) are exactly the same within
contemporary instrumental precision. The right and left electrons are therefore
said to be degenerate in the absence of a magnetic field [1]. Therefore they can
be described by an exact symmetry, in this case the SU(2) symmetry of the
appropriate representation space of the Dirac equation. This SU(2) symmetry
implies the use of two Pauli spinors, one right and one left. These are both
column two vectors, which when superimposed on each other define the Dirac
four spinor, a column vector with four components. The Evans unified field
theory [3]– [18] shows that the Dirac equation is a limit of the Evans wave
equation defined by:

kT =
m2c2

~2
=
mk

V
. (12.1)

Here T is the scalar energy momentum density defined by the fundamental field
equation of relativity theory for all matter and radiated fields:

R = −kT (12.2)

where R is scalar curvature and k is Einsteins constant. In Eq.(12.1) m is
mass, ~ is the reduced Planck constant and c is the speed of light. Eqs.(12.1)
and (12.2) imply that every elementary particle and every quark and radiated
particle such as a photon and gluon have a rest volume defined by:

V =
~

2k

mc2
. (12.3)
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The Evans field theory shows that the Dirac spinor is a special relativistic ex-
ample or limit of the tetrad, the fundamental field of the Palatini variation of
general relativity [19]– [21]. The tetrad is the eigenfunction of the Evans lemma:

�qa
µ = Rqa

µ (12.4)

which gives the Evans wave equation:

(� + kT ) qa
µ = 0 (12.5)

using Eq.(12.2). The Dirac equation is obtained straightforwardly from the
Evans wave equation using Eq. (12.1) and a 2 × 2 tetrad:

qa
µ =

[
qR

1 qR
2

qL
1 qL

2

]
. (12.6)

Transposition of the two row vectors of the tetrad into two column vectors gives
the column four vector which is the Dirac spinor:

ψ =




qR
1

qR
2

qL
1

qL
2


 =

[
ξR

ξL

]
. (12.7)

The Pauli spinors are therefore identified as:

ξR =

[
qR

1

qR
2

]
, ξL =

[
qL

1

qL
2

]
. (12.8)

Therefore the Dirac equation is a result of differential geometry, because the
lemma (12.4) is an identity obtained straightforwardly from the standard tetrad
postulate [22] of Cartan’s differential geometry:

Dµq
a
ν = 0 (12.9)

where Dµ denotes the covariant derivative. This result is one of the major ad-
vances of Evans field theory because it allows the generally covariant description
of momentum exchange between any radiated and matter fields in nature. This
result yields an objective (i.e. generally covariant) description of all nature,
from quarks to cosmological objects, i.e. of any type of matter fields interacting
with any type of radiated field.

In Section 12.2 the approximate quark flavor symmetries of the standard
model are replaced by exact quark flavor symmetries perturbed by quark gluon
momentum exchange processes (of which very many are possible giving rise to
many observed elementary particles [1]). The interacting quark field and gluon
field are described by two or more simultaneous Evans wave equations which
must be solved numerically and simultaneously with given initial and boundary
conditions. In Section 12.3 consideration is extended to include the quark colors,
for each flavor there are three colors.
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12.2 Perturbation Of Exact Flavor Symmetry

By Momentum Exchange

In the standard model the use is made of approximate flavor symmetries. The
simplest is SU(2), in which the Dirac type spinor is [1]:

ξ =

[
u
d

]
. (12.10)

This is approximate because u and d do not have the same masses and are
therefore only approximately degenerate in the absence of a perturbing field. In
contrast the right and left electrons of the original Dirac equation are exactly
degenerate in the absence of a magnetic field as discussed already. This is
a severe conceptual problem for the standard model because in group theory
and in nature there can only be exact symmetries, no approximate symmetries.
The three quark model has SU(3) symmetry, the four quark model has SU(4)
symmetry and so on up to the SU(6) symmetry of the six quark model. These
symmetries are group symmetries and again cannot be approximate. In the
three quark model the Dirac type spinor is a three spinor:

ξ =



u
d
s


 . (12.11)

and so on up to the six spinor of the six quark model. The problem of approxi-
mate symmetry becomes worse and worse because the six quark masses are not
even approximately the same experimentally. In the Evans unifed field theory
each spinor is governed by the wave equation, for example:

(� + kT )

[
u
d

]
= 0 (12.12)

for the two quark model, and

(� + kT )




u
d
s



 = 0 (12.13)

for the three quark model and so on up to the six quark model:

(� + kT )




u
d
s
c
t
b




= 0. (12.14)

Thus, in the Evans unified field theory, there is gravitational interaction be-
tween quarks inside an elementary particle, or between quarks in two different
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elementary particles. This occurs in addition to the interaction between quarks
mediated by gluons. Similarly, there is gravitational interaction between elec-
trons in the Evans unified field theory in addition to the interaction mediated
by photons. In the presence of gravitational interaction:

kT 6= m2c2

~2
. (12.15)

In the absence of gravitational interaction Eq.(12.1) applies. The problem at
hand is therefore simplified if we neglect gravitational interaction to one of
interaction between quarks and gluons. In the standard model the SU(3) quark
color symmetry (Section 12.3) is considered to be exact, and the quark color
spinor is [1]:

ψ =




R
W
B


 . (12.16)

This three spinor plays a role analogous to right and left spin in the Pauli
spinors of the right and left electrons, and is introduced following considerations
[1] similar to the Pauli exclusion principle for electrons. The gluon field in
the standard model is the radiated field of SU(3) symmetry that mediates the
strong nuclear interaction. The gauge potential Aa

µ of the gluon field has eight
components. In the Evans field theory each component of Aa

µ obeys the Evans
wave equation:

(� + kT )Aa
µ = 0. (12.17)

Therefore the interaction of a gluon with a quark is described by a momentum
exchange process in the Evans field theory, in which each type of gluon has mass
as described by Eq.(12.17). In the special relativistic limit (12.1), Eq.(12.17)
reduces to: (

� +
m2

gc
2

~2

)
Aa

µ = 0 (12.18)

where mg is the mass of a given gluon. In the standard model there is no gluon
mass, and no photon mass, in contradiction to the observation of photon mass
in the Eddington and NASA Cassini experiments, precise to one part in one
hundred thousand. The absence of photon and gluon mass from the standard
model is therefore another major conceptual problem for that model.

The free quark flavors in the absence of gravitational interaction are de-
scribed by: (

� +
m2

qc
2

~2

)
ψ = 0 (12.19)

and the free gluons in the absence of gravitational interaction by:

(
� +

m2
gc

2

~2

)
A = 0. (12.20)
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In Eq.(12.19) an exact symmetry is used in the Evans field theory, as required by
basic group theory and in contrast to the meaningless approximate symmetries
of the standard model. In other words the six quarks flavors have the same
mass in the free state.

Eqs.(12.19) and (12.20) can be factorized [3]– [18] into first order differential
equations:

(iγa∂a −mqc/~)ψ = 0 (12.21)

(iγa∂a −mgc/~)A = 0 (12.22)

where γa is the Dirac matrix.
The momentum exchange between any type of quark and any type of gluon

is given through a minimal prescription as follows:

(i~γa (∂a − igAa) −mqc)ψ = 0 (12.23)

(i~γa (∂a + igAa) −mgc)A = 0. (12.24)

Here g is a coupling parameter analogous to the e used in describing momen-
tum exchange between photon and electron in quantum electrodynamics in the
Evans field theory [3]– [18]. Thus Eqs.(12.23) and (12.24) describe quantum
chromodynamics in the Evans unified field theory in the absence of any con-
sideration of gravitational interaction. There are six quark flavors, three quark
colors and eight types of gluon in general, so there is a total of 6× 3× 8 = 144
different coupling parameters g in general. The effective mass generated in each
type of interaction is defined by [3]– [18]:

kT =
(mqc

~

)2

eff
=
(mqc

~

)2

+
gmqc

~2
γa (Aa +A∗

a) +
g2

~2
A∗

aA
a. (12.25)

The experimental observation of apparently different confined quark masses is
therefore explained generically by Eq.(12.25), the apparently different confined
quark masses of the standard model being in Evans field theory a well defined
combination of free quark and free gluon mass and appropriate coupling parame-
ter g. In various elementary particles there are different quark combinations [1].
Baryons are bound states of three quarks, and mesons are quark anti-quark
states. Baryons participate in the strong interactions and have overall half inte-
gral spins and so interaction between baryons is mediated by gluons according
to Eqs.(12.23) and (12.24). In the standard model basic concepts such as the
degeneracy of multiplets of hadrons are based on the approximate quark de-
generacy. Hadrons participate in the strong interaction and so the interaction
between hadrons takes place through gluon exchange. A given representation of
SU(3) for example contains several representations of SU(2) [1], and from this
it is concluded in the standard model that an SU(3) supermultiplet contains
several isospin multiplets of different strangeness S. This group theoretical rea-
soning is the basis of for example the Gell-Mann Nishijima relation used in the
GWS theory of the standard model. However, the fundamental but approxi-
mate quark flavor degeneracy, as we have argued, is meaningless, bringing into
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question all of these basic concepts of the standard model. In the Evans field
theory an exact quark flavor degeneracy is used, and this is self consistent, as
well as objective, physics.

12.3 Quark Color Symmetry

The quark color symmetry of R,W and B was introduced to address the problem
posed by Fermi Dirac statistics [1]. In contrast to the flavor symmetry the color
symmetry is exact. The relevant spinor is:

ψ =




uR

uW

uB


 etc. (12.26)

and has SU(3) symmetry. Therefore for each quark flavor there are three colors.
The standard model therefore uses a mixture of approximate and exact symme-
tries for flavor and color wavefunctions. In the Evans field theory in contrast,
exact group theoretical symmetries are used throughout, the theory is generally
covariant throughout, and the basic contradictions between quantum mechan-
ics and general relativity are removed through the use of massive photons and
gluons and a geometrically based approach to the whole of physics.
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Abstract

The tetrad of the Evans unified field theory is shown to be the wavefunction
for electromagnetism, the Dirac equation, strong force theory and the Majo-
rana/Weinberg spin equations for any particle and field in physics. The origin
of intrinsic spin in physics is shown to be a basis set of elements in the tangent
spacetime to a base manifold at point P . The tangent spacetime is a Minkowski
spacetime and the base manifold an Evans spacetime. The origin of the Pauli
exclusion principle is the half integral intrinsic spin described by an appropriate
basis set of elements. Right and left intrinsic spin in electrodynamics are the
two states of circular polarization which are again described by an appropriate
basis set. Similar reasoning applies for the origin of quark color and for general
spin in the Majorana Weinberg equations. In the Evans unified field theory
there is therefore a self-consistent description of intrinsic spin in physics and
gravitational theory.

Key words: Evans field theory; intrinsic spin; right and left circular polarization;
Pauli exclusion principle; quark color; Majorana Weinberg equations.
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13.1 Introduction

A true unified field theory must be able to trace the origin of intrinsic spin in
physics, and describe the various manifestation of spin in all radiated and matter
fields. Furthermore it must be able to integrate this type of theory with gravi-
tational theory and also with quantum mechanics. This is a formidable problem
which appears to have been given one plausible solution lately [1]– [17] in the
Evans unified field theory. In this paper the origin of intrinsic spin is discussed
in terms of the tetrad, which is the fundamental field in the Evans theory for
all material matter and radiation. It is shown in Section 13.2 that there exists
a basis set of elements in tangent spacetime at a point P in the base manifold,
a basis set which defines the existence of intrinsic spin. In electrodynamics the
basis set defines left and right circular polarization and the intrinsic spin field
of generally covariant electrodynamics. In Section 13.3 the intrinsic left and
right spin of a fermionic field in the Dirac equation is defined in terms of the
appropriate basis set, and the origin of the Pauli exclusion principle revealed.
In Section 13.4 the origin of quark color in strong field theory is defined by a
color basis set in the tangent spacetime, and this is related to quark flavor in
the base manifold by the tetrad field of strong force theory. This is the matter
field of the six quarks currently postulated to exist and the tetrad in this case is
a transformation matrix linking quark color and flavor. Finally in Section 13.5
the Majorana Weinberg equations for arbitrary spin are set up using the same
principles of differential geometry which underpin the Evans unified field the-
ory. In each case the wavefunction is the tetrad qa

µ , and the tangent spacetime
label a is the index of the elements of the basis set. The index a is the index of
intrinsic spin.

13.2 Electrodynamics

The existence of intrinsic spin in electrodynamics was discovered experimentally
by Arago in 1811 and is referred to as left and right circular polarization. The
existence of the Evans spin field, observed in the inverse Faraday effect is indi-
cated conclusively by general relativity [1]– [17]. The vector potentials for left
and right circular polarization are:

A
(1)

R =
A(0)

√
2

(i− ij) eiφ (13.1)

A
(1)

L =
A(0)

√
2

(i + ij) eiφ, (13.2)

where φ is the electromagnetic phase and where the (1) index denotes complex
conjugation as follows:

A
(1)

R = A
(2)∗

R (13.3)

A
(1)

L = A
(2)∗

L . (13.4)
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The left and right spin field is then:

AR =
A(0)

√
2

(i− ij) eiφ (13.5)

AL =
A(0)

√
2

(i + ij) eiφ. (13.6)

For our present purposes we may simplify the argument by writing:

A
(1)

R = AR (13.7)

A
(1)

L = AL. (13.8)

The basis vectors for the complex circular basis are defined by:

e(1) =
1√
2

(i− ij) (13.9)

e(2) =
1√
2

(i + ij) (13.10)

e(3) = k (13.11)

where i, j, and k are Cartesian unit vectors. Therefore:

AR = A(0)eiφe(1) (13.12)

AL = A(0)eiφe(2). (13.13)

It follows that the right and left basis vectors may be defined as:

eR = eiφe(1) (13.14)

eL = eiφe(2). (13.15)

Within the phase factor eiφ these are the e(1) and e(2) basis vectors of the
complex circular basis. The components of the right and left basis vectors
define a tetrad matrix:

qa
µ =

[
eR

x eR
y

eL
x eL

y

]
(13.16)

where

eR
x =

eiφ

√
2

, eR
y =

−ieiφ

√
2

eL
x =

eiφ

√
2

, eL
y =

ieiφ

√
2
.

