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I. INTRODUCTION

In this volume, Sachs [1] has demonstrated, using irreducible representations of
the Einstein group, that the electromagnetic field can propagate only in curved
spacetime, implying that the electromagnetic field tensor can exist only when
there is a nonvanishing curvature tensor K- Using this theory, Sachs has shown
that the structure of electromagnetic theory is in general non-Abelian. This is the
same overall conclusion as reached in O(3) electrodynamics {2], developed in the
second chapter of this volume. In this short review, the features common to Sachs
and O(3) electrodynamics are developed. The B field of O(3) electrodynamics
is extracted from the quaternion-valued B*" equivalent in the Sachs theory; the
most general form of the vector potential is considered in both theories, the
Covariant derivatives are compared in both theories, and the possibility of
extracting energy from the vacuum is considered in both theories.
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II. THE NON-ABELIAN STRUCTURE OF THE FIELD TENSOR

The non-Abelian component of the field tensor is defined through a metric g* that
is a set of four quaternion-valued components of a 4-vector, a 4-vector each of
whose components can be represented by a2 X 2 matrix. In condensed notation:

¢ = (¢"°,q"" . ¢ 4" (1)

and the total number of components of g* is 16. The covariant and second
covariant derivatives of g* vanish [1] and the line element is given by

ds = g"(x)dx, (2)
which, in special relativity (flat spacetime), reduces to
ds = otdx, (3)

where o* is a 4-vector made up of Pauli matrices:

(BB LD

In the limit of special relativity

qpqv* _ qvqp* N O.uo.v _ CVOH ! (5)
where * denotes reversing the time component of the quaternion-valued ¢". The
most general form of the non-Abelian part of the electromagnetic field tensor 11

conformally curved spacetime is [1]
1 *
P =2 OR(g"q" — q'q") (6)

To consider magnetic flux density components of F*¥, O must have the units of
weber and R, the scalar curvature, must have units of inverse square meters. In
the flat spacetime limit, R = 0, so it is clear that the non-Abelian part of the ﬁel(\i‘
tensor, Eq. (6), vanishes in special relativity. The complete field tensor F¥

vapishes (1] in flat spacetime because the curvature tensor vanishes. These
considerations refute the Maxwell-Heaviside theory, which is developed in flat
spacetime, and show that O(3) electrodynamics is a theory of conformally curvejd
spacetime. Most generally, the Sachs theory is a closed field theory that, 1n
principle, unifies all four fields: gravitational, electromagnetic, weak, and strong.
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There exist generally covariant four-valued 4-vectors that are components of
g", and these can be used to construct the basic structure of O(3) electro-
dynamics in terms of single-valued components of the quaternion-valued metric
g". Therefore, the Sachs theory can be reduced to 0(3) electrodynamics, which
is a Yang-Mills theory [3,4]. The empirical evidence available for both the
Sachs and O(3) theories is summarized in this review, and discussed more
extensively in the individual reviews by Sachs [1] and Evans [2]. In other words,
empirical evidence is given of the instances where the Maxwell-Heaviside
theory fails and where the Sachs and O(3) electrodynamics succeed in descri-
bing empirical data from various sources. The fusion of the O(3) and Sachs
theories provides proof that the B™ field [2] is a physical field of curved
spacetime, which vanishes in flat spacetime (Maxwell-Heaviside theory [2]).

In Eq. (5), the product g"¢** is quaternion-valued and non-commutative, but
not antisymmetric in the indices p and v. The B® field and structure of O(3)
electrodynamics must be found from a special case of Eq. (5) showing that O(3)
electrodynamics is a Yang-Mills theory and also a theory of general relativity
[1]. The important conclusion reached is that Yang-Mills theories can be
derived from the irreducible representations of the Einstein group. This result is
consistent with the fact that all theories of physics must be theories of general
relativity in principle. From Eq. (1), it is possible to write four-valued, generally
covariant, components such as

ax = (4% 9y 9% 9%) (7)

which, in the limit of special relativity, reduces to

o, = (0,0,,0,0) (8)
Similarly, one can write
av = (4%, 9y: 47, 49y) — (0,0,0v,0) 9)
and use the property
qxq*y - ‘IY‘I)*( — OxOy — OyOx (10)

in the limit of special relativity. The only possibility from Egs. (7) and (9) is that

avay ~ qyay = 2iq;
| (11)

OxOy — OyOx = 2iGZ
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i ntation, this is
where ¢! is single valued. In a 2 x 2 matrix represe

1
=[98 4] -on= ] | (12)

W= b 0 10

Similarly

2w |0 —iqy —"UY:[O —1] (13)

