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3 Additional analysis

In Einsteinian theory the orbit θ(u) with u = 1/r has to be computed from
solving the integral

θ(u) =

∫
L0 du√

2m(H + ku− L2
0

2mu
2 +

L2
0

2mr0u
3)

(57)

with non-relativistic angular momentum L0, total energy H, k = mMG and
"Schwarzschild radius" r0. The term in the square root is a polynomial of third
order in u and can be written as

1

α
(u− u1)(u− u2)(u− u3) (58)

where u1 = 1/r1 etc. are characteristic inverse radii. The constants u1, u2, u3
are de�ned by Eq.(57), and

1

α
= u1 + u2 + u3. (59)

Einstein argued by the roots of Eq.(58). The physical range of u is between
two values of u where the denominator vanishes, i.e. one has to �nd the roots
of (58) to �nd the integration interval. In his terminology Einstein wrote the
terms in the denominator in form of

2A

B2
+

α

B2
u− u2 + αu3 (60)

and additionally omitted the cubic term. This seems to be arbitrary but guar-
antees that only two roots exist which then are

u(1,2) =
±
√
8AB2 + α2 + α

2B2
. (61)
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The correct method, however, would be �nding the roots of the cubic equation
(58). By computer algebra this is possible. Quite complicated solutions follow
from which two are complex-valued. This problem of the "true" solution of (58)
have never been addressed in literature.

With modern computer algebra, it is possible to solve Eq.(57) analytically.
Writing it in the form

θ(u) =

∫
du√

α(u− u1)(u− u2)(u− u3)
(62)

leads to a solution which, after some simpli�cations, reads

θ(u) =
2√

α(u2 − u1)
F

(
asin

(√
u1 − u2
u1 − u

)
,
u3 − u1
u2 − u1

)
(63)

with the elliptic integral of �rst kind F(x, y). It has to be noted that this integral
is complex-valued. The real value has to be taken as physical value.

Having found this solution, the result can be plotted and computer graphics
gives an impression of the solution immediately. First we have graphed the
integrand of (62) as a function f(u) with parameters u1 = 3, u2 = 2, α = 0.1
from which follows u3 = 5. Fig. 1 shows that the integrand has strong in�nite
asymptotes as was already known from corresponding plots in UFT papers
150 and 155. u1 and u2 are the physical inverse radii, above u3 an unlimited
unphysical range appears. The real part of solution (63) (Fig. 2) is dominated
by the inverse sine function which is de�ned between u1 and u2 correctly. The
imaginary part pertains to an unphysical range. Choosing parameters di�erently
with u1 < u2 (not shown) gives similar results with positive θ(u). We conclude
that there is no multiplicity of solution for θ, i.e. there is no room for any
precession e�ects from this Einsteinian solution which probably was analysed in
these details for the �rst time.

The last example is an assessment of relativistic e�ects for a non-relativistic
elliptic orbit. The latter is given by

r =
α

1 + ε cos(θ)
. (64)

We assume that the half-right latitude α is a�ected by relativistic e�ects:

α = γ α0 =
1

1− v20/c2
α0 (65)

for a non-relativistic α0. Using the well-known solution

v20 =

(
2

r
− 1

a

)
MG (66)

and inserting this into (64), we obtain an equation for the orbit r(θ) with rela-
tivistic correction:

r =
(2 a ε cos (θ) + 2 a) M G+ aα0 c

2

(ε cos (θ) + 1) M G+ a c2 ε cos (θ) + a c2
. (67)

The graph (Fig. 3) shows what is to be expected from (65): the e�ective alpha
is enlarged by relativistic e�ects (here obtained by varying c and keeping all
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other parameters to unity). The enlargement is not constant, but there is no
crossing of the curves, that means that the constants of motion are di�erent.
This is plausible because the angular momentum L0 is increased by the gamma
factor. A smaller c here means stronger relativistic e�ects.

Figure 1: Integrand of Einstein integral in form of Eq.(62).
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Figure 2: Analytical solution (63) of the Einstein integral.

Figure 3: Radius function r(θ) for di�erent cases of relativistic e�ects, charac-
terized by c.
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