(13.17)

The tetrad in Eq.(13.16) obeys the Evans wave equation in the limit of zero
photon mass:

kT =
(mc

~

)2

−→ 0 (13.18)
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so that:

�qa
µ = 0. (13.19)

With the Evans Ansatz:

Aa
µ = A(0)qa

µ (13.20)

Eq.(13.19) is the d’Alembert wave equation in free space:

�Aa
µ = 0. (13.21)

The tetrad qa
µ is always defined geometrically [18] by:

V a = qa
µV

µ (13.22)

where V a is a vector in the tangent spacetime and V µ is a vector in the base
manifold.

Define

V µ =

[
ex

ey

]
= e−iφ

[
1
1

]
(13.23)

and

V a =

[
eR

eL

]
=

1√
2

[
1 − i
1 + i

]
(13.24)

and it follows from Eqs.(13.16) and (13.22) to (13.24) that:

1√
2

[
1 − i
1 + i

]
=
eiφ

√
2

[
1 −i
1 i

] [
e−iφ

e−iφ

]
(13.25)

i.e.

V a = qa
µV

µ (13.26)

Q.E.D.

From Eq.(13.25) it is seen that the basis set for the intrinsic spin of electro-
magnetism is:

e(1) × e(2) = ie(3)∗ (13.27)

e(2) × e(3) = ie(1)∗ (13.28)

e(3) × e(1) = ie(2)∗ (13.29)

i.e. the basis set is made up of the complex circular unit vectors. Eq.(13.27) to
(13.29) have O(3) symmetry. This reasoning may be extended to find the origin
and meaning of intrinsic spin in other contexts.
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13.3 Fermionic Matter Field And The Dirac Equa-

tion

The tetrad field for the Dirac equation is

qa
µ =

[
qR

1 qR
2

qL
1 qL

2

]
(13.30)

where the Pauli spinors are defined by:

φR =

[
qR

1

qR
2

]
, φL =

[
qL

1

qL
2

]
. (13.31)

The tetrad field is defined by:

V a = qa
µV

µ (13.32)

where

V a =

[
eR

eL

]
, V µ =

[
e1

e2

]
. (13.33)

The column vector V µ is a two dimensional column vector in the base manifold
and transforms under SU(2) symmetry [19]. Similarly the column vector V a is
a two dimensional column vector in the tangent spacetime.

The tetrad field qa
µ is defined by Eq.(13.30) and obeys the Evans wave

equation [1]– [17]:
(� + kT ) qa

µ = 0. (13.34)

The Dirac equation is recovered in the limit:

kT −→
(mc

~

)2

, T −→ m

V
(13.35)

where m is the mass of the fermion, ~ is the reduced Planck constant, c is the
velocity of light and V is the rest volume of the fermion:

V =
~

2k

mc2
. (13.36)

In the limit (13.35) the Dirac spinor is defined [1]– [17] by:

ψ =




qR
1

qR
2

qL
1

qL
2


 (13.37)

and the Dirac equation is:
(

� +
(mc

~

)2
)
ψ = 0. (13.38)

This is a free particle equation, and in this limit no gravitational attraction
exists between fermions in Eq.(13.38). To describe gravitational attraction be-
tween fermions we need the Evans wave equation (13.34), in general without
approximation.
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13.4 Strong Field Theory

In contemporary strong field theory [19] there are thought to exist six quark
flavors and three quark colors. If we accept this view uncritically the Evans
unified field theory can be applied to the n-quark models, where n = 2, . . . , 6.
These models transform under SU(n) symmetry [19]. In the 2-quark model
there are two flavors, u and d, and three colors, R,W and B. Define the
following column two-vector (a two-spinor) in the base manifold:

V µ =

[
u
d

]
=

[
e1

e2

]
(13.39)

and the following column three-vector (a three-spinor) in the tangent spacetime
to the base manifold at point P :

V a =




eR

eW

eB


 . (13.40)

The flavors u and d represent two physically distinct quarks, each of which has
color R,W and B. The u and d particles are analogous to the two distinct
electrons of Dirac theory. The electrons are distinct because they are left and
right handed, with half integral spin. Similarly, R,W and B in strong field
theory plays the role of half integral spin in electron theory. It is seen that
strong field theory is built up by direct analogy with Dirac theory, and quarks
also have half integral spin [19].

Now define the tetrad matrix linking quark color and quark flavor. This
must be a 2 × 3 matrix:



eR

eW

eB


 =



qR

1 qR
2

qW
1 qW

2

qB
1 qB

2



[
e1

e2

]
. (13.41)

Therefore the color-flavor tetrad for the two-quark model is:

qa
µ =



qR

1 qR
2

qW
1 qW

2

qB
1 qB

2


 (13.42)

and is the eigenfunction of the Evans wave equation [1]– [17]:

(� + kT ) qa
µ = 0. (13.43)

This means that qa
µ is the quark matter field. The quarks interact through

gluons, which are the radiated fields [19] of strong field theory.
Similarly, in the three-quark model the tetrad is defined by:




eR

eW

eB



 =




qR

1 qR
2 qR

3

qW
1 qW

2 qW
3

qB
1 qB

2 qB
3








e1

e2

e3



 (13.44)
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and is a 3 × 3 matrix. The name ”tetrad” is used generically [18]. As a final
example the tetrad of the four-quark model is a 4 × 3 matrix defined by:




eR

eW

eB



 =




qR

1 qR
2 qR

3 qR
4

qW
1 qW

2 qW
3 qW

4

qB
1 qB

2 qB
3 qB

4








e1

e2

e3

e4


 (13.45)

and it is possible to proceed in this way up to the six-quark model, where the
tetrad is a 6 × 3 matrix.

13.5 Majorana And Weinberg Equations

The Majorana equation [20, 21] represents the free space equations of electro-
magnetism as Weyl equations, i.e. a Dirac equation with no mass term. The
equations of electromagnetism used originally by Majorana in the nineteen twen-
ties were the Maxwell Heaviside equations. In order to derive the generally
covariant Majorana equation the unified field theory is needed. The Weinberg
equation [22] for any spin is a generalization of the Majorana equation for any
half-integral or integral spin. All these spin equations are special cases of the
Evans unified field theory. In order to illustrate this consider the Maxwell Heav-
iside field equations in free space. In S.I. units:

∇×E +
∂B

∂t
= 0 (13.46)

∇×B− 1

c2
∂E

∂t
= 0 (13.47)

where B is magnetic flux density and E is electric field strength. These equations
are used simply for the sake of illustration. The generally covariant equations
of electrodynamics from the Evans unified field theory [1]– [17] include the
fundamental Evans spin field - which is absent from the Maxwell Heaviside
field theory but which is observed experimentally in the inverse Faraday effect.
Eqs.(13.46) and (13.47) can be written as:

∇× (E − icB) +
i

c

∂

∂t
(E − icB) = 0. (13.48)

Now consider the right and left circularly polarized solutions of Eq.(13.48):

ER =
E(0)

√
2

(i− ij) eiφ (13.49)

BR =
B(0)

√
2

(ii + j) eiφ (13.50)

and

EL =
E(0)

√
2

(i + ij) eiφ (13.51)
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BL =
B(0)

√
2

(−ii + j) eiφ. (13.52)

Use
E(0) = cB(0) = ωA(0) (13.53)

to obtain

ER − icBR = 2ω
A(0)

√
2

(i− ij) eiφ. (13.54)

Define the potential field as:

AR =
A(0)

√
2
i (i− ij) eiφ (13.55)

so that
ER − icBR = 2

ω

i
AR. (13.56)

Similarly:

EL + icBL = 2
ω

i
AL (13.57)

where

AL =
A(0)

√
2
i (i + ij) eiφ. (13.58)

Eqs.(13.56) and (13.57) define the right and left handed potential fields. These
obey the equations: (

∇× +
i

c

∂

∂t

)
AR = 0 (13.59)

(
∇×− i

c

∂

∂t

)
AL = 0. (13.60)

The components of Eq.(13.59) are:

∂AR
z

∂y
−
∂AR

y

∂z
+
i

c

∂AR
x

∂t
= 0 (13.61)

∂AR
x

∂z
− ∂AR

z

∂x
+
i

c

∂AR
y

∂t
= 0 (13.62)

∂AR
y

∂x
− ∂AR

x

∂y
+
i

c

∂AR
z

∂t
= 0. (13.63)

Now use the quantum condition [19]:

pµ = i~∂µ (13.64)

where

pµ =

(
En

c
,p

)
, ∂µ =

(
1

c

∂

∂t
,−∇

)
. (13.65)
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Thus:

En = i~
∂

∂t
, p = −i~∇. (13.66)

Eqs.(13.61) to (13.63) therefore become:

EnAR
x + ic

(
pyA

R
z − pzA

R
y

)
= 0 (13.67)

EnAR
y + ic

(
pzA

R
x − pxA

R
z

)
= 0 (13.68)

EnAR
z + ic

(
pxA

R
y − pyA

R
x

)
= 0. (13.69)

Define the three-spinor:

φR =




AR

x

AR
y

AR
z



 (13.70)

and:

α · p =




0 0 0
0 0 −i
0 i 0


 px +




0 0 i
0 0 0
−i 0 0


 py +




0 −i 0
i 0 0
0 0 0


 pz

= i




0 −pz py

pz 0 −px

−py px 0


 .

(13.71)

Then Eqs.(13.67) to (13.63) are:



En
c




1 0 0
0 1 0
0 0 1



+ i




0 −pz py

pz 0 −px

−py px 0












AR

x

AR
y

AR
z



 = 0 (13.72)

or (
En

c
+ α · p

)
φR = 0. (13.73)

Similarly: (
En

c
− α · p

)
φL = 0 (13.74)

where the three-spinors are defined as:

φR =



AR

x

AR
y

AR
z


 , φL =



AL

x

AL
y

AL
z


 . (13.75)

Eqs.(13.73) and (13.74) are the Majorana equations [20, 21]. They are Weyl-
type equations, i.e. a Dirac equation with no mass term. Instead of Pauli
matrices however, the O(3) symmetry rotation matrices of Eq.(13.71) are used.
Eqs.(13.73) and (13.74) are limits of

(
� +

(mc
~

)2
)
ψ = 0. (13.76)
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when m −→ 0. Here

ψ =

[
φR

φL

]
(13.77)

is a six-spinor analogous to the Dirac four-spinor of Eq.(13.37). Eq.(13.76) is a
limit of the Evans wave equation:

(� + kT )ψ = 0. (13.78)

The spinor ψ is obtained from the tetrad:

qa
µ =

[
AR

1 AR
2 AR

3

AL
1 AL

2 AL
3

]
(13.79)

defined by:

A(0)

[
eR

eL

]
=

[
AR

1 AR
2 AR

3

AL
1 AL

2 AL
3

]

e1

e2

e3


 . (13.80)

This illustration shows that the Maxwell-Heaviside electromagnetism of the
standard model is an example of a spin equation which is the massless special
relativistic limit of the Evans wave equation. The symmetry in this case can be
either O(3) or SU(3). Finally the Weinberg equation [22] is the spin equation
for any integral or half integral spin, and the Weinberg equation is also a limit
of the generally covariant Evans wave equation.
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Abstract

It is suggested qualitatively that the origin of dark matter in the universe is
spacetime torsion in the gravitational sector of the Evans unified field theory.
In the general spacetime manifold containing both curvature and torsion, the
Newton inverse square law is affected by the fact that the first Bianchi identity
used in the 1915 Einstein/Hilbert field theory is no longer obeyed geometrically.
Consequent departures from the inverse square law can be interpreted as due to
the effective and unseen mass of dark matter in a cosmological context. Torsion
introduces mass - dark matter. Since dark matter does not radiate electromag-
netically, its presence can be detected only indirectly. The torsion tensor in the
Evans unified field theory obeys the same laws as electromagnetism within a C
negative factor. Therefore the characteristics of dark matter may be similar to
those of electromagnetism.

Key words: Evans field theory, torsion tensor, dark matter.
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14.1. INTRODUCTION

14.1 Introduction

A substantial fraction of the mass of the universe is thought to be made up
of dark matter, which does not radiate and can therefore be detected only
indirectly. It is suggested qualitatively in this paper that dark matter may
be due to departures from the 1915 Einstein / Hilbert field theory due to the
presence of spacetime torsion and the interaction of torsion with curvature.
Gravitational general relativity [1,2] is almost always developed without torsion,
in a spacetime containing curvature only. In Wald [1] for example there is
only a brief mention of torsional theories of gravitation, and no development
thereof. Similarly for Carroll [2]. The 1915 theory of Einstein and Hilbert
is accurate to one part in about one hundred thousand for the sun [3] but
in other cosmological contexts appears to be qualitatively unable to account
for reproducible and repeatable observation [4], in particular, dark matter. In
order to construct a generally covariant unified field theory [4]– [22] the torsion
tensor becomes fundamentally important because it is the electromagnetic field
within a fundamental vector potential magnitude A(0). The Palatini variation of
general relativity [1,2] is also required for a unified field theory, because in this
variation the fundamental field is the tetrad [1,2] and not the symmetric metric
of the Einstein Hilbert variation of general relativity (the original 1915 theory).
The interaction of various types of radiated and matter fields is described [4]–
[22] by Cartanś differential geometry, in which the torsion and curvature are
related by the two Cartan structure equations [2] and the two Bianchi identities
of differential geometry. The latter are more general than the two Bianchi
identities of Riemann geometry used in the 1915 Einstein Hilbert field theory of
pure gravitation. Therefore in a spacetime or base manifold where there is both
torsion and curvature present simultaneously, departures from the 1915 theory
are expected in general. It is well known [23] that Einstein himself thought of
the 1915 theory as a beginning only, and from about 1925 to 1955 sought a
unified field theory that is both objective (generally covariant) and causal. It
is generally agreed [24] that the Evans unified field theory achieves this aim in
one relatively straightforward way [4]– [22].

