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Preface

While investigating the theory of optically induced
line shifts in N.M.R., one of us (MWE) came across the result
that the antisymmetric part of the intensity tensor of light
is directly proportional in free space to an entirely novel,
phase free, magnetic field of light, which was identified as
B(3) , and which is defined in Eq. (4) of the first chapter of
this book. The other chapters and development of the conse­
quences of B(3) emerged after extensive consultation with

Jean-Pierre Vigier and Keith Earle. The presence of B(3 ) in
free space shows that the usual, propagating, transverse
waves of electromagnetic radiation are linked geometrically
to the spin field B(3) , which indeed emerges directly (Chap.
12) from the fundamental, classical equation of motion of a
single electron in a circularly polarized light beam. The
field B(3) produces magnetization in an electron plasma which
is proportional to the square root of the power density
dependence of the circularly polarized electromagnetic
radiation, conclusive evidence for the presence of the phase
free B(3) in the vacuum. There are many experimental conse­
quences of this finding, some of which are of practical
utility, such as optical NMR, reviewed in Chap. 7, but the
most important theoretical consequence is that there exist
longitudinal components in free space of electromagnetic
radiation, a conclusion which is strikingly reminiscent of
that obtained from the theory of finite photon mass. The two
ideas are interwoven throughout the volume. The characteris­
tic square root light intensity dependence of B(3) dominates
(Chap. 12), and is theoretically observable at low cyclotron
frequencies when intense, circularly polarized electromagnet­
ic radiation interacts with a single electron, or in practi­
cal terms an electron plasma or beam. The magnetization
induced in such an electron ensemble by circularly polarized
radiation is therefore expected to be proportional to the
square root of the power density (i.e. the intensity in watts
per square meter) of the radiation. This result emerges
directly from the fundamental, classical, equation of motion
of one electron in the beam, the relativistic Hamilton-Jacobi

equation. To establish the physical presence of B(J) in the

ix



x Preface

vacuum therefore requires the observation of this magnetiza­
tion as a function of the beam's power density, a critically
important experiment. Other possible experiments to detect
B(3), such as the optical equivalent of the Aharonov-Bohm
effect, are suggested throughout the volume.

We acknowledge many stimulating conversations with
Dr. Keith Earle, and the authors are greatly indebted to
Prof. Alwyn van der Merwe for the opportunity of producing
this book in his prestigious and widely acclaimed series
of monographs in fundamental physics. We also acknowledge
the advice and suggestions of several colleagues who are
interested in the magnetizing properties of circularly
polarized light and electromagnetic radiation in general.
A special word of thanks is due to the late Prof. Dr.
Stanislaw Kielich, who from the outset strongly encouraged
the development of the theory of B(3).

Finally, we owe a great debt of gratitude to Dr. Laura
J. Evans, whose highly professional production of the camera
ready copy has been vital to the whole project.

Charlotte, NC, USA
Paris, France
April, 1994

MYRON W. EVANS
JEAN-PIERRE VIGIER



CHAPTER 1. WAVE AND PARTICLE

1.1 THE ENIGMA OF WAVE AND PARTICLE: PLANCK, EINSTEIN, DE
BROGLIE

Light appears to be made of waves and simultaneously of
particles, undulatory and particulate at the same time. This
is an ancient enigma of natural philosophy, mysterious and
implacable. The term "photon" is to be found in the dictio­
nary [1] these days, defined as the quantum of electro­
magnetic energy, hv. Here h is Planck's constant and v the
frequency of an electromagnetic wave. We tell ourselves that
there is a particle, the photon, which is also a wave, and
which appears to have no mass. In the Galilean and Newtonian
world this is not possible, reducing the mass of a Newtonian
corpuscle to zero results in nothing at all. Energy in the
Newtonian universe is simply an indivisible scalar, appearing
to have nothing to do with frequency. The basis of wave
mechanics, the de Broglie Guiding theorem [2, 3],

(1)

for photons and for particles of matter, such as electrons,
represents a world which is radically (i.e., at the root of
things) different from the concepts enunciated by Galileo and
Newton three or four centuries ago.

Since c is the speed of light and mo represents, after
all, a mass in Eq. (1) our contemporary appreciation of light
is a dark enigma of nature. We must reconcile ourselves to
the fact that there is a particle without mass, whose energy
is given by a frequency, and which can, after all, be defined
as a mass multiplied by the square of the speed of light in
vacuo, or free space. This particle is the photon and its
concomi tant wave produces the frequency v. If we know a
little about special relativity, we must reconcile ourselves
to the fact that the speed c is a constant and the same in
all Lorentz frames of reference, so that a particle travel­
ling at c cannot exist in a frame in which it is at rest.
An enigma indeed, making nonsense of common sense. Not only
does this particle have energy, hv, we are told, but a linear
momentum, hv/c, which is made up of two universal constants, h

1



2 Chapter 1. Wave and Particle The Enigma of Wave and Particle

and c, and a wave frequency ,-.i, so that linear momentum is

11K/ 21t, where K, wi th the units of inverse distance (m -1), is
a wave-number. In our enigmatic world, the linear momentum
of a massless particle is a wave-number. The angular momentum
of this massless particle is fixed, and intrinsic, having
eigenvalues h/21t (= 'tl) and -h/21t from considerations of
special relativi ty. These eigenvalues are independent of
frequency, and remain the same for photons of energy, hv,
from radio frequencies to those of gamma rays. Hundreds of
textbooks on the classical theory of electromagnetism assert
with various degrees of certitude that all Maxwellian waves
in vacuo are transverse, but the eigenvalues )1 and -)i (being
those of a boson with the value 0 missing) are longitudinal
projections in the axis of propagation of the enigmatic
photon or wave. Even in classical electrodynamics [4], the
only non-vanishing eigenvalue of the angular momentum of
light (transverse waves) is longitudinal in nature. The spin
angular momentum of the electromagnetic plane wave is
longitudinal in classical theory, and also independent of the
frequency of the transverse wave.

The photon is therefore asserted to be a particle with
no mass, but with a spin angular momentum, a linear momentum,
and to be a light quantum of energy hv, defined in terms of

a wave frequency v. If S(l) is the magnetic flux density of
an electromagnetic plane wave, the light quantum is express­
ible as [5-8J

Here, the fields B (1), S (2) and B (3) are simply components of
the magnetic flux density of free space electromagnetism in
a circular, rather than in a Cartesian, basis. In the

quantum field theory the longitudinal component B(3) becomes
'the fundamental photomagneton of light, an operator defined
by [10-1.5]

(5)

(4b)

(/'''C)

(4a)

iB(O)S(2).,

profoundly unsatisfactory in
and quantum electrodynamics
of the cyclicall y symmetric

iB (0) B (1.) • ,

fj (3) = B (0) .2
'tJ '

S(3)XS(l)

Bfa) x S(3)

BU) x eta)

in which (1), (2), and (3) can be permuted to give

two polarizations (right and left circular) and the correct
premultiplier in Planck's radiation law of 1900, the first
paper on which we shall shortly describe, is obtained by
using the factor of two for the polarizations of standing
waves in a cavity.

Yet, there is something
this view of both classical
because of the existence [9]
relation between fields:

(2)hv = 'hw = -.1:.. Is (1) • S (1) • dV,
!-Lo

averaged hyperpolarizability, a
being magnetized by a circularly

where J is t.he angular momentum operator of one photon. The

existence of the longitudinal gu> in free space is indicated
experimentally by optically induced NMR shifts [16-18] and by
several well known phenomena of magnetization by light, for
example the inverse Faraday effect [19-26]. In this phenome-

non, the phase free magnetization 111(3) can be deduced at
second order by [18]

where !-Lo is magnetic permeability in vacuo and V a definite
volume of space, so that hv is also magnetic (or electric) in
nature. In terms of the electric field strength of the plane
wave and the electric permittivity, Eo, of free space,

(3)

The light quantum is therefore both magnetic and electric in
nature, and can be defined only with reference to a definite
volume V in space. It is therefore not a point particle, and
a pulse of electromagnetic radiation in free space behaves as
a massless particle occupying a definite volume with fixed
spin angular momentum, whose eigenvalues are projections in
the axis of propagation. Yet the pulse of radiation is made
up of transverse waves from the Maxwell equations [4J. These
transverse waves in conventional understanding can have only

111(3) = AB (0) S (3) ,

where A is an ensemble
property of the material
polarized laser beam.

The enigmatic photon therefore generates

(6)

three degrees



4 Chapter 1. Wave and Particle The Enigma of Wave and Particle 5

of dimensionality in magnetic flux density in free space,
labelled 0), (2) and (3) in the circular basis. Only two
degrees of polarization are used customarily however in the
derivation of the Planck radiation law, and classical limits
thereof such as the Rayleigh-Jeans law [27]. In Bose's
derivation of the Planck law, the concept of a particle was
introduced [27] with only two degrees of polarization in
three dimensional space. It is easily demonstrated however
that the existence in free space of B(3) is compatible with
fundamental conservation laws in electrodynamics. For
example, the following are Lorentz invariants in free space:

dimension (3) is needed for the enigmatic photon as much as
for any other particle in three space dimensions. The
phenomenon of magnetization by light described by Eq. (6) is
a clear experimental corroboration of this deduction.

Critical scientific minds since the time of Cavendish
and earlier have repeatedly come to the conclusion that light
may have mass [29-35]. That this deduction affects electro­
dynamics at the most profound level (both in the classical
and quantum theories) is exemplified by the fact that a pulse
of electromagnetism in a vacuum would no longer be equiva­
lent, in a finite volume V, to a particle, the photon,
without mass. This leads to the replacement of the classical
d'Alembert equation with a Proca equation [36],

where AI' is the electromagnetic potential four-vector as
usual, and where Ina is the mass of the photon in a rest
frame, i.e., the photon rest-mass. In the d'Alembert
equation there is no photon mass, and therefore no rest
frame, so the structure of the equation remains invariant to
Lorentz transformations from one frame of reference to
another. This is no longer the case in the Proca equation,
which is relativistically covariant, like all valid laws of
physics, but no longer Lorentz invariant. In other words the
photon with mass is a relativistic particle, whose velocity
and mass varies from one Lorentz frame to another, even in
free space.

Experimentally at present it appears possible only to
put an upper limit on the photon mass [29], a limit which now
replaces zero in standard tables, and which is thought to be
in the range 10-6 8 to 10-4 5 kg. For all practical purposes in
the laboratory, such a tiny figure means that the theory of
light with mass is that of light without mass, yet there is
a profound physical difference between the d'Alembert and
Proca equations. On an astronomical scale, however, [29]
finite Ina implies measurable effects, for example in light
reaching an earthbound observer from galaxies at the edge of
the universe. The velocity of photons reaching earth from
such sources should have slowed considerably below the
universal constant c of special relativity. "Tired light"
phenomena such as these have been reviewed in the literature

(7)

(i) :=(1), (2), (3).

For (i) = (1) and (2) Eqs. (7) reduce to the usual expres­
sions [28] for the Lorentz invariants of the electrodynamic
four-tensor Fl'v and its dual Gl'v' expressed in a circular
rather than a Cartesian basis. For (i) = (3), however, Egs.
(4) show that there is a real B(3) which is dual [28] to the

imaginary -ilf(3)/c (S.l. units). The latter, unlike the real
B(3) , has no physical significance as a field, but the product

1:(3) . 1:(3)* is real, and therefore physical, and ensures that
the Lorentz invariants L1 and L 2 in Eq. (7) remain zero in
free space for (i) = (3) as well as for (i) = (1) and (2).

It follows that the energy of one photon, the light
quantum hw is as well described by (i) = (3) as by (i) = (1)
or (i) = (2). In free space

(8)

(i) (1), (2), (3) .

The Poynting vector generated by the cross product of B(]) and

- is!» / c is however always zero, because these quanti ties are
always parallel vectors, so that the measured intensity of
light (the time average of the Poynting vector) is not

augmented by the presence of the physical B (]) in free space.
The conventional derivation of the classical Rayleigh­

Jeans law, using only (1) and (2), is correct only because
the time averaged Poynting vector is unaffected by B(3) and

its dual, -il:(3) / c , in free space. More generally, the third

OAf' = 0, (9a)

(9b)



6 Chapter 1. Wave and Particle Symmetry

showing that there is in principle a cyclic relation among
vector potentials of the type (/1) developed for magnetic
fields in field space. However, the cyclic symmetry is not
yet complete in the form of Eq. (12), and we establish the
final relations later. However, Eq. (11) reveals a symmetry
duality in the wavenumber ...:, a duality which indicates that
classical electrodynamics has its conceptual limits.
Although K as used in Eq. (11) must be a scalar, it mediates
a direct proportionality between B(1) (an axial vector

positive to parity inversion P and negative to motion

reversal i') and AU) (which is T negative, f3 negative, a
polar vector). Eq. (11) therefore suggests that the scalar K

is f> negative, a property wh i ch is reminiscent of vector
linear momentum. The scalar magnitude of the wave vector 1C

is therefore linked with particle momentum. There is wave­
particle dualism inherent in the classical t1axwell equations

in free space. The fact that the scalar K is P negative
indicates that the classical field is not a complete under­
standing. From Eq. (11)

of several scientific generations [29-35]. Clearly, the
enigmatic photon does not fully reveal itself to the observ­
er, but the constant e should not be regarded as an unchang­
ing speed of light. It is a constant postulated in Ein­
stein's second principle of special relativity. Photons with
mass, however tiny, will not travel at e in free space.

In the de Broglie Guiding theorem, Eq. (1), the basis
of wave mechanics in light and matter, the quantum of energy liw

is equated with rest energy, being rest mass, mo' multiplied
by e 2 , as deduced from special relativity. We are faced with
the most profound enigma of all, that of representing mass as
a frequency or vice versa. Contemporary gauge theory asserts
[36J almost as an axiom that mo =7 0, leading to neat results
such as those of Eq. (7). The existence of generations of
scientific thought leading to mo l' 0 for the photon, (or
classical light) is considered only by a small minority of
contemporary theoreticians [29-35]. However, these have
succeded in showing that mo 1' O for the photon can be at the
least approximately compatible with the powerful results of
unified and grand unified field theory [36], and with
fundamental theorems of conservation of charge and current
such as Noether's theorem [37J. In our present understand­
ing, it is perhaps fair to say that both advantages and
disadvantages appear to accrue from finite photon mass, the
photon remaining an enigma. i.e. ,

Vx(VxA(].)) = KVxA(l) = 1C2 A (1 ) , (13)

(14)

Starting with the complex transverse vector potential

L 2 SYMMETRY IN CLASSICAL ELECTRODYNAMICS, WAVENUMBER AND
LINEAR MOMENTUM

v x A (1) = lCA (1) = B (1) ,

A (1.) = A(a).

which is an eigenfunction equation reminiscent of the static
limit of the Proca equation (9). Note, however, that: a)
there is a change of sign between Eqs. (9) and (14); b) Eq.

(lll-) conserves P and T symmetry, unlike Eq. (11), despit.e
the fact that Eq. (14) is a direct consequence of Eq. (11),
and so if the former is accepted as physical then so must the
latter. The quantity K has symmetry that cannot be under­
stood in the framework of Maxwell's classical field equa­
tions.

The introduction of quantum concepts is one way of
resolving the fundamental symmetry dualism inherent in
Maxwell's equations, and this was first realized by Max
Planck in November 1900 (Sec. 1.3).

The fact that Eq. (14) is an eigenfunction equation

shows that V2 plays the role of a quantum mechanical opera­
tor, whose eigenvalue is -K2. The vector potential A(1) then
plays the role of a wavefunction. From the fundamental
axioms [39] of quantum mechanics

(12)

(10)

(11)

B(O) .
-- (il + j)e l 4J ,
V2lC

. ~

_~A(l) x A(2)
B (0) ,

B (3).B(3)

[38]

and that

it follows that
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(15)

i.e., the del vector becomes a del operator, directly propor­
tional by axiom to a linear momentum operator, p. From Eq.
( 39) in Eq. ( l!t )

massive photon. If the photon mass is identified with zero
axiomatically [36J as is often the case in contemporary field
theory [37J, then hv is pure energy, i.e., is definable in
terms only of energy and not of mass, despite the fact that

it is formally identifiable with moc
2 .

From Eqs. (14) and (19)

(16)
OA(1) = (-V2 + ~ ~)A(1)

c? at 2
0, (22)

Thus,
which is the space part of the d'Alembert equation:

which defines the linear momentum of the photon in free
space. Note that the Dirac constant is given by

(23)

Equation (10) is a transverse solution of Eq. (23) and so Eq.

(12) shows that B (3) is formed from the cross product of
complex conjugate solutions of the d'Alembert equation [40J.

