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Physical Theory of the Levitron 

 
By Horst Eckardt (AIAS) and Charles Kellum (Galactican Group) 

1.0 Introduction 

The Levitron is an anti-gravity device. It consists of a magnetized top, and a base magnet. 
The top will levitate above the base, when the top is spinning at a proper rpm. This levitation 
property has defied quantitatively accurate description. In [1], Berry focused on mechanical 
model principles, which were dependant on the structure of the magnetic field of the base. In 
[2], the Levitron dynamics is used to demonstrate aspects of the new ECE-Theory. A general 
quantitative description of Levitron dynamics is the focus of this paper. The requirement for 
the top to spin was not rigorously explained in [1], or by conventional physics methods. This 
is addressed in [2], by the use of ECE-Theory. However, a proper numerical description of 
the Levitron will quantify the dynamics, and also analytically address the spin requirement. 

From [2], we have the illustration of a generic Levitron device, Fig. 1. The top (s) has an 
attached ring magnet (M1), and a magnetic base (M2). The spinning top (i.e. the rotating M1) 
can float stably above M2, the magnetic base. Items M1 (i.e. ML) and M2 (i.e. MB) can be 
magnetic devices other than permanent magnets. Figure 2 shows the precession of the top, 
as its spin degrades. 
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The numerical calculations, in this paper, show the Levitron can be explained in a 
straightforward manner. The dynamics of the Levitron demonstrate physical principles (such 
as levitation) which can be applied to areas of engineering, such as vehicular transport. The 
methods presented in this paper should aid in this, and related areas.  

2.0 Physical principles behind the Levitron  

Simple analytical calculation 
The Levitron or spinning top is a small rotating magnetic dipole which is held at its position by 
the magnetic field of the base component. Dipole field and base field push off one another, 
both fields have the same magnetic polarity working against each other. The top stays at that 
position where its gravity force is counteracted exactly by the magnetic repelling force. 

The physical description of the Levitron starts with definition of two magnetic moments: �� is 
the moment of the spinning top and �� is the moment of the base. The magnetic moment is 
defined as the integral over the magnetization M which is a magnetic moment density: 

� = � M��	
3�.          (1) 

This approach is valid if there is no feedback effect on the magnetization by other magnetic 
effects, i.e. the magnets are built from a “hard” magnetic material. This prerequisite is 
normally fulfilled for the Levitron. 

Next the behaviour of a magnetic dipole (with mass) in an externally given magnetic field of 
the Levitron base has to be described. The energy U of a dipole � in a magnetic field B is 

 = −� ∙  �.            (2) 

Since the Levitron base is an (extended) dipole too, we are dealing with dipoles only. The 
simplest way to describe the field of the base is by a magnetic scalar potential Φ�, see [3]. If 
we assume a homogeneous magnetization in the base magnet, Φ� depends on a surface 
integral only. In analogy to electrostatics, the magnetic field lines start perpendicular from the 
suface of the magnet. Therefore we assume a constant value of Φ��A	 at the surface. We 
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need not further consider the interior of the magnet and obtain the potential in the 
magnetization-free region as the solution of the Laplace equation: 

∇�Φ� = 0.            (3) 

The magnetic field then simply is 

� = −���ΦM,            (4) 

again in analogy to electrostatics. In cases where the dimensions of the base magnet can be 
neglected, it can be considered as a magnetic dipole like the spinning top. Denoting the 
magnetic moment of the base by ��, the scalar potential takes the simple form 

Φ���	 = ��∙ �
����           (5) 

where r is the absolute value of the coordinate vector x measured from the dipole center. 
The magnetic dipole field of this potential is 

���	 =  !
�" #$%�%∙��	&��

|�|� + )"
$ ��*��	+         (6) 

where n is a unit vector in direction of x and *(x) is the Dirac delta function. 

The potential energy of the top is 

 = −�, ∙  �           (7) 

with �, being its magnetic dipole moment. So far we have dealt with magnetic properties 
only. In order to describe the dynamics and equilibrium conditions of the top, we have to 
apply mechanics. With the top having mass m, the equation of motion is 

- ./�
.0/ = −� − -1 = �2�, ∙  �3 − -1.        (8) 

We assume that �, is not precessing, so is parallel to the earth’ gravitational force and keeps 
its direction during its path of motion, i.e. movement is in vertical direction only. Mechanical 
rotation (angular momentum) is only required to maintain the vertical alignment. The top is in 
equilibrium when 

-1 = ���� ∙  4	           (9) 
where g is the gravitational acceleration. Assuming that g is parallel to the z axis of the 
coordinate system, the last equation reduces to one dimension, giving with Eq. (6): 

-g = 6
67 �μ� ∙  B7	 = μ� 6

67 #:!
�� ∙ �:/

7� + = − $:!:;:/
��7<  .       (10) 

The z value of equilibrium then is 

z� = >− $:!:;:/
��?@

<
 .           (11) 

The magnetic moments of top and base have to have opposed signs so that the expression 
in the quartic root is positive. This simply means that both moments have to repel each other. 
In Fig. 3 some examples for the dependence of z� on �, are shown (all constants set to 
unity). For a heavier mass m, the top sinks down in equilibrium position. A larger dipole 
moment lifts it up as expected. 

