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3 Numerical analysis and graphics

3.1 Some examples with Bessel functions

In this section we further inspect some details of m theory applied to elementary
particles. In UFT 431 we had identified Bessel functions as possible solutions
to the wave equation. Before discussing the wave equation of m theory in more
detail in the next section, we consider the suitability of Bessel functions in the
wave function context.

In Fig. 1 the Bessel function j1(x) is graphed as an example, together with
its derivative dj1(x)/dx and its integral

∫
j1(x)dx. Differentiation gives a sum of

other Bessel functions, integration leads to an expression with a hypergeometric
series. It is seen that all three expressions give similarly oscillating functions
with a certain phase shift.

Alternatively, we can consider the first parameter a of the Bessel function
as a variable, evaluating ja(x0), dja(x0)/da and

∫
ja(x0)da for a fixed x0 = 1.

The corresponding results are graphed in Fig. 2, indicating that increasing a
leads to functions falling asymptotically to zero.

A wave function must be normalizable:∫
ψ∗(r)ψ(r) r2dr = N (12)

for the radial coordinate r with N <∞. This is not the case for Bessel functions
and squared Bessel functions. Therefore we have to augment them by a function
dropping fast enough to zero. We define

ψ(r) := jr20 (r) exp(− r

2r0
) (13)

which gives N = 0.930 for r0 = 2. The wave function has to be normalized with
this factor:

ψ(r)→ 1√
N
ψ(r). (14)
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With this normalized wave function we can compute the expectation value of
the m function. We define m(r) as in earlier papers by

m(r) = 2− exp

(
log(2) exp(− r

r0
)

)
. (15)

Then the expectation value is∫
ψ∗(r) m(r)ψ(r)r2dr = 0.945. (16)

For demonstration we have graphed in Fig. 3 the original Bessel function for
r0 = 2, the modified wave function (13) and the integrand of the expectation
integral integral (16). It is clearly seen that the modified functions drop zo zero.
The calculation of the expectation vaule can be formulated scale invariantly, i.e.
using the true particle radius in fm does not change the result. The masses of
elementary particles will be computed in a later paper.

3.2 Some details on the wave equation

The wave equation was derived from fundamentals of ECE theory in UFT 51.
The ECE Lemma, Eq. (7.24) of UFT 51, reads:

� qaµ = Rqaµ (17)

with tetrad qaµ and scalar curvature R. The Einstein Ansatz (7.38/39) is

R = −kT (18)

where k is the Einstein constant and T is the energy-momentum scalar. In
quantum physicls we have to replace this by

kT →
(mc

~

)2
, (19)

which leads to the Proca equation (7.18) for photon mass mp:(
� +

(mpc

~

)2)
Aν = 0 (20)

where Aν are the components of the electromagnetic potential. Alternatively
to the Proca equation follows the Dirac equation (7.48) with spinors φ:(

� +
(mec

~

)2)
φ = 0 (21)

for electron mass me. Using only the space part of the d’Alembert operator

� =
1

c2
∂2

∂t2
−∇2 (22)

we obtain(
−∇2 +

(mc
~

)2)
ψ = 0 (23)

2



for the wave function ψ of a particle with mass m.
The signs in the wave equation – although seemingly a minor difference – are

very important. The solutions of the differential equation (in one dimension)

d2ψ(x)

dx2
+ κ2ψ(x) = 0 (24)

are oscillatory:

ψ(x) = k1 sin (κx) + k2 cos (κx) , (25)

while the solutions of

−d
2ψ(x)

dx2
+ κ2ψ(x) = 0 (26)

are exponential:

ψ(x) = k1 exp (−κx) + k2 exp (κx) . (27)

Obviously Eq. (23) is of type (26) and has exponential solutions. Setting the
constant k2 = 0 gives an exponentially decreasing wave function and charge den-
sity, which is physically meaningful. For spherical problems, the corresponding
radial differential equation (with spherical ∇2) is not analytically solvable. The
solutions are exponential as above in the far field limit. When the differential
equation contains a radius-dependent κ as is the case of m theory, see Eq. (6):(

−∇2 + m(r)
(mc

~

)2)
ψ = 0, (28)

then the exponential solution is augmented by oscillations similarly as in Fig. 3.

3.3 Towards a radial function for elementary particles

Eq. (28) is similar to the radial Schrödinger equation with angular momen-
tum zero. It is an eigenvalue equation for the mass m with eigenfunctions ψ.
The same solution method as for the radial Schrödinger equation should be
applicable. We solved a similar problem in UFT 260 for the so-called Partons.

In the Schrödinger equation the spherical operator ∇2 is simplified by the
function substitution

ψ(r) =
φ(r)

r
. (29)

The Schrödinger equation then reads(
d2

dr2
+ k2(r)

)
φ = 0 (30)

with the non-differential factor

k2(r) =
2m

~2

(
E − l(l + 1)~2

2mr2
− V (r)

)
. (31)
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We can use the same substitution (29) for Eq. (28). Then we have(
d2

dr2
+ k2(r)

)
φ = 0 (32)

with

k2(r) = −m(r)
(mc

~

)2
. (33)

Notice that k2(r) is negative. Solving the radial Schrödinger equation is tricky
because the boundary conditions cannot be given by defining φ and dφ/dr at
one point. Instead two function values of φ have to be given at two points so
that the solution does not diverge for large r. Non-divergence appears only for
discrete values of E, the eigenvalues. A special numerical scheme is commonly
used for the solution procedure, called Fox-Goodwin or Numerov method. This
method has been applied in UFT 260 for solving the radial equation for Partons.
The method has still to be worked out for Eqs. (32/33). We present only an
example where φ and dφ/dr have been given at r = 0 so that the standard
Runge-Kutta solver of Maxima can be applied. In Fig. 4 the functions φ(r)
and ψ(r) are graphed for certain parameters. It is seen that the solution ψ
resembles a hyperbola while φ is nearly linear. It is not clear if the application
of the Numerov method will give physical solutions because the factor k2(r) is
purely negative. These complicated numerical problems have to be solved in
future.

Figure 1: Example for Bessel function j1(x), its derivative and integral.
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Figure 2: Example for Bessel function ja(x0) for fixed x0, its derivative and
integral.

Figure 3: Bessel function, modified Bessel function and spherical integrand of
Eq. (16).
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Figure 4: Preliminary solution of Eqs. (32/33), and function m(r).
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