The question now arises as to what is the formal
equivalent (in terms of vector potentials) of the novel
cyclic relations (4). In other words, is there a cyclically
symmetric relation between components of the vector potential
in free space for a plane wave? If there is one, the longitu­
dinal, phase free, component must be formed from the cross
product of two polar vectors, A(l) and its complex conjugate

A(2) , and so must be an axial vector. For reasons developed
later (Sec. 2.9), this axial vector can be written as the
pure imaginary iA(3). The formal cyclic relation akin to Eqs.
(4) is therefore:(19)

(17)

(18)

p = 11K = 11 W = h~,
c c

E
K

Therefore K is identified as the expectation value of the
operator iC=p/'h; i.e., the expectation value of a linear
momentum operator of quantum field theory. However, K is
also a component of the classical wave vector, and so is an
example of wave particle dualism.

The de Broglie Guiding theorem, Eq. (1), is derived in
radiation by noting from Eq. (10) that

in which the permuted vectors are A (l), A (2) and iA (3). These
are relations among the space components of a complex four­
vector A~ [41J. There is therefore a set of three cyclically
symmetric structures between plane wave components in free
space:

(iA(3»)xA(1) = -A(OlA(2l',

The axioms of quantum mechanics imply that

a i
at - t;" Ell,

where En is an energy. From Eq. (20) in Eq. (19)

En = Kch = pc = In o C 2 W1'I vh,

(20)

(21)

A(l) XA(2) ~ -A(0)(iA(3»)', A (2) x (iA (3») = -A (0) A (1)"

(24)

where Ino is a mass defined formally by p = moc. This is Eq.
(1), whose structure is seen to be inherent in Haxwell' s
classical field equations. If there is considered to be
fini te photon rest mass, m(), then the quantum of light energy bv

is identified with the relativistic rest energy II!oC 2 of the

B(l) x B(2)

A (1) X A (2)

iB(OlS(3)·, and cyclic permutations,

-A (0) (iA (3»)', and cyclic permutations,

(25a)

(25b)
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in which the longitudinal magnetic component is physical and
pure real, while iA (3) and the electric field iE(3) are pure
imaginary and unphysical at first order. All three longitu­
dinal «3» components are phase free because they are formed
from the cross product of two complex conjugates. Under the
dual transformation of special relativity, we have, in
Minkowski's notation [1~2] (in which Xfl ;= (X, Y, z, iet)

E(1) x E(2,1 .= -E(O) (iEw)', and cyclic permutations,

B ~ --~ E,
c

E - ieB,

(25c)

(26)

under the dual transform B(l) x B{2,) ~ -B(l) x B(2,) there is
a change of sign, but the same transform results in
o ~ 0, in which there is no change of sign. Therefore
the assertion B(~ =7 0 is relativistically inconsistent
in free space, and from Eq. (4) is also of course
algebraically incorrect. It is also inconsistent to
assert that the imaginary iE(3) and iA (3) are zero, they
are non-zero and pure imaginary.

(4) Finally, the Lorentz invariants of Eq. (7) are
self-dual, and by definition are not affected by a
Lorentz transformation.

so that the scalar amplitudes transform in free space
according to

leaving Maxwell's equations invariant. Applying Eqs. (27) to
Egs. (25) the following results are obtained.

(1) Each of equations (25) is unchanged under the
dual transformation, i.e., each is self-dual. Each is
relativistically invariant in free space and formally
covariant [41, 42].

(2) Using the free space dual transformations:

We find that one of the basic tenets of electrodynamics
in free space is incomplete, there exists a real and physical
spin field B(3) which can magnetize matter as in the inverse
Faraday effect [19-26]. In what way does this very recent
realization [10-15] affect the fundamental papers of the
quantum theory, due to Planck, Einstein, Bose and their
contemporaries? This question is partially answered through
a consideration of the time averaged Poynting vector, or
intensity of light in watts per sguare meter, the total
electromagnetic energy per unit time per unit area, or energy
flux density at a temperature T. This quantity is expressed
as an integral over frequency,

(29)I (T) .= f t; (T) dv.
o

(27)A (o) .... - iA (OJ ,E{O) ... iE{O),B(O) ... -iB{O),

The total electromagnetic energy density (cn is related to
the intensity I by

B(O) ~ -L E(O),

e
E(O) ~ ieB (0),

• EIO)
-1.--,

W

(28)

u = .! I.
e

(30)

it is seen that each equation of the set (25) is self­
dual and also dual with the other two. For example,
the transformation BIO) ... -jE(O)/c converts Eq . (25a)

into Eq . (2Sc). The dual transformation A co .... -iB(O) lK
converts Eq. (25b) into Eq. (2Sa) and so on.

(3) These properties are lost in the conventional
picture of free space electrodynamics, in which there
is no phase free spin field B(3) , only the phase depen­
dent wave fields B(l) and B m . In the conventional

view [43], B (3) =? 0, so that the Lorentz invariance of
Eq . (4) is lost. For example, if B(l)xB(2,).=?O, then

Both U and I are unchanged by B (3), because it is generated
by the spin of the photon and cannot contribute to the time
averaged Poynting vector [44]. It follows that B(3) does not
contribute to the classical Rayleigh-Jeans law, a limit of
the Planck radiation law, the essence of which is Planck's
hypothesis: that the total electromagnetic energy at a
particular frequency is the sum of identical energy elements,
or light quanta 1Iw. Since B(1)·B(1)·=B(2,)·B(2)·=B(3)·B(3)·,

the light quantum 1IW can be expressed equivalently as an
integral over any of these dot products. The physical
explanation is that each dot product represents an average.
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The wave fields S (1) and S (2) depend on phase, <I> = co t: - K . x ,
where t: denotes an instant in time and r a position in
space. The spin field S(3) does not. However, the factor
B(O), the scalar amplitude defined by

[45] (in covariant-contravariant notation),

GI' = (f cGdV, fWdV), (33)

is common to all three fields in free space, so the ampli­
tudes of all three fields follow the Planck distribution.
Since S (3) is not a wave, i. e., does not vary with phase, <1>,

and is not associated with any given frequency eo , or wave
vector K, it cannot be absorbed by an atom or molecule in the
same way as S(l) and S(2). The field S(3) , furthermore, can
magnetize material far from optical resonance, as in the
inverse Faraday effect [19-26]. This process of magneti­
zation can occur, in other words, without resonant absorp­
tion, e. g. using laser frequencies far removed from any
natural optical absorption mode of the atom or molecule.

Panofsky and Phillips [45] for example point out that
integrals of the type

(
j.L0'he.> ,+

- -V-) I

B(O)

'he.> == -.l:-JB (1) • B (1). dV,
Jlo

(i) (I), (2), (3),

(31)

(32)

is a four-vector (a linear momentum, energy four-vector of
special relativity). There is no simple equivalent four­
vector of angular momentum, angular energy because the
angular momentum, being an axial vector, cannot form the
space part of a four-vector from fundamental geometrical
considerations [45]. Thus S(3) (proportional to electromag­
netic angular momentum density) and S(3)·B(3). (proportional
to electromagnetic energy density) cannot form a four-vector
in the same way as the Poynting vector N and energy density
s(i)'S(i)* (i) == (1), (2), (3) form four-vectors, and therefore
do not affect fundamental relativistic relations such as (33)
in free space. Since GILG.. is zero, it is light-like, and
corresponds to zero mass [45], and electromagnetic radiation
propagating with velocity c obeys part:icle transformation
laws yielding finite momentum and energy.

Barut [46J gives a clear discussion of the conceptual
consequences of a zero mass particle. This cannot exist in
Newtonian mechanics. In special relativity, the definition
of a four-momentum as

(34)

must have the same transformation properties of point Illass in
special relativity. This finding, at first strange and
counter-intuitive, is nevertheless consistent with the de
Broglie Guiding theorem, Eq. (1), which defines point mass,
!~ as bv f c'": The amplitude B(O) is therefore tied to a mass
of radiation in volume V. This picture of mass is fundamen­
tal to the general theory of relativity [45]. Considering,
following Panofsky and Phillips [45], a volume V containing
totally a quantity of electromagnetic radiation and no
charges and currents, then the linear momentum and energy of
a radiation pulse contained within that finite volume has the
same transformation properties as a point particle, identi­
fied as the photon. Thus, the energy of one photon is hv,
its linear momentum is hv/c, and its angular momentum, to
which the spin field Be:;) is directly proportional, is ±'h.

The eigenvalues of the operator 13 (J) are therefore ±B (O)li •

For a plane electromagnetic wave, if W denotes its
energy and G its linear momentum, the four-vector product

W2
- c 2 G 2 == GIlGI' == 0 is a Lorentz invariant, and the quantity

where vI' is the four-velocity also breaks down if the mass is
zero. For a zero mass particle the energy and linear
momentum must become primary concepts. The Newtonian
velocity and trajectory cannot be defined if mass is zero,
and momentum cannot be connected to velocity. Localization
of the massless particle is not defined or possible. Linear
momentum can be defined only through the light-like four­
vector (En/ c, p), with En = pc. For the photon, we have
En==hw and Ipl==h(,)/c. There is no non-relativistic limit to
this concept. Similarly, the massless particle cannot have
a non-zero Newtonian moment of inertia, and so the angular
momentum of the particle (considered to have finite radius)
cannot be related to its angular velocity. We see this
through the fact that the angular momentum of the photon is
the unvarying h, while its variable angular velocity is the
angular frequency o . There is no linear relation of the
typeh ==? Ipw, where I p is a hypothetical photon moment of
inertia. However, the product h(,) is an energy, in the same
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so that the relation between frequency «,» and wavenumber
becomes

The reduced Planck constant, li, (also known as the
Dirac constant), can therefore be thought of as a proportion­
ality constant between energy and frequency, a constant which
must be the same as that which mediates linear momentum and
waveriumbe r ,

(37)

(36)

(35)

as first proposed by de Broglie [t~7] and verified experi­
mentally [46]. The relation (37) is consistent with the well
known Proca equation (9b), in which the photon mass is of
course non-zero. It can be seen that the photon mass, if
non-zero, will change the optical relation between wave
number and frequency, which will become different in differ­
ent Lorentz frames. One of the interesting consequences

[10-15] of finite photon mass is that the spin field B(3)

becomes

so that En and p defined for the plane wave satisfy [46] the
energy and momentum relationship for a relativistic particle
of zero mass. If the particle has mass, the de Broglie wave
particle dualism implies that the particle is associated with
a plane wave known as a matter wave, whose frequency wand
wave-vector are again given, following Barut [46] by equation
(35), but in which tel' is no longer a light-like vector. Its
relativistic energy is that of a particle with mass,

ed:

way as the classical mechanical product of angular momentum
and angular velocity is a classical angular energy.

Furthermore, Barut points out that an electromagnetic
wave is always characterized by the light-like four-vector
tel' = (wi c, te), with (,) = xc, It follows that the newly discov­
ered spin field S(3) [10-15J cannot be associated with linear
momentum or angular frequency because it has no phase
dependence. This is of course consistent with the fact
that S(3) is proportional to photon angular momentum 11, which
has no intrinsic frequency dependence. The latter is itself
unacceptable in Newtonian mechanics, because an angular
momentum is wi thin that view proportional always t.o an
angular frequency, whereas h is a universal constant, with
the units of angular momentum, independent of angular
frequency. The Planck hypothesis of 1900 is therefore
relativistic in nature, although it was left to Lorentz,
Poincare and Einstein (1903-1905) to realize fully the nature
of the light quantum hypothesis, as we shall shortly de­
scribe.

It is clear however that the newly discovered free
space spin field S (3) also has no non-relativistic counterpart
if the photon mass is taken to be zero. It is directly
proportional to the photon angular momentum, the angular
momentum of an (axiomatically) massless particle which cannot
be Newtonian, and cannot be localized. Following Barut [46],
when dealing with questions of energy and linear momentum
interchange between a photon and other particles, such as
electrons, the plane waves S(1) and S(2) of Maxwellian
electrodynamics are associated with a massless particle. The

spin field S(3) is associated with photon angular momentum,
which in the inverse Faraday effect, for example, is trans­
ferred elastically to matter far from any optical resonance,
i.e., far from any spectral frequency at which exchange of
energy and linear momentum occurs through the phase. This is
another way of saying that S(3) is phase free.

The following useful rules can therefore be construct-

and decays exponentially. Since mo is different in different
Lorentz frames, the spin field (and also the wave fields)
will also become different, and no longer Lorentz invariant
as for the massless photon.

The constant h though, remains the same for zero or

(1) When there is exchange of photon energy and
linear momentum, through the phase, the Lorentz invari­
ant product tel'XI' , the wave fields S(l) or S(2) are in­
volved.

(2) When there is exchange only of photon angular
momentum, the spin field S(3) is involved.

Bel) (38)
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From our above considerations, this is a relativistic quantum
classical equivalence. For a photon without mass it has no
non-relativistic limit, and it essentially describes the
classical equivalent (right hand side) of the angular
momentum magnitude of one photon in free space. This magni­
tude is h, an unchanging property both of the massless and
massive photon. Therefore if the right hand side is a
classical one photon angular momentum magnitude, the classi­
cal angular momentum vector for one photon is

wher e 13 (3) and J(3) are operators whose expectation values are
simply B(3) and J(J).

If it is asserted [48] that B(3)=?O, the structure of
electrodynamics is violated.

(45)

(44)

electro­
Remark­
in 1992

Eq. (42)

J(3) = Eo !8(1) x B(2) dV = P k.
K K

The spin field B(~ is therefore present in classical
dynamics, as revealed in another way by Eqs. (4).
ably, these relations were first identified only
[9-15]. The quantum field theoretical equivalent of
is clearly [10]

(40)

(39)~B(U)~.

~ow

non-zero photon mass, and is given by

has all the known properties of magnetic flux density (tesla)
and is the spin field defined in equations (q). It follows
immediately that

i.e., the classical B(3) vector can be written as the product
of the amplitude B(O) with the classical ratio J(3) j'h, which is
the axial unit vector k. This result emerges directly from
the fundamental definition (39) with the basic definition
J(3) : = 'hk which follows from the fact that 'Ii has the units of
an angular momentum magnitude. From the definition of 11 in
Eq. (35) it follows that the angular momentum of one photon
in free space can be expressed as the classical vector

B(3) • = .B (O)k,

wher e k must be an axial unit vector.
vector defined by

The core logic of Eqs. (4) asserts that there exists a
novel cycl ically symmetric field algebra in free space,
implying that the usual transverse solutions of Maxwell's
equations are tied to the longitudinal, non-zero, real, and
physical magnetic flux density B(3) , which we name the spin
field. This deduction changes fundamentally our current
appreciation of electro-dynamics and therefore the principles
on which the old quantum theory was derived, for example the
Planck law [48] and the light quantum hypothesis proposed in
1905 by Einstein. The belated recognition of B(3) [9-15]
implies that there is a magnetic field in free space which is
associated with the longitudinal space axis, Z, which is
labelled (3) in the circular basis. Conventionally, the
radiation intensity distribution is calculated using only
two, transverse, degrees of freedom, right and left circular,
corresponding to (1) and (2) in the circular basis. The
latter is therefore the natural basis for the consideration
of electromagnetism in free space, and in terms of Cartesian
unit vectors i, j, and k is defined by the circular unit
vectors e(1) , e(2), and e(J) such that

1.3 THE EFFECT OF B (3) ON THE FUNDAMENTALS OF THE OLD QUANTUM
THEORY

(42)

(41)

We note that the

1L0 W J(3) _ (0) J(3)
B (0) V - B -1i- ,

B(3)

(43) 6 (:01) = d(l + ij), 6(3) =.t". (46)

which is the well known result from classical electrodynamics
[4, 45],

These circular unit vectors form the geometrical basis for
the cyclical relations (4), i.e.,
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and cyclical permutations of (1), (2), and (3).
The existence of B(3) is strikingly consistent with the

fact that the Proca equation (9b) allows longitudinal
solutions in free space. Its recognition is therefore
consistent with finite photon mass. The fields B(3) from the
d'A1embert and Proca equations are for all practical purposes
identical in the laboratory, because the photon mass is tiny.
Finite photon mass means that electromagnetic waves behave in
the same way as de Broglie matter waves, and that the photon
becomes a properly defined boson, with eigenvalues -h, 0, and
li, not -h and h as in the conventional theory of photon spin
[15] . In classical, relativistic field theory, the Wigner
Ii ttle group for the massless photon is the unphysical
Euclidean E(2), the group of rotations and translations in a
plane [42]. This makes no sense in three dimensional
Euclidean space, and standard texts in field theory simply
note that this is an obscure facet of electromagnetic theory.
The incorporation of photon mass, however tiny, improves
matters, and allows a straightforward quantization [42]. It
is also possible [49] to incorporate photon mass into unified
field theory, and grand unified field theory, and there is no
reason to assert on the grounds of gauge invariance that the

photon is massless. The newly discovered existence of BU)

means that the conventional "two dimensional" approach to
electrodynamics must be abandoned. There is no purpose in
accepting a theory which leads to an unphysical conclusion,
such as the E(2) catastrophe of special relativity [42]. The
spin field B(3) is unmistakable evidence that the conventional
theory is incompletely understood, both for finite and zero
photon mass.