T iq3 0 i 0

3 1 0
3 _ 9z _"GZ—[ ] (14)

"=l g 0 -1

Therefore, there exist cyclic relations with O(3) symmetry
* * _ ~:.3
axay — vy’ = 2iaz
* = 2ig, 15
@) — a4y = 2idx (15)
* 3% __ s 2
aay — axd7 = 2idy

. o
and the structure of O(3) electrodynamics [2] begins to emerge. g thgesciz:::; basi
is represented by the complex circular ((1),(2),(3)) then Egs. (15)

/

* 2) ()% s (3) ,
g — gV ay" = 2iaz ./
* . (1 16
D g ay" = 2igy’ (16)
* 1 (3% _ A (2)
qu”qg(l) _qg()qZ = 2iqy

i in the
These are cyclic relations between single-valued metrsc field .com[i(;ner;ts ét; e
non-Abelian part [Eq. (6)] of the quaternion-valued F’ W Equation (16) ¢ p

in vector form

gV x g = ig®”
4?2 x ¢ = ig"” (17)
g x gV = ig?”

jugation 1 7) and
where the asterisk denotes ordinary complex conjugation in Eq. (17)

quaternion conjugation in Eq. (16).
Equation (17) contains vector- . .
(@) ?2),(3)) [2]. Specifically, in O(3) electrodynamics, whic

tric fields in the complex basis
3 ectro h is based on the
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existence of two circularly polarized components of electromagnetic radiation

[2]

|
¢ = i +))exp (i9) (18)
1
g = ﬁ(_ii +J) exp (i) (19)
giving
¢ =k (20)
and
BB — éQRqO) 1)

Therefore, the B® field [2] is proved from a particular choice of metric using the
irreducible representations of the Einstein group [1]. It can be seen from Eq. (21)
that the B® field is the vector-valued metric field ¢ within a factor % OR. This

result proves that B> vanishes in flat spacetime, because R = 0 in flat spacetime.
If we write

1

BY = ok (22)

then Eq. (17) becomes the B cyclic theorem [2] of O(3) electrodynamics:

B x B — ;g0 g3)+

(23)
Since O(3) electrodynamics is a Yang-Mills theory [3,4], we can write
q=q"i+q%j+ ¢k (24)
from which it follows [5] that
D"(Dugq) = 0, Dg=0 (25)

Thus the first and second covariant derivatives vanish [1].
The Sachs theory [1] is able to describe parity violation and spin-spin
interactions from first principles [6] on a classical level; it can also explain
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several problems of neutrino physics, and the Pauli exclusion principle can be
derived from it classically. The quaternion form of the theory [1], which is the
basis of this review chapter, predicts small but nonzero masses for the neutrino
and photon; describes the Planck spectrum of blackbody radiation classically;
describes the Lamb shifts in the hydrogen atom with precision equivalent to
quantum electrodynamics, but without renormalization of infinities; proposes
grounds for charge quantization; predicts the lifetime of the muon state;
describes electron—muon mass splitting; predicts physical longitudinal and time-
like photons and fields; and has built-in P, C, and T violation.

To this list can now be added the advantages of O(3) over U(1) electro-
dynamics, advantages that are described in the review by Evans in Part 2 of this
three-volume set and by Evans, Jeffers, and Vigier in Part 3. In summary, by
interlocking the Sachs and O(3) theories, it becomes apparent that the advan-
tages of O(3) over U(1) are symptomatic of the fact that the electromagnetic
field vanishes in flat spacetime (special relativity), if the irreducible represen-
tations of the Einstein group are used.

III. THE COVARIANT DERIVATIVE

The covariant derivative in the Sachs theory [1] is defined by the spin-affine
connection:
D =0 +QF (26)

where /

1 "
Qu = Z (6qu + FquT)qp (27)

and where I'f is the Christoffel sythbol. The latter can be defined through the
reducible metrics g, as follows [1]:

1
Fsa = Egpx(auglu + actgpk - 6lgup) (28)

In O(3) electrodynamics, the covariant derivative on the classical level is

defined by
D, =90, — igA, = 0, — igM“A} (29)

where M“ are rotation generators [2] of the O(3) group, and where a is an internal
index of Yang-Mills theory. The complete vector potential in O(3) electro-
dynamics is defined by

A= ADe® L 4@1) L AG) ) (30)
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where ¢!, e(?), e are unit vectors of the complex circular basis ((1),(2),(3)) [2].
If we restrict our discussion to plane waves, then the vector potential is

(0)
A :A—ﬁ(n‘ +J)exp (id) 31)

where ¢ is the electromagnetic phase. Therefore, there are O(3) electrodynamics

components such as

A0 ©
AW = o). A A (i) (32)

