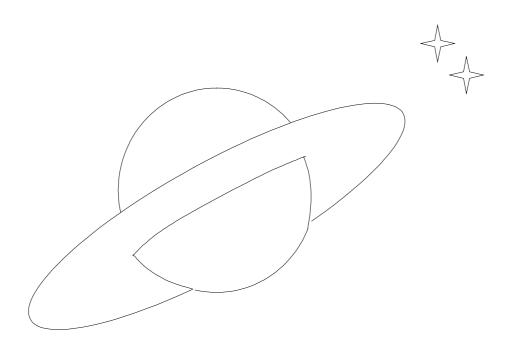
The Levitron[™] A Counter-Gravitation Device for ECE-Theory Demonstration (Revision 1)



Galactican Group

July 2010

Copyright 2010 ©

All Rights Reserved

5840 Cameron Run Terrace Suite 320 Alexandria, VA 22303

The Levitron™: A Counter-Gravitation Device for ECE-Theory Demonstration

Charles Kellum

Galactican Group, 5840 Cameron Run Terrace, Suite 320, Alex., VA, USA E-mail: c.kellum@verizon.net

ABSTRACT. The Levitron is a small, inexpensive, anti-gravity device consisting of a base magnet and a top with a magnetic ring attached. The spinning top can be made to "*float/levitate*" above the magnetic base. Although the levitron-like-device is viewed by some as a toy, it can be used to mimic anti-gravity aspects of ECE-Theory. The ECE-Theory is used to explain the dynamics of a levitron-like-device, including the spin requirement for the top. While the Levitron dynamics have defied quantitative analytical explanation, an attempt was made (circa 1995) by M.V. Berry, then of the Wills Physics Laboratory, UK. Without the benefit of ECE-Theory, Berry attempted to focus on mechanical principles to explain Levitron device operation. The ECE-Theory however, provides a quantitatively accurate description of levitron-like-device dynamics. The Levitron is a counter-gravity, ECE-Theory demonstration device. It can easily be obtained and operated by those new to and/or requiring experimental illustration of ECE-Theory. ECE-Theory is a combination of the geometric approach of Einstein for describing nature, the mathematical methods of Cartan, and the combination of both, formally introduced in 2003, by Dr. Myron W. Evans. Einstein, in his General Relativity Theory of 1915, used the Riemann geometry, in which space is curved. Cartan, in the twenties, showed that Riemann's description. Dr. Evans found the missing piece, that Einstein gravitation is described by curvature, and Cartan Torsion describes the laws of electrodynamics. The same set of equations describe both.

PACS numbers: 0420, 0490

1.0 Introduction

The Levitron [1] is a device consisting of a top (s), with an attached ring magnet (M_1), and a magnetic base (M_2). It operates on magnetic-levitation (mag-lev)/counter-gravity principles. The spinning top (i.e. the rotating M_1) can float stably above M_2 , the magnetic base. A generic configuration is illustrated in Fig. 1 below. Items M_1 (i.e. M_L) and M_2 (i.e. M_B) are magnetic devices. Figure 2 shows the precession of the top, as its spin degrades. This spin is mechanical, about the magnetization axis of the top. Thus, no rotating magnetic field results. Therefore, we replace the base component of Fig. 2, with a rotating magnetic field.

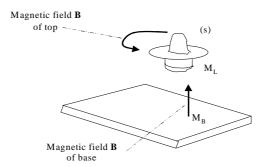


Fig. 1 Generic LEVITRON

5840 Cameron Ru Suite 320 Alexandria, VA 22303 -960-0443 ;erizon.net G2/WP03

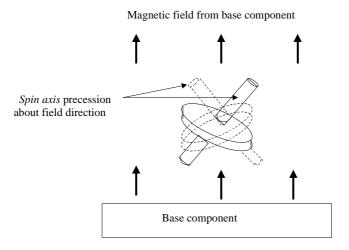


Fig. 2 Precession of Top

The Levitron dynamics has defied a quantitatively accurate explanation until that attempted in [1]. The most definitive paper on Levitron dynamics [1], examines *the mechanics* of the device as a rotating dipole, in a magnetic field. However, for our purpose here, we replace the base component of Fig. 2 with a rotating magnetic field device. Thus, the spinning magnetic top is counter-rotating with the rotating magnetic field. *The remainder of this paper focuses on the dynamics of this "levitron-like-device"*. Thus, the levitron-like-device can be viewed as a demonstration-device for ECE-Theory. The levitron-like-device employs counter-rotating magnetic fields to achieve its counter-gravity effect. It falls in the class of devices defined in [2], [3], and [4].

1.1 A Note on Counter-Rotation

We note once again that, for the levitron-like-device, M_1 is attached to the top (s), M_2 is the base. Device operation shows the top must spin to levitate stably above the base. More correctly, M_1 is required to spin.