Does the existence of BU) mean that the laws of
radiation must be modified? Should the value of the Planck
constant be increased by a factor 3/2 to account for three
dimensions rather than two?

The answer is in the negative, because BU) is phase
free, and is not a wave field. It is a spin field, due to
the photon spin, which is longitudinal and relativistically
invariant. The derivation by Rayleigh [50] of the classical
intensity law, a derivation corrected by Jeans [SOl, is based
on the existence of two transverse standing wave components
(left and right) in a cavity. The field B(3) is not a wave
and does not augment the radiation intensity. This conclu­
sion is consistent with the fact that B(3) does not augment

the Poynting vector, whose time average is radiation intensi­
ty i.n watts per unit area.

The law of radiation intensity due to Planck requires
the assumption that there exist energy elements which are
proportional to frequency, v, through the Planck constant h,

(50)

(49)

(48)E ~ hv ~ h(,).

needs wave fields with a phase dependence. Here EIl n and EIlm

are energy levels of states nand m respectively of an atom.
Absorption of light is a phase dependent process, i. e. ,
depends on the four-vector K~. The spin field B(3) has no
phase dependence, like photon angular momentum, and so cannot
be involved in a process of light absorption that depends on
phase. The spin field B (3) can therefore be regarded as a

wave field whose phase is zero, but whose amplitude B(G) is
frequency dependent through Eq. (31). This amplitude,
however, is the same for the wave fields B (1) and B (:;1) and for
the spin field B(3) .

The conventional picture of absorption by a photon:

where Ellm and Enn are atomic energy levels of states [[J and n

respectively, and where A~ and Bmn are Einstein coefficients,

is therefore unchanged by the spin field B (3). In Eq. (50),
p(v) is the density of states as usual.

The derivation by Bose [50] of the Planck radiation
law, without recourse to classical electrodynamics, was made
by replacing the number of standing waves in a cavity of
volume V with the counting of cells in a one particle

As we have seen, the light quantum hv can be expressed
equally wel.I (Eq . (8)) in terms of wave fields and spin
field, but since the latter is proportional to photon angular
momentum it cannot describe optical resonant absorption.

Magnetization due to B(3) in the inverse Faraday effect can
take place far from optical resonance, and is a process
involving transfer of photon angular momentum. The absorp­
tion process described by

(47)e (].) x e (2) ~ .1 e (3) ,
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position/momentum phase space dxdp. If there is a spin field
or "field without phase frequency" Bm, then we see immedi­
ately that there can be no additional cells to count, and so
the existence of B(3) does not change the validity of Bose's
derivation of Planck's law, an important step towards the
emergence of the notion of the photon as a particle. This is
simply a way of recognizing that a wave must by definition
have a phase dependence, and so B (3) is not a wave field. The
essence of Bose's method is therefore to integrate the one
particle phase space element dxdp over the volume V and over
all linear momenta between p and p + dp , and to supply a
factor of two to count polarizations and to arrive at the
correct premultiplier in the Planck law. Why this factor is
two was not known at the time of the derivation (1924) [50J,
essentially because the relativistically correct description
of angular momentum was not known for a massless particle.
The accepted treatment did not emerge until 1939, in a paper
by Wigner [5lJ in which, however, the Wigner little group
E(2) is a logical but physically obscure [42] consequence.

The concept of the photon as massless particle is
therefore filled with enigma from the very outset, and by no
means has the photon lost its power to surprise. The
existence of a spin property in light was realized experimen­
tally as long ago as 1811 by Arago in the form of left and
right circular polarization, signalling the existence of (1)
and (2) in our circular basis described by Eq. (46). The
concept of longitudinal angular momentum (Eq. (44» is
present, again, in the classical Maxwellian description, and
occurs as photon spin in the quantum theory. The only non­
zero components of this spin are longitudinal, i.e., occur in
the Z, or (3), axis. Finally, 181 years after Arago' s
realization, the field B(3) emerges through Eq. (4a). The
third axis (3) in the circular basis is finally brought into
consideration.

CHAPTER 2. FUNDAMENTAL SYMMETRIES

In writing the novel cyclical relations (4) it is
assumed implicitly that there is no violation of the funda­
mental discrete symmetries [52] of nature: parity inversion
( 13); motion reversal (T) and charge conjugation (C). A
valid mathematical description of a natural phenomenon is
objective, such an equation represents a law of physics, a
law which is a necessary and sufficient description of the
complete experiment. If an equation is unchanged by applica­
tion of a discrete symmetry operator, e. g. P, the law of
physics is unchanged under parity inversion of the complete
experiment and parity is conserved in the natural phenomenon
described by the law. If not, parity is violated. The law
of physics describing a complete experiment is embodied in an
equation through which the experiment and the variables
relevant to observation are defined. For example, in
Newton's Law, force is the product of mass and linear
acceleration, (F = mV), and force is necessarily and complete­
ly defined by the two observables m and v. Any other
description of force is subjective, and outside the bound­
aries of natural philosophy.

There have been suggestions [53] to replace this
necessarily mathematical description of nature by the use of
simple diagrams based purely on symmetry. While these may
produce the correct mathematical result, they may as often
lead to spurious conclusions, because without knowledge of
the appropriate law of physics, it is not possible to
identify objectively the relevant physical variables. The
latter in the diagrammatic approach [53] to complete experi­
ment symmetry have to be chosen subjectively, or arbitrarily,
and if this is done without recourse to experimentation, or
empiricism, the result is also arbitrary. Symmetry must
therefore be used wherever possible with an established
mathematical description.

2.1 THE SEVEN DISCRETE SYMMETRIES OF NATURE

The three fundamental symmetries P, T, and C can be
combined to form the operators PT, TC, PC, and CPT, giving
a total of seven [52]. There are several specialist accounts

21
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In electrodynamics, this unit of charge is conventionally
defined as negative definite, i.e., in theories of electric
and magnetic fields, e does not change sign unless the
electron becomes a distinct (i.e., different) particle, the
positron. The transmutation of electron to positron is one

example of the action of the operator C,

in the literature [52J to wh i ch we refer the interested
reader for the elements of symmetry theory. In electrodynam­
ics (classical "and quantum) we are concerned with the
symmetries of electric and magnetic fields, charges and
currents, in free space and material matter. Electrodynamics
is based on the concepts of elementary charge and field. In
contemporary terms, the field is a gauge field, denoted by
the potential four-vector A~ in the 4-D of special relativity
l S4]. Electromagnetism enters gauge theory, however, through
the product eA.. , having the dimensions of a/ax". The
introduction of eA.. is necessary to maintain the invariance
of the appropriate Lagrangian [54 J under type two gauge
transformations, this invariance being regarded as fundamen­
tally necessary, in the same way as conservation of charge,
energy and momentum. The existence of the scalar constant e
is a fundamental assumption of the theory as presently
formulated, and e is identified as the charge on the electron

The gauge field described by A.. becomes a gauge anti-field,
interacting with anti-matter, made up of positrons, anti­
protons, anti-neutrons and so forth. Appropriate initial, or
boundary, conditions have however, assured that the earth,
solar system, and presumably the universe as now understood,
are naturally composed of matter, and not anti-matter, of
fields and not anti-fields. Evolution has resulted in this
condi tion, so that a description of naturally occurring
fields and matter must be one based on a negative definite e,
i.e., on an e whose sign cannot be changed. It follows that

the scalar amplitude of A .. , denoted A (0), must also have a
definite sign attached to it in this description, the
description known as electrodynamics.

Conventionally, the sign of A .. is positive, so A(D} is
positive definite, just as e is negative definite. Similar­
ly, the scalar magnetic flux density amplitude B(O} and

electric field strength amplitude E(O) of electromagnetism are
positive definite. If we are to remain within the structure
of electrodynamics, therefore, the signs of scalars such as
A (0), B (0) and E(O) cannot change, signifying that C is an
operator which takes us outside the limits of the subjects of
classical and quantum electrodynamics as applied to the
natural, or evolved, universe. The following examples
illustrate this statement.

e ~ -1.60210 x 10-1 9 C. (51)

~A... (53)

(52)

which is therefore defined in elementary particle physics by
the statement [52J that it generates the corresponding anti­
particle from the original particle.

To apply this definition to classical electrodynamics
requires care. From our introductory considerations, it
follows that both sides of an equation of electrodynamics

must have the same overall C symmetry, otherwise C is

violated. However, the application of C changes the sign of
the elementary e and so transforms electrodynamics into a

subject based on a positive elementary charge. Similarly, C
transforms the electrons of quantum electrodynamics into
positrons, and simultaneously transforms matter into anti­
matter. Since C, by definition [52] cannot affect spatio­
temporal quantities such as a/ax.. , it follows that [52]

(1) Oscillating wave fields such as BU) and E(1.)

in free space or matter (i.e., the complete vectors)
must change sign at first order when oscillating, but
this occurs through the oscillatory phase factor

e i ¢ ~ cos 4> +i sin 4> and not through the scalar pre­
mul tipliers B (0) and E(O). The phase is spatio-temporal

in nature, and by definition is unaffected by C.
(2) Applying C does not produce, for example, a

cation from an anion, since both are made of electrons,

protons and neutrons of matter. (C must produce anti­
matter, i.e., positrons, anti-protons and anti-neu-

trons. ) Similarly, applying C to a macroscopically
charged object, such as a van der Graaf generator,
resul ts in an object made of anti-matter, an object
which is not observed naturally, since anti-matter
apparently does not occur in the natural universe.

(3) Free space electromagnetism is considered to
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It is clear that the novel Eqs. (4) of chapter (1), the
equations that tie together the spin field B (3) and "lave

fields B (].) and B (:1), conserve c , because both sides are e
positive, both sides being to order B(0)2. In coming to this
conclusion, we note that

emerge from the product eA", and therefore from a
source made up of radiating electrons located in a
universe of matter and fields. Currents in this source
are necessarily moving electrons. Free space electro­
magnetism therefore arises conventionally from matter
at a source in the natural universe and never from

anti-matter. Applying C to A" means that its source
must become anti-matter.

(55)iB (0) B (3) ,B (1) x B (:1)

Taking Eq. (4a),

the left hand side is the cross product of two axial vectors,
so the right hand side must also be an axial vector [55]. An

axial vector is f3 positive [55] and the scalar B(O) is also f3
positive [10]. Eq. (55) therefore conserves P, because the
overall P symmetry on both sides is the same. Similarly, the
novel free space equation [9]

violated.

(2) If PT' is conserved, then, (a) f3 and i' are
both conserved separately, or, (b) P and T' are both
violated.

2.2.1 P Conservation

The discrete symmetry operators f3 and T can be applied
within electrodynamics with care. Since e takes us outside
the boundaries of conventional electrodynamics, it follows

that pi' must always be conserved within electrodynamics.

Since T violation has been observed experimentally only on

one occasion, and then indirectly through ep violation [52],

it is inferred that f3 and T are separately conserved in

electrodynamics, whose physical equations conserve f3 and i.
Taking the novel Eqs. (4) as an example, the separate

conservation of f3 and T may be demonstrated as follows. (It
is sufficient to demonstrate the conservation of only one

of f3 and T, because it follows that the other must be

conserved because PT is conserved.)

(54)-B (0),e(A (0») = -A (0) ,

which follow from Eq. (53). Similarly, it is easily checked
that all physically valid equations in electrodynamics

conserve e, in the sense that the overall C symmetry on both
sides is the same. Care must be taken, however, about the

fundamental meaning of C. Its real relevance is in elementa­
ry particle physics [52], in which anti-particles which do
not occur naturally in the observable universe are manufac­
tured in the laboratory. In the same sense, some chiral
chemical compounds such as alkaloids and sugars do not occur
in nature (i.e., in the natural universe), but. can be synthe­
sized in the laboratory. The absence of these compounds in
nature does not imply violation of any discrete symmetry
[52]. Similarly, the absence of anti-matter and anti-fields
in the natural universe does not imply the violation of e
symmetry.

2.2 THE eM THEOREM (56)

That this must be so is embodied in the CPT theorem of
field theory [52], of which there are numerous accounts
available. The theorem, simply stated, means that the
conservation of epf always appears to occur in the theory of
fields and particles. For example:

conserves P because the left hand side is the cross product
of two polar vectors, an axial vector B(3).

(1) if e is conserved, as we have argued, PT is

conserved. Conversely, if e is violated, PT must be
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(59)_ jp.
e

where ]11 is a four-current and where Pv are 4 x 4 Hermitian
matrices definable in terms of Pauli matrices. The four­
component equations (59) splits into two two-component
equations in a similar manner to the neutrino equation, but
unlike it, these two equations are coupled through the
subsidiary condition Go = 0 . Equation (59) has the general
form [46] of the wave equation for all spin values, and the
Dirac equation [46] has the same form. So do the Kemmer
equations, which are related [57] to the Proca equation for
a photon of finite mass.

In view of these results, which are not well known, but

electron. The C operator generates the anti-particle from
the original particle, a process which is accompanied by the
reversal of charge, baryon number, lepton number and so on
[52], but which leaves mass and spin unchanged. It is
conventionally asserted that the photon is its own anti­
photon [52], because the photon is regarded as having no
charge, baryon number, lepton number, or strangeness.
Howeve r , the photon does not exist in isolation of its

concomi tant fields, embodied in All' and C reverses All'

Therefore the operator, C, that generates the anti-particle
from the particle also reverses the sign of All' For this
reason it is inferred as already described that C generates
the anti-field from the original field, in the same way as it
generates anti-matter from matter. Indeed, in general
relativity there is no distinction between field and matter,

so that it follows that C must generate an anti-field
concomitant with the photon defined conventionally as the
light quantum hv.

Therefore it is not sufficient to assert that the
photon is its own anti-photon, even though the photon is
usually considered to be governed by a different equation of
motion (d'Alembert or Proca equation) from a particle such as
the electron (Dirac equation). Even this statement which
occurs in many standard texts [54] needs qualification,
because, following Barut [46], the photon can be described
through the same type of equation of motion as the neutrino.
This is accomplished through the use of a complex field
vector Ble + is, which forms the space-like component of the
four-vector Gil' whose time-like component is zero. Gil = 0 .
The Maxwell equations are then [46]

T(S(l») = _SI:iIl
R L (57)

2.3 THE CONCEPT OF PHOTON AND ANTI-PHOTON

(58)

The concept of anti -particle emerged from the Dirac
equation for particles with mass, spin and charge such as the

where Rand L denote right and left circular polarization
respectively. The field S() , being a magnetic field, is also
T negative [55] and B(O) is T positive, being a scalar, so
that T is conserved.

Similarly, it may be shown [56] that all Eqs. (t~)

conserve T, as well as P and C, and therefore conserve all
seven discrete symmetries of nature. Furthermore, all
physically valid equations of electrodynamics conserve the
seven discrete symmetries. There are several phenomena of
elementary particle physics [52] in which violation occurs
experimentally of one of the discrete symmetries, for example
beta decay, but in electromagnetism, it appears that such
violation does not occur unless the photon is taking part in
some process involving other elementary particles. In free
space electromagnetism, it is presumably true that we are
dealing only with one type of particle, the photon, and that
"~ symmetry violation occurs in the equations of free space
electrodynamics.

so:

2.2.2 T Conservation

In demonstrating independently f conservation in Eqs.
(4) it is necessary to account for the rotational motion of
the electromagnetic plane wave. By definition, f reverses
motion, while P is not directly concerned with motion.
Specifically, the conjugate product is T negative. To see
this, it is necessary [55] to write out the effect of T on
the individual fields, for example E(1) and E(2) :
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and is used as such in standard texts [52]. In the manufac­
ture of laser radiation, however, and in similar laboratory
phenomena, electromagnetism is generated from electrons,
either free or bound within atoms, and not from positrons.
The sign of A(O) in laser radiation is therefore fixed as we
have seen, and in particular, the sign of the scalar ampli­
tude B(O) of S(1) , S(2) and S(3) is positive definite. The

sign of S(3) from a radiating positron is expected to be

opposite from that of B(3) from a radiating electron, and this
would be a test for the anti-photon.

nevertheless rigorous [46] in special relativity, it is
inferred that there is an anti-photon, whose mass and boson
spin are the same as those of the photon, but whose concomi­
tant anti-field is reversed in sign. The photon can there­
fore be defined as l1v accompanied by AI" whose amplitude is
A (0); and the anti-photon by hv accompanied by -AI" whose
amplitude is -A(O). As discussed already, however, the anti­
photon appears not to exist in nature, but can be manufac­
tured in the laboratory, for example from a radiating

positron. There is no doubt that the t parity·of the photon
when de s i.gna t ed by the standard symbol y in elementary
particle physics is negative,

-y, (60)

the anti-photon is

(62)

because the photon and anti -photon are identical in our
defini tion except for the sign of A (0). Since A (0) is not
spatio-temporal, and parity is by definition spatio-temporal,
the intrinsic parity of photon and anti-photon must be the
same, i.e., negative. Note that if the photon is defined as
the light quantum of energy hv, a scalar, then its intrinsic
parity cannot be deduced. For this purpose, the classical
quantity AI' is assumed to be sufficient, even in the context
of quantized elementary particle theory [52]. This shows
clearly that the "photon" is not fully defined in the absence
of concomitant fields. The fact that photon and anti-photon
have the same intrinsic parity is consistent with the theorem
[52] that for bosons, particle and anti-particle must have
the same parity. (For fermions [52], particle and anti­
particle have opposite parity.)

