245 (1): Compaticty ff Heary PRota wi \& Precisia \& \& Coulon b Law. .
Cquiler Qe ECE Proca equation in S.I. units:

$$
\left(B+\left(\frac{m c}{b}\right)^{2}\right)_{\mu}^{a}=0-(1)
$$

Fas encl state of polarization a this, \& Proca eqjation ol mid tirties,

$$
\begin{aligned}
& \text { polarization a wis "shatter is shitation as: } \\
& \text { usuolly witer } \\
& 0-(2)
\end{aligned}
$$

$$
\left(\square+m^{2}\right) A_{\mu}=0-(2)
$$

$$
I_{-h} S \cdot I \cdot \text { unts: } \quad A_{\mu}=\left(\phi,-\underline{A}_{c}\right) \text {. }(3)
$$

Il seeforg a static solutia of eq. (2), ta tine deperdent devitative of \square is eliminted and

$$
\begin{aligned}
& \text { is elinimed and } \\
& \square \rightarrow-\nabla^{2}-(4) \\
& r 0 \text { casidered }
\end{aligned}
$$

$\sigma_{2} l y$ the solar potentinal casidesed so eq.(2) reducs t.

It is asserted ic Q starberd ltembwe tat \& fupara potential is a solutia $-m$ eq. (5)

$$
\phi=\frac{A}{r} e^{-m r}-(6)
$$

Hoveres, by iven' diffentiation:

$$
\begin{aligned}
& \text { diver diffeentidion : } \\
& \frac{\partial \phi}{\partial r}=-\frac{A}{r}\left(\frac{1}{r}+m\right) e^{-m r}-(7)
\end{aligned}
$$

and:

$$
\begin{align*}
\nabla^{2} \psi & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right) \\
& =\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{\partial}{\partial r}(r \psi)\right) \\
& =\frac{1}{r} \frac{\partial}{\partial r}\left(\psi+r \frac{\partial \psi}{\partial r}\right) \\
\nabla^{2} \psi & =\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r} \tag{8}
\end{align*}
$$

So:

$$
\begin{align*}
\frac{\partial^{2} \phi}{\partial r^{2}}= & A e^{-m r}\left[\left(\frac{m^{2}}{r}+\frac{2 m}{r^{2}}+\frac{2}{r^{3}}\right)\right. \\
& \left.-\frac{2}{r^{2}}\left(\frac{1}{r}+m\right)\right] \tag{9}\\
= & \frac{A m^{2}}{r} e^{-m r}
\end{align*}
$$

(Q.E.D).

Hoverer le tukawa potential in murlear physics is well known to se umphysial. It is is campt be wit it bawy phota ifferred from a coptra effat, secouse \& peary phata woied mply beviation fro \& Coulons law eat are wt obened. Re corent intemptration is ossed a \& fant that tiex tikhaw a
3) potential is if fart te Fouries tramfon of th prpastor of Q Kleiz barda egrobia:

$$
\begin{align*}
& \text { of QK|e: Garda egavia: } \tag{10}\\
& \begin{aligned}
\frac{1}{p^{\mu} p_{\mu}+m^{2}} & =\frac{1}{(2 \pi)^{4}} \int \frac{e^{i k x} d^{4} k}{k^{2}+m^{j}}-m(x) \\
& =\frac{1}{4 \pi} f\left(x_{0}\right) e^{-m \mid}
\end{aligned}
\end{align*}
$$

Implementics nethos of note 157 (9)
Proca egrorion (i) is reuicter for rack sesse of polaizatia a a_{0} :

$$
\begin{align*}
& \square A_{\mu}=\mu_{0} J_{\mu}=-\left(\frac{m c}{t}\right)^{2} A_{\mu}-(11) \tag{11}\\
& l_{\text {our }}-\text { cuncert. } \\
& S_{0}:
\end{align*}
$$ where J_{μ} is Gccuum four - current. So: $^{\text {G }}$.

$$
\begin{aligned}
& \rho=-\epsilon_{0}\left(\frac{n c}{h}\right)^{2} \phi-(12) \\
& I=-\frac{1}{\mu_{0}}\left(\frac{n c}{k}\right)^{2} A-(13) \\
& r_{1} d \text { eq. (11) for all phat } p_{0} \text { tiat }
\end{aligned}
$$

Te solutia of eq. (ii) for all phiar masses in casists of Lennard wiecfert portentias for eacl serse of polarizatia a :

$$
\begin{align*}
& \phi=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{e}{(1-\underline{n} \cdot \underline{v})\left|r-r^{\prime}\right|}\right) t_{r} \tag{14}\\
& A=(14) \tag{15}\\
& \underline{\mu_{0} c}\left(\frac{e v / c}{4 \pi}(1-\underline{n} \cdot \underline{v} / c)\left|\underline{r}-r^{\prime}\right| t_{r}\right.
\end{align*}
$$

t) veve te retarker time is \&isen dy:

$$
\begin{aligned}
& t_{r}=t-\frac{1}{c}|r-r| \\
& c=\frac{\left|r-r^{\prime}\right|}{t-t_{r}}-(17)
\end{aligned}
$$

lerefpe θ stat:c portential of te Proca eqpiria is gver by eq. (14) and for static charze:
sote vacuun cfarge lensity,

$$
\begin{aligned}
\rho & =-t_{0}\left(\frac{m c}{t}\right)^{2} \cdot \frac{1}{4 \pi t_{0}}\left(\frac{e}{\left|r-r^{\prime}\right|}\right) t_{r}-(19) \\
& =-\left(\frac{m c}{t}\right)^{2} \cdot \frac{1}{4 \pi}\left(\frac{e}{\mid r-r^{\prime}}\right) t_{r}
\end{aligned}
$$

lich i E Conlons law for any photo mass
This nearo eat $\frac{\theta,}{5}$ leary phutas is comparijle
w θ his expervartal precisia of ta Conlonb law, QED