Let:

 $\begin{array}{l} \textbf{v}_{\text{M1}} \;, \; \textbf{v}_{\text{M2}} \; \rightarrow \; \text{tangential velocities of the magnets} \\ & \text{for counter-rotation} \; (\textbf{v}_{\text{M1}} + \textbf{v}_{\text{M2}} \;) \rightarrow \; \textbf{v}_{\text{r}} \; \text{relative velocity.} \end{array}$

If $v_{M2} = 0$, then we have the old Levitron case. For levitation, v_r must be positive. Thus, one argues the top must spin. However, it is M_1 that is required to spin, for the levitron-like-device

5840 Cameron Run Terrace Suite 320 Alexandria, VA 22303 2

case. For a levitron-like-device, the rotating magnetic field v_{M2} is required because $v_{M1} = 0$, due to the *mechanical* rotation/spinning of the top.

It is useful to note that the explanations of the Faraday disk generator [8], are similar to those of this section. The explanations of the Faraday disk (*homopolar*) generator incorporate ECE-Theory. It has been fully explained by ECE-Theory.

2.0 The Spin/Rotation Requirement

For the levitron-like-device, a spin component is needed to couple with spacetime torsion, to achieve spin-connection-resonance (SCR). This spin component must exceed some β to maintain SCR and stability. Stated more precisely, from the above discussion;

 $v_r \ge \beta \rightarrow \text{ stability of top above the base}$ $v_r < \beta \rightarrow \text{ instability of top, causing it to fall}$

If the levitron-like-device's v_{M1} spin/rotation component is less than β , the top falls away along a geodesic path induced by the anti-gravity condition caused by the interaction of the levitron-like-device's ring magnet (M₁), and magnetic base (M₂). This factor is exploited as a propulsion system concept in [3].

2.1 Quantitative Analysis Using ECE-Theory Starting with the ECE Poisson equation:

$$\nabla \cdot (\nabla \phi + \omega \phi) = -\rho/\epsilon_0$$

$$\nabla^2 \phi + \omega \cdot \nabla \phi + (\nabla \cdot \omega) \phi = -\rho/\epsilon_0$$
9.6 of [5]

From section 4.3 of [3], we have the following;

$$(\nabla \boldsymbol{\mu}_{1} (t) \bullet \boldsymbol{B}_{1} (r) + \nabla \boldsymbol{\mu}_{2} (t) \bullet \boldsymbol{B}_{2} (r)) = \boldsymbol{\Phi}_{\lambda}$$

From [6] we have the following resonance equation;

 $\begin{array}{rcl} d^{2} \varPhi / dr^{2} + (1 / r - \omega_{\text{int}}) d \varPhi / dr - (1 / r^{2} + \omega_{\text{int}} / r) \varPhi &= -\rho / \epsilon_{0} \\ & \text{Where; } \omega_{\text{int}} \rightarrow & \text{the interaction spin connection} \end{array} \qquad 14.32 \text{ of [6]}$

From Coulombs Law $\nabla \cdot \mathbf{E} = \rho / \varepsilon_0$, one also has $\mathbf{E} = \nabla \boldsymbol{\Phi}$. Using $\boldsymbol{\Phi}_{\lambda}$ one has the following;

 $\nabla^2 \Phi_{\lambda} = \rho / \epsilon_0$ (where Φ_{λ} is the driving function)

The driving function $\boldsymbol{\Phi}_{\lambda}$ determines the degree of induced curvature $\boldsymbol{F}(\boldsymbol{\mu}_{i}, \boldsymbol{B}_{i})$. Let;

$$(\nabla \boldsymbol{\mu}_{1} (t) \bullet \boldsymbol{B}_{1} (r) + \nabla \boldsymbol{\mu}_{2} (t) \bullet \boldsymbol{B}_{2} (r)) = \boldsymbol{\Phi}_{\lambda}$$

$$\nabla (\boldsymbol{\mu}_{1} (t) \bullet \boldsymbol{B}_{1} (r)) + \nabla (\boldsymbol{\mu}_{2} (t) \bullet \boldsymbol{B}_{2} (r)) =$$

$$M_{1} (r) + M_{2} (r) =$$

$$(1)$$

$$d\Phi_{\lambda}/dr = dM_{1}/dr + dM_{2}/dr$$
⁽²⁾

$$d^{2} \boldsymbol{\Phi}_{\lambda} / dr^{2} = d^{2} M_{1} / dr^{2} + d^{2} M_{2} / dr^{2}$$
(3)

substituting in 14.32 of [6], one has the following;

 $- \rho / \epsilon_{0} = (d^{2}M_{1}/dr^{2} + d^{2}M_{2}/dr^{2}) + (1/r - \omega_{int}) (dM_{1}/dr + dM_{2}/dr) - (1/r^{2} - \omega_{int}/r) (M_{1}(r) + M_{2}(r)) (4)$ 5840 Cameron Run Terrace 4 Phone; 703-960-0443 Suite 320 c.kellum@verizon.net Alexandria, VA 22303 G2/WP03

$$-\rho/\epsilon_{0} = d^{2}M_{1}/dr^{2} + d^{2}M_{2}/dr^{2} + dM_{1}/rdr - \omega_{int} dM_{1}/dr + dM_{2}/rdr - \omega_{int} dM_{2}/dr - M_{1}/r^{2} - M_{1}\omega_{int}/r - M_{2}/r^{2} - \omega_{int}M_{2}/r$$
(5)