2.5 MOTION REVERSAL SYMMETRY OF PHOTON AND ANTI-PHOTON

The motion reversal symmetry (T) of the photon is
expressed [52] again in terms of the potential four-vector
AI" i.e" through the concomitant field,

2.4 PARITY OF THE PHOTON AND ANTI-PHOTON A ,- E (A i cfl ) - E (-A icfl )1',- 0 'c 0'-(;'
(63)

A text on elementary particles and symmetries such as
that of Ryder [52] states that the photon is described by AI"
and under the parity inversion operator AI' behaves as
follows,

(61)

and so it is stated that the photon has negative intrinsic
parity. The latter is well defined in elementary particle
physics [52] only for uncharged and non- strange bosons,
particles which can be created singly. This statement is a
consequence of the law of conservation of charge, and since
neither the photon nor the anti-photon as defined in Sec. 2.3
is charged, it is possible for both to have a well defined
negative intrinsic parity. The equivalent of Eq. (61) for

and is negative. Similarly, the T symmetry of the anti­
photon, defined in this way, is also negative. However, it
is obviously necessary to be clear about which photon
property is being referred to in this definition. The photon

linear momentum whose magnitude is hv/c, is negative to T.
The photon angular momentum whose magnitude is h, is also

negative to f. However, if the photon is defined as the unit
of energy hv, its motion reversal symmetry is positive by
definition. These motion reversal symmetries are the same
for the anti -photon, whose energy and 1 inear and angular

momenta are defined as positive to C. Since physical photon
energy is always proportional to the square of the concomi­
tant electric or magnetic field, its energy is always
positive. Presumably, the Kemmer equation (59), which is
structured identically with the Dirac equation, also produces
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2.6 THE PHOTON'S CHARGE CONJUGATION SYMMETRY, C

and so has negative charge parity €c' This result is denoted
by

(65)A = o·~
,PI'

magnetic fields in free space ("in vacuo") can be classified
without ambiguity. For this purpose it is inferred that two
appropriate variables are the helicity, a scalar denoted A,
and All' The photon is therefore identified as (A, All)' and
the anti-photon as (A, -All)' where A(Ol is positive definite
and negative definite respectively. This definition allows
for wave - particle dualism, in that the photon is both a
particle, and an electrodynamic wave. It is now clear that
the particle generates the spin ±h, and the wave generates
the spin fields ±B (0)'11. The existence of the spin field is
an inevitable consequence of the existence of '11, the spin
angular momentum of the photon, and the fundamental Dirac
constant.

Care is needed in the definition of helicity. In the
classical relativistic theory of electromagnetism, considered
to be without concomitant mass, the helicity of the photon is
+1 or -1, and emerges following the work of Wigner, as
described for example by Ryder [54], from considerations of
the Pauli-Lubansky vector and the generator of space-time
translations. The numerical values of the helici ty are
therefore basic symmetry properties of the Poincare group
and, anticipating the particle interpretation in quantum
field theory, are (within to a factor ~) the eigenvalues of
spin angular momentum for the boson with a missing zero.
This boson is of course the massless photon. It is important
to realize that if the photon has mass then the eigenvalues
are -11, 0, and '11, and the obscure little group [54] E(2)
introduced by Wigner is replaced by the physically meaningful
rotation group. This is one of the major theoretical
advantages of regarding the photon as massive, rather than
massless [9-15]. There is, strictly speaking, no non­
relativistic counterpart of the Wigner definition of helici­
ty, but the working definition [52],

(64b)

(64a)

in elementary particle physics, which, however, asserts that
the photon is its own anti-photon because it carries no
charge, lepton number, baryon number or strangeness. We have
argued, however, that since the photon always has its
concomitant All' it is possible to define the anti-photon
through the change in sign of A(O) upon application of C.

Clearly, a more consistent scheme is needed in view of
the recent discovery of B(3) through equations (4), because

the direction of B(3) , which is in principle measurable in the
laboratory, is opposite for photon and anti-photon, the
former being produced by a radiating electron and the latter
by a radiating positron. One possible scheme is suggested as
follows.

It has already been inferred that the C symmetry of the
photon is negative, an inference once more obtained through
the concomitant field, but this time through the change in
sign of the scalar magnitude A(O), and not by definition of C
[52], through any sp.atio-temporal quantity. The photon is an

eigenstate, " of C such that

the unphysical negative energies [54] that originally led
Dirac to propose the concept of anti-particle. Thus, the
Kemmer equation would lead to the anti-photon by analogy.

2. 7 SCHEME FOR THE PHOTON'S FUNDAMENTAL SYMMETRIES, C, fI ,
AND T

Equations (4), defining the novel spin field B (3) of

electrodynamics [9-15] are invariant to C, P, and T for the
photon and anti-photon. A set of self consistent rules is
therefore necessary by which the symmetries of the electro-

is often used. Here 0 denotes spin, and P denotes linear
momentum. Therefore the helicity is loosely defined as the
component of spin along the direction of motion, and is

therefore a pseudo-scalar negative to P. From Eq. (11) it
is seen that K is in a sense also a pseudo-scalar, negative

to P, and indeed, the ratio of the magnitude of photon
intrinsic angular momentum, i.e., '11, to the photon linear
momentum magnitude, hwlc, is 11K, which has the dimensions
of wavelength, also given the symbol A. The angular momentum
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time-like part is positive.
In Eqs. (66) it is assumed implicitly that the scalar

potential 4> is non-zero, as in the Lorentz gauge defined by
the condition [43]

in Minkowski notation x, : = (X, y, Z, ict) . In the transverse
gauge, the scalar potential 4> is zero, but this makes no
difference to the scheme described by Eq. (66). In summary
therefore, the conventional inference [52] that the photon is
its own anti-photon cannot be true if account is taken of the
concomitant fields, described by A" and the photon is always
concomitant with C negative electric and magnetic fields.

magnitude of the photon switches sign with circular polariza­
tion and so does the helicity. The latter embodies the
result that electromagnetism in free space is a phenomenon
involving simultaneous rotation and translation, and the
photon as particle has both linear and angular momentum.
These momenta are intrinsically and inevitably relativistic
if there is no mass, and the massless photon is never at
rest. The helicity summarizes these spatio-temporal proper­
ties in just two numbers, -1 and +1, or if there is mass, in
three numbers, -1, 0, and +1. The electromagnetic character
concomitant with the helicity is A~. The description of the
photon as (1, A,) is therefore fully relativistic as required,
bearing in mind that in the relativistic quantum field

theory A, is an operator [54], whose expectation value is A,.
In this relativistic definition 1 is defined by the rigorous
Wigner method, strictly speaking classical in nature [54].

The effect of C, P, and f on the photon can now be
defined as

0, (67)

C
( l A A(O»)-(l-A -A(O»), t1' , t-1' ,

p
(1, A, 4» - (-1, -A, 4»,

(66a)

(66b)

2.8 SYMMETRY OF THE PURE IMAGINARY FIELD J.Bm/c

In Chap. 1, and in dealing in Sec. 2.3 with the Kemmer
Eq. (59), use was made of the imaginary fields iB/c and iB,
together with the cyclically symmetric relation

'f
(1, A, 4» - (1, -A, 4», (66c)

(68)

(with cyclic permutations of (1), (2) and (3». The fields
being permuted here are B(l), B(2) and iBm; and not B(l),

B(2) and B(3) as in Eq. (4). Thus B(3) is pure real in Eq.

(4) and iB(]) pure imaginary in Eq. (68). (The negative sign
on the right hand side of the latter equation is due to
iB(]) = - (iB(J»· where * denotes "complex conjugate" as

usual. ) Using E(O) = cB (0) in free space and comparing Eqs.

(4) and (68), it is seen that iB(3)/C must have the same

discrete symmetries as B(3). This is confirmed through the
use of the sum B/ c + iB in the Kemmer equation (59).

Another indication that B(3) and -iB(3)/c have the same

discrete symmetries, C, P, and T, comes from the duality
transformation of special relativity [46], under which the
Maxwell equations are invariant in vacuo. In S.I. units, the
duality transformation is equivalent to the space-like
transformations:

(66d)

which are also the symmetry properties of the classical

electromagnetic wave in vacuo. Therefore, the C operator
leaves the space-time quantity 1 unchanged by definition,

while changing the sign of A (0) by definition. C thus
produces a distinct entity which we identify classically as
the anti-wave and quantum mechanically as the anti-photon.
The photon is its own anti-photon [52] only in regard to the
spatio-temporal helicity, 1, in Eqs. (66).

The P operator reverses the sign of 1 by definition.

The P symmetry of the space-like part of A~ (the vector
potential) is negative, and that of the time-like part (the
scalar potential 4» is positive. P produces the classical

wave or quantized photon with opposite helicity. The f
operator does not change the sign of 1, and the f symmetry
of the space-like part of A~ is negative, while that of the

iBB"'-
c

E'" icB, B* ... iE*/c, E* - -icB*, (69)
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and for the complex conjugate, circular coordinate (2), we
have

the change in sign being occasioned again by the fact that i
changes sign under complex conjugation. The factor i appears
in the duality transformation because of the pseudo-Euclidean
(i.e., complex) nature of Minkowski space-time, whose space­
like part is real, and whose time-like part is imaginary.
For conventional Maxwellian wave fields in free space, it is
easy to see that the duality transformation simply generates
the complex electric wave from the complex magnetic wave.
For example, for the conjugate wave field with circular
coordinate (1) we have

Bel)

Be:!)

B (0) .... 'E(O)
--(i1 + j)e Z

", -+ -~--(1 - ij)e i '"
{2 (2c

B (0) .... -iE(O) ....
--(-i1 + j)e- z", -+ (1 + ij)e- Z ",

{2 (2c

iE(l)

C

-iE(:!)

C

(70)

(71)

This conclusion is also consistent with the fact that

the discrete symmetries P and T of physical magnetic and

electric fields are different. The former is axial, P
positive, T negative, the latter is polar, P negative, f
positive [9-15]. It is not possible, by fundamental geome­
try, to produce a polar vector in Euclidean space from the
vector cross product of two polar or two axial vectors,
meaning that the pure imaginary iB(3) in Eq. (68) must be
regarded as axial i.e., as having the same symmetry as a pure
real magnetic field. This is consistent with the fact that
the duality transformation converts a real, axial, and
physical magnetic field into an imaginary electric field
which is unphysical at first order. Seen in another way, the

conjugate product, as inferred from Eq. (68), is T negative
and cannot generate a real, physical, phase free "electric
spin field". This is consistent, finally, with the fact that
the real magnetic field S(3) is directly proportional to an

angular momentum, which is T negative, P positive.

The wave fields are complex in nature, but the spin field S (3)

is pure real (9-15]. Therefore the duality transformation

applied to S(J) must generate a pure imaginary electric field

- iE(J) / c because Minkowski space - time is complex. This is the
fundamental reason in relativity why there cannot be a
longitudinal real B(3) , and as we have seen, electromagnetism
in free space has no non-relativistic limit, the free space
Maxwell equations are invariant under a Lorentz transforma­
tion (4] but not under the Galilean transformation. This
inference, as is well known [4], led to the development of
the theory of special re1ativi ty by Lorentz, Poincare and
Einstein. Following the usual rule that pure real fields are
physical [4, 45], pure imaginary fields are unphysical, it
follows that -iB(3) / c has no physical significance at first

order, i.e., iB(3) is not a physically significant electric
field, meaning that it does not act on matter as an electric
field. In contrast, Be]) is a pure real and therefore
physically significant magnetic field, as evidenced, for
example, through Eq. (6), defining the inverse Faraday effect
at second order. (There is also (Chap. 12) a first order
inverse Faraday effect in the physical magnetic field B (3)

(9-15].) No electric analogue of the inverse Faraday effect
appears to have been reported experimentally, from which it
is consistent to infer that iB(3) is unphysical.

2.9 EXPERIMENTAL DEMONSTRATION OF THE EXISTENCE OF THE ANTI­
PHOTON

The existence of the anti-photon can be demonstrated
experimentally simply by a re-examination of the various
phenomena of magnetization by light, such as the inverse
Faraday effect [19-26]; the optical Faraday effect [25];
light shifts in atomic spectra [58, 59]; and recent novel
manifestations such as optically induced nuclear magnetic
resonance shifts [60-62]. The reason is that these effects,
which are field-matter phenomena, can be interpreted in terms
of Eq. (4), in which the conjugate product is replaced by a
term involving B(3) at second order in B(Ol. They are
therefore experimental demonstrations of the existence of
S(3). For example the inverse Faraday effect can be inter­

preted directly in terms of B(1) x Sm and therefore of
iB (0) S (3) as demonstrated recently by Wozniak et al. [63].

Application of C to these experiments shows that there
must be corresponding anti-field / anti-matter experiments
which demonstrate the existence of -S(]) , i.e., of S(J) with

the sign of B'O) reversed. It is possible to infer on these
experimental grounds that there is an anti-photon whose
concomitant B(O) is reversed in sign.

A direct demonstration of the existence of the anti­
photon requires direct experimental proof that the sign of
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Bm (and therefore of B (0) is reversed under appropriate
circumstances. For example, in one of the simplest cases,
the sign of BC3l should be reversed in circularly polarized
radiation from a moving positron when compared with radiation
from a moving electron. Unequivocal proof in such an
experiment would require the direct observation of B C3l at
first order, because at second order, the sign of BCO'2 is
unchanged (i. e., the squares of B (0) and -B (OJ are both
positive). It is emphasized that the source of radiation
must be anti-matter, it is obviously insufficient simply to
replace a radiating anion by a radiating cation, because both
are made of matter (electrons, protons, neutrons etc., and
not positrons, anti-protons, and anti-neutrons). Radiation
from the cation and anion (or any type of microscopfc or
macroscopic matter) always has a positive definite scalar
magnitude B(D) because the source always has a negative
definite e. Radiation from anti-matter has a negative

definite E t O
) because the source has a positive definite e.

It may be possible to infer under certain circumstances in
element4ry particle physics the participation of the anti­
photon in reactions among, or scattering of, elementary
particles (52].

CHAPTER 3. THE ORIGINS OF WAVE MECHANICS

Wave mechanics is among the foremost achievements of
natural philosophy, and there are numerous accounts of its
inception, notable among which is the scholarly monograph by
Pais [64]. The old quantum theory was based on the ideas of
Planck, Einstein, and others in the first decade of this
century, ideas centered on the light quantum hypothesis as
described by Pais [64] by careful reference to the original
papers, warts and all. The light quantum could not have
arisen without the photon, which is therefore the fundamental
idea of the old quantum theory, a theory based essentially on
the consideration of electromagnetism in thermodynamic
equilibrium with matter, i.e., on a field-matter hypothesis.
As described briefly in Chap. 1, the recent realization that

there exists a spin field B(3) in free space makes no
difference to these original ideas, i.e., B(3l is consistent
with the ideas of wave mechanics, both for the photon without

mass, and the photon with mass. The emphasis on SC3l in this
chapter is a convenient way of demonstrating the origins of
wave mechanics, making it clear as a by-product of the

analysis that the spin field a C3l is precisely defined as an
expectation value, or stationary state, of the ~lectromagnet­

ic wave fields in free space.
The transition from the old quantum theory to wave

mechanics took place in a series of profound philosophical
developments from about 1900 to about 1925 as the result of
the combined efforts of many thinkers. It is generally
accepted that one of the key inferences was that of Louis de
Broglie, whose Doctoral Thesis proposed the idea of matter
waves [64, 65]. As in Chap. 1, these are essentially
electromagnetic waves with finite rest mass, from which it is
natural to propose that the photon itself may have mass.
This line of thought (initiated in about 1916 by Einstein in
the context of classical general relativity [66]) was pursued
by de Broglie in a series of monographs [67] and scientific
papers, one of the by products of which was the proposal of
the Proca equation in 1930 [68], essentially the d'Alembert
equation with mass, a wave equation. From matter waves to
wave mechanics is in some ways a short step mathematically,
but based on de Broglie's giant conceptual leap. In about
1925 Schrodinger proposed an equation [69J which was based on

37
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a novel psi function, lIJ, which is operated upon by a

Hamiltonian operator H to generate a scalar energy eigenvalue
En. The psi function is therefore an eigenfunction, and the
time-independent Schr odLnge r equation an eigenvalue equation.
It was proposed by Schrodinger that his equation

il'P 0: EnlIJ, (72)

3.1 THE PHASE AS WAVE FUNCTION

Our account here is based on that of Atkins [70], but
is centered on the emergence from classical electrodynamics
[9-15] of the spin field B(3) and on the consequent need to
interpret it within quantum field theory. Since action in
classical mechanics has the units of energy multiplied by
time, it is clear that

and is therefore precisely defined in wave mechanics.
The time dependent Schrodinger equation is essentially

[70] the hypothesis that a particle is described by a wave­
like relation between amplitudes 'P at different points in
phase space:

has the correct units. The analogy between electromagnetic
phase in radiation and action in matter is the key to the
derivation of the time-dependent Sc hrod i.nge r equation as
described by Atkins [70]. This is al so the key to the
interpretation of B(3) as an expectation value of the
electromagnetic field between complex conjugate eigen­
functions which will be identified, for one photon, as the
electromagnetic phase ei~, associated with the circular
coordinate (1), and the phase e-i~, identified with circular

coordinate (2). It follows that the classical B(3) becomes

an operator B (3) which is described by the Schrodinger
equation for one photon,

be an equation of motion that applies to matter, in which,
following de Broglie, there exist matter waves. Despite the
fact that the SchrodLnge r equation in this form is not a
second order differential wave equation, it was derived in
direct response to the wave nature of light and the inferred
wave nature of matter. Essentially speaking, fields and
matter are both undulatory and simultaneously particulate.