In Section 14.2 the fundamental differential geometry is defined of a field
theory of gravitation in which torsion and curvature are both present in general
and interact in general. This field theory is the gravitational sector of the
Evans unified field theory [4]– [22]. In Section 14.3 the approximations are
defined which are needed to reduce the general field theory (gravitational sector
of the Evans unified field theory) to the Einstein Hilbert field theory of 1915.
The major approximation is that the torsion tensor is assumed to vanish. This
is not true in general of differential geometry, and in Riemann geometry the
torsion tensor vanishes if and only if the Christoffel connection is assumed [2].
In general therefore the Newton inverse square law is obtained in the weak field
limit if and only if the torsion vanishes. Reinstate the torsion and new physics is
expected. A part of this new physics may be dark matter physics. It is already
known [4]– [22] that the torsion tensor multiplied by A(0) is the field tensor of
electromagnetism in the Evans unified field theory.
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14.2 The Gravitational Sector Of The Evans Uni-

fied Field Theory

In the manifold with torsion and curvature both present, the Evans field theory
is described by standard Cartan geometry [2,4]– [22] in terms of the two Cartan
structure equations of differential geometry:

T a = D ∧ qa = d ∧ qa + ωa
b ∧ qb (14.1)

Ra
b = D ∧ ωa

b = d ∧ ωa
b + ωa

c ∧ ωc
b (14.2)

and the two Bianchi identities of differential geometry:

D ∧ T a := Ra
b ∧ qb (14.3)

D ∧ Ra
b := 0. (14.4)

In Eq.(14.1) T a is the torsion form, qa is the tetrad form, ωa
b is the spin connec-

tion, ωa
b is the Riemann form, d∧ denotes exterior derivative and D∧ denotes

covariant exterior derivative. Cartan geometry is always defined by the Evans
Lemma [4]– [22]:

�qa
µ := Rqa

µ (14.5)

where R is a well defined scalar curvature. Using the fundamental equation of
general relativity:

R = −kT (14.6)

in Eq.(14.5) produces the Evans wave equation:

(� + kT ) qa
µ = 0 (14.7)

which is the fundamental wave equation of all radiated and matter fields. Here
k is Einsteins constant and T is the canonical energy momentum density. The
wave equation (14.7) straightforwardly quantizes the gravitational field, which
is the tetrad field.

14.3 Approximations To The General Theory

The original theory of general relativity, developed independently by Einstein
and Hilbert in 1915, assumes that:

T a = 0. (14.8)

Therefore the Cartan structure equation (14.1) in this limit reduces to:

d ∧ qa + ωa
b ∧ qb = 0 (14.9)

and the Bianchi identity (14.3) reduces to:

Ra
b ∧ qb = 0. (14.10)
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The Newton inverse square law is obtained in the weak field limit of the geometry
defined by Eqs.(14.8), (14.9) and (14.10). The presence of even an infinitesimal
amount of spacetime torsion will produce a perturbation in the Bianchi identity
(14.10) such that:

Ra
b ∧ qb 6= 0 (14.11)

implying that the connection is no longer a Christoffel connection. The per-
turbation will therefore lead to departures from the Newton inverse square law
in the weak field limit and to departures from the Einstein Hilbert field theory
in cosmological contexts. Evidently [3] such departures are too small to be ob-
served in an earthbound laboratory because the Newton inverse square law is
valid to within contemporary instrumental precision. They are also too small
to be measured in the solar system, because the 1915 law is valid for the sun to
within contemporary instrumental precision (NASA Cassini experiments [3]).

Dark matter is well known to exist in the universe, however, and it is sug-
gested qualitatively that dark matter is due to the interaction of torsion with
curvature in the more general theory of Section 14.2. There are numerous other
cosmological anomalies [25] which are reproducible and repeatable. They are
anomalies because they cannot be described by the 1915 theory, and so become
candidates for investigation with the gravitational sector of the Evans unified
field theory (Section 14.2) rather than by the 1915 field theory of Einstein and
Hilbert (Section 14.3).

The Newtonian limit of the Evans field theory is a very special approximation
of the general wave equation (14.7). Newton’s theory happens to work well
because of the instrumental limits of contemporary physics. With sufficiently
sensitive instruments departures from the Newtonian laws would be observable
in the laboratory and departures form the 1915 theory would be observable in
the solar system. The well known force law of Newton:

F = mg (14.12)

where F is the force on a particle of mass m and g is the acceleration due to
gravity, is the non-relativistic, classical, limit of the Dirac equation. The latter
is now known [4]– [22] to be the limit of Eq.(14.7) when:

kT −→ km

V0
=
m2c2

~2
. (14.13)

Here m is the mass of a particle, ~ is the reduced Planck constant and c the
speed of light. The Evans rest volume V0 [4]– [22] is defined for all elementary
particles (i.e. all radiated and matter fields now known) by:

V0 =
~

2k

mc2
. (14.14)

The tetrad of the Dirac equation is [4]– [22]:

qa
µ =

[
qR

1 qR
2

qL
1 qL

2

]
(14.15)
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from which we obtain the Dirac spinor:

ψ =




qR
1

qR
2

qL
1

qL
2


 =

[
φR

φL

]
(14.16)

where φR and φL are the right and left Pauli spinors.
Thus: (

� +
m2c2

~2

)
ψ = 0 (14.17)

is the well known Dirac wave equation for a free particle. The free particle
Schrödinger equation is the non-relativistic quantum limit of the Dirac equation:

~
2

2m
∇2ψ = −i~∂ψ

∂t
. (14.18)

Using the operator equivalence:

En = i~
∂

∂t
, p = −i~∇ (14.19)

the Newtonian limit of the Schrödinger equation is obtained:

En =
p2

2m
(14.20)

whereEn is Newtonian kinetic energy and p is Newtonian momentum. Eq.(14.20)
may also be expressed as:

En =
1

2
mv2 (14.21)

and may be found from Eq.(14.12).
A series of approximations is therefore needed to reduce the Evans wave

equation to the Dirac equation, and thence to the Schrödinger and Newton
equations. One of these approximations is that the torsion tensor has to vanish
in order to recover Newtonian dynamics. Reinstate the torsion tensor as in
Section 14.2 and all of these well known equations of dynamics are affected,
leading to a considerable amount of new physics given the instrumental precision
required.

Similarly the Poisson equation of Newtonian dynamics is found from the
Evans wave equation in the limit:

V a → V µ, V a = qa
µV

µ (14.22)

and
qa

µ −→ 1 (14.23)

where 1 in Eq(14.23) is the unit diagonal matrix. The limit (14.22) means
that the base manifold approaches a Minkowski spacetime. The latter is the
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spacetime in differential geometry of the tangent spacetime to the base manifold
at a point P [2]. If it is assumed that qa

µ is essentially time independent, and
when:

T → m

V
= ρ (14.24)

the Evans wave equation (14.7) becomes the Poisson equation:

∇2q = kρ (14.25)

where we have written:

q = q11 = q22 = q33 ∼ 1. (14.26)

Using:

k =
8πG

c2
(14.27)

and

Φ =
1

2
c2q (14.28)

we recover the standard Poisson equation used in Newtonian dynamics [2]:

∇2Φ = 4πGρ (14.29)

from which the Newton inverse square law follows directly.
Therefore we have recovered the force law (14.12) and the inverse square

law from the same equation, the Evans wave equation. This shows why gravita-
tional and inertial mass is the same, they are both approximations to the same
differential geometry. In the presence of torsion all of these well known laws of
physics are affected, and so dark matter enters into consideration through the
interaction of torsion with curvature. In order to describe dark matter physics,
the Evans wave equation must be solved with given initial and boundary condi-
tions for spin and gamma connections which are in general asymmetric in their
lower two indices. This is a problem for the computer in general, although an-
alytical solutions may be found to the Evans wave equation analogous to the
Schwarzschild solution of the 1915 field equation of Einstein and Hilbert.

The Dirac, Schrödinger, Newton and Poisson equations of dynamics are all
limits of the Evans wave equation when torsion is zero.

The torsion is described within a factor A(0) by the same equations as those
of electromagnetism in the Evans unified field theory [4]– [22], i.e. by:

d ∧ T a = −
(
qb ∧ Ra

b + ωa
b ∧ T b

)
(14.30)

d ∧ T̃ a = −
(
qb ∧ R̃a

b + ωa
b ∧ T̃ b

)
. (14.31)

Therefore if dark matter is described by torsion, the former behaves like elec-
tromagnetism without the presence of electric charge. Dark matter cannot be
detected by electromagnetic radiation, and does not obey the 1915 theory in
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general. If there is a large amount of torsion present in a given region of the uni-
verse, then the 1915 theory will appear to be highly anomalous. Such anomalies
are well known experimentally [25] and are reproducible and repeatable. There
is no reason to expect the 1915 theory to be valid in regions of intense spacetime
torsion, such as near a pulsar or example.
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Abstract

In order to make quantum mechanics compatible with general relativity the
Heisenberg uncertainty principle is given a generally covariant (or objective)
and causal interpretation. The fundamental conjugate variables are shown to
be quantities such as momentum density, angular momentum density and energy
density in general relativity instead of quantities such as momentum, angular
momentum and energy in special relativity. The generally covariant interpre-
tation of quantum mechanics given in this paper agrees with the repeatable
and reproducible experimental data of Croca et al. and of Afshar, data which
show that the conventional Heisenberg uncertainty principle is qualitatively in-
correct, and with it all the arguments of the Copenhagen school throughout the
twentieth century. The correctly objective interpretation of quantum mechanics
is given by the deterministic school of Einstein, de Broglie, Vigier and others.
This is a direct result of the Evans unified field theory.

Key words: Evans unified field theory; generally covariant Heisenberg equation
and Heisenberg uncertainty principle.
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15.1 Introduction

Generally covariant quantum mechanics does not exist in the standard model
because general relativity is causal and objective, the Copenhagen interpretation
of quantum mechanics is acausal and subjective. This is the central issue of
the great twentieth century debate in physics between the Copenhagen and
deterministic schools of thought, an issue which is resolved conclusively in favor
of the deterministic school by the Evans unified field theory [1]– [19]. At the root
of the debate is the Heisenberg equation of motion [20], which in its simplest
form is a rewriting of the operator equivalence condition of quantum mechanics:

pµ = i~∂µ. (15.1)

Eq.(15.1) is an equation of special relativity where:

pµ =

(
En

c
,p

)
(15.2)

is the energy momentum four vector, and:

∂µ =

(
1

c

∂

∂t
,−∇

)
. (15.3)

Here En denotes energy, c is the vacuum speed of light, p is the linear momentum,~
is the reduced Planck constant, and the partial four derivative ∂µ is defined in
terms of the time derivative and the ∇ operator in Eq.(15.3).

In Section 15.2 the operator equivalence (15.1) is rewritten as the Heisen-
berg equation of motion [20]. The Heisenberg uncertainty principle is a direct
mathematical consequence of the Heisenberg equation and therefore is a di-
rect mathematical consequence of Eq.(15.1). However, recent reproducible and
repeatable experimental data [21]– [23] show that the Heisenberg uncertainty
principle is violated completely in several independent ways. This means that
the principle as it stands is completely incorrect, i.e. by many orders of magni-
tude. For example in the various experiments of Croca et al. [21] the principle is
incorrect by nine orders of magnitude even at moderate microscope resolution.
As the resolution is increased it becomes qualitatively wrong, i.e. the conju-
gate variable of position and momentum appear to commute precisely within
experimental precision. The uncertainty principle states that if the conjugate
variables are for example the position x and the component px of linear momen-
tum then [20]:

δxδpx ≥ ~

2
. (15.4)

This means that the δx and δpx variables cannot commute and the conventional
Copenhagen interpretation is that they cannot be simultaneously observable
[20] and cannot be simultaneously knowable. This subjective assertion violates
causality and general relativity (i.e. objective physics) and has led to endless
confusion for students. The experimental results of Croca et al [21] show that:

δxδpx = 10−9 ~

2
(15.5)
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at moderate microscope resolution. As the latter is increased, the experimental
result is:

δxδpx −→ 0 (15.6)

in direct experimental contradiction of the uncertainty principle (15.4).

In the independent series of experiments by Afshar [22], carried out at Har-
vard and elsewhere, the photon and electromagnetic wave are shown to be si-
multaneously observable, indicating independently that the position and mo-
mentum or time and energy conjugate variables commute precisely to within
experimental precision. In a third series of independent experiments [23], on
two dimensional materials near absolute zero, the Heisenberg uncertainty prin-
ciple again predicts diametrically the incorrect experimental result to within
instrumental precision. Each type of experiment [21]– [23] is independently
reproducible and repeatable to high precision.

In Section 15.3 this major crisis for the standard model is resolved straight-
forwardly through the use of the appropriate densities of conjugate variables
in general relativity. The experimentally well tested Eq.(15.1) is retained, but
the fundamental conjugate variables are carefully redefined within the generally
covariant Evans unified field theory, which derives generally covariant quantum
mechanics from Cartans differential geometry [1]– [19] for all radiated and mat-
ter fields. The result is a generally covariant quantum mechanics in agreement
with the most recent experiments [21]– [23] and philosophically compatible with
the causal and objective Evans unified field theory. The latter denies subjectiv-
ity and acausality in natural philosophy.

15.2 A Simple Derivation Of The Heisenberg

Equation Of Motion

In its simplest form the Heisenberg equation of motion [20] is:

[x, px]ψ = i~ψ (15.7)

where ψ is the wave-function. Eq.(15.7) means that the commutator:

[x, px] = xpx − pxx (15.8)

operates on the wave-function. From Eq.(15.1):

px = −i~ ∂

∂x
(15.9)

and so px becomes a differential operator acting on ψ . The position x is
interpreted as a simple multiple, i.e. x multiplies anything that follows it. Using

165



15.3. THE GENERALLY COVARIANT HEISENBERG EQUATION

the Leibnitz Theorem and these operator rules it follows that:

[x, px]ψ = (xpx − pxx)ψ

= x (pxψ) − px (xψ)

= x (pxψ) − (pxx)ψ − x (pxψ)

= − (pxx)ψ

=

(
i~
∂x

∂x

)
ψ

= i~ψ

(15.10)

and it is seen that the Heisenberg equation is a rewriting of Eq.(15.1), a compo-
nent of which is Eq.(15.9). Using standard methods [20] we obtain the famous
Heisenberg uncertainty principle

δxδpx ≥ ~

2
(15.11)

from Eq.(15.9) and thus from Eq.(15.1), the famous wave particle duality of de
Broglie. This derivation is given to show that the uncertainty principle, which
has dominated thought in physics for nearly a century, is another statement of
the de Broglie wave particle duality.

