-- 1 k

TWO PHOTON THEORY OF THE EVANS MORRIS EFFECTS: ANALOGY WITH .

COMPTON SCATTERING.

by

M. W. Evans, H. Eckardt, G. J. Evans and T. Morris

Civil List, AIAS and UPITEC.

www.webarchive.org.uk, www.aias.us, www.atomicprecision.com, www.upitec.org,

www.et3m.net

ABSTRACT

A two photon theory of reflection and refraction is developed in which two incident photons of equal frequency and wavelength are refracted into one refracted and one reflected photon with different frequencies and wavelengths as observed in the Evans / Morris effects. The theory is developed with conservation of energy and momentum in analogy with the Compton effect. Photons with mass can be developed in general.

Keywords: ECE theory, two photon theory of the Evans / Morris effects.

4FT 289

- 1 F

1. INTRODUCTION

In recent papers of this series of two hundred and eighty papers to date the ECE theory with photon mass has been applied to the Evans / Morris effects {1 - 10} These are reproducible and repeatable frequency and wavelength changes in the refraction and reflection of light at visible frequencies. The theory has been developed to date by assuming that one incident photon with energy $t\omega$ is split into two photons of energies $t\omega$ and $t\omega$, in the process of refraction and reflection. The theory has also been developed by considering the average energy of one Planck oscillator incident on a boundary between two materials producing the average energies of a refracted and reflected Planck oscillator. In each case plausible explanations for the Evans / Morris effects were found with rigorous conservation of energy and momentum in analogy with the well known theory of the Compton effect developed in UFT158 ff of this series on www.aias.us. In Section two a two photon theory of the Evans / Morris effects is developed in which two incident photons of equal frequency in a monochromatic beam are divided at an interface into one refracted photon and one reflected photon. In general the frequencies of the refracted and reflected photons are different. The theory is also developed n terms of wavelength, and conceptual analogies with Compton scattering discussed. In Section 3 the theory is analyzed numerically and discussed.

As usual this paper should be read with its background notes. Note 289(1) discuses the details of the Rayleigh Jeans density of states used in the theory of the Planck distribution. In Notes 289(2) to 289(4) the Compton theory is discussed and the scattered frequency expressed in terms of the incident frequency following the methods of UFT 158 ff. The two photon theory of reflection and refraction is developed in Notes 289(6) to 289(9) in terms of both frequency and wavelength.

2. TWO PHOTON THEORY

Consider a beam of light or electromagnetic radiation incident at a boundary between two materials such as air and glass. In general the beam is refracted and reflected in accordance with the experimental laws attributed to Snell but discovered long before him:

$$\theta = \theta_{\lambda} \qquad -(i)$$
and
$$n \sin \theta = n_{i} \sin \theta_{i} - (\lambda)$$

$$\omega \neq \omega_1 \neq \omega_2 - (3)$$

in general. As shown in Note 289(1) the intensity in watts per square metre generated by the Planck distribution in a monochromatic beam is proportional to the fourth power of frequency:

$$I = \frac{1}{6\pi^2 c^3} \left(\frac{x}{1-x} \right) \omega^4 - (4)$$

Here h is the reduced Planck constant, c is the vacuum speed of light, ω the angular freeuncy in radians per second, and where:

$$x = \frac{\hbar \omega}{RT}. - (5)$$

Here k is Boltzmann's constant and T the temperature.

So a general theory would consider:

$$I = I_1 + I_2 - (6)$$

where I is the incident intensity, I, is the refracted intensity and I, the reflected intensity. In general:

so it follows immediately from Eq. (4) that the Evans Morris effects exist:

$$\omega \neq \omega_1 \neq \omega_2 - (8)$$

as observed experimentally in many experiments over about five or six years in different laboratories. Some of the results are on the diary or blog of www.aias.us.

By conservation of energy in the simplest theory:

and by conservation of momentum:

where \underbrace{K} is the incident wave vector, and where \underbrace{K} and \underbrace{K} are the refracted and reflected wave vectors. Eqs. (9,10) are fundamental to the quantum theory of light.