It is well known [64] that the physical nature of the
psi function was not immediately apparent, and that it was
left to Born in about 1926 [64, 70] to propose an interpreta­
tion based on probability, the Copenhagen interpretation, but
one which was never accepted by Einstein, who continued to
refer to " simply as the psi function [64]. In the Copenha­
gen interpretation of light and matter, waves and particles
never co-exist [71, 72], but in the Einstein-de Broglie
interpretation, they can. The latter interpretation has
recently received renewed experimental support in double slit
experiments which demonstrate the simultaneous presence of
single photons and waves [72].

The interpretation of the wave function by Born was
itself based on an analogy with the nature of the electromag­
netic phase, 4>, used in Chap. 1, and on the fact that
electromagnetic energy is quadratic in the electric and
magnetic fields. The identification [70] of 4> with action
S:

So: h(U>t-x'r) 0: (hw)t-hx'r, (74)

(75)

(73) (76)

is the starting point of our interpretation of the newly

discovered spin field B(J) [9-15], which does not occur in
standard electrodynamics [4]. This method rigorously defines
B(3) as a stationary state of the electromagnetic field in
vacuo. In so doing, the close relationship between wave
mechanics (or quantum mechanics) and the particle-wave nature
of light and matter emerges naturally.

The particle is therefore associated with a wave-like
amplitude 'P, and propagates along a path that makes 4> 0: sr«
a minimum. The scalar 4> is identified with action as in Eq.
(73), thus making a direct link between Fermat's principle of
least time in optics and Hamilton's principle of least action
in mechanics. This link is the essence of wave mechanics,
because wave and particle properties are identified through
Eq. (73). The time dependent Schrodinger equation is
essentially Eq. (76), where S is the action associated with
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V* = ei("'t-,c-r) = lJI* (x) ei"'t, (79)

3.2 THE WAVE MECHANICS OF A SINGLE PHOTON IN FREE SPACE

(82)fi . "" i'h~
at'

which is a differential operator, operating on the time
dependent T function, the classical exponent of the electro­

magnetic ...lave. The operator fl and the energy En are
entirely kinetic in free space. Equation (81) is therefore
a Schrodinger equation for one photon propagating in free
space. Multiplying both sides of Eq. (81) by the complex

conjugate T* gives Eq. (20) of Chap. 1, which, together with
the classical electromagnetic equation (19) gives the de
Broglie Guiding theorem, Eq. (1), as described in that
chapter.

In multiplying Eq. (81) on both sides by the conjugate
T' we have formed the expectation value of the one photon
Hamiltonian operator in free space. This expectation value
is the light quantum hw, which is related to the square of
the concomitant electric and magnetic fields of the photon
through equations such as (2), (3), and (8) of Chap. 1. This
inference in turn leads us to the essence of Born's interpre­
tation of the psi function. This interpretation rests on the

axiom that 1p' (r, z ) T (x, t) dV is the probability of the
particle being in the infinitesimal volume dv at the point r
at time t. For one photon in free space this product is dV,
and although the individual exponents, which are identified
as single photon wave-functions, vary with time, the conju­
gate product, in the language of quantum mechanics, is a
stationary state of the photon.

Following Atkins [70], this inference is consistent
with the fact that Born was led to his interpretation by
Einstein's correlation of the number of photons in a light
beam with its intensity, the latter being proportional to
conjugate products such as integrals over ss»> EW' or
B(i) ·Bw. where (i) runs from (1) to (3) following the

discovery of the spin field B(3) , and * denotes "complex
conjugate". If the light beam is composed of one photon the
psi function is a complex exponential, identified with the
phase of the classical electromagnetic wave. The time
dependent form of the wavefunction of one photon propagating
in free space is therefore lJI exp (-iwt) , and the time depen­
dence is [70] a modulation of the phase of the wavefunction:
exp (-iwt) oscillates periodically from 1 to -i to i and
back to 1 with a frequency wand a period 1/ (21tw), as
described diagrammatically by Atkins [70].

The wave mechanics of a single photon in free space can
be described equivalently by d'Alembert's equation and

(78)

(81)

(80)

That these are
clear from the
time dependent

(77)

Equation (76) can be
insight using the

as
En "" ­ at'

H~ 1JJ '" avT "" ~Il()f'

i'h~" EnV,at

The classical electromagnetic exponents for monochro­
matic radiation at the angular frequency ware

it becomes Eq. (72), allowing the identification of the
Hamiltonian operator for a single photon,

The identification of electromagnetic phase with mechanical
action, Eq. (73), is therefore the basis of wave (or quantum)
mechanics.

where the energy is that of one photon, the light quantum
En =hw. The time dependent wave function of a single photon
in free space is therefore T. Furthermore, by writing Eq.
(80) in the form,

where * denotes "complex conjugate" as usual.
wave functions for the Single photon becomes
fact that Eqs. (79) are solutions of the
Schrodinger equation written in the form

and using the time-independent Schrodinger equation (72), and
is conventionally written as

the trajectory from (Xl' t]) to (X2, t 2 ) .

rearranged without further physical
relation between action and energy,
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Schrodinger's equation. The Schrod i nge r equation in this
case is therefore rigorously consistent with special relativ­
ity, because the d'Alembert equation is already a relativis­
tically correct description. The contemporary understanding
of this result can be summarized through the fact that the
Klein-Gordon, d'Alembert and Dirac equations of motion for a
particle with mass m == 0 can be written as

<'PO lEI 'P> == 1'P o E'P dV.

Thus,

(84)

(85)

(83) is the expectation value from the Schr6dinger equation of
motion of the photon in free space,

When there are many photons in the light beam, it is well
known that on average, the light beam intensity, I o ' in watts
per square meter is given by

which is therefore an expectation value for many photons, as
opposed to just one photon. In calculating I o quantum
mechanically to give the final result (88), Bose-Einstein
statistics may be used. The light quantum hw is the essen­
tial building block of these statistics, which consider
radiation in thermodynamic equilibrium with a black body. In
deriving the Planck law using Bose-Einstein statistics,
however, [70], the Schrodi.nge r equation differs from Eq.
(86), which is that for one photon in free space, in which
there is no interaction with matter. In other words Eq. (86)
is that for the trajectory of one photon in free space. In
this case, the wave functions are complex exponentials
defined by the phase of the classical electromagnetic plane
wave in free space.

Equation (85) represents the stationary state of photon
energy in free space. The corresponding stationary states of
the photon's linear and angular momenta are given by the
Schr6dinger equations,

ElY> == hw I'P>,

(88)

(87)

(86)

~ wt-lt·r.I'P>

where the wavefunction is defined by

The light quantum hw is the stationary state defined by

the expectation value of the Hamiltonian E for one photon,
a result summarized by the following set of equations, where
the Dirac bracket notation is used,

3.3 STATIONARY STATES OF ONE PHOTON IN FREE SPACE

where ~s is a scalar field, A~ is the electromagnetic gauge
field (a vector field) and ~s is a spinor field. The Klein­
Gordon equation is the relativistically correct form of the
Schr6dinger equation [54] for a particle with non-zero mass,
and so for m == 0, the relativistically correct form of the
Schr6dinger equation is given in (83). For one massless
photon travelling in free space Eq. (83) shows finally that
there is a link between the scalar, vector and spinor fields
of the photon, a result which is consistent with the Kemmer
equation, the Maxwell equations in free space in neutrino
form, as described by Barut [46].

The dynamics of one photon in free space represents a
meeting place, or confluence, of several major concepts in
classical, quantum and relativistic field theory, and
considerations of the phase of the electromagnetic plane wave
lead to the wavefunction of quantum mechanics. For one
photon, the latter has no statistical nature, but for many
photons the contemporary description [73, 74] relies on
creation and annihilation operators. Phenomena of light
squeezing [74] show that photon statistics are essentially
quantum mechanical in nature, but the interpretation of
quantum mechanics itself is more than ever a matter for
lively debate [75-77]. Recent experiments appear to indicate
[75] that the particulate photon and its concomitant wave co­
exist, thus indicating support for the Einstein-de Broglie
interpretation of light. More will be said about this view
in later chapters of this book.
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where the linear and angular momentum one photon operators
are

(95)

(94)

k '" --~-'_S(1) x B(:l)
B(0)2

This equation leads directly to the definition of the
photomagneton in terms of the angular momentum operator of
one photon in free space:

where k is our axial unit vector in z. However, Eq. (4a) of
Chap. 1 shows that the same axial unit vector is proportional
to the conjugate product, BIll x S(2) which experimentally
mediates the inverse Faraday effect, and which is therefore
a physical property of light:

reference. Therefore the rotation generator JO) is an
operator, which operates on the wave function IV>. In

differential form it is, J(3) = u/w) (a/at). The matrix and

differential forms of S(3) are equivalent [54]. The expecta­

tion value of J(3) is, in Dirac notation, and analogously with
Eq. (85),

(91)

(90)

(89b)

(89a)

±hl1J1> ,

i'h aS'" w3t'

JI'I'>

ill a
C at'

131'1'> '" 'hw 1'1'>,
C

As described in Chap. 1, the angular momentum operator J
defines the novel spin field n» in operator form, and in the

remainder of this section we show that fj(3) is a fundamental
photon property, the longitudinal photomagneton [9-15].

In quantum mechanics, independently [70] of any
consideration of the Schr6dinger equation of motion, the
angular momentum is associated with a projection (or azimuth­
al) quantum number MJ . For the photon without mass this
implies that

an equation which can be rewritten in terms of the rotation

generator J(3), an operator whose expectation value [14, 15]
is the unit axial vector k in the direction of photon
propagation, z:

(97)

(96)fjO} "'B(O)~.

fj (3)

The latter can also be obtained by multiplying both sides of
the defining Schrbdinger Eq. (92) by B(O), the magnetic flux
density amplitude in free space of the wave concomitant with
the photon.

These one photon results can be extended systematically
for an ensemble of N photons, using Bose-Einstein statistics
and the methods of contemporary field theory, which use
creation and annihilation operators. It is clear that there

is an operator fj (3) associated with the photon in free space,
and this operator is referred to henceforth as the photo­

magneton fj(3). It is a quantity in field theory as fundamen­

tal in nature as the operator J itself, but was identified
only in 1992 [9-15]. In differential form it is defined by

(93)

(92)

],-i 0

o 0

o 0

o-i 0 0

i 0 0 0

o 0 0 0

o 0 0 0

11 m > "'" J(3) 1=> '" +l!W>'Ii T T - T .

S(3)

This gives the well known result [54, 70] that rotation
generators are angular momentum operators of quantum mechan­
ics within a factor n. Since Eg. (92) for the photon in free
space must be rigorously relativistic, the 4 x 4 rotation
generator must be used [54]. In matrix form,

where the 3 x 3 Euclidean form is given in brackets for
and is linked to the one photon Hamiltonian operator H by
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(98)

3.4 HEISENBERG UNCERTAINTY AND THE SINGLE PHOTON

is specified without uncertainty as the exponent e- i $ .

In the Copenhagen interpretation [72] the ~ function is
interpreted in terms of probability, following the original
suggestion by Born referred to earlier, and expectation
values such as

[A, B] = ie,

become mean values with statistical deviations

If the operators A and B form the commutator

(103)

(102)

(101)

.1.B ~ B - <B> .

<B> = Jlf'B~ dV,

.1.A = A - <A> ,

Since fj(3), as we have just seen, is defined directly by

J, Heisenberg's uncertainty principle applies to it in the
same way as it applies to the angular momentum of a single
photon. One of the consequences of the Heisenberg uncertain­
ty principle is that the trajectory of a particle cannot be
specified. This conclusion also emerges from the classical,
but relativistic, idea of a particle without mass, as
described in Chap. 1. In order to define the trajectory of
a particle, it is necessary to specify at each instant along
its path both its position and momentum, and this is not
compatible with momentum-position uncertainty [70]:

(99) the Heisenberg uncertainty principle is properly defined by
[70]

operators which are both specified. Clearly therefore the
particle defined by p and the monochromatic wave defined
by w co-exist in free space. This is the Einstein-de Broglie
interpretation of light, photon and concomitant wave co-exist
in free space. The ~ function for one photon in free space

The magnitude of the linear momentum of the massless
photon is defined by the de Broglie relation p ~ ~w/c, so its
position cannot be specified, or "localized" in space, either
in wave mechanics or in classical special relativity. The
photon without mass is not a "localized particle". Since
p ~ 'hw/ C, however, and 'h and c are both universal constants,
Lorentz invariants, the linear momentum magnitude p of the
photon without mass is determined by the angular frequency
w, which is the angular frequency of a monochromatic wave.
The frequency of the wave is proportional to the linear
momentum of the particle, the wave frequency is specified
without uncertainty, and so therefore is the light quantum,
~w, of energy. The energy and linear momentum of the photon
without mass, propagating in free space, can be expressed in
terms of psi function operators, as argued in previous
sections,

where

(104)

(105)

and similarly for &13. Thus A and B commute (meaning
[A, 13] ~ 0) if both are specified without uncertainty.
Therefore since the energy and linear momentum of the photon
without mass are specified, both in classical special
relativity and in the Schrodinger equation for one photon in
free space, then the position of the photon in free space is
unspecified completely. If the frequency of the monochromat­
ic wave is w its linear momentum is p = ~w/c, but its
position is unspecified, it can exist along its propagation
direction as oscillations covering the range z = -00 to Z = +00.

The monochromatic wave can be found anywhere in an infinite
range, i.e., its position is completely unspecified. The
probability of finding the wave at any point Z is zero, and
so, in the Copenhagen interpretation, the wave is said not to
co-exist with the photon without mass.

Recent double slit experiments, however [72J, favor the
Einstein-de Broglie interpretation, because the data show the

(100)H~ = cp~ .'" a
.l n at'
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which becomes the more familiar

Lie algebra of the Lorentz group. This suggests that the
magnetic (and electric) fields associated with the piloting
wave of the photon are properties of space-time itself. It
turns out [15] that magnetic fields are proportional to
rotation generators and electric fields to boost generators.
For our present purposes, we note that the rotation genera­
tors in space form the same commutator algebra as displayed
in Eq. (106),

(110)

(109)

(108)

in the Cartesian basis (X, Y, Z), and which is identical,
within a factor h, with the commutator algebra of angular
momentum operators in the wave mechanics of one massl ess

photon. The properties of EO), E(2) and E(3) can therefore
be understood in terms of the well known [70] properties of
angular momentum operators in wave mechanics.

In wave mechanics, the angular momentum commutator
relations in a Cartesian basis are well known [70] to be

simultaneous presence of photons and waves of light. The de
Brogl ie relation interpreted in this way means that the
photon's linear momentum co-exists with the frequency of the
concomi tant, monochromatic wave. The latter becomes the
electrodynamic piloting or guiding field of the photon in
free space.