The subjective and acausal interpretations inherent in the Heisenberg un-
certainty principle were rejected immediately by Einstein and his followers, as
is well known, and later also rejected by de Broglie and his follower Vigier.
These are the acknowledged masters of the deterministic school of physics in
the twentieth century. The data [21]– [23] now show with pristine clarity that
the deterministic school is right, the Copenhagen school is wrong. It is im-
portant to realize that the deterministic school accepts quantum mechanics,
i.e accepts Eq.(15.1) but rejects the INTERPRETATION of Eq.(15.7) by the
Copenhagen school. The ensuing debate became protracted due to a lack of a
unified field theory and a lack of experimental data. Both are now available.

15.3 The Generally Covariant Heisenberg Equa-

tion

Neither school discovered the reason why Eq.(15.11) is so wildly incorrect. With
the emergence of the Evans unified field theory (2003 to present), more than
a hundred years after special relativity (1892 - 1905), we now know why the
experiments [21]– [23] give the results they do. The error in the Copenhagen
school’s philosophy is the obvious one - the subjective reliance on conjugate
variables which are not correctly objective (generally covariant). They are not
DENSITIES, as required by the fundamentals of general relativity and the Evans
unified field theory. In order to develop a correctly objective quantum mechanics
the momentum px has to be replaced by a momentum density px and the angular

166



CHAPTER 15. GENERALLY COVARIANT QUANTUM MECHANICS

momentum ~ by an angular momentum density ~. The reason is that the
fundamental law of general relativity [1]– [19] is:

R = −kT (15.12)

where T is the scalar valued canonical energy-momentum density, R is a well
defined scalar curvature, and k is Einstein’s constant. In the rest frame T
reduces to the mass density of an elementary particle:

T → m

V0
(15.13)

and within a factor c2 this is the rest energy density:

En0 =
mc2

V0
. (15.14)

Here V0 is the Evans rest volume

V0 =
~

2k

mc2
(15.15)

where m is the elementary particle mass.
Define the experimental momentum density for a given instrument by:

px =
px

V
(15.16)

and define the fundamental angular momentum or action density by:

~ =
~

V0
. (15.17)

Here V is a macroscopic volume defined by the apparatus being used, or the
volume occupied by the momentum component px. The quantum ~ is the
fundamental density of the reduced Planck constant:

~ =
mc2

~k
(15.18)

i.e. the rest energy divided by the product of ~ and k. Eq(15.18) means that
the quantum of action occupies the Evans rest volume V0. For any particle,
including the six quarks, the photon and the neutrinos, the graviton and the
gravitino. This deduction follows from the special relativistic limit of the Evans
wave equation for one particle is [1]– [19]:

kT =
km

V0
=
m2c2

~2
. (15.19)

In general relativity therefore Eq.(15.9) becomes:

px = −i~ ∂

∂x
(15.20)
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i.e.:

pxψ = −i~∂ψ
∂x

. (15.21)

Eq.(15.9), which is precisely verified experimentally in quantum mechanics, is
therefore the same as:

px = −iV0

V
~
∂

∂x
(15.22)

which is a special case of the fundamental wave particle duality in general rela-
tivity:

pµ = i
V0

V
~∂µ. (15.23)

The generally covariant Heisenberg equation is therefore:

[x, px] = i
V0

V
~ (15.24)

and the fundamental conjugate variables of generally covariant quantum me-
chanics are x and px. The fundamental quantum is ~.

Experimentally for a macroscopic volume V :

V0 � V (15.25)

and so

[x, px] ∼ 0 (15.26)

which implies

δx ∼ 0, δpx ∼ 0 (15.27)

is quite possible experimentally. Therefore what is being observed experimen-
tally in the Croca and Afshar experiments is px and not px, and ~ and not ~.
This deduction means that a particle coexists with its matter wave, as inferred
by de Broglie. For electromagnetism this coexistence has been clearly observed
by Afshar [22] in modified Young experiments which are precise, reproducible
and repeatable.

The fundamental conjugate variables are therefore position and momentum
density, or time and energy density, and not position and momentum, or time
and energy as in the conventional theory [20] and as in the Copenhagen inter-
pretation. The wave function is always the tetrad, and this is always defined
causally and objectively by Cartans differential geometry [1]– [19]. There is
no uncertainty or acausality in geometry and none in physics. The fundamen-
tal wave equation of generally covariant quantum mechanics is the Evans wave
equation [1]– [19]:

(� + kT ) qa
µ = 0 (15.28)

which reduces to all other wave equations of physics, and thence to other equa-
tions of physics in well defined limits.
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Abstract

In a unified field theory classical and quantum electrodynamics must be gen-
erally covariant, and not Lorentz covariant as in the contemporary standard
model. This means that electrodynamics must be objective under the general
coordinate transformation: equivalently the effect of gravitation on electrody-
namics must be considered. As an illustration of this general principle the
Lorentz force law is derived from a general coordinate transformation of the
torsion tensor of standard differential geometry. In the limit of special relativity
the general coordinate transformation becomes a Lorentz transformation and
the Lorentz force law is recovered in the absence of gravitation.

Key words: Evans unified field theory, general coordinate transformation, gen-
eral covariance, Lorentz covariance, Lorentz force law.
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16.1 Introduction

In the contemporary standard model neither classical nor quantum electrody-
namics is an objective investigation in natural philosophy. In consequence the
effect of gravitation on electromagnetism cannot be investigated in the stan-
dard model, a major weakness of contemporary physics. Recently an objective
or generally covariant unified field theory has been developed [1]– [20], a theory
which shows how gravitation and electromagnetism may be able to influence
each other mutually. In this paper the Evans unified field theory is illustrated
through the general coordinate transformation of the torsion tensor in differen-
tial geometry [21]. Within a factor A(0), the torsion tensor is the electromag-
netic field tensor. In Section 16.2 the generally covariant form of the Lorentz
force law is obtained through a general coordinate transformation of the elec-
tromagnetic field tensor. In the limit of special relativity Section 16.3 shows
that Lorentz force law of the standard model is obtained as a well defined limit
of the generally covariant, or objective, Lorentz force law of the Evans unified
field theory. The correctly objective Lorentz force law shows how gravitation
affects the Lorentz force law of the standard model.

16.2 General Coordinate Transformation

The vector transformation law of general relativity shows that the vector field:

V = V µê(µ) (16.1)

is invariant under the general coordinate transformation

V µ′

=
∂xµ′

∂xµ
V µ, ∂µ′ =

∂xµ

∂xµ′
∂µ (16.2)

where

ê(µ) = ∂µ. (16.3)

Here V µ denotes the vector components [21] and ê(µ) the set of basis vectors.
The vector components xµ are those of the position four vector, and ∂µ is
the partial derivative four vector. Therefore Eq.(16.3) defines the coordinate
basis. In Eqs.(16.1) to (16.3) the primed frame is related to the unprimed
frame through the general coordinate transformation. The coordinate basis
(3) is used conventionally [21] in gravitational general relativity. This is the
Einstein Hilbert variation of general relativity, where the fundamental field is
the symmetric metric tensor. The Lorentz transform of special relativity is the
special case of Eq.(16.2) where:

V µ′

= Λµ′

µV
µ, xµ′

= Λµ′

µx
µ (16.4)

Here Λµ′

µ is the well known [21] Lorentz transform matrix.
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The tensor transformation law of general relativity [21] is

T
µ′

1
...µ′

k

ν′

1
...ν′

l

=

(
∂xµ′

1

∂xµ1

. . .
∂xµ′

k

∂xµk

)(
∂xν

∂xν′
. . .

∂xνl

∂xν′

l

)
T µ1...µk

ν1...νl
(16.5)

in a notation which can be built up from the notation of Eq.(16.1). An important
example of Eq.(16.5) is the metric transformation law:

gµ′ν′ =
∂xµ

∂xµ′

∂xν

∂xν′
gµν (16.6)

Eq (16.6) is the fundamental axiom of relativity theory [1]– [21], a tensor trans-
forms generally and covariantly, producing a new tensor. In Eq. (16.6) the
tensor is the fundamental field, implying that the field is covariant to an ob-
server moving arbitrarily with respect to another observer. In the Evans unified
field theory this axiom is applied to all radiated and matter fields [1]– [21] self
consistently using Cartan geometry.

The covariant and exterior derivatives [21] of a vector transform covariantly
in relativity theory, whereas the ordinary partial derivative does not. For ex-
ample, the covariant derivative transforms covariantly as:

Dµ′V ν′

=
∂xµ

∂xµ′

∂xν′

∂xν
DµV

ν (16.7)

provided that the Christoffel symbol transforms as:

Γν′

µ′λ′ =
∂xµ

∂xµ′

∂xλ

∂xλ′

∂xν′

∂xν
Γν

µλ − ∂xµ

∂xµ′

∂xλ

∂xλ′

∂2xν′

∂xµ∂xλ
. (16.8)

The Christoffel symbol itself does not transform as a tensor, as is well known.
As a final example the torsion tensor [1]– [21] transforms covariantly as a three
index tensor:

T λ′

µ′ν′ =
∂xµ

∂xµ′

∂xν

∂xν′

∂xλ′

∂xλ
T λ

µν . (16.9)

In the unified field theory [1]– [20] the Palatini variation of general relativity
is used, a variation in which the fundamental field is the tetrad, a vector-valued
one-form of Cartan differential geometry [21]. The general transformation law
for forms is:

T a′µ′

b′ν′ = Λa′

a

∂xµ′

∂xµ
Λ b

b′

∂xµ

∂xν′
T aµ

bν (16.10)

where Λa′

a is a Lorentz transform defined in the tangent spacetime by [21]:

ηa′b′ = Λ a
a′ Λ b

b′ ηab (16.11)

Here Λ a
a′ and Λ b

b′ are inverse Lorentz transforms. From Eq.(16.10) a vector
valued one-form Xa

µ transforms as:

Xa′

µ′ = Λa′

a

∂xµ

∂xµ′
Xa

µ (16.12)
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v where the Lorentz transform Λa′

a in the tangent spacetime is defined by [21]:

xa′

= Λa′

ax
a. (16.13)

If µ is fixed then:
Aa′

µ = Λa′

µA
a
µ (16.14)

and if a is fixed:

Aa′

µ =

(
∂xµ

∂xµ′

)
Aa

µ. (16.15)

The torsion form in Cartan differential geometry is a vector valued two-form
defined by:

T a
µν = ∂µq

a
ν − ∂νq

a
µ + ωa

µbq
b
ν − ωa

νbq
b
µ (16.16)

where qa
µ is the tetrad and where ωa

µb is the spin connection. The torsion form
transforms as a tensor:

T a′

µ′ν′ = Λa′

a

∂xµ

∂xµ′

∂xν

∂xν′
T a

µν . (16.17)

In the unified field theory [1]– [20] the electromagnetic field tensor is also a
vector valued two-form defined by:

F a
µν = A(0)T a

µν (16.18)

where A(0) is the vector potential magnitude. The generally covariant Lorentz
force law is therefore expressed most generally as:

F a′

µ′ν′ = Λa′

a

∂xµ

∂xµ′

∂xν

∂xν′
F a

µν . (16.19)

The mutual effect of gravitation and electromagnetism within this law is con-
tained within Eq.(16.19). For fixed a:

F a
µ′ν′ = Λa′

a

∂xµ

∂xµ′

∂xν

∂xν′
F a

µν (16.20)

and so for fixed a the generally covariant Lorentz force law is described by the
metric transformation law (16.6). In order to calculate the effect of gravitation
on the Lorentz force law we need know only the metric transformation law for
a given metric, defined by:

gµν = qa
µq

b
νηab. (16.21)

Here ηab is the Minkowski metric [21] of the tangent spacetime.

16.3 Special Relativistic Limit

In the special relativistic limit of Eq.(16.20) we obtain the Lorentz transforma-
tion:

F a
µ′ν′ = Λµ

µ′Λ
ν
ν′F a

µν . (16.22)
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for each index a. The latter is a polarization index. Since a appears on both
sides of Eq.(16.22) it may be omitted for ease of notation. The conventional
Lorentz transform of the electromagnetic field [22] is therefore obtained:

Fµ′ν′ = Λµ
µ′Λ

ν
ν′Fµν . (16.23)

In vector notation it is well known [22] that Eq.(16.23) is:

E′ = γ
(
E +

v

c
×B

)
+ · · · (16.24)

B′ = γ
(
B − v

c
×E

)
+ · · · (16.25)

where E denotes electric field strength in volt m−1 and B is magnetic flux
density. Here

γ =

(
1 − v2

c2

)−1/2

(16.26)

originateS in the Lorentz transform matrix of special relativity. The Lorentz
force law in S.I. units is:

dp

dt
= e

(
E +

v

c
×B

)
(16.27)

where p is linear momentum and e is electric charge, and the Lorentz force law
holds at non-relativistic velocities, where

γ ∼ 1 (16.28)

From Eq.(16.23) the magnetic induction due to the Lorentz transformation at
non-relativistic velocities is [22]:

B =
e

c

v × r

r3
(16.29)

which is the Ampère Biot Savart law. It is seen that the Lorentz force law is
built up from a sum of E and v

c ×B in Eq.(16.24) in the non-relativistic limit.
The correct laws of electrodynamics are therefore obtained from the Evans

unified field theory and from the generally covariant transformation (16.19) of
the electromagnetic field tensor. The effect of gravitation on these well known
laws of electrodynamics may therefore be calculated for a given metric.

