435 (3): -plitigs and Sif's Pronced by Frame Traofman in
In frome $\left(r_{1}, \theta, \phi\right)$ (ticclasical ham tonian is:

$$
\begin{equation*}
H_{1}=\frac{p_{1}^{2}}{12 n}+U_{1} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Leat Sd doediger eqpian } \\
& \text { it } \frac{\partial \psi_{1}}{\partial t_{1}}=E_{1} \psi_{1}=H_{1} \psi_{1}-(\partial)
\end{aligned}
$$

In frome $(r, \theta, \phi)^{\text {Jt }}$ to dasical fantorian is:

$$
\begin{align*}
& \theta, \phi) \text { He dasical }_{2}+\pi-(3) \tag{4}\\
& H=\frac{p^{2}}{2 m}+\pi \text { equan is: } \\
& \text { Schpeber }
\end{align*}
$$

and the tine eperatent Schoedikgor egrvia is:

The tamifmasian fom $\left(r_{1}, \theta, \phi\right)$ t. (r, θ, ϕ) is. carred out wit

$$
\begin{aligned}
& r_{1}=\frac{r}{m(r)^{1 / 2}}, \quad \underline{\rho_{1}}=\frac{p}{n(r)^{1 / 2}}, \\
& \psi_{1} \rightarrow \psi_{1}, \nabla_{1}^{2} \rightarrow \nabla^{2} \\
& d t_{1} \rightarrow m(r)^{1 / 2} \text { at }
\end{aligned}
$$

so eq.(2) beeneo:

$$
\begin{aligned}
& e^{2}(2) \text { becmeo: } \\
& \left.\frac{i \hbar}{m(r)^{1 / 2}} \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{\partial m} \nabla^{2}\left(\frac{d}{m(r)}\right)-\frac{e^{2}}{4 \pi t_{0}} \frac{m(r)^{1 / 2}}{r} \psi\right]
\end{aligned}
$$

 spesra. In $\& l_{m} t$

$$
m(r) \rightarrow 1-(7)
$$

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{\partial m} \nabla^{2} \psi-\frac{e^{2}}{4 \pi t_{0} r} \psi-(8)
$$

Assume Qat the tine bependew wale finsion ψ is

$$
\psi=e^{\operatorname{Ti\omega t}} \psi_{H}(r, \theta, \phi)-(9)
$$

wlere $\hat{H}_{H}(r, \theta, \phi)$ it θ hydrigric wave funsion. It follows lat: ik $\psi^{*} \frac{\partial \psi}{\partial t} d \tau=-\hbar \omega-(10)$
and

$$
\begin{align*}
-\frac{\hbar^{2}}{2 n} \psi^{*} \nabla^{2} \psi d \tau & -\frac{e^{2}}{4 \pi \epsilon_{0}} \psi^{*} \frac{1}{r} \psi d \tau \\
& =-\frac{\mu e^{4}}{32 \pi^{2} \epsilon_{0}^{3} \hbar^{2} n^{3}} \tag{11}
\end{align*}
$$

$=$ te every levels of Q won are:

$$
\begin{array}{r}
E=-\hbar \omega=-\left(\frac{\mu e^{4}}{32 \pi^{2} t_{0}^{2} \hbar^{2}}\right) \frac{1}{n^{2}}-(10 \tag{12}\\
\left.\left.\hbar_{n}=\frac{\mu e^{4}}{32 \pi^{2} t_{0}^{2} \hbar^{2}}\right) \frac{1}{n^{2}}\right] \\
\text { (6) His resur is gremeized to }
\end{array}
$$

From of. (6) thi resub is geremelized to:

$$
i^{\prime} \int \psi_{m(r)^{* / 2}}^{\frac{1}{\partial t}} d \tau=-\frac{\hbar^{2}}{2 m} \psi^{*} \nabla^{2}\left(\frac{\tau}{m(r)}\right) d \tau-\frac{e^{2}}{4 \pi t_{0}} \psi^{*} \frac{m(r)^{1 / 2}}{r} \psi d \tau
$$

ile number of new ereryy levels protice ed by
3) bot sile of eg. (14) mst be te same, so to wak out te erergy hesels, it is sufficien to conpre le lef fond side of eq. (14). The sane $n(r)$ mbt ile new esergyenels
 effrs t $_{6}$ vacuum.

