437 (3): Fluturing $m$ Sphe Thery
In ofer To lone a self"crastert tery of Lanb shipt, assme teat the prearial enersy is th presuce of furusimo

$$
U=-\frac{e^{2}}{4 \pi \epsilon_{0}(r+\delta r)}=-\frac{m(r)^{1 / 2} e^{2}}{4 \pi \epsilon_{0} r}-(1)
$$

 tean, $e$ is $l_{p}$ clange on te prron, $\epsilon_{0}$ is th vacumn pemintinty, ant $r \theta$ ditace sowsent $\theta$ terirn and prton.

It follows ty
Tiv, is effed as finsoring $\frac{m(r)}{(\rho)}$ fursion.

$$
\begin{gathered}
F_{m} \sim_{m}(\partial):(r)^{1 / 2}=\frac{1}{1+\frac{\delta r}{r}} \sim 1-\frac{\delta r}{r}-(3) \\
\delta(r) \ll r_{1}-(4)
\end{gathered}
$$

if and

$$
\begin{gathered}
\delta(r) \ll r,-(4) \\
\left.m(r)=1-\frac{\delta r}{r}\right)^{2} \sim 1-\frac{2 \delta r}{r}-(5) \\
\text { innetiately } d y
\end{gathered}
$$

Th Lamb slip is fiven imenately dy eq. ( 5 ) using the calculsions giver it precemg $\begin{aligned} & \text { UFT papes: } \\ & \Delta^{u} u=u(\underline{r}+\delta \underline{r})-u(\underline{r})\end{aligned}$

$$
\begin{align*}
& =u(\underline{r}+\delta r)-u(\underline{r})  \tag{6}\\
& =\delta r \cdot \underline{\nabla} u(\underline{r})+\frac{1}{2}(\underline{r} \cdot \underline{\nabla})^{2} u(r)+\cdots
\end{align*}
$$

$$
\langle\Delta U\rangle=\frac{1}{6}\left\langle\left(\delta_{r} \cdot \delta_{r}\right)+\right\rangle_{\operatorname{vac}}\left\langle\nabla^{2}\left(\frac{-e^{2}}{4 \pi \epsilon_{0} r}\right)\right\rangle
$$

in bick:

$$
\begin{equation*}
\left\langle\delta r \cdot \delta \underline{\rangle_{V a c}}=\frac{1}{2 \epsilon_{0} \pi^{2}}\left(\frac{e^{2}}{\hbar c}\right)\left(\frac{\hbar}{m_{c}}\right)^{2} / \frac{d k}{k}-(8)\right. \tag{7}
\end{equation*}
$$

were $K$ is a wavemmber.
Eq. (8) is ostarien dy assuming tet

$$
\begin{equation*}
\delta r(t)=\delta_{r}(\delta)\left(e^{\underline{-i n t}}+e^{i n t}\right) \text {. } \tag{9}
\end{equation*}
$$

and using:

$$
\begin{equation*}
m \frac{d^{2}}{d t^{2}}\left(\delta \underline{)_{K}}=-e E_{\underline{K}}\right. \tag{10}
\end{equation*}
$$

were $E_{k}$ are vacuun ele $\sqrt{r e}$ filds.
Eq. (8) divergls, but lints ale impered to peep the inegral ginte:

$$
\begin{equation*}
\langle\delta \underline{\delta r} \cdot \delta r\rangle_{\text {vac }}=\frac{1}{2 \epsilon_{0} \pi^{j}}\left(\frac{e^{2}}{\hbar_{c}}\right)\left(\frac{\hbar}{m c}\right)^{2} \int_{\pi / a_{0}}^{m c / \hbar} \frac{d k}{k}-(11) \tag{12}
\end{equation*}
$$

leve $a_{0}$ is th Bohr ratuo. So

$$
\left\langle\delta \underline{\delta} \cdot \delta_{r}\right\rangle_{\text {vac }} \sim \frac{1}{2 \epsilon_{0} \pi}\left(\frac{e^{2}}{\hbar_{c}}\right)\left(\frac{\hbar}{m c}\right)^{2} \log _{e}\left(\frac{4 \epsilon_{0} t_{c}}{e^{2}}\right)
$$

Iin expessian is rabe up enirely of
fundonentu cosstans.
To camlée te calciesta of $\theta$ lamb shef

$$
\begin{aligned}
\left\langle\cdot \nabla^{2}\left(\frac{-e^{2}}{4 \pi \epsilon_{0} r}\right)\right\rangle & =\frac{-e^{2}}{4 \pi \epsilon} f_{0} d r \psi^{*}(\underline{r}) \nabla^{2}\left(\frac{1}{r}\right) \psi(\underline{r}) \\
& =\frac{e^{2}}{\epsilon_{0}}|\psi(0)|^{2}-(13)
\end{aligned}
$$

because:

$$
\begin{aligned}
& \left.=\frac{t}{\epsilon_{0}} \right\rvert\, 111 \\
& \nabla^{2}\left(\frac{1}{s}\right)=-4 \pi S(r)-(14) \\
& \text { want ion of } H:
\end{aligned}
$$