From section 4.1 of [3], we use the expression derived for H, the geodesic-fall path velocity of a vehicle;

$$M_1 M_2 / r^2 \approx - K T_{\mu}$$

We then have the following;

$$M_{1} \approx -\mathbf{r}^{2} K T_{\mu\nu} / M_{2}$$

$$dM_{1}/dr \approx -\mathbf{r} K T_{\mu\nu} / 2M_{2}$$

$$d^{2}M_{1}/dr^{2} \approx -K T_{\mu\nu} / 2M_{2}$$
substituting into eq. (5)

after some algebraic simplification, one has the following;

$$d^{2}M_{2}/dr^{2} + (1/r - \omega_{int}) dM_{2}/dr + \omega_{int} K T_{\mu\nu} (r+2) / 2M_{2} - (M_{2} + r M_{2}\omega_{int}) / r^{2} = -\rho/\epsilon_{0}$$

$$d^{2}M_{2}/dr^{2} + (1/r - \omega_{int}) dM_{2}/dr - (1 + r \omega_{int}) M_{2}/r^{2} = -\rho/\epsilon_{0} + Constant$$
(6)

Equation (6) is a resonance equation in M_2

An expression for a resonance equation in M_1 , can also be derived in a similar manner. Considering the ECE Poisson equation;

 $\nabla^{2}\boldsymbol{\Phi} + \boldsymbol{\omega} \bullet \nabla\boldsymbol{\Phi} + (\nabla \bullet \boldsymbol{\omega}) \boldsymbol{\Phi} = -\rho/\varepsilon_{0}$

Arguably, SCR can be achieved relative to M_1 , M_2 , or Φ . The counter-rotation of M_1 and M_2 is needed to amplify Φ via SCR. This provides the counter-gravitation effect, and is thus the reason why the magnet (M_1), must spin, if counter-gravitation is to be maintained. This is a direct consequence of ECE-Theory.

5840 Cameron Run Terrace Suite 320 Alexandria, VA 22303

3.0 Quantitative Basics

The primary objective is to show the levitron-like-device as an example of geodesic-fall. Aspects of the ECE-Theory are used to analytically define a spacetime curvature framework for discussions below. The following steps are taken;

- --- define a coordinate system for the levitron-like-device's top
- --- define a coordinate system for the levitron-like-device's base
- --- show gamma-connection between coordinate systems of base and top

Using Bianchi identities (where possible), one can derive gamma-connections between the coordinate systems of the base and the top, where;

 $(x_b, y_b, z_b, t_b) \rightarrow base; (x_p, y_p, z_p, t_p) \rightarrow top$

Using for example Cartesian coordinates for the base, and spherical coordinates for the top

From [7], the definitions in this section are used. The general framework of this exercise is taken as two coordinate systems. Generally, an affine connection exists on a smooth manifold, and connects nearby tangent spaces (e.g. coordinate systems) to that manifold. In oversimplification, a Cartan connection is a generalization of an affine connection. The coordinate systems of the top and of the base are considered. An affine connection is;

$$\boldsymbol{\varGamma}_{\lambda\nu}^{\mu} = \{ {}_{\lambda}{}^{\mu}{}_{\nu} \} = (\partial x^{\lambda} / \xi^{\alpha}) (\partial^{2} \xi^{\alpha} / \partial x^{\mu} \partial x^{\nu})$$

Where;

 $\rightarrow x_{\mu}$, x_{ν} are the (*translation* and *rotation*) coordinates of the base $\rightarrow \xi^{\alpha}$ is a free falling coordinate system

 $\Gamma_{\mu\nu}^{\ \ k}$ is a gamma connection of differential geometry

 $\Gamma_{\mu\nu}^{\ \ k} \neq \Gamma_{\nu\mu}^{\ \ k} \rightarrow$ gamma connection is not symmetric in Cartan geometry (*Cartan geometry is a generalization, of the Riemann geometry used in Relativity theory, and the above definition of the affine connection is no longer valid.*)

From the Cartan geometry [9], the antisymetric connection defines spacetime torsion, which can be represented by the torsion tensor ($T^{\lambda}_{\mu\nu}$) where;

$$\mathsf{T}^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{\mu\nu} - \Gamma^{\lambda}_{\mu\nu}$$

 $T^{\lambda}_{\mu\nu} = q^{\lambda}_{a} T^{a}_{\mu\nu} \rightarrow \text{torsion tensor (where q is a tetrad/frame-field)}$

At this point we consider some of the primary operational details of the levitron-like-device, in the context of the ECE-Theory. With the discussions of this section, the result should be a quantitatively accurate description of the levitron-like-device's dynamics.