There is a continuing and lively debate [72] between
these two famous interpretations of quantum mechanics. The
purpose of this section, however, is to introduce the newly

discovered photomagneton, E(3), by reference to the angular
momentum commutator and uncertainty relations. These are
relations among psi function operators which can be derived
without reference to an equation of motion [70], and it is
immediately clear from the definition of the photomagneton

E(3) as being directly proportional to the photon's angular

momentum operator .1 (Eq.(96)) that there must exist a set of

commutator relations involving the photomagneton E(3) and the

corresponding wave operators E(1) and E(2). The photon
without mass in free space is the source of wave mechanics in
matter, through the de Broglie wave particle dualism, and the
angular momentum of the photon can neither be understood, nor

properly interpreted, without the spin operator E(3). The
equivalent statement in classical electrodynamics is that the
angular momentum of electromagnetic radiation is longitudi­
nal, and not transverse [4], as shown in Eq.(44) of Chap. 1.

It is not difficult to show, as in the next chapter,
that even within the structure of classical electrodynamics,
Eqs. (4) can be written in commutator form

so that the commutative field algebra (106) is part of the

with cyclic permutations of (1), (2) and (3), the coordinates
of the circular basis defined in Eq. (46). This is just a
matter of re-expressing the unit vectors e(l) , e(2) and e(3)

as matrices [15] such as those of Eq. (93), matrices which

define three rotation generators .1(1), .1(2), and .1(3). The
magnetic fields and rotation generators so defined are
related by

photon in free space,

E (2) and B (3) cannot be

one
~ (1)

B ,therefore, the three operators

an equation which is the basis of the entire theory of
angular momentum in quantum mechanics. Equation (109), for
classical rotation generators, and Eq. (110) are identical
within a (scalar) factor h, and so rotation generator
operators have the same commutator algebra as angular
momentum operators in wave mechanics. Following Atkins [70],
whenever operators are considered with the same three
commutation relations as in Eq. (110) (and cyclic permuta­
tions), the observable described by these three operators in
Euclidean space is an angular momentum. In this sense

therefore, E(1), B(2) and E(31 are component operators of
angular momentum - that of one photon in free space. The
complete, and well developed [70J theory of angular momentum

in wave mechanics can therefore be applied intact to B(l),

B(2) and B(3) •

In the wave mechanics of

(107)

(106)

E (2) '" - B (0) .1(2) e -j4>,B(l) '" -B(Ol.1<l)e i 4> ,
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(115)
~ (3)

13(3) = iB(O)~
'h '

where the 13(1) are now to be understood as field operators in

wave mechanics. The longitudinal operator 13(3) is phase free
and is the quantum of elementary, longitudinal, magnetic flux
density in free space - the photomagneton. The latter is the
pilot wave of photon spin angular momentum in the Einstein-de
Broglie interpretation of wave mechanics. In the Copenhagen
interpretation, the Heisenberg uncertainty principle applies,

and if 13 (3) is specified [70], 13 0) and 13 (2) cannot be, a
deduction which is consistent with the fact that the (3)
component of the angular momentum of one photon is specified
as the longitudinal eigenvalues -li and li. In classical
special relativity, the transverse components of the photon
travelling at the speed of light are indeterminate, but the
longitudinal component is determinate and relativistically

invariant. Therefore the expectation value of 13(3) in free
space is relativistically invariant also, and the specifica-

tion of the operator 13(3) as B(O) multiplied by ,] is rigorous­
ly consistent with relativistic quantum field theory. In

wave mechanics for many photons, 13(3) is a constant of motion

[70], while 13(1) and 13(2) are governed by quantum statistics
and are subject to purely quantum mechanical effects such as

light squeezing [15]. The field 13 (3), being defined by .i , is
not subject to 1 ight squeezing, because the photon spin

operator,] itself is unaffected. In wave mechanics the rate
of change of an expectation value of an operator is related

to the commutator of if and that operator. Since 13 (3) and ii
commute,

are therefore

(111)

(113)

(112),](3) IV> = M}11V>,

13(3) IV>

where !J, MJ > = e-i~ is an angular momentum wavefunction of one

photon in free space, and where 13(3) is a species of angular

momentum operator whose eigenvalues are ±B(O). The classical
equivalent of Eq. (113) is

so that IV> = e-i~ is identified as an angular momentum wave
function, IV> = IJ, MJ > . The equation defining the field

operator 13 (3) can therefore be defined as the Schrod i.nge r
equation

where IV> = e-i~ and 13(3) = B(O) (i/w) (a/at) specifies the
angular momentum of the photon in terms of the spin field

operator 13(3). Equation. (111) is the equation defining the
angular momentum of one photon about its longitudinal axis
(or coordinate) (3) in the circular basis,

specified simultaneously if the Heisenberg uncertainty

principle is applied to them. If 13(3) is specified, for

example, and if its expectation value is non-zero, then 13 0 )

and 13(2), being angular momenta in wave mechanics, cannot be
specified. The classical equivalent of this statement is
that the only non-zero component of angular momentum in a
light beam equivalent to one photon is longitudinal, as in
Eq. (44) of Chap. 1. The average values of the transverse
angular momenta of such a beam are both zero, as discussed in
Jackson [4], Chap. 6. In terms of the wave mechanics of one
photon

B (3) ±B(O)k. (114) i <[ii, 13 (3)]> . (116)

Since Eq. (113) applies to a beam of light made up of one
photon, it also applies to a beam of N photons, and all the
well known results of angular momentum theory in wave
mechanics [70] are at our disposal.

The quantized magnetic field operators for one photon

This result is consistent with the fact that 13(31 (being
directly proportional to frequency free angular momentum),
has no Planck energy (which must be proportional to frequen­
cy), and does not augment the classical electromagnetic

energy density [9-15]. The expectation value, B(3), of 13(3)
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which shows that 3 itself is generated from a phase free

is independent of time, and its eigenvalues are specified in
terms of the constant hand -h. Similarly, the Stokes

operator 83 is a constant of motion, so 13 (3) is proportional

to 83 [9-15]. Therefore the photomagneton 13(3) conserves
angular momentum in free space, and this is a consequence of
the isotropy of the Hamiltonian [70] in free space, and
therefore a consequence of three dimensional symmetry. This
is simply a way of saying that the magnitude of the spin
angular momentum of the massless photon is ±h; and that the

photomagneton 13(3) is a direct consequence of photon spin.

The classical B(3) is therefore a direct consequence (Eq. (4))
of the fact that there exists left and right circular (or

elliptical) polarization in a light beam. The field 13 0 ) is
therefore an operator generated directly from the spin of the
photon in free space, and is an expectation value of Schrb­
dinger's equation (111) for one photon. It is therefore
phase free and frequency independent. Any attempt to

understand the meaning of §(3) must therefore be based on the

meaning of the spin angular momentum operator 3 of one

photon. Similarly, the interaction of 13 (3) with matter is

understood in the same way as that of 3 with matter. The
total angular momentum of field and matter before and after
the interaction must be the same, for example, and to
understand this in wave mechanics requires the theory of

angular momentum coupling because 13 (3) is essentially an
angular momentum operator of wave mechanics. This is the

reason for referring to 13(3) as a spin field, it is obviously
a property of light, it is not a conventional static magnetic
field such as that generated by a solenoid, but has all the
known properties of a magnetic flux density. If such a
quantity does not act experimentally as a magnetic field,
there is a fundamental inconsistency in electrodynamics.

The source of 13 (3) is the same as that of 13 (1) and § (?o) -

conventionally [4] a current at infinity. Similarly, the
source of photon spin is the same as that of photon energy
and linear momentum. The classical relation (4) means that
if anyone of the three fields B (1), B (2), and B (l) is zero,
then so are the other two. In the quantum field theory Eq.
(96) is written in the accepted notation as

(119)

(118)

(120)

3 . = 3(0; -w, w),

where 013 (1) and 013 (?o) are root mean square deviations. As
usual the right hand side is a rigorous lower bound [70] on
the product 013 (1) 013 (2), a lower bound which is therefore

defined by the photomagneton 13°). If 13 0 ) were zero, 13(1)

and 13 (?oj would commute, implying 013 (1) = 6 and 58 (2) = 6
simultaneously. For a beam of many photons, the experimental
observation [9-15] of light squeezing shows this to be

inconsistent with data, therefore 13(3) *- 6. Such a deduction

follows from the fact that 13 (1) and 13 (?o) can be described in
terms of creation and annihilation operators, which do not
commute. In this sense light squeezing indicates the

existence of the photomagneton 13 0) . For one photon, the

commutator [13 (1) , 13 (2)] is also non-zero, showing that these

fields cannot be specified simultaneously with 13(3). In the
same way the transverse angular momenta of one photon cannot

where 83 is the third Stokes operator. The description of

13(3) as "static" obviously refers to the fact that it has no
net (i.e., explicit) functional dependence on phase because
it is a stationary state in wave mechanics. Similar descrip­

tions apply to 3, the angular momentum of one photon, and to
the third Stokes parameter, 53' the expectation value of the
third Stokes operator 83 , For a given beam intensity, the
angular momentum magnitude is h, the universal Dirac con­
stant.

In the Copenhagen interpretation, the Heisenberg
uncertainty principle applied to angular momentum results in

Similarly

cross product of negative and positive frequency waves, or

quantum mechanical wave functions. Therefore J is a station­
ary state of wave mechanics in the same sense as the energy

of a light beam. Any interaction of 13(3) with matter must
therefore reflect the fact that it is defined as

(117)B (0) ~ (0; -w w),13(3)(0; -w, w)
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be specified simultaneously with the longitudinal angular
momentum. The only non-zero expectation value of angular
momentum in a light beam is the longitudinal component, and
in the wave mechanics of one photon this is the only station-

ary state of angular momentum. Similarly, only B(3) can form
a stationary state of the light beam, and time-average to a
finite, non-zero, value.

CHAPTER 4. INTER-RELATION OF FIELD EQUATIONS

The emergence of the photomagneton B(3) for one photon

in free space emphasizes C conservation in the Maxwell

equations. Application of C to the classical field B (3)

produces the same phase free field but with opposite sign,

i.e., B(O) radiated by an electron is opposite in sign from
that radiated by a positron, and this is in principle
detectible experimentally, providing direct evidence for the
anti-photon. Equation (83) of Chap. 3 has shown that for
free fields, the relativistic Schrodinger, Dirac and d'Alem­
bert equations are essentially the same, meaning that one
photon in free space can be described by a Dirac equation,
normally reserved for a free electron. In this chapter we
explore some of the interrelations that exist between field
equations for one photon, and mention along the way, some of

the problems that are resolved by the discovery of B(3), a
discovery which has the effect of rendering field theory more
consistent in classical and quantized form.

4.1 RELATION BETWEEN THE DIRAC AND D'ALEMBERT WAVE EQUATIONS

The Dirac equation of motion [46] is still widely
accepted as one of the most successful relativistic general­
izations of the Schrodinger equation, and is described in
textbooks throughout physics and chemistry. It is much less
well known, however, that the Maxwell and d'Alembert equa­
tions can be put into the same form as the Dirac equation,
the Kemmer equation [46] being an example of this. This
results from gauge invariance, and provides a clear descrip­
tion of the way in which the concepts of matter and light
waves interact. Following Barut [46], in the classical
picture the concepts of field and particle are distinct and
different, and do not interrelate. In quantum theory, the
two concepts merge as in Chap. 1, through the de Broglie wave
particle dualism. In the quantum theory one field can be the
source of another, one particle can be the source of another
particle, concepts which are counter-intuitive and non­
existent in the classical framework. In this sense a free
electron can transmute into a free photon and vice versa, one

55



56 Chapter 4. Inter-Relation of Field Equations The Dirac and D'Alembert Wave Equations 57

It follows that the Dirac equation for the free electromag­
netic field is

where y~ is a Dirac matrix [54), m the mass of the charged
particle (electron) and V a Dirac four-spinor. The left hand
side of Eq. (122) is familiar in the Dirac equation for a
free electron,

(124)

(123)

(122)

(121)

o.

0,

This equation shows that: (1) A~ is regarded as an operator
accompanying the differential operator ia~; and (2) the
product eA~ is inevitably posi~ive to charge conjugation C.
Therefore, if the sign of e is changed, then so is the sign
of the scalar amplitude A(O), as discussed in Chap. 2. The

change in sign of A(O) generates the electromagnetic anti­
field in the same way as the change in sign of e generates
the anti-particle. Therefore conservation of charge for the
matter field results in the appearance of the gauge invariant
electromagnetic field A~ if the total Lagrangian is to remain
invariant under gauge transformation of the second kind, a
conservation law associated with coordinate transformation.

Having introduced these fundamental concepts, the
equivalence of the Dirac and d'Alembert equations of motion
can be expressed in standard notation [46] by

of contemporary gauge theory, and it follows that the
electromagnetic anti-field (-A~) is no less a direct conse­
quence of the existence of the field of anti-matter (the
positron field). Conversely, particle and anti-particle are
regarded as inevitable consequences of the existence respec­
tively of the electromagnetic field and anti-field. Therefore
the law of conservation of charge results inevitably in the
generation of A~ from the matter field, here being described
by a spinor field. This result can be summarized mathemati­
cally by noting that gauge invariance requires a~ to be
replaced as follows,

particle, following Barut [46] is the source of the other;
one field is the source of the other. The fields are relativ­

istically described by wave functions, V" which become
operators in quantum field theory [46,54]. By consideration

of the classical V" functions, it can be shown that the
d'Alembert equation for one free photon is equivalent to a
Dirac equation; one field is the source of the other, and
vice-versa. This underlines the existence of the anti-photon
as discussed in Chap. 2. Upon quantization, one particle
(for example an electron described by the Dirac equation)
becomes the source of the other (a photon described by the
d'Alembert equation) and vice versa.

These ideas are based on the fundamental concepts of
charge-current conservation and the conservation law of
coordinate transformation known as gauge invariance, concepts
which are expressions of Noether's theorem [54]. It is then
conceptually possible, following Barut [46] to analyze the
interaction of a Dirac field with the electromagnetic field
in a classical framework. In this development, a charged
particle can, for example, be described by a scalar field
~(x) and is regarded as the source of the electromagnetic
field, described by the four-potential A~. The reverse is
also possible, the electromagnetic field can be regarded,
following Barut [46], as the source of the charged particle.
Therefore, although the electromagnetic field is not a
charged field, it can act as the source of a charged parti­

cle. This accords with our discussion in Chap. 2 on the C
symmetry of the photon. It follows that the anti-electron
(the positron) can act as the source of the anti-field,

described by -A~ (i.e., by A~ with the sign of A(O) re­
versed), and that the anti-field acts as the source of the
positron. Inevitably, we are led to the conclusion that the

effect of C on the electromagnetic field is to form the anti­
field, which upon quantization, produces the anti-photon
whose properties were sketched in Chap. 2.

A more accurate development describes the charged
particle by a four-component spinor field V satisfying the
Dirac equation. This accurately describes the free electron
and positron. The form of interaction between the Dirac
particle (electron) and the electromagnetic field is deter­
mined by the principle of gauge invariance [46]. This leads
inevitably to the introduction of A~ to counteract the
variation of the Lagrangian of the matter field under gauge
transformation (i.e., under coordinate transformation). The
electromagnetic field becomes an inevitable consequence of
the existence of the matter field. This is a basic concept
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Equation (124), as discussed by Holland [78], can also be
expressed as

where F'" (1/2) Fllvy ll V is a bivector. Therefore All operating
on the four-spinor 1jJ produces aF/aX

Il
• As discussed by

Holland [78), Eq. (126) can also be expressed as a Schro­
dinger equation,

(129)H '" <vli'li :t !1jJ>,

in close formal analogy with Eq. (85) from the Schrodinger
equation. The number of photons at a particular point is

therefore Iv12. In the view of Holland [78], for example,
the photon as a concept is replaced entirely by a field
singularity, and in this sense there is no particle of light
at all. For the free photon this picture is conceptually
equivalent to identifying the Dirac, d'Alembert and Schr6­
dinger equations.

4.2 EQUATIONS OF THE QUANTUM FIELD THEORY OF LIGHT

The photon is at its most enigmatic when attempts are
made to develop a rigorous procedure for the quantization of
the electromagnetic field, represented by the gauge field All'

Despite the fact that quantum theory was initiated by
Planck's hypothesis (Chap. 1) and by the introduction of the
light quantum hypothesis by Einstein in 1905, the rigorously
correct contemporary quantization procedures were beset with
difficulties until the recent discovery of the longitudinal

photomagneton B (3) , whose classical expectation value is B(3) .
This is the first time that the existence of a longitudinal
component of electromagnetism has been recognized in free

space, and because the field B(3) is accompanied by its dual

Broglie's equation for matter waves, discussed in Chap. 1.
If the photon is considered to have no mass, rno"'O, but for
the massive photon described by the Proca equation, rno~O.