Finally, in quantum electrodynamics [1]– [20] the tetrad is the fundamental
field and the tetrad transforms according to Eq.(16.12).
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Abstract

The conventional definition of the Riemann tensor is shown to be incomplete be-
cause the torsional component is missing. The commutator of covariant deriva-
tives acting on the four vector is shown to produce a tensor that is conventionally
antisymmetric in its first two indices (the conventional curvature or Riemann
tensor) stemming from the use of the Christoffel connection. More generally
both the Riemann and torsional tensors are asymmetric in their first two in-
dices because there is no torsion free condition in general. The complete tensor
is the sum of these two tensors and is named the S tensor, and the generalized
Einstein Hilbert field equation deduced for the S tensor. In this way spin or
torsion is introduced into general relativity in a novel and fundamental manner,
and the ramifications of this modification work through into all areas of dynam-
ics.
Key words: Riemann tensor, torsion, commutator of covariant derivatives, round
trip with covariant derivatives, general relativity.
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17.1. INTRODUCTION

17.1 Introduction

The theory of relativity [1] is based conventionally on Riemann geometry and the
use of the Christoffel connection [2], which is symmetric in its lower two indices.
The Einstein Hilbert field equation is deduced from the second Bianchi iden-
tity with the torsion free condition stemming from the Christoffel connection.
In consequence all the information given from considerations of gravitational
torsion is lost. Recently [3]– [25] it has been realized that the electromagnetic
field tensor is spacetime torsion within a C negative vector potential magnitude
A(0). This is electromagnetic torsion as distinct from the novel gravitational
torsion considered in this paper. Therefore torsion is fundamentally important
in relativity theory and cannot be neglected. The role of torsion is seen most
clearly through the Cartan structure equations and the Bianchi identities of
Cartan geometry.

In Section 17.2 the commutator of covariant derivatives acting on the four
vector V µ in the four dimensions of spacetime is shown to produce in general a
sum of two tensors, a sum that premultiplies the vector itself. In addition there
are four other terms which premultiply the four derivative of the vector. One of
the terms that premultiply the four vector itself has the same structure as the
conventional Riemann tensor, but in general the connections within this tensor
are asymmetric in their lower two indices, and are not torsion free and are not
Christoffel connections in general. The second tensor premultiplying the vector
itself is novel to this work, and is named the torsional tensor. The symmetries
of the various connections within the torsional tensor are determined by the
commutator itself. The sum of these two tensors is named the S tensor in
order to distinguish it from the conventional Riemann tensor. The S tensor
is therefore defined as the sum of the two tensors that premultiply the vector
itself. The S tensor is always needed for a complete description of gravitation
in a spacetime with both curvature and torsion present - the Evans spacetime
of unified field theory [3]– [25].

In Section 17.3 the generalization of the Einstein Hilbert field equation is
deduced for the S tensor, showing the presence of novel terms due to gravita-
tional torsion. In general gravitational torsion affects cosmological observations,
but gravitational torsion is neglected in conventional general relativity. The lat-
ter appears to be very accurate for the solar system [26] but in other contexts
appears to be very inaccurate [27]. Therefore the presence of gravitational tor-
sion is indicated experimentally by data which cannot be explained with the
conventional Riemann tensor. This is unsurprising in retrospect because the
Riemann tensor is always predicated on the assumption that the connection is
the Christoffel connection. This assumption is equivalent to assuming that there
is no torsion in the universe, and there is no a priori reason why torsion should
be absent, in unified field theory, torsion is the fundamental electromagnetic
field itself.
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17.2 Derivation Of The S Tensor

The S tensor is derived straightforwardly by operating on the four-vector V ρ

with the commutator of covariant derivatives. This is how the Riemann tensor is
derived conventionally [2], but with the torsion free condition always assumed.
There are four terms missing from the derivation by Carroll [2], a derivation
which is corrected as follows to produce the S tensor.

Consider the commutator of covariant derivatives Dµ, acting on the four
vector V ρ in Evans spacetime:

[Dµ, Dν ]V ρ = (DµDν −DνDµ)V ρ (17.1)

The covariant derivative is defined by:

DνV
ρ = ∂νV

ρ + Γρ
νσV

σ (17.2)

and in general the connection Γρ
νσ is asymmetric in its lower two indices, indi-

cating the simultaneous presence of curving and spinning:

Γρ
νσ 6= Γρ

σν . (17.3)

The Christoffel connection is symmetric in its lower two indices:

Γρ
νσ 6= Γρ

σν (17.4)

indicating the absence of spinning or torsion, but the presence of curving. From
Eqs. (17.1) and (17.2):

[Dµ, Dν ]V ρ = ∂µ (∂νV
ρ + Γρ

νσV
σ)

− Γλ
µν (∂λV

ρ + Γρ
λσV

σ)

+ Γρ
µσ

(
∂νV

σ + Γσ
νλV

λ
)
− (µ↔ ν).

(17.5)

Now use the Leibnitz Theorem to obtain:

[Dµ, Dν ]V ρ = ∂µ∂νV
ρ +

(
∂µΓρ

µσ

)
V ρ + Γρ

µσ∂µV
σ

− Γλ
µν∂λV

ρ − Γλ
µνΓρ

λσV
σ

+ Γρ
µσ∂νV

σ + Γρ
µσΓσ

νλV
λ

− ∂ν∂µV
ρ −

(
∂νΓρ

µσ

)
V σ − Γρ

µσ∂νV
σ

+ Γλ
νµ∂λV

ρ + Γλ
νµΓρ

λσV
σ

− Γρ
νσ∂µV

σ − Γρ
νσΓσ

νλV
λ

. (17.6)

Finally rearrange terms and dummy indices to obtain:

[Dµ, Dν ]V ρ =
(
∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

µλΓλ
µσ

+
(
Γλ

νµ − Γλ
µν

)
Γρ

λσ

)
V σ

−
(
Γλ

µν − Γλ
νµ

)
∂λV

ρ

+ Γρ
µσ∂νV

σ − Γρ
νσ∂µV

σ

:=
(
Rρ

σµν − Γρ
λσT

λ
µν

)
V σ − T λ

µν ∂λV
ρ

+ Γρ
µσ∂νV

σ − Γρ
νσ∂µV

σ .

(17.7)
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17.2. DERIVATION OF THE S TENSOR

The S tensor is defined as the sum:

Rρ
σµν := Rρ

σµν − Γρ
λσT

λ
µν (17.8)

Of the general Riemann tensor Rρ
σµν (denoted henceforth as the R tensor) and

the general torsional tensor Rρ
σµν (denoted henceforth as the T tensor):

T ρ
σµν := −Γρ

λσT
λ
µν . (17.9)

Note carefully that the T tensor is different from the conventional torsion tensor
used in Cartan geometry [2]:

T λ
µν = Γλ

µν − Γλ
νµ. (17.10)

The T tensor is one of the terms that premultiplies V σ in Eq.(17.7) while the
conventional torsion tensor (17.10) premultiplies ∂λV

ρ in Eq. (17.6). There are
two other terms present in Eq.(17.7) which are incorrectly omitted by Carroll
[2]. These terms, which premultiply ∂νV

σ and ∂µV
σ , also have a fundamental

physical significance in relativity theory but will be considered in future work.
The S, T and R tensors are by definition all antisymmetric in their last two
indices µ and ν, but in general are asymmetric in their first two indices ρ and
σ. The conventional Riemann tensor is antisymmetric in its first two indices ρ
and σ because of the torsion free condition used in deriving it [2] . The same
torsion free condition means that the conventional Ricci and metric tensors [2]
are symmetric. More generally they are asymmetric [3]– [25] and in general there
is no unique Ricci type tensor definable from the S tensor by index contraction.
Therefore the conventional Einstein Hilbert field equation is a special case of
many possible field equations of relativity and unified field theory [3]– [25].

Due to the antisymmetry in µ and ν the S tensor obeys the identities:

Sρσµν + Sρµνσ + Sρνσµ := 0 (17.11)

and
DλSρσµν +DρSσλµν +DσSλρµν := 0 (17.12)

which are generalizations of the first and second Bianchi identities obeyed by
the conventional Riemann tensor. The Bianchi identities are examples of the
Jacobi identity:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] =

ABC −BCA −ACB + CBA

+BCA− CAB −BAC +ACB

+ CAB −ABC − CBA+BAC

:= 0.

(17.13)

The second Bianchi identity is most generally a relation between covariant
derivatives:

[[Dλ, Dρ] , Dσ ] + [[Dρ, Dσ] , Dλ] + [[Dσ, Dλ] , Dρ] := 0 (17.14)
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and this is true for any connection. As first shown by Feynman (17.29) the
Jacobi identity can be derived by a round trip of covariant derivatives around a
cube. In the condensed notation of differential geometry [2]– [25] the identities
(17.11) and (17.12) become:

Sa
b ∧ qb := 0 (17.15)

D ∧ Sa
b := 0 (17.16)

where qb is the tetrad form and where D∧ is the covariant exterior derivative
of differential geometry.

17.3 Field Equation For The S Tensor

The well known historical route to the Einstein Hilbert field equation is adhered
to in this section, but the end result is more general, because it considers non-
zero torsion. The first step is to define the S tensor with lowered indices:

Sρσµν = gρλS
λ
σµν (17.17)

No assumptions are made concerning the symmetry of the metric tensor gρλ.
In general it is a tensor with symmetric and asymmetric components. This can
be seen using differential geometry, in which the symmetric metric is the dot
product of two tetrads:

gµν = qa
µq

b
νηab (17.18)

where ηab is the Minkowski metric. The asymmetric metric is the wedge product
of two tetrads:

gc
µν = −gc

νµ = qa
µ ∧ qb

ν (17.19)

and for each index c is an antisymmetric tensor of the base manifold, Q.E.D.
The most general metric is the outer or tensor product of two tetrads:

qab
µν = qa

µq
b
ν . (17.20)

and for index do ab is an asymmetric tensor of the base manifold, Q.E.D. There-
fore the symmetric metric is a special case (the symmetric part) of the most
general metric formed form the tensor or outer product of two tetrads. Since
tetrads are always mixed index tensors [2]– [25], a dot, wedge and tensor prod-
uct of two tetrads may always be defined, and so the asymmetric metric may
always be defined in the n dimensional manifold using the principles of standard
differential geometry. The asymmetric metric gµν in Riemann geometry is thus
A defined for a given index ab of the tangent space to the n dimensional base
manifold at point P. This tangent space always exists but was not considered in
Riemann geometry (which predated differential geometry by many years). This
appears to be the root cause of the incorrect assertion sometimes made that the
metric must always be a symmetric tensor. Therefore, as in Eq. (17.17) it is
always possible to define the S tensor with lowered indices using a metric of any
symmetry. It is understood that Eq. (17.17) applies in the base manifold for
each ab index of the tangent spacetime in general.
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Now make a double index contraction on the identity (17.12):

gνσgµλ (DλSρσµν +DρSσλµν +DσSλρµν) := 0 (17.21)

and define:

DµSρµ := −
(
gµλDλ

)
(gνσSρσµν) (17.22)

DνSρν := − (gνσDσ)
(
gµλSσλµν

)
(17.23)

DρS := Dρ

(
gνσgµλSσλµν

)
. (17.24)

The sign difference convention comes from the antisymmetry of the S tensor in
µ and ν. This convention, used by Einstein in 1915, is defined as follows. If
indices are in the same order in the metric and in the tensor multiplied by the
metric, then the resulting sign is positive. If indices are in the opposite order in
the tensor to the index order in the metric, then the sign is negative. Adhering
to this convention then:

DµSρµ −DρS +DνSρν := 0 (17.25)

i.e.

DµSρµ − 1

2
DρS := 0 (17.26)

or

Sρν =
1

4
Sgρν . (17.27)

Finally use:

Dρ = gρµD
µ (17.28)

to obtain:

Dµ

(
Sρµ − 1

2
Sgρµ

)
:= 0. (17.29)

The field equation is obtained by the equation:

Dµ

(
Sρµ − 1

2
Sgρµ

)
= kDµTρµ (17.30)

where k is the Einstein constant, and Tρµ is a more general canonical energy-
momentum tensor than used by Einstein and Hilbert. Here Tρµ contains angular
or torsional energy momentum as well as energy momentum defined by curvature
as in the original Einstein Hilbert field equation. Therefore the field equation
of the S tensor is:

Sρµ − 1

2
Sgρµ = kTρµ. (17.31)
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17.4 Discussion

By carefully considering the convention for defining the Ricci tensor from the
Riemann tensor, it is possible to factorise Eq.(17.31) into the Einstein Hilbert
field equation and a new field equation for torsion. The Ricci tensor is defined
(17.30) conventionally by contracting indices of the Riemann tensor with the
symmetric metric:

Rκρ = gµλRµκρλ. (17.32)

The order of the indices is the same in the metric and the Riemann tensor.
The conventional Ricci tensor is a symmetric tensor because of the following
property of the Riemann tensor:

Rρσµν = Rµνρσ = Rνµσρ. (17.33)

Note that Eq. (17.33) is true if and only if the Christoffel connection is sym-
metric, i.e. if there is no torsion present. More generally the Ricci tensor is
asymmetric in the presence of torsion. In the absence or in the presence of
torsion the following property is true of the R tensor:

Rρσµν = −Rρσνµ (17.34)

but this becomes the Riemann tensor if and only if torsion is absent. Therefore
the following property is always true of the Ricci tensor contracted from the R
tensor:

Rρµ = gσνRρσνµ = gνσRρσνµ = −gνσRρσµν . (17.35)

In the absence of torsion the Riemann tensor is antisymmetric in its first two
indices as well as in its last two indices. This implies the property:

Rµνρσ = Rνµσρ. (17.36)

The scalar curvature formed by double contraction of the Riemann tensor is
therefore always positive in the absence of torsion:

R = gσνgλµRσλµν . (17.37)

These are the conventions and properties that lead to the 1915 Einstein Hilbert
field equation.