LAV, R S

In order to reduce the covariant derivative in the Sachs theory to the O(3)
covariant derivative, the following classical equation must hold:

. 1 .
—igAy = 7 (Dya’)a; (33)

This equation can be examined component by component, giving relations such
as

. 1
—igAy) = *Z(qu(y”)A(y') (34)
where we have used
1 . (1
ay' = —iqy (35)
Using [2]
X
g= 10 (36)
we obtain
oy 1 1 i "
ixgy = ) (Dxay))qy) = — 2 (Dxay))ay’ (37)

so that the wave number « is defined by

|

(m
4Dx‘1y (38)

K=
Therefore, we can write

qugll) :qul(l) =61q'(')+Filqk('> (39)
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and the wave number becomes the following sum:

e= - LT + ) @0
Using the identities
ﬂ”:é”:é?” (41)
¢ =) = e #2)
the wave number becomes
K= ~% (%ei‘b + %e[¢) (43)

Introducing the definition (28) of the Christoffel symbol, it is possible to write

|
T, = 5811(6187.1 + 0181 — 91811)
1

25813azg|1+"' (44)
so that /
K= —Lgmazgnéi(b%*“' ' (45)
8v2
This equation is satisfied by the following choice of metric:
1 :
gn=g ¢ =82 (46)

Similarly

1 -
) = Eg'k(ozgm + 0182 — Or.812)

|
=§g1362g|2+~-- (47)

so that the wave number can be expressed as

— K 3 id
K=—ro e 48
8\/§g £12 ( )
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an equation that is satisfied by the following choice of metric:
i —i
812 =5 g =-8v2e (49)

Therefore, it is always possible to write the covariant derivative of the Sachs
theory as an O(3) covariant derivative of O(3) electrodynamics. Both types of
covariant derivative are considered on the classical level.

IV. ENERGY FROM THE VACUUM

The energy density in curved spacetime is given in the Sachs theory by the
quaternion-valued expression

Eng = AV, (50)

where A" is the quaternion-valued vector potential and Jy, is the quaternion-
valued 4-current as given by Sachs [1]. Equation (50) is an elegant and deeply
meaningful expression of the fact that electromagnetic energy density is
available from curved spacetime under all conditions; the distinction between
field and matter is lost, and the concepts of “point charge’ and “point mass” are
not present in the theory, as these two latter concepts represent infinities of the
closed-field theory developed by Sachs [1] from the irreducible representations
of the Einstein group. The accuracy of expression (50) has been tested [1] to the
precision of the Lamb shifts in the hydrogen atom without using renormalization
of infinities. The Lamb shifts can therefore be viewed as the results of
electromagnetic energy from curved spacetime.

Equation (50) is geometrically a scalar and algebraically quaternion-valued
equation [1], and it is convenient to develop it using the identity [1]

449" +q"q; = 2008} (51)
with the indices defined as
y=x=un (52)
to obtain
4"q, = cod" (53)

Using summation over repeated indices on the right-hand side, we obtain the
following result:

q"qf1 =40 (54)



In the limit of flat spacetime
9"q, — o"c, = 4op (55)

where the right-hand side is again a scalar invariant geometrically and a
quaternion algebraically.
Therefore, the energy density (50) assumes the simple form

A“Jﬁ =S 4A0.]5('50 (56)

Ap and J are magnitudes of A" and Jy.- In flat spacetime, this electromagnetic
energy density vanishes because the curvature tensor vanishes. Therefore, in the
Maxwell-Heaviside theory, there is no electromagnetic energy density from the
vacuum and the field does not propagate through flat spacetime (the vacuum of
the Maxwell-Heaviside theory) because of the absence of curvature. The B®’
field depends on the scalar curvature R in Eq. (21), and so the B® field and 0O(3)
electrodynamics are theories of conformally curved spacetime. To maximize the
electromagnetic energy density, the curvature has to be maximized, and the
maximization of curvature may be the result of the presence of a gravitating
object. In general, wherever there is curvature, there is electromagnetic energy
that may be extracted from curved spacetime using a suitable device such as a
dipole [7].

Therefore, we conclude that electromagnetic energy density exists in curved
spacetime under all conditions, and devices can be constructeq/ 18] to extract this
energy density. !

The quaternion-valued vector potential A" and the 4-current J}, both depend
directly on the curvature tensor. The electromagnetic field tensor in the Sachs
theory has the form

* * 1 * *
FI—W = allAv - aVAp + gQR(quv - qun) (57)

where the quaternion-valued vector potential is defined as

Ay = %q; J (Kpng" + q;‘K;x) dx” (58)
The most general form of the vector potential is therefore given by Eq. (58), and
if there is no curvature, the vector potential vanishes.