5840 Cameron Run Terrace Suite 320 Alexandria, VA 22303

3.1 Aspects from Differential Geometry

To begin, we take the conceptual approach of [9], and [10] and set up a basis for the levitron-like-device's top, and a basis for the levitron-like-device's base. We then take the following steps;

- -- define covariant derivatives for a vector in the top's vector space
- -- define covariant derivatives for a vector in the base's vector space
- -- take commutator of the covariant derivatives
- (2 torsion tensors should result, considering eq. 9 of [11])

Let:

$$(\mathbf{x}_{b}, \mathbf{y}_{b}, \mathbf{z}_{b}, \mathbf{t}_{b}) = \mathcal{V}^{b} \rightarrow \text{base};$$
 $(\mathbf{x}_{z}, \mathbf{y}_{z}, \mathbf{z}_{z}, \mathbf{t}_{z}) = \mathcal{V}^{z} \rightarrow \text{top}$

be base vectors for the coordinate systems of the device's base and top, respectively.

Since a vector is a tensor of rank 1, the covariant derivatives of \mathcal{V}^{b} and \mathcal{V}^{z} are;

$$\mathsf{D}_{\mu}\mathcal{V}^{\mathsf{b}} = \partial_{\mu}\mathcal{V}^{\mathsf{b}} + \Gamma_{\mu\theta}{}^{\mathsf{b}}\mathcal{V}^{\theta}$$

$$\mathsf{D}_{\mu}\mathcal{V}^{z} = \partial_{\mu}\mathcal{V}^{z} + \Gamma_{\mu\theta}{}^{z}\mathcal{V}^{\theta}$$

As the commutator of covariant derivatives operates on vectors \mathcal{P}^{b} and \mathcal{P}^{z} we have the following;

$$[D_{\mu}, D_{\nu}] \mathcal{V}^{b} = R^{b}_{\sigma\mu\nu} \mathcal{V}^{\sigma} - T^{\kappa}_{\mu\nu} D_{\kappa} \mathcal{V}^{b} \text{ and } [D_{\mu}, D_{\nu}] \mathcal{V}^{z} = R^{z}_{\sigma\mu\nu} \mathcal{V}^{\sigma} - T^{\kappa}_{\mu\nu} D_{\kappa} \mathcal{V}^{z}$$

Substituting $D_{\mu}\mathcal{P}^{b}$ and $D_{\mu}\mathcal{P}^{z}$ in the expressions for $[D_{\mu}, D_{\nu}]\mathcal{P}^{b}$ and $[D_{\mu}, D_{\nu}]\mathcal{P}^{z}$ respectively, yields the following 2 torsion tensors;

 $T_{\mu b}^{\ \ \theta} = q^{\ \theta}_{\ a} T^{\ a}_{\ \mu b} \rightarrow \text{torsion tensor (from [9]) for the device's base}$ $T_{\mu z}^{\ \ \theta} = q^{\ \theta}_{\ a} T^{\ a}_{\ \mu z} \rightarrow \text{torsion tensor (from [9]) for the device's top}$ (where: (q) --- is a tetrad/frame-field, (a) --- is the index of the tangent space

Realizing that the device's anti-gravity effect is enabled by induced curvature of spacetime, the interaction of the magnetic fields of its base-component and its top (i.e. the magnetic ring around its top), should be considered. One can replace the connection

coefficients Γ with the interactive spin connection ω_{int} which (*simplifying indices*) results in the following basis vectors;

$$D_{\mu}\mathcal{V}^{b} = \partial_{\mu}\mathcal{V}^{b} + \omega_{int}\mathcal{V}^{b}$$
$$D_{\mu}\mathcal{V}^{z} = \partial_{\mu}\mathcal{V}^{z} + \omega_{int}\mathcal{V}^{z}$$

Under ECE-Theory & technology, a primary method for achieving counter-gravity effects is to use the electric field to induce a Newtonian force of sufficient magnitude, and in the opposite direction of gravitational forces. We define:

5840 Cameron Run Terrace Suite 320 Alexandria, VA 22303

Levitron-like-device Dynamics An ECE-Theory Demonstration

 $\omega_{\text{int}} \rightarrow \,$ the interactive spin connection between the device's base & top $\Phi \rightarrow \,$ the spacetime electric potential energy

The electric field can be defined as ;

$$\mathsf{E} = -(\nabla + \boldsymbol{\omega})\boldsymbol{\varphi}$$

The ECE Poisson equation is:

$$\nabla^{2} \boldsymbol{\Phi} + \boldsymbol{\omega} \bullet \nabla \boldsymbol{\Phi} + (\nabla \bullet \boldsymbol{\omega}) \boldsymbol{\Phi} = -\rho/\epsilon_{0}$$

this leads to;

$$d^{2} \varphi / dr^{2} + (1 / r - \omega_{int}) d\varphi / dr - (1 / r^{2} + \omega_{int} / r) \varphi = -\rho / \varepsilon_{0}$$
 14.32 of [6] which is a resonance equation in φ .

In section 2.0, of the main document, an expression for ϕ is derived.