In the presence of torsion however, the Riemann tensor is no longer anti-
symmetric in its first two indices, and the Ricci tensor is no longer a symmetric
tensor. The Einstein Hilbert field equation also depends on the use of a symmet-
ric metric in the index contraction that leads from the second Bianchi identity
of Riemann geometry. Every asymmetric tensor is the sum of an antisymmetric
and symmetric component, so it is always possible to write:

Sµν = S(S)
µν + S(A)

µν (17.38)

Tµν = T (S)
µν + T (A)

µν . (17.39)
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If the symmetric part of the metric is used in the index contraction procedure
then:

gµν = g(S)
µν . (17.40)

The conventional and symmetric Ricci tensor used in the 1915 Einstein Hilbert
field equation is defined by:

Rµν = Rνµ = S(S)
µν . (17.41)

Under these conditions, Eq. (17.31) splits into a symmetric part, which is the
1915 Einstein Hilbert field equation:

Rµν − 1

2
Rgµν = kTµν (17.42)

and an antisymmetric part:
S(A)

µν = kT (A)
µν (17.43)

which is a new torsional field equation, containing new physics, notably consid-

erations of angular energy / momentum from T
(A)

µν .

The S
(A)

µν tensor is defined from:

S(A)
ρσµν = −gρτΓτ

λσT
λ
µν (17.44)

so that
S(A)

ρµ = gνσgρκΓτ
λσ

(
Γλ

µν − Γλ
νµ

)
. (17.45)

The S
(A)

ρµ tensor is therefore proportional to the torsion form used in Cartan
differential geometry:

S(A)
ρµ = gµσgρτΓτ

λσq
λ
aT

a
µν (17.46)

Eddington type experiments test only the Einstein Hilbert field equation of
1915, and do not consider torsion at all. In this paper we have deduced a
torsional equation (17.43) but in so doing have restricted consideration to the
symmetric metric. More general considerations require the use of the tetrad and
the Palatini variation of general relativity. The Einstein Hilbert field equation
is replaced by the more fundamental:

R = −kT (17.47)

as described in detail in refs. [3] to [25]. In this way the mutual influence of
gravitation and electromagnetism may be investigated using the asymmetric
connection in differential geometry using the tetrad as the fundamental field
rather than the metric as in the Einstein Hilbert variation of general relativity.
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Abstract

The Evans unified field theory is used to give a straightforward explanation of
the Faraday disc generator in general relativity using Cartan geometry instead of
Riemann geometry. The electromagnetic field tensor is the torsion tensor, which
in differential geometry becomes the torsion form. The Faraday law of induction
is shown to hold in any frame of reference, and a torsion is set up mechanically
in the Faraday disc generator. This mechanically induced spacetime torsion is
the cause of the electric induction observed in the Faraday disc when the magnet
is stationary. The unified field theory explains observed electric induction by a
solenoid in a wire loop. Magnetic lines of force are contained within the solenoid
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and electric induction occurs through the spin connection of general relativity.
In special relativity there is no spin connection and no explanation for electric
induction by a solenoid. There are several effects now known to be explicable
by the Evans unified field theory of general relativity but not by the Maxwell-
Heaviside field theory of special relativity.
Key words: Evans unified field theory, Faraday disc generator, electric induction
by a solenoid.

18.1 Introduction

Recently [1]– [25] a unified field theory has been developed and based rigorously
on the principles of Einsteinian general relativity. The original field theory of
Einstein and Hilbert, developed independently [26]– [28] in 1915 used Riemann
geometry and was applicable only to central forces in gravitation. In 1922
Cartan [29] suggested that the electromagnetic field might be his newly inferred
torsion form, but despite the well known correspondence between Cartan and
Einstein a unified field theory based on Cartan geometry did not emerge. This
might have been due to the fact that the understanding of non-linear optics [1]–
[25] necessary for a unified field theory was not available to Cartan and Einstein.
If the torsion form of Cartan [26] is to be the electromagnetic field then there

must exist the fundamental Evans spin field B(3) observed in the inverse Faraday
effect [1]– [25] and inferred by Evans in 1992 [30]. The inverse Faraday effect
(now routinely observable) was not inferred until the mid fifties by Piekara and
Kielich [1]– [25] and was not observed experimentally until the mid sixties [31].
The Evans spin field is an intrinsic part of the Cartan torsion tensor multiplied
by a scalar valued potential A(0), and the Evans spin field is now known to be
responsible for the inverse Faraday effect, which is the magnetization of matter
by circularly polarized electromagnetic radiation at any frequency. The spin field
is generated by the term ωa

b ∧ Ab, where ωa
b is the spin connection of Cartan

and where Ab is the potential one-form [1]– [25] of the Evans field theory. It is
shown in Section 18.2 that for electromagnetism the spin connection is always
dual to the Cartan tetrad qa, which defines the potential one form as follows:

Aa = A(0)qa. (18.1)

This inference leads to the well established expression [1]– [25] for the Evans
spin field in vector notation:

B(3)∗ = −i κ
A(0

A(1) ×A(2) (18.2)

using the complex circular basis ((1), (2), (3)). Here κ is the wavenumber:

κ =
ω

c
(18.3)

where ω is the angular frequency of the radiation and where c is the speed of
light. The spin field is therefore an ineluctable result of the fact that in general
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relativity and the Evans field theory, electromagnetism is spinning spacetime
in which the spin connection must be non-zero. In the Maxwell-Heaviside field
theory the frame is passive and there is no spin connection and no inverse
Faraday effect. General relativity is preferred because a theory of physics must
always be objective to all observers, and general relativity is indicated by the
experimental data. Without empiricism (extraneous to the Maxwell-Heaviside
field theory) there is no explanation for the inverse Faraday effect in special
relativity.

In Section 18.3 it is shown that the Faraday law of induction in Cartan
geometry is the same in all frames of reference because the spin connection
for rotational motion is always dual to the tetrad form. In consequence the
Riemann form [1]– [26] is always dual to the torsion form for rotational motion
and the Faraday law of induction in consequence is always:

(d ∧ F a)1 = (d ∧ F a)2 = 0 (18.4)

where the subscripts denote frames 1 and 2. In the presence of mechanically
induced torsion (such as that in the Faraday disc), the total electromagnetic
two-form is the sum:

F a = F a
1 + F a

2 (18.5)

where F a
1 is the intrinsic (frame 1) component and where F a

2 is the component
induced by mechanical torsion (frame 2 component). The complete Faraday law
of induction is therefore part of the expression:

d ∧ F a = 0. (18.6)

Thus mechanical torsion as in the Faraday disc generator [32]– [36] induces
an extra electromagnetic two-form. The latter also obeys the Faraday law of
induction in frame 2, so:

(d ∧ F a)2 = 0. (18.7)

In special relativity the electromagnetic field is thought of as an entity separate
from spacetime superimposed on a passive or static frame, so in special relativity
mechanical torsion does not result in electric induction, contrary to the exper-
imental data given by the Faraday disc generator. As for the inverse Faraday
effect, general relativity and the Evans unified field theory are preferred.

In Section 18.4 the unified field theory is used to give a third example of the
fact that in classical electrodynamics, general relativity is preferred to special
relativity. This is electric induction by a solenoid that encloses the magnetic
field . If a wire loop is placed outside the solenoid electric induction is observed
[32]– [36] contrary to Maxwell-Heaviside field theory (i.e. special relativistic
electrodynamics). In the region occupied by the wire loop:

B = 0 (18.8)

where B is the magnetic flux density enclosed inside the solenoid. Therefore in
the Maxwell-Heaviside field theory there should be no electric induction. The
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Faraday induction law of that theory is:

∇×E +
∂B

∂t
= 0 (18.9)

and so if B = 0 there is no electric induction:

∇×E = 0. (18.10)

This result is contrary to the data [32]– [36] . In Section 18.4 it is shown that
the observed induction is due to the spin connection term ωa

b ∧ Ab, as for
the inverse Faraday effect, and also the Aharonov Bohm effects [1]– [25]. The
electromagnetic form in the Evans field theory of Einsteinan general relativity
is defined by the first Cartan structure equation and is:

F a = d ∧ Aa + ωa
b ∧ Ab (18.11)

where d∧ is the exterior derivative. In the Maxwell-Heaviside field theory of
special relativity the electromagnetic form is defined by:

F = d ∧A (18.12)

and the spin connection term is missing because the frame is passive or static.
The confined magnetic flux density inside the solenoid is defined by the d ∧ A
term in Eq.(18.11), but outside the solenoid there exists the term ωa

b∧Ab, which
produces the experimentally observed [32]– [36] electric induction through the
equation:

d ∧
(
ωa

b ∧Ab
)

= 0. (18.13)

18.2 Rotational Dynamics and Cartan Geome-

try

The complete expression for the homogeneous electromagnetic field equation in
the Evans field theory is [1]– [25]

d ∧ F a = µ0j
a (18.14)

where the homogeneous current three-form is defined by:

ja =
A(0)

µ0

(
Ra

b ∧ qb + T b ∧ ωa
b

)
. (18.15)

Here µ0 is the S. I. vacuum permeability. This expression is one in two variables
only, the spin connection and the tetrad, because the Riemann and torsion forms
are always defined in terms of them by the two Cartan structure equations [26]
as follows:

T a = D ∧ qa = d ∧ qa + ωa
b ∧ qb (18.16)
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Ra
b = D ∧ ωa

b = d ∧ ωa
b + ωa

c ∧ ωc
b . (18.17)

If the spin connection is dual to the tetrad:

ωa
b = κεabcq

c (18.18)

it follows from Eqs.(18.16) and (18.17) that the Riemann form is dual to the
torsion form:

Ra
b = κεabcT

c. (18.19)

Here εabc is the rank three totally antisymmetric unit tensor in the tangent
spacetime of Cartan geometry, a Minkowski spacetime with metric ηab [1]– [26].
Thus:

εabc = ηadεdbc. (18.20)

From Eqs.(18.18) and (18.19) in Eq. (18.15):

ja =
A(0)

µ0
κεabc

(
T c ∧ qb + T b ∧ qc

)
. (18.21)

For a = 1 for example:

j1 =
A(0)

µ0
κ
(
ε123T

3 ∧ q2 + ε132T
2 ∧ q3 + ε123T

2 ∧ q3 + ε132T
3 ∧ q2

)

= 0

(18.22)

because:
ε123 = −ε132 (18.23)

and similarly:
ja = 0, a = 0, 1, 2, 3. (18.24)

Therefore the homogeneous current vanishes when the spin connection is dual
to the tetrad.

For space indices (using Eq.(18.20)) :

ωij = −ω
c
εijkq

k, i = 1, 2, 3. (18.25)

The tetrad components are cartesian vector components [1]– [25] within a phase
factor and so eiφ are antisymmetric tensor components or spin generator com-
ponents dual to axial vector components. This is always true for any kind of
rotational motion [1]– [26], [37] so it is concluded that the spin connection for
rotational motion is always dual to the tetrad for rotational motion and that
the Riemann form for rotational motion is always dual to the torsion form for
rotational motion. This means that Eq.(18.14) simplifies to:

d ∧ F a = 0 (18.26)

if the torsion giving rise to electrodynamics is generated by a pure rotational
dynamics.
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This is the case when electrodynamics is assumed to be free from any type
of gravitational influence (translational or central dynamics). If gravitation
influences electromagnetism (i.e. if translation or curving influences rotation or
spinning) then the duality relations (18.18) and (18.19) are no longer true in
general and the homogeneous current may be non-zero in general. A violation
of the Faraday law of induction may therefore be observable if and when very
intense gravitation influences electromagnetism. Whether such an influence
exists in nature must be determined experimentally - perhaps using cosmology
but perhaps such effects occur at a one electron level in suitable circuits and so
may be observed in the laboratory. The electron induces considerable spacetime
curvature.

The well known 1915 theory of Einstein and Hilbert corresponds to:

Ra
b ∧ qb = 0 (18.27)

T a = 0 (18.28)

because in the 1915 theory there is only curvature described by the Riemann
tensor and the Christoffel connection:

Γκ
µν = Γκ

νµ. (18.29)

The torsion tensor therefore vanishes:

T κ
µν = Γκ

µν − Γκ
νµ = 0. (18.30)

Eq.(18.27) is also the result of using a Christoffel connection, which in Riemann
normal coordinates [26] leads to:

Rαβγδ =
1

2
(∂β∂γgαδ − ∂α∂γgβδ − ∂β∂δgαγ + ∂α∂δgβγ) (18.31)

where gαβ is the symmetric metric tensor [26]. It follows from Eq.(18.31) that:

Rαβγδ+Rαγδβ +Rαγβδ = 0

=
1

2
(∂β∂γgαδ − ∂α∂γgβδ − ∂β∂δgαγ + ∂α∂γgβγ

+ ∂γ∂δgαβ − ∂α∂δgγβ − ∂γ∂βgαδ + ∂α∂βgγδ

+ ∂δ∂βgαγ − ∂α∂βgαγ − ∂δ∂γgαβ∂α∂γgδβ)

(18.32)

which is the equivalent of Eq.(18.27) in tensor notation rather than form no-
tation. Eq (18.32) was discovered by Ricci and Levi-Civita but is sometimes
known [26] as the first Bianchi identity. In fact it is not a general identity and is
true if and only if the connection is a Christoffel connection and if and only if the
metric is symmetric; in which case there is a particular relation [26] between the
connection and the metric. These basic facts are difficult to find in textbooks
and are given here for clarity of exposition. If the connection is asymmetric in
its lower two indices then:

Ra
b ∧ qb 6= 0 (18.33)
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T a 6= 0 (18.34)

in general, and as argued gravitation may influence electromagnetism.
The second Bianchi identity:

D ∧ Ra
b := 0 (18.35)

in contrast is a true identity for any type of connection because it is the Jacobi
identity for covariant derivatives:

[[Dλ, Dρ] , Dσ] + [[Dρ, Dσ ] , Dλ] + [[Dσ , Dλ] , Dρ] := 0 (18.36)

The Jacobi identity is true for any three operators A,B and C as follows:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] =

ABC −BCA−ACB + CBA

+BCA− CAB −BAC +ACB

+ CAB − ABC − CBA+BAC

:= 0.