Similarly, the 4-current J;; depends directly on the curvature tensor ¥ [1],
and there can exist no 4-current in the Heaviside-Maxwell theory, so the
4-current cannot act as the source of the field. In the closed-field theory,

represented by the irreducible representations of the Einstein group [1], charge
and current are manifestations of curved spacetime, and can be regarded as the
results of the field. This is the viewpoint of Faraday and Maxwell rather than
that of Lorentz. It follows that there can exist a vacuum 4-current in general
relativity, and the implications of such a current are developed by Lehnert [9].
The vacuum 4-current also exists in O(3) electrodynamics, as demonstrated by
Evans and others [2,9]. The concept of vacuum 4-current is missing from the flat
spacetime of Maxwell-Heaviside theory.

In curved spacetime, both the electromagnetic and curvature 4-tensors may
have longitudinal as well as transverse components in general and the
electromagnetic field is always accompanied by a source, the 4-current Ji-In
the Maxwell-Heaviside theory, the field is assumed incorrectly to propagate
through flat spacetime without a source, a violation of both causality and
general relativity. As shown in several reviews in this three-volume set,
Maxwell-Heaviside theory and its quantized equivalent appear to work well
only under certain incorrect assumptions, and quantum electrodynamics is not a
physical theory because, as pointed out by Dirac and many others, it contains
infinities. Sachs [1] has also considered and removed the infinite self-energy of
the electron by a consideration of general relativity.

The O(3) electrodynamics developed by Evans [2], and its homomorph, the
SU(2) electrodynamics of Barrett [10], are substructures of the Sachs theory
dependent on a particular choice of metric. Both O(3) and SU(2) electro-
dynamics are Yang-Mills structures with a Wu—Yang phase factor, as discussed
by Evans and others [2,9]. Using the choice of metric (17), the electromagnetic
energy density present in the O(3) curved spacetime is given by the product

where the vector potential and 4-current are defined in the ((1),(2),(3)) basis in
terms of the unit vectors similar to those in Eq. (2), and as described elsewhere in
this three-volume set [2]. The extraction of electromagnetic energy density from
the vacuum is also possible in the Lehnert electropdynamics as described in his
review in the first chapter of this volume (i.e., here, in Part 2 of this three-volume
set). The only case where extraction of such energy is not possible is that of the
Maxwell-Heaviside theory, where there is no curvature.

The most obvious manifestation of energy from curved spacetime is
gravitation, and the unification of gravitation and electromagnetism by Sachs
[1] shows that electromagnetic energy emanates under all circumstances from
spacetime curvature. This principle has been tested to the precision of the Lamb
shifts of H as discussed already. This conclusion means that the electromagnetic
field does not emanate from a “‘point charge,” which in general relativity can be
present only when the curvature becomes infinite. The concept of “point
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charge” is therefore unphysical, and this is the basic reason for the infinite
electron self-energy in the Maxwell-Heaviside theory and the infinities of
quantum electrodynamics, a theory rejected by Einstein, Dirac, and several
other leading scientists of the twentieth century. The electromagnetic energy
density inherent in curved spacetime depends on curvature as represented by the
curvature tensor discussed in the next section. In the Einstein field equation of
general relativity, which comes from the reducible representations of the
Einstein group [l], the canonical energy momentum tensor of gravitation
depends on the Einstein curvature tensor.

Sachs [1] has succeeded in unifying the gravitational and electromagnetic
fields so that both share attributes. For example, both fields are non-Abelian
under all conditions, and both fields are their own sources. The gravitational
field carries energy that is equivalent to mass [11], and so is itself a source of
gravitation. Similarly, the electromagnetic field carries energy that is equivalent
to a 4-current, and so is itself a source of electromagnetism. These concepts are
missing entirely from the Maxwell-Heaviside theory, but are present in 0@3)
electrodynamics, as discussed elsewhere [2,10]. The Sachs theory cannot be
reduced to the Maxwell-Heaviside theory, but can be reduced, as discussed
already, to O(3) electrodynamics. The fundamental reason for this is that special
relativity is an asymptotic limit of general relativity, but one that is never
reached precisely [1]. So the Poincaré group of special relativity is not a
subgroup of the Einstein group of general relativity.

