
NEW GENERAL CONDITION FOR ANY METRIC 

 

Start with the definition of the tetrad: 
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A particular case of this is: 
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Eqs. (3) and (4) imply the tetrad postulate: 
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The special case of Eq.(2) implies that Eq. (4) becomes: 
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i.e. � is replaced by  κ , b  by λ, and ω by Г . In Eq. (8): 
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This is an important new fundamental equation for the metric: 
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Any Riemannian metric obeys Eq. (11), and in general any metric in any spacetime of any 

dimension, in general a spacetime with torsion and curvature. 

Diagonal metric 

In this case, off-diagonals are zero, so Eq. (11) produces: 
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for any µ.     Eqs (13) – (16) are true because 
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In general, in four dimensions: 
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and where the metric has diagonal and off-diagonal elements. 



 

The metric of the orbital theorem of Paper 111 obeys Eq. (11) because it is a 

diagonal metric. 

 

Computer Test. 

It is possible now to test metrics with off-diagonal elements by using computer algebra with 

Eq. (18). 

 

 