(18.37)

18.3 Faraday Disk Generator

As discussed by Guala-Valverde et al. [32]– [36] using a series of reproducible
experiments the well known Faraday disc generator is an example of Einsteinian
general relativity. The original experiment by Faraday was reported in his diary
on Dec 26th 1831 and consisted of a disc placed on top of a permanent magnet
and separated from the magnet by paper. The assembly was suspended by a
string and the complete assembly rotated. An e.m.f. was observed between the
center of the disc and an edge of the disc. The e.m.f. vanished when the me-
chanical torsion (rotation) was absent. The effect also occurs when the magnet
is rotated with respect to a stationary disc or vice versa. This experiment was
part of a series of famous experiments carried out by Faraday in the year 1831,
and the Faraday law of induction of the standard model (special relativistic
electrodynamics) later emerged to describe the induction seen when a magnet
is translated with respect to a stationary induction loop. The vector form of
the law in the Maxwell-Heaviside theory was given by Heaviside.

In the Evans unified field theory [1]– [25] (generally relativistic electrody-
namics) the Faraday law of induction is part of Eq.(18.26), the two homogeneous
laws being:

∇ ·Ba = 0 (18.38)

∇×Ea +
∂Ba

∂t
= 0. (18.39)

The extra index a indicates a state of polarization, and the complex circular
basis [1]– [25] may be used:

a = (0), (1), (2), (3). (18.40)
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Therefore a indicates transverse and longitudinal space-like states and a time-
like state (0).

Although the equation (18.39) of general relativity looks similar to the fa-
miliar:

∇×E +
∂B

∂t
= 0. (18.41)

of special relativity there is a major conceptual difference between the two.
In Eq. (18.39) the phenomenon is due to the spinning of spacetime itself, in
Eq.(18.41) it is due to the spinning of the field considered as an entity distinct
from the passive frame. When the apparatus is spun mechanically in the Faraday
disc generator there is a torsion form generated mechanically. This produces a
mechanically generated electromagnetic form using the Evans Ansatz [1]– [25]:

F a
mech = A(0)T a

mech . (18.42)

The A(0) coefficient is a number is scalar, and originates in the magnet of the
generator. If the magnet were taken away there would be no induction (spin-
ning a metal disc about Z does not produce an e.m.f. between its center and
rim, for this to occur a magnet is needed). The mechanically induced torsion
is due to mechanical spin, and this spin occurs if the whole apparatus is spun,
as in the original experiment of Faraday, if only the disc is spun, or if only the
magnet is spun. The basic new concept at work here is that mechanical spin
produces spacetime spin, and IS spacetime spin. This concept of general rela-
tivity does not occur in the Maxwell-Heaviside field theory of special relativity.
The complete electromagnetic field present when there is mechanical spin is:

F a
tot = F a + F a

mech (18.43)

and obeys the homogeneous equation:

d ∧ F a
tot = 0. (18.44)

Without spin we have:

d ∧ F a = 0. (18.45)

The homogeneous equation is therefore obeyed in any frame of reference as
follows:

d ∧ F a
tot = d ∧ F a = d ∧ F a

mech = 0 (18.45a)

and this is a direct result of Einsteinian relativity. In other words one cannot tell
whether 1 is spinning with respect to 2 or vice versa - the physics is objective, the
form of the equation is the same in any frame, to any observer. These concepts
are missing completely from Maxwell-Heaviside (MH) theory. In consequence
the MH theory runs into well known [32]– [36] problems when attempting to
explain the Faraday disc generator. For example if the magnet is stationary,
then:

∂B

∂t
= 0 (18.46)
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and in consequence there is no induction expected in MH theory, contrary to
the data of 26th Dec., 1831. In the Evans field theory and general relativity the
magnet can be stationary, but when the disc is spun, induction occurs through:

d ∧ F a
mech = 0 (18.47)

provided that there are two ingredients present, A(0) and mechanical torsion. If
the magnet is aligned in Z and spun about Z with disc stationary, then again:

∂B

∂t
= 0 (18.48)

and no induction is expected in MH theory. In the Evans field theory induction
occurs through Eq.(18.47). Finally, similar arguments apply when both disc
and magnet are spun about Z.

18.4 Induction By Solenoid

If a solenoid is placed inside an induction loop or coil, then electric induction
is observed [32]– [36] despite the fact that the magnetic flux density B is con-
fined wholly inside the solenoid and does not reach the induction loop. In this
situation:

B = 0 (18.49)

and there is no induction possible in the MH theory. The explanation in the
Evans field theory parallels that given earlier [1]– [25] for the well known Cham-
bers experiment and Aharonov Bohm effects. In the Evans field theory the
electromagnetic field is always defined by:

F a = d ∧Aa + ωa
b ∧ Ab (18.50)

and obeys Eq.(18.26) if there is no influence of gravitation. Using the Evans
Ansatz:

Aa = A(0)qa (18.51)

F a = A(0)T a (18.52)

it is seen that Eq.(18.50) is a direct result of the first Cartan structure relation
(18.16). Electric induction is therefore described in the Evans theory by:

d ∧ (d ∧ Aa) + d ∧
(
ωa

b ∧ Ab
)

= 0. (18.53)

There is local induction caused by the first term on the left hand side of
Eq.(18.53) and a non-local induction caused by the second term involving the
spin connection. The magnetic field component confined to the solenoid is de-
fined as being part of:

F a
solenoid = (d ∧ Aa)solenoid . (18.54)

201



18.4. INDUCTION BY SOLENOID

Outside the solenoid there is a component defined as being part of:

F a
loop =

(
ωa

b ∧ Ab
)
loop

(18.55)

This component causes electric induction through the equation:

d ∧ F a
loop − 0. (18.56)

In electrodynamics free of gravitation we have seen from Section 18.2 that:

ωa
b = κεabcq

c =
κ

A(0)
εabcA

c (18.57)

and so:
κ

A(0)

(
d ∧

(
εabcA

c ∧Ab
))

= 0. (18.58)

This equation can be interpreted as a first order effect:

d ∧
(
εabcq

c ∧ Ab
)

= 0 (18.59)

or as a second order effect:

d ∧
(
εabcA

c ∧Ab
)

= 0 (18.60)

and is the same in structure as the first and second order Aharonov Bohm effects
in the Evans unified field theory [1]– [25]. It is seen that if Ab is transverse in
Eq.(18.59) there is a transverse electric field generated around the induction
coil, i.e. in vector notation

∇×E 6= 0. (18.61)
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Abstract

It is argued that the Faraday experiment with rotating disc verifies the Evans
unified field theory in classical electrodynamics, being an experiment in rota-
tional relativity. Thus classical electrodynamics is a theory of general relativity,
requiring the use of a spin connection as in the Evans unified field theory. Sev-
eral other experiments are suggested with which to test general relativity in
classical electrodynamics. These forge a basis for extending quantum electrody-
namics to a theory of general relativity, and for incorporating gravitation into
electrodynamics.
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Key words: Evans unified field theory, general relativity, Faraday rotating disc
experiment, new experiments in general relativity.

19.1 Introduction

The essence of relativity theory is that physics is the objective investigation of
nature. This is a fundamental principle which prevents physics being subjective
(all things to all observers) and incomplete. Relativity theory was forged by
several investigators from about 1892 to 1915, major advances being made in
1905 by Einstein, and in 1915 by Einstein, and independently, Hilbert. From
about 1925 to about 1955 Einstein, Cartan and others sought a truly objective
theory of nature based on relativity applied to electrodynamics as well as to
gravitation. As early as 1922, Cartan sensed that electrodynamics must be
based on the torsion tensor in his newly inferred Cartan geometry. The solution
to this type of unification was finally inferred from 2003 to present in the Evans
unified field theory [1]– [28], based directly and straightforwardly on the well
known structure [29]– [31] of Cartans differential geometry. The Evans field
theory has been tested experimentally in several different ways, and has been
shown to reduce to the correct mathematical structure of all the major equations
of both classical and quantum physics. This paper is concerned with further
testing of the theory in classical electrodynamics using available experiments
and inferences of new experiments.

In Section 19.2 the new theory is applied in all theoretical detail to the
Faraday rotating disc experiment of the nineteenth century. In Section 19.3
several new experiments are inferred from the new theory, to be tested at a
later stage and the paper ends with a discussion of developments, notably on
the interpretation of the wave-function in the Evans unified field theory, on the
meaning of locality and non-locality and related topics which remain points of
debate in contemporary physics. This discussion is intended to prepare the
ground philosophically for the systematic extension of general relativity in clas-
sical electrodynamics to quantum electrodynamics.

19.2 Faraday Rotating Disc Experiment

On Dec 26th 1831 Faraday noted in his diary the results of a new experiment
in a famous series of experiments involving the interaction of electricity and
magnetism. In this experiment a conducting disc was attached to a cylindrical
bar magnet and separated from it by paper. The assembly was rotated and an
electromotive force observed between the center of the disc and a rim of the
disc. This experiment developed into the homopolar generator of contemporary
engineering. Its attempted interpretation using special relativity (notably the
Maxwell Heaviside field theory) has caused protracted confusion, the issue fi-
nally being settled in a series of reproducible experiments by Guala-Valverde
at al. [32]– [37]. These investigators show clearly and simply that induction
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by a rotating disc is an example of general relativity: it is the relative angular
frequency of rotation that counts. If the disc is spun with respect to a static
magnet aligned in Z, the electromotive force is measured by a voltmeter at rest
with respect to the spinning disc. Similarly the magnet can be spun about Z
with respect to a static disc, or both magnet and disc can be spun about Z
with respect to the voltmeter, as in the original experiment of Dec 26th 1831.
None of these experiments can be explained with special relativity because the
latter does not deal with accelerations induced by rotation. In order to deal
with rotational relativity [32]– [37] the Evans unified field theory is needed, the
latter being a theory of general relativity. The latter theory in turn is covariant
under any coordinate transformation, meaning that it can deal with acceler-
ations in central and rotational dynamics. In gravitational general relativity
the acceleration is central, reducing to Newtonian acceleration in the weak field
limit. The Evans unified field theory introduces general relativity to electro-
dynamics, and does this via the torsion form of Cartan [1]– [28]. The unified
gravito-electromagnetic field is then governed directly by the rules of Cartan ge-
ometry. The latter is rigorously equivalent to the most general type of Riemann
geometry, but is much more elegant and clear.

The Faraday disc experiment is therefore governed by the field equations of
the Evans theory. The electromagnetic potential is a vector valued one- form of
differential geometry and is defined through the Evans Ansatz as:

Aa = A(0)qa (19.1)

where A(0) is a scalar magnitude, a C negative number. Here qa denotes the
tetrad form [29]– [31]. The electromagnetic field is a vector valued two-form
and is defined by the first Cartan structure equation:

T a = D ∧ qa = d ∧ qa + ωa
b ∧ qb (19.2)

where T a is the torsion form and ωa
b is the spin connection. Here d∧ is the

exterior derivative and D∧ the covariant exterior derivative of Cartan geometry.
The Ansatz (1) implies that:

F a = A(0)T a (19.3)

and so Eq.(19.2) becomes:

F a = D ∧ Aa = d ∧ A(0) + ωa
b ∧ Ab. (19.4)

The homogeneous field equation of classical electrodynamics is defined by the
following identity of Cartan geometry:

D ∧ T a =d ∧ T a + ωa
b ∧ T b

=Ra
b ∧ qb.

(19.5)

Using the Ansatz we obtain:

d ∧ F a = µ0j
a = A(0)

(
Ra

b ∧ qb + T b ∧ ωa
b

)
(19.6)
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which in general is an equation which shows how gravitation and electromag-
netism are inter-related. For the general spin connection the homogeneous cur-
rent ja in Eq.(19.6) is non-zero, but for rotational motion [1]– [28] the spin
connection is dual to the tetrad, and in consequence the homogeneous cur-
rent vanishes. This is the case for classical electromagnetism free from gravi-
tation. For all practical purposes this is sufficient for macroscopic experiments
in electro-dynamics, but at the electronic level hybrid effects may occur which
would result in a non-zero homogeneous current.

For our purposes in this paper the homogeneous current is taken to be zero,
and in consequence the homogeneous field equation is:

d ∧ F a = 0. (19.7)

The Faraday disc and Rowland experiments are therefore described by Eqs.(19.4)
and (19.7) - equations of Einsteinian general relativity as required for a correctly
objective description of classical electrodynamics. The index a used in this paper
is the index of the complex circular basis:

a = (1), (2), (3). (19.8)

In the standard model and in the Maxwell Heaviside theory of special relativity
the equivalents of Eqs.(19.4) and (19.7) are:

F = d ∧ A, (19.9)

d ∧ F = 0. (19.10)

It is seen that the spin connection is missing and that the index a is not given.
The reason for this is that the electromagnetic field in the standard model is an
entity superimposed on a passive frame. In Einsteinian general relativity both
gravitation and electromagnetism (and indeed any field) must be space-time
in four dimensions. In consequence the electromagnetic field must be spinning
space-time, and the spin connection must be used.

There is no explanation for the Faraday rotating disc experiment in the
standard model, because induction is described by the Faraday law of induction:

∇×E +
∂B

∂t
= 0 (19.11)

where B is magnetic flux density (tesla) and E is electric field strength (volt/m).
If B is aligned in Z and is static, the disc being spun, induction is observed
experimentally but B does not change in Eq.(19.11). This means that there is
no induction theoretically:

∇×B = 0 (19.12)

contrary to experimental data. If the magnet is spun about Z, then

∂B

∂t
= 0 (19.13)
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and no induction occurs from Eq.(19.11). Induction is observed experimentally
however. Similarly when both the disc and magnet are spun about Z, as in
Faradays original experiment. In order to try to save the standard model the
Lorentz force law is sometimes used in an attempt to explain the Faraday disc,
but Guala-Valverde et al. [32]– [37] have shown that induction occurs even when
the Lorentz force law does not apply.

In the Evans field theory the explanation of the Faraday disc experiment is
as follows.