In standard Maxwell-Heaviside theory, the electromagnetic field is thought
of as propagating in a source-free region in flat spacetir/e where there is no
curvature. If, however, there is no curvature, the electrontagnetic field vanishes
in the Sachs theory [1], which is a direct result of using irreducible
representations of the Einstein group of standard general relativity. The
empirical evidence for the Sachs theory has been reviewed in this chapter
already, and this empirical evidence refutes the Maxwell-Heaviside theory. In
general relativity [11, if there is mass or charge anywhere in the universe, then
the whole of spacetime is curved, and all the laws of physics must be written in
curved spacetime, including, of course, the laws of electrodynamics. Seen in
this light, the O(3) electrodynamics of Evans [2] and the homomorphic SU(2)
electrodynamics of Barrett [12] are written correctly in conformally curved
spacetime, and are particular cases of Einstein’s general relativity as developed
by Sachs [1]. Flat spacetime as the description of the vacuum is valid only when
the whole universe is empty.

From everyday experience, it is possible to extract gravitational energy from
curved spacetime on the surface of the earth. The extraction of electromagnetic
energy must be possible if the extraction of gravitational energy is possible, and
the electromagnetic field influences the gravitational field and vice versa. The
field equations derived by Sachs [1] for electromagnetism are complicated, but
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can be reduced to the equations of O(3) electrodynamics by a given choice of
metric. The literature discusses the various ways of solving the equations of
O(Q3) electrodynamics [2,10], analytically, or using computation. In principle,
the Sachs equations are solvable by computation for any given experiment, and
such a solution would show the reciprocal influence between the electro-
magnetic and gravitational fields, leading to significant findings.

The ability of extracting electromagnetic energy density from the vacuum
depends on the use of a device such as a dipole, and this dipole can be as simple
as battery terminals, as discussed by Bearden [13]. The principle involved in
this device is that electromagnetic energy density A"J) exists in general
relativity under all circumstances, and electromagnetic 4-currents and 4-
potentials emanate form spacetime curvature. Therefore, the current in the
battery is not driven by the positive and negative terminals, but is a
manifestation of energy from curved spacetime, just as the hydrogen Lamb
shift is another such manifestation. A battery runs down because the chemical
energy needed to form the dipole dissipates.

In principle, therefore, the electromagnetic energy density in Eq. (50) is
always available whenever there is spacetime curvature; in other words, it is
always available because there is always spacetime curvature.

V. THE CURVATURE TENSOR

The curvature tensor is defined in terms of covariant derivatives of the spin—
affine connections €2,, and according to Section (II), has its equivalent in O(3)

electrodynamics.
The curvature tensor is

Kpn = —Kap = Qo — (hp
= apr - apr —+ Qxﬂp — Qpr (60)

and obeys the Jacobi identity

D‘{KPK + DpKM + DXKYp =0 (61)
which can be written as
D,i"=0 (62)
where
1
R = ek, (63)

is the dual of K.
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Equation (4) has the form of the homogeneous field equation of O(3)
electrodynamics [2,10]. If we now define
xPh = QP* _ QNP

= (" + QMHOP — (B + OP)0* (64)

then
Dok = (B + Q)((8" + Q)0 — (° + 27)2Y)
=1"#0 (65)

has the form of the inhomogeneous field equation of O(3) electrodynamics with a
nonzero source term L* in curved spacetime.
The curvature tensor can be written as a commutator of covariant derivatives

Kuy = =Ky = —[Dy, Dy] = ~ [0, + Q, 0y + Q]
= Qu:v - Qv:|,1 (66)
and is the result of a closed loop, or holonomy, in curved spacetime. This is the

way in which a curvature tensor is also derived in general gauge field theory on
the classical level [11]. If a field ¢ is introduced such that

¢'(x) = S¢(x) (67)
under a gauge transformation, it follows that
0 = Qudxd (68)
and that
0ud’ = S(0,9) + (8,5)¢ (69)

The expression equivalent to Eq. (68) in general gauge field theory is [11]
oy = igM*Afdx" s (70)

where M are group rotation generators and A; are vector potential components
with internal group indices a. Under a gauge transformation

(@ + Q)" = @, + Q) (71)

leading to the expression

Q =50,5" — (8,55 (72)

J

Ve
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The equivalent equation in general gauge field theory is
PR -
A, =SA,S™! —g(apS)S : (73)

Equations (72) and (73) show that the spin—affine connection 2, and vector
potential A, behave similarly under a gauge transformation. The relation
between covariant derivatives has been developed in Section III.