3.2. Generic Counter-Rotation

For the levitron-like-device case, M_1 is attached to the top (s), M_2 is the base. A generalization of this concept is an object (e.g. the device's top) spinning between the M_1 and M_2 magnetic sources. If the object is magnetized (i.e. M_3), one has M_3 rotating relative to M_1 , and M_3 rotating relative to M_2 simultaneously. However, M_1 and M_2 are the actual counterrotating magnetic fields. The M_3 rotation is *mechanical* about its magnetization axis and no rotating magnetic field results. Thus, counter-rotation of M_3 and M_1 , and of M_3 and M_2 is still realized. This results in levitation of the object. Analytically, from section 1.1 above, where;

 v_{M1} , $v_{M2} \rightarrow$ tangential velocities of the M₁ and M₂ sources' magnetic fields $v_{M3} \rightarrow$ spin velocity of the object's magnetic field

If $v_{M1} = v_{M2} > 0$, and $v_{M3} = 0$, then v_r (from sec. 1.1) is positive, and anti-gravity regions are produced between (counter-rotating) M_3 and M_1 , and between (counter-rotating) M_3 and M_2 , causing the object to levitate.

5840 Cameron Run Terrace Suite 320 Alexandria, VA 22303

4.0 Some (levitron-like-device) Operational Details

In this section, examining the force on the top, a gravitation (i.e. mechanical) problem and an electromagnetic problem must be solved. Defining Φ_{top} as the scalar potential energy of the top, it is shown (from [1]) that equilibrium is achieved if $\nabla \Phi_{top} = 0$. If $\partial^2 \Phi_{top} / \partial z^2 > 0$, vertical stability is achieved. Horizontal stability is achieved when $\partial^2 \Phi_{top} / \partial x \partial y > 0$. Considering the field equations of the ECE-Theory, we can write them in a simplified Einsteinlike form from [7];

$$\begin{aligned} \mathsf{G}_{\mu\nu} &= -\mathsf{K} \,\mathsf{T}_{\mu\nu} + \,\ell\, \mathsf{T}^{\lambda}_{\ \mu\nu} \\ \text{where; --- the torsion/spin } \mathsf{T}^{\lambda}_{\ \mu\nu} \text{ is accounted for in the ECE-Theory} \\ & --- \,\mathsf{K} \text{ and } \ell \text{ are constants} \\ & --- \,\mathsf{T}_{\mu\nu} \text{ is the energy-momentum density} \end{aligned}$$

If;

 $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} Rg_{\mu\nu}$, with Ricci tensor $R_{\mu\nu}$ and metric tensor $g_{\mu\nu}$ symmetric (as defined in the Einstein-Theory)

Then (by ECE-Theory);

 $T^{\lambda}_{\mu\nu}$ is asymmetric, representing spin. We then have equivalencies;

$$\mathbf{F} \approx \mathbf{G}_{\mu\nu} \rightarrow \ell T^{\lambda}_{\mu\nu} \approx \nabla \mathbf{\mu} (\mathbf{t}) \cdot \mathbf{B} (\mathbf{r}) = \mathbf{\Phi}_{\lambda}$$

Where Φ is the scalar potential due to counter-rotation of M_1 and M_2 . The rotation of M_1 is a parameter for a driving function (Φ_{λ}), to amplify Φ . The magnitude of M_1 and its rotation (v_{M1}) determine if SCR is achieved.

Thus, the spin and magnitude of M_1 can be independently adjusted to achieve maximum SCR. Therefor, spin, $|\mathbf{B}(r)|$, and curvature are related. QED

The greater the spin and/or the greater the **B** field strength, the greater the induced curvature caused by these conditions. The top's spin acts as a *driving function* to amplify Φ (the scalar potential), and thus enhance counter-gravitation between the top & base, at resonance. Going back to equation (1);

$$(\nabla \boldsymbol{\mu}_{1} (t) \bullet \boldsymbol{B}_{1} (r) + \nabla \boldsymbol{\mu}_{2} (t) \bullet \boldsymbol{B}_{2} (r)) = \boldsymbol{\Phi}_{\lambda}$$
(1)

Adding rotation vectors gives maximum relative rotation, and implies the rotating magnets are *counter-rotating*. Obviously, if the magnets (M_1 and M_2) are rotating in the same direction, the vectors (v_{M1} , v_{M2}) must be subtracted, thus minimizing the rotation effect, *and consequentially any counter-gravitation effect*. In the case of the basic levitron-like-device, μ_1 (t) = 0. Thus, Φ_{λ} is derived solely from the rotation (v_{M2}) of M_2 (the rotating magnetic field of the base).