Far 25 warefunsion of $H$ : 2 -(15)

$$
\begin{aligned}
& \text { Far } 2 S \text { ware fusion of } \\
& \left\langle\nabla^{2}\left(-\frac{e^{2}}{4 \pi \epsilon_{0} r}\right)\right\rangle=\frac{e^{2}}{\epsilon_{0}}\left|\psi_{2 s}(0)\right|^{2}=\frac{e^{2}}{8 \pi \epsilon_{0} a_{0}^{3}}
\end{aligned}
$$

So t Land ship \& \& 25 state is:

$$
\begin{align*}
& \langle\Delta \bar{u}\rangle=\frac{4}{3} \frac{e^{2}}{4 \pi \epsilon_{0}} \frac{e^{2}}{4 \pi \epsilon_{0} \hbar_{c}}\left(\frac{\ell_{2}}{m c}\right)^{2} \frac{1}{8 \pi a_{0}^{3}} \log _{e} \frac{4_{t} \epsilon_{0} Z_{c}}{e^{2}}  \tag{16}\\
& =\frac{\alpha^{5} m c^{2}}{6 \pi} \log _{e} \frac{1}{\pi \alpha}
\end{align*}
$$

Far te $2 \rho$ stale: $\langle\Delta u\rangle=0-(17)$
$\delta_{r}=r\left(\frac{1}{m(r)^{1 / 2}}-1\right)-(18)$
So $\langle\delta r \cdot \delta r\rangle=\left\langle r \cdot r\left(\frac{1}{m(r)^{1 / 2}}-1\right)^{2}\right\rangle-(19)$
Assure teat:

$$
\begin{aligned}
& \left\langle I \cdot r\left(\frac{1}{m(r)^{1 / 2}}-1\right)^{2}\right\rangle \\
& =\langle r \cdot r\rangle\left\langle\left(\frac{1}{m(r)^{1 / 2}}-1\right)^{2}\right\rangle-(20)
\end{aligned}
$$

Frm UFT 340

$$
\begin{align*}
& \langle r\rangle(2 s)=6 a_{0}  \tag{21}\\
& \langle r\rangle(35)=\frac{27}{2} a_{0},  \tag{22}\\
& \langle r\rangle(15)=\frac{3}{2} a_{0} \tag{23}
\end{align*}
$$

were $a_{0}$ "te bokr radino. Rerefere in in
keng

$$
\frac{\left\langle-\frac{\delta r}{} \cdot \delta r\right\rangle_{v a c}=36 a_{0}^{2}\left\langle\left(\frac{1}{n(r)^{1 / 2}}-1\right)^{2}\right\rangle}{-(24)}
$$

Frmeq. (12):

$$
\begin{aligned}
&\langle\delta \underline{r} \cdot \delta r\rangle_{v a c}=\frac{1}{2 \epsilon_{0} \pi^{2}} \frac{e^{2} \hat{t}^{2} \left\lvert\, \log _{e}\left(\frac{4 \in \cdot \hbar_{c}}{e^{2}}\right)\right.}{}=36 a_{0}^{2}\left\langle\left(\frac{1}{\left.m(r)^{1 / 2}-1\right)}\right\rangle\right. \\
&-(25)
\end{aligned}
$$

7) i.e.:

$$
\begin{align*}
\langle\delta r \cdot \delta r\rangle_{v a c} & =\frac{2 \alpha}{\pi}\left(\frac{\hbar}{m c}\right)^{2} \log _{e} \frac{1}{\pi \alpha}  \tag{26}\\
& =36 a_{0}^{2}\left\langle\left(\frac{1}{n(r)^{1 / 2}}-1\right)^{2}\right\rangle \tag{28}
\end{align*}
$$

Terefare:

$$
\begin{aligned}
& \text { Therefle: } 2.623 \times 10^{-27}=9.80 \times 10^{-20}\left\langle\left(\frac{1}{n(r)^{1 / 2}}\right)^{-1}\right\rangle^{-128)} \\
& \text { i.e. }\left\langle\left(\frac{1}{n(r)^{1 / 2}-1}\right\rangle=2.677 \times 10^{-8}\right\rangle-(29)
\end{aligned}
$$

and fun caverianl Last shg (kay

$$
\langle\delta \underline{\delta} \cdot \delta \underline{r}\rangle_{\sqrt{a c}}=2.623 \times 10^{-27} m^{3}-(36)
$$

Bot sus. (29) and (30) ane unversal verubs. The fary lest Qup is a Lamb shef is sone stare bu not ic des "̈ due to $Q$ waikefinsian. usits $Q_{i}$ nethod, $n$ leay can explain if Coms shift by conbin' in Eoy and kcun fhrwsia Theny. Fron eq. $(2): \frac{r}{\frac{r}{m(r)^{1 / 2}}=r+\delta r}-(31)$