VL. GENERALLY COVARIANT 4-VECTORS

The most fundamental feature of O(3) electrodynamics is the existence of the
B field [2], which is longitudinally directed along the axis of propagation, and
which is defined in terms of the vector potential plane wave:

A(l) :A(z)* (74)

From the irreducible representations of the Einstein group, there exist 4-vectors
that are generally covariant and take the following form:

0 1 2 3

B)ll :(B)(()7B}(()7B)(()7 15())

By = (8,88 B (75)
0 1) 2 3

B; = (B(Z)’B(Z vB(Z)yB(Z))

All these components exist in general, and the B field can be identified as the
353) component. In O(3) electrodynamics, these 4-vectors reduce to

B = (0,B,BY 0)
B; = (0,8}, B}, 0) (76)
B = (BY,0,0,BY)

s0 it can be concluded that O(3) electrodynamics is developed in a curved
spacetime that is defined in such a way that

In O(3) electrodynamics, there exist the cyclic relations (23), and we have seen
that in general relativity, this cyclic relation can be derived using a particular
choice of metric. In the special case of O(3) electrodynamics, the vector

1) 1 2 3
By = (BY, B}, BY  BY) (78)
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reduces to
B! = (BY 0,0,BY)) (79)

Similarly, there exists, in general, the 4-vector
Al = (A0 AD AD AP (80)
which reduces in O(3) electrodynamics to
At = (a0 0,0,4%)) (81)

and that corresponds to generally covariant energy—momentum.
The curved spacetime 4-current is also generally covariant and has
components such as

1 3
=000 0800
1 2 3
=GO W iR (82)

0) | (3
iy =G50, 02, i)

which, in O(3) electrodynamics, reduce to

A =00,7,53,0)
A =0, 0 (83)
= (J(z‘”,oojz) [

The existence of a vacuum current such as this is indicated in O(3) electro-
dynamics by its inhomogeneous field equation

D,G" = J* (84)

which is a Yang—Mills type of equation [2]. The concept of vacuum current was
also introduced by Lehnert and is discussed in his review (first chapter in this
volume; i.e., in Part 2).

The components of the antisymmetric field tensor in the Sachs theory [1] are

B3 —_ F21 — _F12 (B(ZO) B( B(3 )
Bl — F32 - (B(O) Xl) BJ((Z B )

; 1) (3)
BZZF”:—F“:/B‘Y),B(Y BY,BY)

EI — FOI — _FlO _ (E)((O ,EXI),E)({Z),E)(())
E?=F® = (E(O) Y, ER, ED)
E3 = F9 Fso ( Ezl), §2)1 E(Z3))

it
i

THEORIES OF ELECTRODYNAMICS 485

each of which is a.4-vect0r that is generally covariant. For example
BYB,z = invariant (86)
So, in general, in curved spacetime, there exist longitudinal and transverse

components under all conditions. In O(3) electrodynamics, the upper indices
((1),(2),(3)) are defined by the unit vectors

1
(]) _ . .o
eV =—(i—|
\/5( )
1
2 _ L (87)
e =—(I+]
\/i( i)
e =k
which form the cyclically symmetric relation [2]
(1) ¢ o(2) — ;,03)%
e’ x =
e ie (88)

where the asterisk in this case denotes complex conjugation. In addition, there is
the time-like index (0). The field tensor components in O(3) electrodynamics are
therefore, in general

F'O (0,EV E? X )0)

F°° = (0,5, E}",0)
FO = = (EY 0,0, E(Z”) (59)
F2 = = (BY,0,0,BY)
F3 — = (0, B () p ,0)
F2 = —F23 (0,BY ,sz), 0)
and the following invariants occur:

B(yl)Bg,z) + BE/Z)B(YI) — g2

B'B? 4 g _ pon

E(yl)ngz) + E(yz)E(Yl) — g2 (90)

EVEQ + EPEY = por
Bg))z P B(Zs)z & Eéo)z = Eés)z —0
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From general relativity, it can therefore be concluded that the B® field must exist
and that it is a physical magnetic flux density defined to the precision of the
Lamb shift. It propagates through the vacuum with other components of the field
tensor.

VII. SACHS THEORY IN THE FORM OF A GAUGE THEORY

The most general form of the vector potential can be obtained by writing the first
two terms of Eq. (57) as

Foy = 0pA% — 0,A; (o1

The vector potential is defined as

* Q *
A= [(prqk +q"k) g, dx (92)
and can be written as
ar =2 (kpnq" + ¢ k) dx® (93)
Y 4 qy . pkq q pA

In order to prove that
| —g; [av (04)

we can take examples, giving results such as

() (3))

1 2
7q(Z)>q(Z)7qZ

l

(—q
3
= (-44,0,0,4%") (95)

[q;dX:q} [a’X

9z

because g; has no functional dependence on X. The overall structure of the field
tensor, using irreducible representations of the Einstein group, is therefore

Foy = C(0p4} — 8,43) + Dlapd; — 444;) (96)

where C and D are coefficients. This equation has the structure of a quaternion
valued non-Abelian gauge field th=ory, The most general form of the field tensor
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and the vector potential is quaternion-valued. If the following constraint holds

D .

the structure of Eq. (96) becomes
Foy = 0pA; — oA, — ig{A;,A;} (98)

which is identical with that of gauge field theory with quaternion-valued
potentials. However, the use of the irreducible representations of the Einstein
group leads to a structure that is more general than that of Eq. (98). The rules of
gauge field theory can be applied to the substructure (98) and to electromagnet-
ism in curved spacetime.