4.1 Vector Potential \mathbf{A}_{λ}

With the scalar potential $\boldsymbol{\Phi}_{\lambda}$ defined, the vector potential \boldsymbol{A}_{λ} is now derived. Using the ECE field equations from [7], one can define a curvature-based analysis of a levitron-like-device. Focusing on *functional equivalencies* of \boldsymbol{F} and $\boldsymbol{G}_{\mu\nu}$ we have

 $\int F dq_i = \Delta \Phi_{top}$; where Φ_{top} is the potential energy of the top

5840 Cameron Run Terrace Suite 320 Alexandria, VA 22303

From [1], the forces **F** on the device's top (*gravitational and magnetic*) can be defined as follows;

 $F = -mge_z + \nabla \mu (t) \cdot B (r) ;$ where: $\mu (t)$ is the top's vector moment (*the top considered as a magnetic dipole*) $\mu (t) \times B (r)$ is the magnetic torque

Equilibrium is achieved if $\nabla \Phi_{top} = 0$. If $\partial^2 \Phi_{top} / \partial z^2 > 0$, vertical stability is achieved. Horizontal stability is achieved when $\partial^2 \Phi_{top} / \partial x \partial y > 0$. As discussed above, using the field equations of the ECE-Theory, we can write from the simplified Einstein-like form;

$$\mathbf{G}_{\mu\nu} = -\mathbf{K} \mathbf{T}_{\mu\nu} + \ell \mathbf{T}^{\lambda}_{\mu\nu}$$
$$\mathbf{F} \approx \mathbf{G}_{\mu\nu} \rightarrow \ell \mathbf{T}^{\lambda}_{\mu\nu} \approx \nabla \mathbf{\mu} (\mathbf{t}) \cdot \mathbf{B} (\mathbf{r})$$

Thus, spin, | B (r) |, and curvature are related. QED

The greater the spin and/or the greater the **B** field strength, the greater the induced curvature that causes these conditions. The top's spin acts as a *driving function* to amplify Φ (the scalar potential), and thus enhance counter-gravitation between the top & base, at resonance. This spin connection resonance (SCR) is defined in [6] thru [8]. As shown above, it too is needed to counter $G_{\mu\nu}$. References [6], [10], and [14] also provide insight as to which kind of resonances can be expected. The induced curvature counters gravitation, in this levitron-like-device case. Changes in spin, due to friction and other mechanical forces, reduce induced curvature. This causes instability in the device, resulting in the device's top falling away form its equilibrium position above the device's base. The observed behavior of the device conforms to this analysis, and the analysis given in [1].

4.1.1 Derivation of A_{λ} Using ECE-Theory

In the above discussion of section 4, the old Einstein Equation $G_{\mu\nu}$ was used. While this is obsolete under the new ECE-Theory, it illustrates that the new ECE-Theory accommodates the Einstein Equation, as a special case of the more general case, under the Cartan Geometry base of the ECE-Theory. This illustration might be useful to those engineers unfamiliar with (or new to) ECE-Theory. Also, as shown below in this section, and section 5.0, use of ECE-Theory greatly simplifies the process for design & analysis of electromagnetic devices. This process simply involves derivation of the vector potential (**A**) from the force expression (**F**) of a device. With (**A**) defined, the angular momentum (**L**) is derived [16]. Finally, the momentum representations of the "*ECE-Field Equations of Dynamics*" from [15] are used to derive the equations-of-motion. For the levitron-like-device case, the torque on the device's top is used to illustrate this analysis process.

Considering the magnetic torque on the device's top, one can start with the following magnetic force expression;

$$F_{mag} = \mu_1(t) X B_1(r) + \mu_2(t) X B_2(r)$$

and the gravitational (i.e. mechanical) force $\mathbf{F}_{grv} = mg\mathbf{z}$, the total force is obviously given as

5840 Cameron Run Terrace Suite 320 Alexandria, VA 22303

Levitron-like-device Dynamics An ECE-Theory Demonstration

$$\mathbf{F}_{tot} = \mathbf{F}_{grv} + \mathbf{F}_{mag}$$

This expression can be used to derive the vector potential. From Schrodinger's theory of quantum mechanics, the relation between the potential energy **A** of an object moving under the force $\mathbf{F}(q_i)$ is defined as;

$$\mathbf{F}(\mathbf{q}_i) = \partial \mathbf{A} / \partial \mathbf{q}_i$$

Integrating, the expression for the vector potential is;

$$\int F dq_i = A$$

Thus \mathbf{A}_{λ} can obviously be defined as:

$$\int \mathbf{F}_{tot} d\mathbf{q}_i = \mathbf{A}_{\lambda}$$

With the force, the scalar potential, and the vector potential defined, the *equations of motion* (i.e. momentum, spacetime torsion, torque) can be derived using the ECE force equations from the ECE-Theory Engineering Model [15]. For angular momentum **L**, the following is used;

$$\mathbf{L} = (\nabla X \mathbf{A}_{\lambda} - \boldsymbol{\omega} X \mathbf{A}_{\lambda})$$

The torque \boldsymbol{T} is defined as;

$$T = \partial L / \partial t - \mu X L$$

Using the Torsional Force Law of [15];

$$T_{\mu\nu}^{\lambda} = F/E_0$$
 E_0 is the rest energy>

The field equations are defined as follows, again from [15];

$$\mathbf{E} = -\nabla \boldsymbol{\varphi} - \partial \mathbf{A}_{\lambda} / \partial \mathbf{t} + \boldsymbol{\omega}_{\mathrm{E}}$$
$$\mathbf{B} = \nabla X \mathbf{A}_{\lambda} + \boldsymbol{\omega}_{\mathrm{B}}$$

The ECE-Theory thus provides a quantitatively accurate description of the dynamics of the levitron-like-device.