Therefore:

$$2\omega = \omega_1 + \omega_2 - (11)$$

and:

From Eq. (λ):

$$4 \times 10^{3} = 10^{3} + 10^{3} + 2 \times 10^{3} + 10$$

where:

is the angle between $\frac{1}{1}$ and $\frac{1}{1}$.

Assume that the incident medium is air and that the refracting medium is glass. It has been assumed that the phase velocity in air is c, and that the phase velocity in glass is v. The refractive index of the glass is: $h = \frac{C}{L} - \left(\frac{15}{L} \right)$

It follows from Eq. (3) that:

$$4\frac{\omega^2}{\omega^2} = \frac{\omega_1^2}{\omega_1^2} + \frac{\omega_2^2}{\omega_2} + \frac{2\omega_1\omega_2}{\omega_2} \cos\theta_2$$

where:

$$\omega_{3}^{2} = (2\omega - \omega_{1})^{2} - (17)$$

These equations can be solved to give the refracted frequency in terms of the incident frequency:

$$C_1 = 2c \left(1 + \frac{3}{3}\right)^{-1} - (18)$$

$$y = 1 - 2 \times (os \theta_3) - (19)$$

In order for $\mathcal{O}_{\mathbf{1}}$ to be positive:

$$2 \times \cos \theta_3 \leq 1 - (20)$$

and:

$$\theta_{3} \leqslant (05^{-1}\left(\frac{3\nu}{1}\right) - (31)$$

Assuming that the refractive index of the glass is:

of the glass is:
$$-(3)$$

then:

i.e.

If:

$$\theta_3 = 70.53^\circ - (25)$$

then

$$\omega_1 = 0$$
, $\omega_2 = \lambda \omega_1 - (\lambda_1^6)$

At this angle the reflected light appears to be blue shifted and the refracted light is shifted to

zero - the maximum red shift.

Similarly the reflected frequency is:
$$\omega_{\lambda} = \lambda \omega \left(\frac{\lambda}{3 + \lambda^{3}} \right). - (\lambda 1)$$

This simplest type of two photon theory can be developed into the general theory of intensities given by Eq. (\(\forall \)) in a monochromatic beam but gives a plausible explanation of the Evans / Morris effects. The general theory of intensities will be developed in future work.

3. NUMERICAL ANALYSIS AND GRAPHICS

Section by Dr. Horst Eckardt.

ACKNOWLEDGMENTS

The British Government is thanked for a Civil List Pension and the AIAS and others for many interesting discussions. Dave Burleigh is thanked for posting and Robert Cheshire and Alex Hill for translation and broadcasting

REFERENCES

- {1} M.W. Evans, H. Eckardt, D. W. Lindstrom and S. J. Crothers, "Principles of ECE Theory" (open source on www.aias.us)
- {2} M. W. Evans, Ed. J. Found. Phys. Chem., (open source on www.aias.us, and Cambridge International Science Publishing, CISP, www.cisp-publishing.,com).
- {3} M.W. Evans, Ed. "Definitive Refutations of the Einsteinian General Relativity" (open source on www.aias.us, and CISP).
- {4} M.W. Evans, S. J. Crothers, H. Eckardt and K. Pendergast, "Criticisms of the Einstein Field Equation" (CEFE, open source on www.aias.us and CISP, 2010).

- {5} M.W. Evans, H. Eckardt and D. W. Lindstrom, "Generally Covariant Unified Field Theory" (open source on www.aias.us and Abramis Academic 2005 to 2011).
- {6} L. Felker, "The Evans Equations of Unified Field Theory" (open source on www.aias.us, and Abramis, 2007, translated into Spanish open source on www.aias.us by Alex Hill).
- {7} M.W. Evans and L. B. Crowell, "Classical and Quantum Electrodynamics and the B(3) Field" (World Scientific 2001, open source on www.aias.us).
- {8} M. W. Evans and S. Kielich, Eds,. "Modern Nonlinear Optics" (Wiley Interscience, 1992, 1993, 1997 and 2001) in two editions and six volumes.
- {9} M. W. Evans and J.-P. Vigier, "The Enigmatic Photon" (Kluwer, Dordrecht, 1994 to ... 2002) in ten volumes hardback and softback.
- {10} M.W. Evans and A. A. Hasanein, "The Photomagneton in Quantum Field Theory" (World Scientific, 1994).

,