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3 Computation and discussion

3.1 Comparison of m space force and Coulomb force

First we compare the force of m theory with the Coulomb force. We used
femtometers (10−15m) as length units. This requires a re-scaling of formulas
which is a bit tricky. For example in dm(r)/dr, m(r) can be defined on a fm
scale but differentiation produces a factor of 1015 in SI units. A similar problem
occurred for the Coulomb potential. The radius of the Ni atom (3.78 fm) has
been marked in the graphs.

Fig. 1 shows the total relativistic energy of a 64Ni nucleus in m space, using
p=0 (stationary atom, see Eq. (7)). The atomic mass of this isotope is 63.927967
a.m.u. The energy is constant outside the nuclear radius, starts decreasing near
to the radius and goes to zero at the centre according to the m function. This
means that the relativistic energy is not constant but impacted by m space.

Fig. 2 compares the force F of m theory (Eq. (15)) with the Coulomb
force of a point charge at r = 0. It is seen that F outperforms the Coulomb
force by a multiple at the nuclear radius. Inside the nucleus, we should have a
different Coulomb force, this picture is only for demonstrating the size relations.
The same graphs are shown in Fig. 3 with different scaling. In addition, the
Coulomb force of m space,

F1(r) =
√

m(r)
28 e2

4πε0r2
, (22)

has been graphed, using

m(r) = 2− exp
(

log(2) exp(− r
R

)
)

(23)
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as in previous papers. It is seen that the m function reduces the Coulomb force
but this is by far not enough to bring the Coulomb barrier at the nuclear radius
to zero (observe the different exponential scale factors in this graph).

3.2 Resonant m force and Woods-Saxon force

The nuclear Woods-Saxon potential, Eq. (14), is graphed in Fig. 4, together
with the resulting force, Eq. (15). The parameters were chosen as R = rNi,
aN = rNi/20 and U0 was set to unity or scaled to other curves, respectively.
The Woods-Saxon force only appears in the surface region of the nucleus whose
thickness is defined by aN . We used three different forms of the m function to
model a resonant behaviour of the m force:

m1(r) = 2− exp
(

log(2) exp(− r
R

)
)
, (24)

m2(r) = 1− 1

exp
(

r−R
aN

)
+ 1

, (25)

m3(r) =

{
r2

2R2 for r < R,

1− R

4(r−R
2 )

for r ≥ R. (26)

The first m function is the usual model we used so far and not resonant. The
second is an adaptation of the Woods-Saxon potential and the third is a form
already introduced in UFT 417. It was found that m(r) ∝ r2 leads to an infinite
force. All three functions are graphed in Fig. 5. The three forces arising from
these functions via Eq. (8):

F (r) = −dmi(r)

dr

mi(r)

2mi(r)− r dmi(r)
dr

mc2 (27)

are graphed in Fig. 6. F1 is the m force of Fig. 2 which - although not resonant
- is already sufficient to outperform the Coulomb barrier as discussed above. F2

makes up a pole so has a resonance near to the nuclear radius. To shift the pole
to the radius, the parameter R had to be modified to a value different from the
nuclear radius. This type of resonance does the job outside the nucleus. The
unsteady jump of the force may be a hint that the model is somewhat simplistic.
A high positive force just below the radius could result in an unstable transition
when a proton passes the Coulomb barrier.

The third alternative form m3(r) gives resonance enhancement at the correct
radial position. The force is infinite in the internal region by construction but
could be modified to give a constant or vanishing force in the interior.

As explained in section 2, equating the force of m theory with the Woods-
Saxon force leads to a differential equation for m(r), see Eq. (16). This equation
is quite complicated and has no analytical solution. One can restrict consider-
ation to the region r ≈ R which leads to the simplified equation (21). For this
equation computer algebra delivers a quasi-solution

−4aNmc2 m(r)− U0r

2aN
√

m(r)
= C (28)
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where C is an integration constant with dimension of an energy. Developing this
equation leads to a quadratic equation for m(r). The two solutions are (with
C = U1):

m(r) =
1

8aNm2c4

(
2U0rmc

2 − U2
1 aN ±

√
4U0aNmc2r + U1

2aN 2

)
. (29)

This is an equation of type

m(r) = ar ±
√
br. (30)

This function is nearly linear, at least for the parameter sets we have tested.
An example is graphed in Fig. 7. By definition this approach is only valid in
the region r ≈ R.

3.3 Solution of the wave equation

Solutions of the wave equation

Figure 1: Relativistic energy of 64Ni nucleus.
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Figure 2: Force of m theory and Coulomb force.

Figure 3: Force of m theory and Coulomb force, smaller radial scale. Observe
the exponential factors when comparing.
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Figure 4: Woods-Saxon potential and corresponding force.

Figure 5: Three models of m functions.
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Figure 6: Resonance solutions for m space force.

Figure 7: Solutions of m(r) for the approach r ≈ R.
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