272(6): Grphics of $\ddot{\theta} v s \theta$ and \ddot{r} vs θ

1) The $\operatorname{Crph} f$ "̈ $V_{\text {esur }} \theta$

This is costrived fon ter followns set y egraina:

$$
\begin{gather*}
\ddot{r}=r\left(\dot{\theta}^{2}+\dot{\phi}^{2} \sin ^{2} \theta\right)-\frac{m G}{r^{2}}-(1) \tag{1}\\
\dot{\phi}=\frac{L_{z}}{m_{r}^{2} \sin ^{2} \theta}, \dot{\theta}=\frac{1}{m r^{2}}\left(L^{2}-\frac{L_{z}^{2}}{\sin ^{2} \theta}\right)^{1 / 2}-(2) \tag{0}\\
r=\frac{\alpha}{1+\epsilon \cos \beta}-(3) \\
\cos \beta=\left(1-\frac{L^{2} \cos ^{2} \theta}{L^{2}-L_{2}^{2}}\right)^{1 / 2}-(4)
\end{gather*}
$$

so \ddot{r} can be expressed as a funtia of θ.
Il turo dinersiono $\theta=\pi / 2$ so Here is no such function.
2) The $\frac{r_{p} p}{}$ of $\ddot{\theta} V_{\text {ers }}$ o θ

This is costmited fom:

$$
\ddot{\theta}=\dot{\phi}^{2} \sin \theta \cos \theta-\frac{2 \dot{r} \dot{\theta}}{r}-(5)
$$

2) vere $\dot{\phi}$ and $\dot{\theta}$ are giverty $e_{q} .(2)$, r by eqs. (3) ant (4), and ir by:

$$
\begin{aligned}
& \text { and }(4) \text {, and } r \text { by: } \\
& \dot{r}=\left(\frac{2}{m}\left(E-\frac{L^{2}}{2 m r^{2}}+\frac{k}{r}\right)\right)^{1 / 2}-(6) \\
& . .
\end{aligned}
$$

Rerefre $\ddot{\theta}$ carbe ploted agzinst θ. $\frac{\text { ILh two dinersions there is no funsion }}{\ddot{\theta}}$ of $\ddot{\theta}$ agourt θ becanoe $\theta=\pi / 2$ and

$$
\ddot{\theta}=0 .
$$

Tercfue tesp compaions shw that a Hiee divensial teeng jar male riclly strurwed θ a a two dinsianal they.