Using the complex circular basis [1]– [28], the magnetic flux density is defined
by:

B(1)∗ = ∇×A(1)∗ − i
κ

A(0)
A(2) ×A(3) (19.14)

B(2)∗ = ∇×A(2)∗ − i
κ

A(0)
A(3) ×A(1) (19.15)

B(3)∗ = ∇×A(3)∗ − i
κ

A(0)
A(1) ×A(2) (19.16)

where

κ =
Ω

c
(19.17)

and where Ω is an angular frequency in radians / second. Here c is the vacuum
speed of light, a universal constant of Einsteinian general relativity. When the
disc is stationary the vector potential is defined by:

A(1) = A(0)q(1), (19.18)

A(2) = A(0)q(2), (19.19)

A(3) = A(0)q(3), (19.20)

where the tetrads are [1]– [28]:

q(1) =
1√
2

(i− ij) , (19.21)

q(2) =
1√
2

(i + ij) , (19.22)

q(3) = k. (19.23)

The tetrads form an O(3) cyclically symmetric group:

q(1) × q(2) = iq(3)∗, (19.24)

q(2) × q(3) = iq(1)∗, (19.25)

q(3) × q(1) = iq(2)∗. (19.26)

Thus in the absence of rotation about Z:

∇×A(1) = ∇×A(2) = 0, (19.27)
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A(3) = A(0)k. (19.28)

From Eq.(19.7) and using the complex circular basis we obtain:

∇×E(1) +
∂B(1)

∂t
= 0 (19.29)

∇×E(2) +
∂B(2)

∂t
= 0 (19.30)

∇×E(3) +
∂B(3)

∂t
= 0 (19.31)

Therefore from Eqs.(19.14) to (19.16) and (19.29) to (19.31) the only field
present is

B(3)∗ = B(3) = −iB(0)q(1) × q(2) = B
(3)
Z k = BZk, (19.32)

which is the static magnetic field of the magnet.
When the disc is rotated at an angular frequency Ω:

A(1) =
A(0)

√
2

(i− ij) eiΩt, (19.33)

A(2) =
A(0)

√
2

(i + ij) e−iΩt, (19.34)

and from Eqs.(19.14) to (19.16) and (19.29) to (19.31) electric and magnetic
fields are induced in the direction transverse to Z, i.e. in the XY plane of
the spinning disc. However the longitudinal magnetic flux density component
in Eq.(19.32) is unchanged by the rotation, as occurs experimentally. The (2)
component of the transverse electric field spins around the rim of the disc and
is defined form Eq.(19.4) as [1]– [28]:

E(2) = E(1)∗ = −
(
∂

∂t
+ iΩ

)
A(2). (19.35)

Its real and physical part is:

Real(E(1)) =
2√
2
A(0)Ω (i sin Ωt− j cosΩt) , (19.36)

and it is proportional to the product of a(0) and Ω as observed experimentally.
It sets up an electromotive force between the center of the disc and the rotating
rim, and this is measured by a voltmeter in the laboratory frame, at rest with
respect to the rotating disc. As demonstrated clearly by Guala-Valverde et
al. [32]– [37], this is an example of rotational relativity.

The homogeneous law (7) retains its form in any frame of reference, as
required by general relativity, and in consequence the rotating electric field
induces a rotating magnetic field in the frame of the mechanically rotated disc:

(
∇×Ea +

∂Ba

∂t

)

mechanical

= 0. (19.37)
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This is therefore a simple and complete description of the Faraday disc ex-
periment in general relativity. The origin of the effect is rotating or spinning
space-time, induced by mechanically rotating the disc, and described by the
rotating tetrads [1]– [28]:

q(1) = q(2)∗ =
1√
2

(i− ij) eiΩt. (19.38)

In the same philosophy of Einsteinian general relativity, gravitation is curving
space-time, again described by the tetrad appropriate to curving space-time.
The philosophy is therefore self -consistent, and the results completely describe
the experiment.

19.3 Suggested New Experiments

In a circularly polarized electromagnetic wave the phaseless Evans spin field is
given by the spin connection of general relativity:

B(3)∗ = −iB(0)q(1) × q(2) (19.39)

This field propagates with the radiation at c in free space. This field can be used
in principle instead of the static magnetic field or conventional electromagnet
of the homopolar generator to induce an electric field in an induction coil. The
simplest design is mechanical rotation of the antenna sources of A(1) and A(2) at
an angular frequency Ω in a clockwise or anticlockwise direction. This produces
extra induction due to mechanical rotation as in Eqs.(19.33) and (19.34) leading
to rotating electric and magnetic fields in the XY plane. Thus, spinning an
electromagnetic field should produce induction over and above that observed in
the absence of spin and careful design should produce a homopolar generator
of this type without moving parts. For example phase, frequency or amplitude
modulation could be used.

Consider a circularly polarized electromagnetic component propagating in
the Z axis with phase eiφ in the absence of rotation:

A(1) =
A(0)

√
2

(i− ij) eiφ. (19.40)

The complex conjugate of this wave is:

A(2) =
A(0)

√
2

(i + ij) e−iφ. (19.41)

In the absence of mechanical spin at angular frequency Ω the Evans spin field
in free space is phaseless and propagates at c:

B(3)∗ = −i κ

A(0)
A(1) ×A(2) = BZk, (19.42)

213



19.3. SUGGESTED NEW EXPERIMENTS

In the presence of mechanical spin about Z the components (19.40) and (19.41)
become:

A(1) =
A(0)

√
2

(i− ij) ei(φ+Ωt) (19.43)

and

A(2) =
A(0)

√
2

(i + ij) e−i(φ+Ωt). (19.44)

The conjugate product of Eq.(19.43) and (19.44) produces an unchanged, phase
free, spin field

B(3) = B(0)k. (19.45)

However from Eq.(19.37) mechanical spin induces an electric field in the XY
plane given by Eq(19.36) and an accompanying magnetic field spinning in the
XY plane. This is the counterpart of the Faraday disc generator with the bar
magnet or electromagnet replaced with a spinning electromagnetic field. Finally
if the rate of mechanical spin Ω were time dependent, it might be possible to use
amplitude, phase or frequency modulation techniques to monitor the induced
electric field in this type of homopolar generator.

One possible way of generating a phase dependent axial magnetic field is
to mechanically rotate a left circularly polarized field in the left-wise direction.
The wave is given by:

A
(1)
L =

A(0)

√
2

(i− ij) eiφ (19.46)

where

φ = ωt− κZ (19.47)

is the electromagnetic phase. The mechanical rotation at angular frequency Ω
induces a change in frequency of the wave:

ω −→ ω + Ω (19.48)

and the rotation results in the extra potential:

A
(1)
L,mech =

A(0)

√
2

(i− ij) eiΩt. (19.49)

The complex conjugate of Eq.(19.46) is:

A
(2)
L =

A(0)

√
2

(i + ij) e−iφ. (19.50)

A phase dependent axial magnetic field is set up through the conjugate product:

B(3)∗ = −igA(1)
L,mech ×A

(2)
L

= B(0)eiΩte−iφk.
(19.51)
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The real part of this is:

Re(B(3)∗) = B(0)cos (Ωt− φ) k (19.52)

and consists of a slow modulation at frequency Ω superimposed on oscillation
at frequency ω. This slow modulation could be detected in principle with a
lock in amplifier, using amplitude or phase modulation techniques well known
in Michelson interferometry [38].

If the static, uniform magnetic field of the Faraday disc generator were re-
placed by a static, uniform electric field in the Z axis, a rotating potential of
type (19.49) would be set up if the disc were rotated about Z with respect to
the static electric field in Z. The electric field should be well insulated from the
rotating disc so that the latter would not become charged, causing possible ar-
tifacts to complicate the experimental data. An e.m.f. of the Faraday disc type
would be expected between the center of the rotating disc and a rim. This effect
again depends on there being two essential ingredients present, the scalar A(0)

(this time from the electric field), and mechanical rotation at angular frequency
Ω. The role of the magnetic field in the original Faraday disc experiment and
of the electric field in this experiment is to supply A(0). Similarly a rotating
electromagnetic field would supply A(0) through the root mean square of the
oscillating potential. These are all examples of general relativity, mechanical
rotation sets up a rotation of spacetime, inducing the tetrad (19.38) and the
potential (19.49). The rotating electric fields in the disc back induce a Z axis
magnetic field through the equation:

B(3)∗ = −igA(1) ×A(2). (19.53)

Similarly a rotating disc made up of a dielectric spinning about a Z axis elec-
tric or magnetic field would carry the induced potential (19.49), but in this
case there are no electric fields induced directly, only through polarization and
magnetization effects.

In the papers by Guala-Valverde et al. [32]– [37] a description is given of
induction by a long solenoid in a loop placed outside the solenoid. There is
no magnetic field outside the solenoid, yet induction occurs experimentally. In
this case there is a circling electric field E(1) = E(2)∗ present in the solenoid.
In general relativity this originates in the transverse tetrad (19.38). Inside the
solenoid there is also a magnetic field B3 in the Z axis, originating in the longi-
tudinal tetrad q(3). Together with A(0), the cross product of the tetrads q(1) and
q(3) are part of the non-local spin connection term (second term in Eq.(19.4)).
This non-local term sets up the circulating magnetic fields as in Eqs(19.14) and
(19.15) (second terms right hand side), and these non-local fields cause induction
in an arbitrarily shaped wire as described by Guala-Valverde et al. [14]– [15].
There is no explanation for this effect in the standard model. In the latter only
the local term (Eq. (19.9)) is defined and there is no induction possible from
the spin connection term of general relativity (second term on the right hand
side of Eq.(19.4)), the electric field of the winding of the solenoid is confined to
the solenoid, and the magnetic field is confined to the Z axis inside the solenoid.
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Similarly in the Aharanov Bohm effect the magnetic field is confined to the Z
axis, whereas the potential causing the electron diffraction shift is non-local -
another example of the spin connection at work in classical electrodynamics [1]–
[28]. Finally if the solenoid were spun about its Z axis at angular frequency Ω,
extra induction would be expected from general relativity. Careful experimental
design is needed to observe this induction [32]– [37]. Alternatively the solenoid
could generate the Z axis magnetic field in the Faraday disc experiment with
solenoid static and disc spun, or vice-versa.. Other configurations of this type
could be designed by the electrical engineer.

Therefore a considerable amount of experimental evidence is building up for
the Evans unified field theory and rotational relativity in classical electrody-
namics. This evidence provides a solid basis for a unified field theory based on
Cartan geometry.

19.4 Discussion

In order to incorporate gravitational effects into classical electrodynamics a
more complete description is needed of the charge current density. In the ho-
mogeneous equation this is defined as on the right hand side of Eq(19.6) and
as argued already, vanishes for rotational motion because the spin connection
is dual to the tetrad, and the Riemann form is dual to the torsion form. This
type of duality is the same as the duality between a rank two antisymmetric
tensor and an axial vector. In the presence of gravitation however the duality
is no longer valid, because superimposed on the spinning is a curving. In the
presence of gravitation therefore the homogeneous current ja may not be zero
indicating a violation of the Faraday law of induction due to gravitation. When
the electromagnetic field interacts with matter gravitation is present because
mass is present. The Evans field equation describing the interaction is the in-
homogeneous field equation, the Hodge dual of the homogeneous field equation.
In free space the inhomogeneous charge current density Ja is the Hodge dual of
the homogeneous charge current density ja:

Ja =
A(0)

µ0

(
R̃a

b ∧ qb + T̃ b ∧ ωa
b

)
. (19.54)

In the presence of field matter interaction the spin connection is changed from
ωa

b to in general. This change incorporates the ad hoc constitutive equations
of non-linear optics in the standard model. In free space therefore the electro-
magnetic wave free of gravitational influence is given by:

d ∧ F a = 0, (19.55)

d ∧ F̃ a = 0, (19.56)

two simultaneous equations which must be solved for given initial and bound-
ary conditions. In the presence of gravitation and field matter interaction the
relevant equations become:

d ∧ F a = µ0j
a, (19.57)
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d ∧ F̃ a = µ0J
a. (19.58)

If there is no torsion in field matter interaction then R̃ ∧ q is central and:

d ∧ F̃ a = A(0)
(
R̃a

b ∧ qb
)

central
(19.59)

The Coulomb law in general relativity is part of Eq.(19.59) and describes the
central force between two charges. Similarly the Newton inverse square law de-
scribes the central gravitational attraction between two masses. The Coulomb
law in the laboratory is a very precise law (19.39) and this verifies Eq.(19.59)
experimentally to high precision. However the most general form of the inho-
mogeneous field equation is:

d ∧ F̃ a = A(0)
(
R̃a

b ∧ qb + T̃ b ∧ Ωa
b

)
(19.60)

and by comparison with Eq.(19.59) it is seen that extra contributions due to
spacetime torsion may exist most generally. These interactions could conceiv-
ably occur in close vicinity to an electron, which curves spacetime considerably.

The discussion in this paper has been confined to the classical level, but it
is known that Cartan geometry gives the mathematical structure of quantum
mechanics through the standard tetrad postulate and the Evans Lemma [1]–
[28] derived straightforwardly from the tetrad postulate. The wave-function of
the Evans unified field theory is the tetrad for all radiated and matter fields.
The tetrad is well known to be the fundamental field of the Palatini variation
of general relativity. Therefore it is unsurprising that the tetrad should be the
wave-function in generally covariant quantum mechanics. As discussed already,
classical electrodynamics in general relativity has a local and non-local nature,
well verified experimentally. It follows that the wave-function also has a local
and non-local nature. The non-locality is a property of spacetime (the con-
nection). The Evans unified field theory reduces to the Einstein Hilbert field
theory of gravitation when the latter is decoupled from electromagnetism, so
all that is known about gravitational general relativity can be applied to clas-
sical electrodynamics in a fully objective manner. As in all relativity theory
an effect is preceded by a cause, so the Heisenberg Bohr complementarity is
rejected. This is again in accord with recent data [1]– [28] which show that the
complementarity idea is dubious at best.
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