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3 Graphical examples and application to quan-
tum chemistry

3.1 Examples of wave functions in m theory

First we present some graphics of analytical solutions of the Schrödinger equa-
tion. One basic system often used for describing quantum effects is the harmonic
oscillator. It exhibits energy levels and time eigenfunctions as given by Eqs. (11)
and (12). The radial eigenfunctions are complicated functions of Hermite poly-
nomials and given in note 436(1). A remarkable property is the existence of
a zero point energy E = 1

2~ω for the lowest quantum state n = 0. The eigen
functions of the harmonic oscillator are graphed in Fig. 1 for the lowest states.
They are even and odd functions around the centre r = 0. In case of m theory
the radial coordinate is replaced by

r → r

m(r)1/2
. (38)

This leads to sharp edges and stretching in the eigenstates at r = 0 as can be
seen from Fig.2. The symmetry or antisymmetry remains intact.

The anharmonic oscillator is much more complicated to handle but an ana-
lytical solution for the Schrödinger equation is known, see note 436(2). There is
an asymmetry factor x ∝ 1/ω in energies and eigenfunctions. The asymmetric
potential of this oscillator type leads to asymmetric eigenstates as graphed in
Fig. 3. The eigenstates depend on generalized Laguerre polynomials. Using the
transformation (38) to m space, a similar effect as for the harmonic oscillator
appears: The functions have wide jumps or get sharp edges at the origin (Fig.
4). This is a consequence of the m function which is effective near to the origin.
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3.2 m theory in Quantum Chemistry

We have developed an example of m space effects impacting Quantum Chem-
istry. The computer code used is based on an ab initio method, the Local
Density Approximation (LDA), and solves either the Schrödinger equation (non-
relativistic case) or the Dirac equation (relativistic case) or the squared Dirac
equation (so-called scalar-relativistic calculation)1. Spin-polarized calculations
can be performed with the first two cases.

In the LDA method the equations for the N-electron system are reduced to
effective 1-electron equations for each electron (i.e. orbital occupation). The
effective potential to be used is (in atomic units)

Ueff(r) = Ucore(r) + Uel(r) + Uxc(r) (39)

with core potential

Ucore(r) = −Z/r, (40)

electron potential

Uel(r) =

∫
ρ(r′)

r− r′
dτ ′, (41)

and so-called exchange-correlation potential

Uxc(r) = Uxc[ρ(r)]. (42)

The main problem is the handling of exchange and correlation of the N-electron
system (interaction of electrons according to Pauli’s exclusion principle) so that
an effective 1-electron equation remains to be solved. There are several ap-
proaches to this problem but the differences cannot be seen in charge density
plots we provided as examples below.

The wave functions ψi follow as solutions of e.g. the Schrödinger equation
and the charge density is

ρ(r) =
∑
i

|ψi(r)|2 . (43)

Because the charge density enters the potential which in turn determines the
solutions of the Schrödinger equation, both computations have to be iteratively
repeated until self-consistency is reached. A similar problem was already dis-
cussed for Hydrogen bonding2 where the full ECE potential including the spin
connection was considered. In order to obtain resonant states, a similar self-
consistency cycle was proposed.

We computed the atomic charge density of a Nickel atom as an example.
Ni has 18 core electrons and 10 valence electrons in configuration 3d84s2. The
configuration can be changed e.g. to compute ionization energies for the ion
3d84s1 or spin-ordered states which play a role in the Ni solid. The relevant
quantity in such calculations is the total energy.

1H. Gollisch and L. Fritsche; ”Relativistic One-Particle Equation for Electron States of
Heavy Metals”, phys. stat. sol. (b)86, 145 (1978)

2Myron Evans, Douglas Lindstrom, Horst Eckardt; ”ECE Theory of Hydrogen Bonding”,
International Conference on Water, Hydrogen Bonding Nanomaterials and Nanomedicine;
Banja Luka, September 4, 2010
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In our example we have first graphed the total charge density concentrated
in spherical shells, 4πr2ρ, see Fig. 5. This is what can be sampled by XPS
experiments for example. The three shells of the principal quantum numbers
can be seen. For a more detailed view the valence charge density ρval alone
is shown in Fig. 6. The 3d shell, which is separated from the s electrons,
is well visible. When performing the radial coordinate transformation (38),
the charge density near to the origin is shifted to larger radii. This effect can
be observed in Fig. 6 where we have used the exponential m function with
parameter R = 5 · 10−4a0. Due to the logarithmic scale, differences near to
the origin are clearly visible. As a second modification we have graphed the

modified density ρ(r)
m(r)1/2

. Near to the lowest radial grid points, the density is

enlarged by a factor of 2. The question is if this has a remarkable effect on the
total charge which is the integral over the charge density. The integral∫

ρ(r)

m(r)1/2
dτ (44)

which gives the number of electrons in the case m(r)=1, deviates from N=28 (for
atomic nickel) only in the fifth decimal place. The differences are not visible
if the charge density of spherical shells of Fig. 5 is considered. This shows
that for quantum-chemical calculations it could be sufficient to apply m theory
a posteriori as a perturbation effect, although the density is altered significantly
near to the origin. The situation is different for nuclear physics where the
structure of the nucleus is impacted – and possibly completely determined – by
m theory.
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Figure 1: Eigenstates of the harmonic oscillator.

Figure 2: Eigenstates of the harmonic oscillator, m theory.
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Figure 3: Eigenstates of the anharmonic oscillator.

Figure 4: Eigenstates of the anharmonic oscillator, m theory.
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Figure 5: Total charge density of a Ni atom, spherical 4πr2ρ.

Figure 6: Valence charge density ρval of a Ni atom, effects of m space.
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