VIII. ANTIGRAVITY EFFECTS IN THE SACHS THEORY

Sachs’ equations (4.16) (in Ref. 1)

! Ay hty )

Z(Kqu +4"%5) +3Rap = kT,
(99)
! + Ax s ] * *
_Z(Kmq + 4" Kpy) +§qu = kT,
are 16 equations in 16 unknowns, as these are the 16 components of the
quaternion-valued metric. The canonical energy-momentum T, is also quater-
nion-valued, and the equations are factorizations of the Einstein field equation. If
there is no linear momentum and a static electromagnetic field (no Poynting
vector), then

T, = (T},0,0,0) (100)

so we have the four components T{, T, TS, and T3. The T component is a
component of the canonical energy due to the gravitoelectromagnetic field
represented by qg. The scalar curvature R is the same with and without
electromagnetism, and so is the Einstein constant k.

Considering T In Eq. (99), we obtain

! 1
kT) = gng tg (kong" + ') (101)

and if we choose a metric such that all components go to zero except qg, then

]
KT — gng (102)
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However, R also vanishes in this limit, so

T —0 (103)

So, in order to produce antigravity effects, the gravito-electromagnetic field must
be chosen so that only qg exists in a static situation. Therefore, antigravity is
produced by q?, qg, and qg all going to zero asymptotically, or by

3> (4] ~ ¢S ~ 43) (104)

This result is consistent with the fact that the curvature tensor kg mniust be
minimized, which is a consistent result. The curvature is

Kpp, = —Kip = Qo — Qop (105)

and is minimized if
Qp:). =~ Ql:p (106)

If p=0, then Q; = Q;. This minimization can occur if the spin-affine
connection is minimized. We must now investigate the effect of minimizing Koy,
on the electromagnetic field

! . *
(apqy — qu,,)R]

Foy = Q|7 (K5nq™q; + 414" Ko + 4"k + 460,07 + 5
(107)
We know that R — 0 and p =0, so
1 3 s
Fo, = Q [Z (KOMI}”QJ, + - ')] (108)

and the F, component must be minimized. This is the gravito-electric component.
Therefore, the gravito-magnetic component must be very large in comparison
with the gravito-electric component.

IX. SOME NOTES ON QUATERNION-VALUED METRICS

In the flat spacetime limit, the following relation holds:
(109)

qpt‘_vx - av/}gx — ctg¥ — Gvo_p
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=5 [ 73]

efore, the quaternion-valued metric can be written zas

J 0 g* 0 —igh
? qp] 0 * iqu 0

|

I

|
0
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(113)
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This means that in the flat spacetime limit spacetime, this becomes

=1 (121)
dG—1 q—0 g—0 g¢—0
gy —0; gh—1; g—0 g5 —0 phases are defined as

(1 14) i * —i
C/()]/—’OQ q},—»O; q%,—»l; q?,—»() Cl)l(:e¢§ C[?f =e (122)
qg — 1 q"z — 0 Cé — 0; 61.32 — 1 ‘the B® field is recovered as
Checking with the identity: 3 %QR (123)

LG+ gt gk = 208" 115 ..
49 T949 09y (115 g Eq. (99), it is seen that T* has the same structure as g*:

™ o 0 T 0 —iT™ T3 0
0 TP | o |" |iT 0o |’ (o QR

(124)

then

axq" + q* gy = 2008} = 200 (116)

2 2 2 2
(%)* + (ax)* + (q3)" + (43)" = 50 _
fore, the energy momentum is quaternion-valued. The vacuum cuwirrent is

Qk’

which is a property of quaternion indices in curved spacetime. In flat spacetime:
Jy = (qu/—q,Tp’) (125)

(g4)" = o9 (117)

Q and ¥'/4n are constants. We may investigate the structuree of the

that is
, ent jy by working out the covariant derivative:

£9-)

The reduction to O(3) electrodynamics takes place using products such as

Py T =g ol o iy 0 Jlax O

0"To +0'T) + 0" + 8°T; + T, T + T}, T' +T5 T2+ T3 T2 (126)

tial derivatives and Christoffel symbols are not quaternion-valuesd, so we

(@ +T5)T, - (3" + T)T1 — (@ +T5)To — (@° + TS )Ts  (127)