For the electron, rno is its rest mass. Equation (128) gives
the possibility of negative energy states for both electron
and photon. For both particles there are two positive energy
eigenstates 'lit.>, and two negative energy eigenstates -lit.>.
For the massless photon these two states correspond in each
case to two different senses of hel ici ty, right and left
circular polarization. The prediction of the anti-photon now
follows using the same line of reasoning as in the prediction
of positrons. In so doing, it is necessary to postulate a
Dirac sea (a vacuum [54]) made up of anti-photons, paired off
according to right and left circular polarization. The Dirac
equation for the free photon is no longer, in this picture,
a single particle equation, because it produces both a photon
and an anti-photon. Therefore V is regarded as a wave­
function, and the Hamiltonian operator from the Dirac
equation is

(128)

(127)

(126)

(125)

This is de

o.

0,

. aF '" H....F,
.z at

both for the electron and for the photon.

where H is a Hamiltonian operator.
Therefore, as indicated in Eq. (83) of Chap. 3, the

d' Alembert, Dirac, and Sc hrod i nge r equations of the free
electromagnetic field are the same equation, that of one
massless photon in vacuo. The expectation value of the novel
photomagneton, the classical B(3l, is a stationary state of
the Schrodinger equation for a free photon, as discussed in
Chap. 3, and is therefore a solution of the Dirac, d'Alem­
bert, Proca, and Maxwell equations of the free photon. It
therefore has all the known properties of a magnetic field,
and in the Einstein-de Broglie interpretation is the piloting
field of photon spin angular momentum.

If the free photon can be described by the Dirac
equation (124), and also by the d'Alembert equation (125),
then Fermi-Dirac and Bose-Einstein statistics must be
interchangeable, as indeed, contemporary theory confirms
[72] . This idea follows from the basic concept that the
electron (a massive, spin ~2 particle, obeying Fermi-Dirac
statistics) is transmuted into a photon (massless, spin one
particle, obeying Bose-Einstein statistics). It also follows
that if the free photon is described by a Dirac equation,
which is the same equation as that for a free electron (left
and right hand sides of Eq. (122», then

which can be expressed as the d'Alembert equation
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(132)

(131)

(133)

B(O) = ~Ba (O),

I = ~B(l.) XB(2).

110

E(O) = ~~ (0),

ED) = ~Ba (3),

From the classical definition (Eqs. (4»

for the real B (3) and the imaginary isv>, 1t is obvious that
these relations are precisely analogous with Eq. (130), given
the following link (S.l. units):

We now proceed to illustrate how B(3) removes the difficul ties
encountered in the Gupta-Bleu1er method. In the conventional
approach, B(3) is asserted, quite arbitrarily in view of Eqs.
(4), to be unphysical. The happy outcome of the discovery of
Eqs. (4) is that the quantization of Af' proceeds in a more
self consistent manner, indeed becomes entirely self consis­
tent if the method of Gupta and B1euler is accepted, a method
devised to deal with the Lorentz condition [54]. This
increased self consistency in the basic theory in itself
gives much confidence in the physical nature of B(3) , which
indeed, is observed, albeit at second order thus far [19-26],
in the inverse Faraday effect, summarized in Eq. (6) of Chap.
1.

Lorentz condition, so there is no indication in the basic
theory that longitudinal and time-like components (two of
four) must be discarded as unphysical. Furthermore, phase
free longitUdinal electric and magnetic fields, being
independent of time and divergentless, are clearly solutions
of d'Alembert's equation (and of course, of the Maxwell
equations) in free space. The fundamental usefulness of Eqs.
(4) is that they establish, for the first time, a link
between the longitudinal, phase free, spin field S(3) (and its

dual, -is(3)/C) and the transverse, phase dependent electro­
magnetic waves. This link is established through standard
geometry in a circular basis, (i.e., the circular geometry
of Eqs. (4» and in terms of the conjugate product B(U x B(:I)

which is simply the vectorial component of light intensity,

(130)0,

where a (0) (k) and a (3) (k) denote time-like and longitudinal
annihilation operators [9-15]. Ryder, for example [54]
states that" .. physical states are admixtures of longitudinal
and time-like photons, such that Eq. (130) holds". The
obvious problem with the Gupta-Bleu1er approach is that these
longitudinal and time-like states must simply be discarded as
unphysical. Prior to the discovery of Eqs. (4), this
arbitrary assertion had to be made in order to accord with
the idea that electromagnetic waves in free space must be
transverse. Equations (4), however, show that although the
waves remain transverse, they create a non-zero, real,

physical, spin field represented by B(3). This is longitudi­
nally directed in the z (or (3» axis, as for beam angular
momentum, given classically by Eq. (44).

The existence of three space-like and one time-like
components of the creation and annihilation photon operators
in free space is a direct consequence of the d' Alembert
equation, and the Gupta-B1euler condition is derived from the

-iE(3)/c, there is also a pure imaginary longitudinal
component of the electric field in free space. There are
therefore longitudinal as well as transverse field components
which must be considered in the quantization of Af" In
contemporary terms there are three space-like components of
the creation and annihilation photon operators, not two, the
longitudinal component being related directly to time-like
photon creation and annihilation operators [54]. The
longitudinal and time-like operators, which are usually
discarded as unphysical using a method such as that of Gupta
and Bleuler [54], can be incorporated naturally into the
theory. This is one of the most useful consequences of the
discovery [9-15] of Eqs. (4).

The problems encountered with the conventional approach
prior to the discovery of Eqs. (4) can be illustrated through
the fact that the electromagnetic four-tensor Ff'v contains
three electric and magnetic space-like components. If the
electromagnetic field is accepted as being transverse,
however, only two out of the three components are retained,
and the time-like component becomes unphysical. Quantization
of the gauge field Af' (a four-vector) in the Lorentz gauge
then proceeds through the well known Gupta-Bleuler method
[54], in which the longitudinal and time-like quantized field
states are asserted to be unphysical, despite the fact that
it leads to the physical result
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Equation (130), a direct result of quantization in the
Lorentz gauge, is therefore seen to be

meaning [46J for a single particle.
Therefore, methods must be found to account for the

existence of longitudinal and time-like photon creation and
annihilation operators (Eq. (130» in the correct four
dimensional representation of electric and magnetic fields.
There are at least two ways in which this may be accom­
plished, i. e., ways in which the time-like components B (0)

and iE(O) can be incorporated in the relativistic theory of
electromagnetism. Recall that the necessity for doing this
springs from Eqs. (4), which link together the transverse and
longitudinal components of B in vacuo, and Eq. (132), which
relates the longitudinal component B(3) to a time-like

component B(O). The longitudinal and time-like creation and
annihilation operators are usually discarded as unphysical
using the Gupta-Bleuler method, as we have seen, but follow­
ing the discovery of Eqs. (4), this can no longer be done,
because B (3) is a physical magnetic field. The problem
essentially reduces, therefore, to that of defining the
meaning of a time-like component of the four dimensional
description of an axial vector such as B. The four-tensor
of electromagnetism is given by

(136)

(135)

(134)0,

a + ( 0) e i., t •a+ (t)

The field B(3), is described in terms of a longitudinal photon

annihilation operator in Eq. (133). The operator a (3) is
therefore phase free, like the field. The time-like photon

annihilation operator a(O) is also phase free. These results
contrast with the usual transverse photon creation and
annihilation operators, well known to be defined (in S.I.) by
the phase dependent

which imply

The three spatial components of J~V represent the total,
Euclidean angular momentum vector J. However, there are also

time-like components JOk which do not have a simple physical

The question arises as to the part played by the time­
like component a(O) in the four-vector A~ and electric and
magnetic fields in free space. In particular, can the
electric and magnetic fields be defined themselves as four­
vectors? In special relativity, electric and magnetic fields
are incorporated within the four-tensor F~v of electromagne­
tism, defined as the four-curl [46J of A~. The four-tensor
is used to represent an axial quantity in four dimensions, in
much the same way as an antisymmetric rank two tensor is used
to represent an axial vector in the three dimensions of
Euclidean space. The correct generalization of a three
dimensional axial vector such as angular momentum to four
dimensions is a second order antisymmetric tensor, for
example angular momentum in four dimensions can be expressed
as the antisymmetric four-tensor

J~v 0; -JV~. (137)

0 -CB(J) cB(;a> -iE(l)

CB(3) 0 -CB(l) -iE(2) (138)r; = Eo
-cB(2) CB(l) 0 - iE(J)

iE(l) iE(Z) iE(J) 0

in which there are real and imaginary elements. In analogy
with the description of angular momentum in four dimensions,
Eq. (137), the real, magnetic components CB(l), CB(:1l and

cBO) are those of the space-like Euclidean vector cB, and

the imaginary i s»>; iEm and iB(J) are non space -1 ike
components of an imaginary vector iE. Barut [54J refers to

the non space-like components of Jfl.V as "time components",
Therefore, it is reasonable to refer to ill as the "time­

component" of the four-tensor Ffl.V , which is a representation
in four dimensions of an axial vector in three dimensions.
From the ordinary analytical algebra of complex numbers [79J
the magnitude of the longitudinal component of the complex iE

vector is liE(3) I . The magnitude of the space-like component

is IcB(])I. These magnitudes are the same, because



64 Chapter 4. Inter-Relation of Field Equations Equations of the Quantum Field Theory of Light 65

4.3 D'ALEMBERT AND PROCA EQUATIONS

The Proca [80] and d'Alembert equations appear at first
to be identical for all practical purposes, because if mo
denotes the (assumed) finite mass of the photon the Proca
equation is

(142)

exists a phase free B(3) in free space, which is real and
physical, and which can be related to a time-like component
B (0) through Eq. (132). The latter is to be found in the
four-tensor FI!" and a formal definition can be constructed
in free space of four-vectors EI! and BI" but only in one
Lorentz frame. The fact that B(3) magnetizes matter through
the inverse Faraday effect (Eq. (6» is experimental evidence
[19-26] of its physical significance at second order. In
contrast, there appears to be no such experimental evidence

for the unphysical, and imaginary iE(3).

(139)

The resul ts are therefore obtained that IB(3 1 1 = B (0) and
\iB(3) I = E(OI, which are none other than equations (132).

This (free space) analysis shows that Eqs. (4) and Eqs.
(132) are consistent with the usual definition of F~v, and
that B(O) can be regarded as a time-like quantity in special
relativity. To throw this away as "unphysical", as in the
conventional approach, is in the light of this reasoning, a
quite arbitrary assertion, an assertion which runs contrary
to the obviously physical nature of B(3) from the cyclically
symmetric Eq. (4). From Eq. (139), the real and physical B (3)

is related to the real and physical B(O). The space-like part
of F~v is therefore cB, and its time-like part is iB. Each
component of cB (i.e., cB(1) , CB(2) and cB(3» is space-like,

each component of ill (i. e ., ill (1) , ill(2) and ill(3» is time­
like. The scalar magnitude of ill is therefore a time-like
scalar quantity, defined by the square root of ill multiplied
by its conjugate product,

1

jilll = (-i 2 E Z
)"' E.

(140)
and is an eigenvalue equation. Numerically, ~ may be as

small as 10-26 m-1 , and in consequence

This leads to the resul t that liBI (and therefore IcBI) can be
regarded as time-like scalar quantities.

With this result, it is possible in free space to write
down formal four-vector quantities,

and to apply to these a formal Lorentz transformation.
However, Maxwell's equations in free space are well known to
be invariant to Lorentz transformation [4], and in conse­
quence appear the same in all frames of reference. This is
equivalent to saying that the frame in which the Maxwell
equations are written down is not subject to Galilean
relativi ty, so that there does not exist a frame which
travels with respect to the original with a speed v.
Therefore any Lorentz transformation applied to the formal,
free space, four-vectors EI! and BI' must be carried out with
v = 0, a process, which, of course, leaves the four-vectors
unchanged. This is equivalent to saying that E~ and BI' can
be defined only in one Lorentz frame, and in free space.

In summary, Eqs. (4) show beyond doubt that there

EI! : = (B, iE(O), BI' : = (B, iB (0», (141)

(143)

for all practical purposes, the Proca and d'Alembert equa­
tions are the same, it seems. Here again, however, the
argument is enigmatic, because a boson (the photon) with
mass, has three, well defined, eigenvalues of spin angular
momentum, -h, 0, and +h. This result is true however minute
the numerical value of IDa may be, and some estimates place

1110 - 10-6 5 kgm or less. The existence of Ino;t 0 changes
completely many aspects of electromagnetic field theory, both
classical and quantum mechanical, despite the fact that Ino is
numerically so small.

(1) The Proca equation allows a three dimensional
particle interpretation of the photon, in the sense
that it allows minute, but physical, phase dependent
longitudinal electric and magnetic fields in free
space.

(2) Quantization of Eq. (142) occurs naturally in
that it leads to a three dimensional particle interpre-
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vanishes. Conventional electromagnetic [54] and
unified field theory asserts that mo is zero identical­
ly, but this assertion ignores experimental indications
to the contrary [72], as reviewed recently by Vigier.

(5) It is clear that the condition

tation of the photon with mass.
(3) The classical relativistic field theory no

longer leads to just two helici ties, and the Wigner
little group is no longer the physically meaningless
[54) E(2).

(4) The above advantages are offset, however, by
the need to rethink the basics of gauge theory, i.e.,
to adapt the latter for mo 'f 0 without contradicting
gauge invariance of the second kind. This must be done
while retaining the advantages of unified and grand
unified field theory, as described for example by Huang
[81], but more work is needed in this area. The
problem succinctly stated is that of ensuring that the
Lagrangian,

(147)

(146)

Proca equation (in

it becomes clear that if AI'AI' = 0 the Proca equation
reduces to the free space equation,

aF~v
0, (148)

~ ax
I'

whose mo = 0 counterpart is the free space Maxwell
equation [46, 54 l .

aFl'v o. (149)
axl'

However, if we write the
Minkowski notation) as

and multiply both sides by ~,

(145)

(144)

ensures that the Lagrangian vanishes for all mo ' and
that Eq. (145) is also consistent with the Lorentz
condition, aA~/ax~ = 0, which is implied automatically
by the Proca equation. Therefore, although the Proca
and d'Alembert equations appear to be the same equation
for all practical purposes, the former loses "gauge
freedom", being valid only in the Lorentz gauge, and in
no other. This rules out the use of the Coulomb gauge
with the Proca equation, meaning that solutions of the
Proca equation can be longitudinal as well as trans­
verse. This deduction is indicated by equations (4),
which link together the two types of solution, but for
magnetic fields and not for the vector potential A~.

The relevant cyclic relations for the latter are Eqs.
(24), which indicate that the longitudinal part of A~

is pure imaginary. Quantization of the electromagnetic
field occurs more naturally in the Lorentz gauge [54],
where it is possible to allow for the existence of an
imaginary longitudinal component of A~ as indicated by
the cyclic algebra, Eqs. (24) and (25).

Using the novel condition AI'AI' = 0 is equivalent to
asserting that the four-vector AI' is a physically
meaningful light-like vector which is manifestly
covariant. Experimental evidence for this deduction
comes from the well known Aharonov-Bohm effect (82) in
which an electron diffraction pattern is shifted by the
vector potential associated with magnetic flux density.
(It is interesting to note that if B(3) is physically
meaningful, there should also be an optical Aharonov­
Bohm effect [83].)

Therefore, contemporary gauge theory can be adapted for
use with finite photon mass provided that AI' is regarded as
physically meaningful and manifestly covariant, being in the
light-like condition defined by Eq. (145). It can be shown
[83, 84] that this condition holds to an excellent approxima­
tion, and that setting A~A~ to zero identically is equivalent
to asserting that the photon radius vanishes. More accurate­
ly, use of the Dirac condition shows that AI'A~ is propor­
tional to the square of a finite photon radius, a small
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correction which is consistent with the fact that A~A~

deviates slightly from the exact light-like condition because
of finite photon mass.

Experimental indications of finite photon mass, as
discussed for example by Goldhaber and Nieto [85) and by
Vigier [72), usually result in upper bounds, i.e., the photon
mass is stated to be less than a given order of magnitude.
However, there are so many independent experimental signs
[72, 85) of the existence of light mass that there is a very
high overall probability that the mass is non-zero. As soon
as this is accepted, the condition A~A~ = 0 becomes the only
way to account for finite mo wi thin contemporary gauge
theory. It follows that A~ must be manifestly covariant and
physically meaningful if mo is non-zero, and so A~ must have
longitudinal components as indicated in Eqs. (24) and (25).
Finally, we are led to deduce that finite photon mass
actually implies the existence of longitudinal components
such as B (3) in free space. Experimentally the existence

of B(3) is consistent with the magnetization of matter by
light as shown in Eq. (6). This is a straightforward chain
of reasoning which links mo to S(3). It is unsurprising in

this light that S(3) also emerges directly from the Proca
equation (142). The proof of this result is simply obtained
by writing the rigorously relativistic Proca equation in the
limit,

the type (4). Longitudinal and transverse solutions of both
the d'Alembert and Proca equations are linked geometrically
in free space. The next chapter illustrates the nature of
this geometry.