4.2 An Application Extension

A propulsion concept can utilize induced spacetime curvature, similar to the levitron-likedevice's anti-gravity process. Thus the device's *instability-behavior* (i.e. the top's *fall* away from the base, along the magnetically induced geodesic path) is similar to the fall of a vehicle along such a magnetically induced geodesic path. This fall could constitute vehicular propulsion. However, said vehicle's fall along a geodesic path can be controlled, and *not be a random instability condition*. The parameters governing the instabilities exhibited by the device can be

5840 Cameron Run Terrace Suite 320 Alexandria, VA 22303

properly controlled to provide a command & control method for such a propulsion process. Overall, the levitron-like-device (sometimes referred to as a cross-field device) illustrates an application of induced spacetime curvature. *It should be clear that magnetic forces are <u>not</u> <u>used "directly"</u> to drive the vehicle.*

5.0 Application of ECE Antisymmetry Laws

To simplify this analytical process of section 4, the new ECE Antisymmetry laws can be applied. For simplicity, we can concentrate on the electromagnetic portion of the force equation defined in section 4, above.

Given;

$$\begin{aligned} \mathbf{F}_{mag} &= \mathbf{\mu}_1(t) \ X \ \mathbf{B}_1(r) \ + \ \mathbf{\mu}_2(t) \ X \ \mathbf{B}_2(r) \ \text{ and } \ \int \mathbf{F} \ d\mathbf{q}_i \ = \ \mathbf{A} \end{aligned} \\ \begin{aligned} & \text{Let,} \\ & \mathbf{\mu}_1(t) \ X \ \mathbf{B}_1(r) \ = \ \zeta_1 \ \longrightarrow \ \text{the magnetic torque due to } \mathbf{M}_1 \ \text{rotation} \end{aligned}$$

Next, the covariant derivative of ζ_1 in the field of M_2 is defined. Considering the covariant derivative of ζ_1 at a point *p* (in the field of M_2) we have;

$$\begin{aligned} \boldsymbol{\zeta}_{1} &= \left(\mathbf{B}_{2}^{i} \boldsymbol{\zeta}_{1}^{j} \boldsymbol{\Gamma}_{ij}^{k} + \mathbf{B}_{2}^{i} \partial \boldsymbol{\zeta}_{2}^{k} / \partial x^{i} \right) \mathbf{e}_{k} \\ &= \mathbf{B}_{2}^{i} \left(\boldsymbol{\zeta}_{1}^{j} \boldsymbol{\Gamma}_{ij}^{k} + \partial \boldsymbol{\zeta}_{2}^{k} / \partial x^{i} \right) \mathbf{e}_{k} \\ &= \mathcal{V}^{p} \end{aligned}$$

Using the notation of equations (1) thru (4) of [12], for consistency & clarity; the commutator of covariant derivatives operates on vector \mathcal{V}^{ρ} , as follows;

$$[D_{\mu}, D_{\nu}] \mathcal{V}^{\rho} = R^{\rho}_{\sigma \mu \nu} \mathcal{V}^{\rho} - T^{\lambda}_{\mu \nu} D_{\lambda} \mathcal{V}^{\rho}$$

Using equation (78) of [12], for $\mathbf{B}_1(\mathbf{r})$ and $\mathbf{B}_2(\mathbf{r})$, we have;

$$\mathbf{B}_{1} = (\nabla X \mathbf{A}_{2} - \boldsymbol{\omega} X \mathbf{A}_{2})$$
$$\mathbf{B}_{2} = (\nabla X \mathbf{A}_{1} - \boldsymbol{\omega} X \mathbf{A}_{1})$$
where;
$$\begin{cases} \mathbf{A}_{2} \text{ is the potential due to } \mathbf{B}_{2} \\ \mathbf{A}_{1} \text{ is the potential due to } \mathbf{B}_{1} \end{cases}$$

For the scalar potential we use the following;

$$\Phi_{\ell} = \mu_1(t) \cdot B_1(r) + \mu_2(t) \cdot B_2(r)$$

Substituting the driving function Φ_{ℓ} into equation (134 of [12], and equation (9.6) of [10]), leads to resonance solutions in Φ for the scalar potential. Thus, $\Phi_{\lambda} \equiv \Phi_{\ell}$, and a cross-field device is functionally & operationally equivalent to counter-rotating magnetic sources. This shows how *The Antisymmetry Laws of the ECE-Theory* can be applied to simplify the analysis process. These laws can be used to design, simulate, and optimize devices whose dynamics are describable by ECE-Theory.

5840 Cameron Run Terrace Suite 320 Alexandria, VA 22303

6.0 Conclusions

The ECE-Theory is a new unified field theory of physics & cosmology. It answers most questions remaining in cosmology, and has wide application to energy in the areas of electromagnetism and gravitation. One application, *a focus of this document*, is providing a quantitatively accurate description of *levitron-like-device* dynamics. A levitron-like-device is ideal as a mechanism to demonstrate the utility of the ECE-Theory. It is a simple magnetic device. As such, the process of utilizing the ECE-Theory to quantify the dynamics of the levitron-like-device, is straightforward and simple, as shown in this document.

