
The easiest way to approach this analy~is is always to calculate the acceleration firstly in 

plane polar coordinates and to realize that one term gf the resultant expression is the 

acceleration in the Cartesian system. For an observer on earth orbiting the sun, the relevant 

expression is that in the Cartesian frame, because the latter is also fixed on the earth and does 

not move with respect to the observer. In other words the observer is in his own frame of 

reference. For an observer on the sun the relevant expression is that in the plane polar system 

of coordinates, because the earth rotates with respect to the observer fixed on the sun. 

The observer on the earth experiences the centrifugal acceleration: 
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directed outwards from the earth. This is the origin of the everyday centrifugal force. The 

observer on the sun experiences the centripetal acceleration: 

directed towards the sun and towards the observer. The entire analysis rests on the spin 

connection and on the fact that in the plane polar system the frame itself is rotating and thus 

generates the spin connection by definition. 

8.4 DESCRIPTION OF ORBITS WITH THE MINKOWSKI FORCE EQUATION. 

In UFT 238 on www.aias.us an entirely new approach to orbital theory was 

taken using the Minkowski force equation. This is a course that relativity theory could have 

taken, but cosmology followed the use of Einstein's flawed geometry, a subject that became 

known as general relativity. The Minkowski fdrce equation is the Newton force equation with 

proper time '1 replacing time t. This equation was inferred by Minkowski shortly after 

Einstein's introduction of the idea of relativistic momentum. A completely general kinematic 
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theory of orbits can be developed in this way. It reduces to the Newtonian theory but never to 

the Einsteinian theory. Newtonian dynamics does not give any of the forces that are 

generated as discussed in Section 8.3 using plane polar coordinates and a system of rotating 

coordinates. It turns out that the space part of the Minkowski four force produces new and 

unexpected orbital properties that can be tested experimentally. 

The relativistic force law and relativistic orbits of the Minkowski equation can be 

derived by considering the relativistic velocity in plane polar coordinates: 
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where 'l is the proper time and 0 the Lorentz factor: 
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The relativistic acceleration is: 
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Using the Leibnitz Thoerem: 
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The velocity v appearing in the Lorentz factor is defined by the infinitesimal line element: ( 0 
'"'\ ~ ~ 'l- J - Jvr cA. f ll \ 

c.l_.s. ~ - c .I ~ L. -=- <: c:u 

where: 
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and the Lorentz factor is: 
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In plane polar coordinates: 
~ t ~ J rA» ~ - {nV 
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The radial vector in plane polar coordinates is: 

therefore the non (relativistic velocity is: J... f( J..,c _ ..e 
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For a particle of mass min an orbit, its relativistic momentum is: 

f-=. \r.-~ ~ Yk~ -ltt"\) 
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an equation which can be rearranged as follows: 



giving the Einstein energy equation: 4- ( \ 
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is the total energy and 
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The concept of Minkowski force equation uses acceleration, so this is a plausible 

new approach to all orbits. The Einstein energy equation can be derived from the 

infinitesimal line el~ent ( l\ \) ~d(d&rl)op:? as: (d,c ~ _ \ :J / J}J ~\ ~ 
\'h C- -:. Vh c.. - - a;. ~ ct ""'[) J 
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So 

Q. E. D. The relativistic linear momentum in Eq. ( \ ~ ~) is: 
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which is Eq. ( \lq), Q.E.D. The definition ofrelativistic acceleration is 
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in which: 

Therefore the Cartesian acceleration is: 
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w lch lS the expression for relativistic acceleration i 1 · n Pane po_w.r c~ordinates. 

It can be proven as follows that th 1 . . . -~ \._ 0 f\ o ) ,:f e re atlvlstl acceleraf . 

planar orbits. The general e . wn vanJshes for all 
xpresswn for relativistic C . 1. ono 1s acceleration is: 
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in which the totaxf"elativistic angular momentum is: 

Lo = ~ ) J)) ·- (_ ~oJ \ -:if ') 

It follows that: 

-

Q.E.D. 

Therefore the relativistic acceleration for all plan b" . 1 . ar or Its Is: 
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and therefore the acceleration becomes: 
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in which the relativistic total angular momentum is 
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The relativistic force law is therefore the mass m multiplied by the relativistic acceleration: 
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This equation can be transformed into a format where the relativistic force can be calculated 

from the observation of any planar orbit. The result is the relativistic generalization of Eq, 

Consider the relativistic acceleration: 
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in which the relativistic momentum is: 
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It follows that: 
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and that: ( ( ) ). ( ) lJ 'tl j ~ _L . t--
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It also follows as in UFT 238 that: 

so the required relativistic generalization ofEq. ( l dJ) is: 4 
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For the purposes of graphics and animation it is convenient to express the 

Lorenufactorin:rm~or~eant L~ J~r:t;:,):m);;:;e).- (J\9 
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inwhich~e~rentc~oris: ( ~Cy ( ~ T { ~ { ~)) )) -t/~ _(J~ 

and in which the relativistic total angular momentum is: 
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