X
e the vacuum current in general relativity is defined by

_ {tq;'(qzy 0 }
0 —iqyqy
z _-:——(((a" +T6)To = (@' +T)T) - (7 + T§,)T — (0% + T5 1 Ts)g,
|az 0 119)
= t[ o qg} . +45(@° +T6,)To + (0 + T,)T, + (82 + [3,)T> + (8° + I, )7T3)
i (128)

ent exists under all conditions and is the most general forma of the
vacuum current described elsewhere in this volume, and the wacuum

that is

3 1.2
Yo iz = x4y



current in O(3) electrodynamics. In the Sachs theory, the existence of the
electromagnetic field tensor depends on curvature, so energy is extracted from
curved spacetime. The 4-current j, contains terms such as

)4 \
Jv0 == (@ + T Tog} + q,(@ + T, )To)

4r
k' ™ 0 ™ 0
== 0 e 0 * 0 129

We may now choose ¥ =0, 1,2, 3 to obtain terms such as

. ™ 0|4 o0 g 01T o

Jo,0=(ao+F8p) -0 0 0 ot 0 0 0 ol ]1=0
0 Ty!] 0 g 0 go{{ 0 T,

™ 0({0 4 0 g ({T2 o
. _ aO + Fp 0 1 + 1 0 130
J1o= = o0){ | (g o g ollo T (130)

= —(@" +T% ) (g T)(cx + 00))
#0

There are numerous other components of the 4-current density j, that are
nonzero under all conditions. These act as sources for the electromagnetic field
under all conditions. In flat spacetime, the electromagnetic ﬁel/ vanishes, and so
does the 4-current density j,. !

A check can be made on the interpretation of the quaternion-valued metric if

we take the quaternion conjugate:
o= (-]a° 0 0 g 0 igt ¢’ 0
0 ¢ ¢ 0] lig? o] o -g¥

which must reduce, in the flat space-time limit, to:

(5 I A S

This means that the flat spacetime metric is

100 0
0 0o

Vo 01 o/ =78 (133)
00 1

\O

\-/‘,; S
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which is the negative of the metric 8" of flat spacetime, that is, Minkowsk
spacetime.

If we define
pe _ quO 0 B 0 qul 0 _l'qPZ qu3 0
(O T P P A S A N
(134
then we obtain
1 0 0 0
0 -1 o 0
& =gy = 0 0 -1 o (135)
0 0 0 -1

in the flat spacetime limit. This is the usual Minkowski metric.
To check on the interpretation given in the text of the reduction of Sachs to
O(3) electrodynamics, we can consider generally covariant components such as

9 = (4x. 9%. 9% 43) — (0°,6", 62, 5%)
9r = (4y,9y,93.93) — (c°,6', 02, &) (136)
% = (=43 93.93.93) — (~°, &', 62, &%)
It follows that
9x9y = qvqx — OxOy — GyOx = 2icy (137)
and that:

Ox = (Oa GX707O>

oy = (0,0, 6y,0) (138)

Note that products such as Gyoy must be interpreted as single-valued, because
products such as

0
0o, 009 =

Oy

0

(139)

oo o
S o oo
SO oo
SCoCc o

give a null matrix. Therefore, the quaternion-valued product gxqy must also be
Interpreted as

x4y = qvqy — OxGy — OyOy = 2ic, (140)

as in the text.
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I. REVIEW OF THE LITERATURE AND GENERAL CONCEPTS

The topological approach of Rafiada and Trueba, the general relativistic
approach of Sachs, and the O(3) electrodynamics are interlinked and shown to
be based on the concept of Faraday’s lines of force.

In the review by Rafiada and Trueba [1], electric and magnetic lines of force
were discussed as real, physical entities, based on the original concepts of
Faraday. These authors discussed Kelvin’s suggestion of 1868 that atoms are
knots of links of vortex lines of the ether, a topological concept, and that Kelvin
found the concept of point particle to be extremely unsatisfactory. Point
particles are eliminated from consideration in the Sachs [2] theory of
electrodynamics, and are replaced by curvature of spacetime. The O(3)
electrodynamics of Evans [3] has been demonstrated [4] to be a subtheory of the
Sachs theory. Rafiada and Trueba discuss the fact that, in contemporary
topology, invariant numbers characterize configurations that can deform, distort,
or warp. These concepts are similar to the curving of spacetime in general
relativity [2], of which O(3) electrodynamics [3] is a subtheory, and also a gauge
theory. Topology [1] shows that the variety of chemical elements is due to the
way in which curves can be knotted and linked, transmutability of the elements
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