7.0 Summary

. It has been shown in [2], [3], and [4] that counter-rotating magnetic fields enhance SCR, in accordance with ECE-Theory. Such devices are examples of the *counter-gravitation* and *electrical-energy generation* potential of this technology. The discussion in this paper shows the levitron-like-device could be such a device. More in-depth investigations of levitron-like-device dynamics would focus on counter-rotating magnetic fields, and on an *optimal* theoretical approach. The ECE Coulomb-Law was used in section 2, as an initial theoretical approach for explaining levitron-like-device dynamics.

The levitron-like-device demonstrates the anti-gravity aspects of ECE-Theory in a concise and straightforward manner. The SCR effects, necessary for counter-gravitation are achieved via the rotation of the magnet attached to the levitron-like-device's top, relative to the base magnet of the levitron-like-device. This is the reason why the top (more precisely, the magnet (M_1) attached to the top) is required to spin. Mechanical forces, including atmospheric friction, eventually retard the rotation to a value below that required to maintain SCR and stable anti-gravity conditions. The top then falls away, having lost the ability to couple with the torsion of spacetime, in accordance with ECE-Theory. Thus, the levitron-like-device dynamics can be fully explained, *in a quantitatively accurate manner*, by the ECE-Theory.

The levitron-like-device is a small, simple, inexpensive, readily available device that is easy to operate. It can fully demonstrate the anti-gravity aspects of the ECE-Theory. This fact should save much cost and effort that might otherwise be expended, trying to construct demonstrations of the ECE-Theory & technology. Fundamentally, the levitron-like-device should not be viewed as just a mere toy. As discussed above, the levitron-like-device is shown to demonstrate the new ECE-Theory. It is a valuable scientific tool, highlighting ECE-Theory, and pointing the way to a new era in physics & cosmology.

8.0 Acknowledgements

Invaluable discussions with Dr. Horst Eckardt, Director of the AIAS (Alpha Institute for Advanced Studies), are gratefully acknowledged. His comments and suggestions are incorporated herein. The support of Dr. Myron W. Evans, AIAS President and author of the ECE-Theory, is also gratefully acknowledged.

5840 Cameron Run Terrace Suite 320 Alexandria, VA 22303

9.0 References All AIAS (Alpha Institute for Advanced Studies) postings are available from (www.aias.us) the AIAS website.

- [1] "The Levitron[™]: An adiabatic trap for spins"
 By: M. V. Berry; H.H. Wills Physics Laboratory, UK The Royal Society London 1996
- [2] "Devices for Space-Time Resonance Based on ECE-Theory" By: Horst Eckardt AIAS posting 2008
- "Curvature-based Propulsion Laboratory-Scale Demonstration Report" By: C. Kellum ; *The Galactican Group, USA* June 2008
- [4] "An SCR Device Family for Demo & Experimentation" By: C. Kellum ; The Galactican Group, USA July 2008
- "The resonant Coulomb Law of Einstein Cartan Evans Field Theory" By: M. W. Evans, H. Eckardt, AIAS (UFT posting [63], 2007
- "Spin Connected Resonance in Counter Gravitation"
 By: H. Eckardt, M. W. Evans
 AIAS (UFT posting [68]), 2007
- [7] "The Spinning and Curving of Spacetime: The Electromagnetic & Gravitational Field in the Evans Unified Field Theory" By: M. Evans; AIAS 2005
- [8] "Spin connection resonance in the Faraday disk generator" By: M. W. Evans, H. Eckardt, F. Amador AIAS (UFT posting [107]), 2008
- "Spacetime and Geometry; An introduction to General Relativity" By: Sean M. Carroll Addison Wesley 2004; ISBN 0-8053-8732-3

- [10] "Spin Connected Resonance in Gravitational General Relativity" By: M. W. Evans; Acta. Phys. Pol. B, vol. 38, No. 6, June 2007 AIAS (UFT posting [64]), 2007
- [11] "On The Symmetry of the Connection in Relativity and ECE-Theory" By: M. W. Evans AIAS (UFT posting [122]), 2008
- [12] "Antisymmetry Constraints in the ECE Engineering Model" By; M. W. Evans, H. Eckardt, D. W. Lindstrom AIAS (UFT posting [133]), 2009
- [13] "Antisymmetry Law of Cartan Geometry; *Applications to Electromagnetism and Gravitation*" By; M. W. Evans, D. W. Lindstrom, H. Eckardt, AIAS (UFT posting [134]), 2009
- [14] "Resonant Counter Gravitation" By; M. W. Evans AIAS (UFT posting [53]), 2006
- [15] "ECE Engineering Model *The Basis for Electromagnetic and Mechanical Applications*" *Version 3.0 20.7.2009* By; Horst Eckardt AIAS, 2009
- [16] "Spin Connection Resonance in Magnetic Motors" By; Myron W. Evans, Horst Eckardt AIAS (UFT posting [74]), 2007

Notes

5840 Cameron Run Terrace Suite 320 Alexandria, VA 22303