A more realistic calculation 
A more elaborate calculation beyond the simple dipole approximation requires a solution for 
the magnetic vector potential A from which the magnetic field can be derived by 

� = � × B.            (12) 
Such a solution obtained by a Finite Element program is shown in Figs. 4 and 5. The 
repulsive nature of the fields can be seen nicely. This calculation was performed for a fixed 
position of the top. In order to calculate the equilibrium position the force field has to be 
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considered. This is derived from the Maxell stress tensor [4] and can be transformed to a 
surface integral. The force distribution is [5] 

DE = �
� ��� − ��	 #F0�� +  ;

 / FG�� + %         (13) 

where the index 2 refers to the object and the index 1 to the surrounding space. Please note 
that μ� and μ� here represent the magnetic permeabilities. The field quantities involved are 
the tangential and normal components of the H field outside the object, and n is the normal 
vector of the surface in outside direction. For practical purposes it is easier to refer to the 
field inside the object which leads to the force density [5] 

DE = �
� ��� − ��	 #F0�� +  /

 ; FG�� + %....         (14) 

Determining the equilibrium position would require more elaborate Finite Element 
calculations. As long as there is no precession of the top, its motion can be described by the 
center of mass and the downward motion can be simulated by a simple time discretization of 
the equation 

- H/I
H0/ = -g + f7 .          (15) 

Next we consider a spinning top with a non-vertical spin axis. In the mass point 
approximation, the top experiences a torque of strength 

K = �, ×  �.            (16) 

This is zero if �, is parallel to B as was assumed before. N effects a precession of �, around 
the direction of B. This leads to the known unstable behavior of the top. The precession 
effect can be calculated by classical mechanics. In the coordinate system of the rotating top 
the total mechanical torque is 

K0L0 = KMNO0LG − P × Q = RQ
RS + -� × 1 − P × Q       (17) 

where we have mechanical quantities of rotation axis P and angular momentum L, and x is 
the distance vector from the center of rotation to the rotating mass point. The term P × Q is 
the Euler contribution due to rotation which is not contained in Newton’s equations of motion. 
The latter are valid only for non-accelerated frames. Eq. (17) has to be translated into 
magnetic quantities to compute the behaviour of the spinning top. A magnetic dipole can be 
substituted by a ring current giving the same magnetic field as the dipole. As derived in [3], 
there is the equivalence 

� = T
�@ Q            (18) 

with q being the total charge of the substitutional current and m the mass of the dipole. The 
dipole moment is equivalent to a spin angular momentum. Thus the rotation speed of the top 
enters the calculation. With spinning frequency ω and moment of inertia θ the modulus of the 
angular momentum of the top is 

U = VW            (19) 

where the direction is governed by Eq. (17). The axis of precession P is defined by the 
external magnetic field. By comparison of (16), (17) and (18) we obtain formally 

T
�@ Q × � = −P × Q           (20) 

or 

P = X
2- � .           (21) 

This can be interpreted of P of being the gravitomagnetic field. This interpretation is beyond 
classical mechanics as well as the standard model and can only be understood within the 
context of ECE theory, see for example [7]. 
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Now we have enough information to solve the mechanical equation of motion derived from 
(17) for equilibrium of torque (K0L0 = 0): 

RQ
RS = −-� × 1 − �1

[\ Q × �.         (22) 

Most realistic calculation 
Finally we sketch the theory in cases where we have to consider an extended rigid body 
instead of a point-like spinning top. The total torque acting on the body is 

K = �
] � �′ × D]��_	 dS′]            (23) 

where the integral extends over the sum of surfaces S and x’  is the distance vector from the 
center. N determines the momentary axis of rotation. The top is rotated by an angle φ 
according to 

- ./c
.0/ = N�t	 .           (24) 

The position in space is approximately defined by 

- ./�
.0/ = �2�, ∙  �3 + -1          (25) 

where we have to calculate �, numerically from the magnetization which is dependent on the 
external field (including directional and hysteresis effects): 

�, = � M��	
3�.          (26) 

Taking the full coordinate dependence of �, and � into account, we obtain for (25): 

- ./�
.0/ = � �′2f��′	 ∙ ���′	3g 
$�′ + -1        (27) 

with V being the volume of the spinning top. The integral depends on the position x because 
M is a function of the magnetic field B(x). In total, a Finite Element Analysis has to evaluate 
the equation set 

K = �
] � �′ × D]��_	 dS′]            

- ./c
.0/ = N�t	           (28) 

- ./�
.0/ = � �′2f��, �′	 ∙ ���′	3g 
$�′ + -1         

for each time step. Then the top has to be moved to the new position x and rotated by φ 
around the axis N. 

A correct description of the problem by ECE theory requires solving the full field equations of 
dynamics where the transformation between Force F and Torsion T has to be made by 

i = E�k           (29) 

with E� being the Einstein rest energy -l� [6]. However the differences are expected to be 
very small except in cases where so-called spin connection resonance is at work. 
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Fig. 3.  Parameter study for equilibrium height z0 in dependence of top dipole moment �,. 

 

 

Fig. 4. Magnetic vector potential for a Levitron configuration with ring-like top, 2D model. 
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Fig. 5. Magnetic flux density for a Levitron configuration with ring-like top, 2D model. 
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