(150)

a limit which gives its time independent solutions. Using
the usual relation S = VxA, Eq. (150) gives the solution

B (3) = B (0) exp( -~Z)k, (151)

which is an exponential decay with distance, Z. As we have
seen, ~ is of the order 10-2 6 m- 1 , so for all practical
purposes in the laboratory, S(3) from Eqs. (151) and (4) are
identical. The physical justification for this procedure is
that photon mass is minute, so that field solutions of the
Proca and d'Alembert equations must be practically identical.

It is critically important to note, however, that B(3)

obtained in this way is not simply an arbitrary static Yukawa
type potential [72) but is linked ineluctably with the
transverse wave solutions S(l) and S(2) of the Proca equa­
tions. The link is established through cyclic relations of
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Equations (4) reveal that the transverse and longitu­
dinal components of the magnetic part of free space electro­
magnetism are linked together in a circular basis (1), (2)
and (3), which is also a basis (Eqs. (46» for a three
dimensional geometrical representation of free space. In the
first sections of this chapter the geometrical basis for
magnetic and electric fields in free space is developed in
terms of rotation and boost generators. This development

shows that the novel spin field B(3) is firmly rooted in the
three dimensional geometry of space and the four dimensional

geometry of space-time. The field B(3) is therefore a

fundamental magnetic field in the same sense as B(1) and B(:1l

are fundamental fields. Experimental evidence for this
deduction is available in the inverse Faraday effect, through
Eq. (6), for if B(3) were not a fundamental magnetic field,
magnetization by light could not occur, because the quanti­

ty !I'(3) in Eq. (6) would not be a magnetization. In the same
sense, force in Newton's equation would not be force if the
acceleration were not an acceleration, a perfectly obvious
deduction, but one which has to be emphasized in view of the

novelty of B(3). In this respect, the electromagnetic field
and the photon are at their most enigmatic, because in the
conventional interpretation [4], electromagnetic plane waves
are always asserted to be transverse. This assertion remains
true in Eqs. (4), but the plane waves identified by circular
coordinates (1) and (2) are accompanied inevitably by a spin
field B(3) , labelled by the circular coordinate (3) corre­
sponding to the coordinate Z in the Cartesian basis. It is

clear that the field B(3) is generated directly from an
angular momentum, a pseudo-vector spinning about the (3) or Z
axis.

In the light of Eq. (4), this seems a perfectly clear
and obvious result, and as discussed in Chap. 2, the set of

equations (4) conserve C, P, and T. It is easily checked
that the three field components B(1) , B(2) and B(3) obey the
Maxwell equations in free space and there is of course an

equivalent to B(3) in matter. In this chapter this deduction
is seen in the light of fundamental geometry to be essential-

71
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commutator (matrix) algebra, allowing s(l), S(2) and S(3) to
be expressed as infinitesimal rotation generators and thereby
as quantum mechanical angular momentum operators, as dis­
cussed in Chap. 3. These methods show that the photon has an
elementary longitudinal flux quantum, the photomagneton

operator 13(3) , which is directly proportional to its intrinsic
spin angular momentum.

The classical magnetic fields S (1), S (2) and S (3) in
vacuo are all axial vectors by definition, and it follows
that their unit vector components must also be axial in
nature. In matrix form, they are, in the Cartesian basis,

ly geometrical in nature, and there are several ways of
showing this. We start in Sec. 1 with a consideration of the
fundamental unit vectors 1, j and k that define the magnetic
fields in a Cartesian basis.

5.1 AXIAL UNIT VECTORS, ROTATION GENERATORS, AND MAGNETIC
FIELDS

The Lie algebra of Eqs. (4) can be represented in terms
of commutators of matrices, allowing a direct route to the
quantization of the three Maxwellian fields S(l), S(2) and

S(3). The three unit vectors in the circular basis defined
by Eq. (46) can be used to develop a Lie algebra of commuta­
tors in the circular basis (1), (2) and (3) rather than in
the Cartesian basis X, Y, and Z. In this geometrical basis
the unit vectors form the following cyclical Lie algebra:

[

0 0

i = 0 0

o -1 [
00 -1]

j= 0 0 0 I

1 0 0

(154)

where Ejjl< is the Levi-Civita symbol. The rank two tensor
representation of the axial vector Bk is mathematically
equivalent but has the advantage of being accessible to

(156)

(155)

10]00.
o 0

-i]1 ,

o

and cyclic permutations.

&(l)=~[~ ~ ~O~]'
..j2 '-1-~

& (2) = ~ [~ ~
..j2 i. -1

and in the circular basis,

The latter form a commutator Lie algebra which is mathemati­
cally equivalent to the vectorial Lie algebra,

These are our geometrical commutators in the circular basis
convenient for the electromagnetic plane wave in vacuo.
Equations (4) and (156) therefore represent a closed,
cyclically symmetric algebra in which all three space-like
components are meaningful, and if it is arbitrarily asserted
that one of these components is zero, the geometrical
structure is destroyed and the algebra rendered meaningless.

The cyclical commutator basis (156) can now be used to
build a matrix representation of the three space-like
magnetic components of the electromagnetic plane wave in
vacuo,

(152)

(153)

e(2) x e(3) = ie(l).,

e (3) x e (1) = i e (2) *,

eO.) x e (2) = i.e (3).,

where * denotes "complex conjugation". Geometrically, if
e (3) = 0 , then e (1) = e (2) * = 0, and if e (3) * 0 , then

e (1) = e (2) * * O. This structure is the same as that of Eqs.
(4), revealing that the latter are also geometrically based.
In other words if any of the fields S(l) , S(2) and S(3) is
zero, so are the other two, and all electromagnetism in vacuo
vanishes identically. It becomes clear that the transverse
waves S(l) and S(2) are linked to the spin field S(3) , and
that the conventional approach to electromagnetism [4] is
incomplete because it is too restrictive.

To extend these considerations to four dimensional
space-time and to quantum mechanics, it is more convenient to
use commutator rather than vectorial algebra. Equations (4)
can be put in commutative form by using the result from
tensor analysis that an axial vector is equivalent to a rank
two antisymmetric polar tensor,
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fj(3) = B(O)e(3),

fj(l) = iB(O)e(l)ei4>, fj(2) = -iB(Ole(2l e - i 4> ,

(157)
0 0 1 0

j"(l) =3(2). = ~ 0 0 -i 0

,f2 -1 i 0 0

0 0 0 0

(161)

from which emerges the commutative Lie algebra equivalent to
the vectorial Lie algebra (4), 0 0 1 0 ° -i ° 0

3(2) = 3(1}· =~ 0 ° i 0
3(3) = _)(3). =

i ° 0 0

,f2 -1 -~ 0 0 0 0 0 0

0 0 0 0 0 0 0 0

It follows directly from Eq. (161) that magnetic fields in
the Lorentz group are directly proportional to four by four
matrices of the type (161), i.e., the magnetic components of
the electromagnetic plane wave in vacuo are well defined
properties of space-time. Similarly, electric components are
related to boost generators of the Lorentz group, boost
generators which are also four by four matrices in Minkowski
space-time.

The rotation generators in space form a commutator
algebra of the following type in the circular basis,

(158)

-i 0]
o 0 .

o 0

(159)

in terms of the infinitesimal
in three dimensional space,

complex matrices [15),

o 1]
O. i ,
-~ 0

and cyclic permutations.

J ( 2 ) _ -@ (2) _ 1 [ 0
----- 0

i '2v «- -1

This algebra can be expressed
rotation generators of 0(3)
rotation generators which are

The magnetic field matrices and rotation generators are
linked by

(162)

fj(l) -B(O)J(l)e i cll ,

(160)

which becomes,

(163)

in the Cartesian basis, and which is, wi thin a factor h,
identical with the commutator algebra of angular momentum
operators in quantum mechanics, as discussed in Chap. 3.
This provides a simple route to quantization of the magnetic
fields of the electromagnetic plane wave in vacuo, giving the
result (Chap. 3)

which is a result of key importance in recogn~z~ng that the
commutative algebra of the magnetic fields (158) is part of
the Lie algebra of the Lorentz group of Minkowski space-time.
A magnetic field is thereby shown to be a property of space-

time. The real, physically meaningful, magnetic field fj 0) is
directly proportional to the fundamental rotation generator

3 0 ) , which is a fundamental property of space or space-time.
In space-time, the matrices (159) become [15] the four

by four complex matrices,

J(l)13 (1) = -B (0) __ e i 4>
li '

13 (2)

(164)

fj(3)
A (3)

iB(O)~
li '

B
A (ilwhere are now operators in quantum mechanics. In

particular, -the longitudinal fj(3) is the photomagneton opera-
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(167)

tor, which is a stationary state in wave mechanics as
discussed in Chap. 3. This result is in precise agreement
with the original derivation [9-15] using the Stokes operator

53' which can be defined in terms of creation and annihila­
tion operators as described by Tanas and Kielich [86].

These results can be generalized (Sec. 5.2) to electric

fields using boost generators, 1(i), which in the Lorentz
group are also 4 x 4 matrices,

5.2 POLAR UNIT VECTORS. BOOST GENERATORS. AND ELECTRIC FIELDS

An electric field is a polar vector in three, Euclide­
an, dimensions, and unlike an axial vector, cannot be put
into a 3 x 3 matrix form such as embodied in Eq. (154). The
cross product of two polar vectors is, however, an axial
vector in Euclidean space. For example, the product

(168)j x:l = k,

produces the Cartesian, axial, unit vector k, which in the

circular basis is e(3). In Minkowski space-time the axial
vector k, as described in Sec. 5.1, becomes a 4 x 4 matrix,

related directly to the infinitesimal rotation generator J(3)

of the Lorentz group. It follows that a rotation generator
in space-time is the result of a classical commutation of two
matrices which play the role of polar vectors. From the well
established Lie algebra (166) or (167) of the Lorentz group
these are infinitesimal boost generators, 4 x 4 real matri­
ces. The equivalent of Eq. (168) in Minkowski space-time is
therefore

These bilinear products consist of longitudinal and time-like
creation and annihilation operators interpreted physically in
Chap. 4. The algebra (167) therefore shows that the infini­
tesimal rotation and boost generators of the Lorentz group of
special relativity can be determined fully only if longitudi­
nal and time-like creation and annihilation operators are
used as well as the conventional transverse operators [88].
If the longitudinal and time-like components were not
physically meaningful the Lie algebra (167) would collapse,
in the same way as the Lie algebra represented by Eq. (4)

would collapse if B(3) were set to zero or otherwise taken to
be unphysical.[J(1) I,J(2)] -J(3) ". and cyclic permutations,

[1((1) , 1(2)] -iev», " " "
(166)

[1(1), §(2)] = -i1(3)', It It It

[R(l) , JO)] = 0, etc.

(165)

This isomorphism is conclusive evidence for the existence of
the longitudinal fields B(3) and iB(3) in free space, because
these components are isomorphic with the longitudinal
rotation and boost generators which are fundamental infini­
tesimal generators of the Lorentz group.

It is also significant that the rotation and boost
generators of the Lorentz group are isomorphic (Chap. 6) with
a field algebra [87] consisting of bilinear products of
creation and annihilation operators,

Therefore electric fields are boost generators, magnetic
fields are rotation generators. It follows that the Lie
algebra of electric and magnetic fields in space -time is
isomorphic with that of the infinitesimal generators of the
Lorentz group of special relativity. The latter type of Lie
algebra can be summarized as,



and cyclic permutations. In the circular basis (1), (2) and
(3) rather than in the Cartesian basis X, Y, and Z, this
commutator algebra becomes
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(169)

Polar Vectors, Boost Generators, Electric Fields

r 0 0 0 1 0 0 0 1

j(1)
1 l0

0 0 -1 j(2) 1 0 0 0 1
-

12 0 0 0 0 \12 0 0 0 0

-1 i 0 0 -1 -i 0 0

79

(174)

which can be written directly in terms of the unit vectors of
the circular basis,

and cyclic permutations of (1), (2) and (3). Therefore,
al though polar vectors cannot be put in a matrix form in
Euclidean space, they correspond to boost generators, 4 x 4
matrices, in Minkowski space-time.

Therefore, this geometrical result leads to the
conclusion that electric fields in space-time are proportion­
al to boost generators because electric fields in Euclidean
space are proportional to polar unit vectors. In Euclidean
space, electric field solutions of Maxwell's equations are
conventionally regarded as the transverse, oscillatory,
fields,

-le(3)' ,

(175)• A (3)
~e .e (1) X e (2)

It is not possible to form a real electric field from the
cross product of 8(1) and 8(2) and this conforms with funda­
mental symmetry, as described in Chap. 2, where it was also
argued that an imaginary electric field has the axial
symmetry of a real magnetic field. This is an important
consideration when dealing with the question of what is the

electric field proportional to the third boost generator j(3)

of Minkowski space-time. The relevant cyclic electric field
algebra in three dimensions is that of Eq. (2Sc). By writing
out the longitudinal rotation and boost generators,

and correspond to the complex, polar, unit vectors e(l) and
.,(2) in Euclidean space.

By reference to the Lie commutator algebra (170) it is
clear that the commutation of j(l) and j(2) is J(3) = -J(3)', a
rotation generator, directly proportional to a magnetic
field. The equivalent result in Euclidean space is

(171)

(170)

E(D)
--(l+ij)e-i~,

12
8(2)

E(O) .
12 (l-ij)e1.~,8(1)

In Minkowski space-time, the equivalents are therefore

8(2) E(O).,(2)e-i~. (172)
0 -i 0 0 0 0 0 0

J(3) i 0 0 0 j() 0 0 0 0 (176)
0 0 0 0 0 0 0 1

0 0 0 0 0 0 -1 0

(173) it is seen that the former is pure imaginary and that the
latter is pure real. It follows that either:

The phase ep, as we have seen in Chap. 1, is a Lorentz
invariant, and remains the same in space-time and Euclidean
space. The boost generators appearing in Eq. (173), are
written in a circular basis,

(1) the longitudinal

longi tudinal if!: (3) is pure
(2) or vice versa.

B (3) is pure real and the

imaginary;

Choice (1) follows, however, from a consideration of
the nature of the unit vectors e(l) , e(2), and e(3) of the

circular basis (46), in which the axial .,(3) is pure real and
equal to the real, axial, Cartesian k. From Eq. (41),

multiplying this real, axial, vector by the amplitude B(O) (a
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real scalar) gives a real B(J) in Euclidean space, and a

real EO) in space-time. This real EO) is therefore defined as

in terms of the imaginary rotation generator ,J(3). It follows

that the imaginary iE(3) must be defined as

iB (0) ,J(3) , (177)

leading to a Lie algebra,

[S(1), S(2)] iB (0) S (3) + r and cyclic permutations,

[~(1) ~(2)] iE(0)2 e (3 ) ' , " " "E ,E

[ ~ (]) ~ (2)' iB (O)(i.e(3»), " "E ,B J

[it(l), SO)] '" 0, etc. ,

(181)

where we have used the notation, ie(:l)+ 0= ,JOl', -ie(2)' = ,J(?)+,

ie(3)· '" ,JO)+, i~(2l '" ,J(2) , -ie(l) = ,J(1), ie(3) '" _,J(3). This Lie

algebra is obviously destroyed by the usual (and arbitrary)

assertion that EO) is zero. Although iE(3) is imaginary, it
too is rigorously non-zero as we have seen.

Therefore the Lie algebra of the magnetic and electric
components of plane waves and spin fields in free space is
isomorphic with that of the infinitesimal boost and rotation
generators of the Lorentz group of space-time. The magnetic
and electric components are also interconvertible through the
duality transformation of special relativity. Experimental

evidence suggests that the spin field S(3) is real and physi­
cal, and the duality transformation therefore implies that
the longitudinal electric component is imaginary and unphysi­
cal. The isomorphism of the Lie algebra (181) and (166)
indicates that there exists a one to one correspondence
between all the elements of the groups. This result implies
that the theory of electromagnetism in free space is relativ-

istically rigorous if and only if the longitudinal fields EO)

and iE(3) are accounted for through the appropriate algebra.

If EO) and iit (3) are set to zero, as in the conventional
approach [4], then the isomorphism is lost meaning that
electromagnetism in free space becomes incompatible with

special relativity. Setting E(3) to zero, for example, has

the logical consequence that the rotation generator ,JO) is

zero, an incorrect result. Similarly, setting iit(3) to zero

reduces the boost generator R(3) to zero incorrectly.

(Setting B(3) to zero has the obvious result of reducing M(3)

to zero in Eq. (6), and this is incompatible with experi­
mental data. Similarly, experimentally observed [9-15] light
shifts in atomic spectra due to B(3) would disappear.)

The conventional theory of electromagnetism (e.g. Ref.

4) has missed the existence of the field B(3) in vacuo because
the relation (4) and developments thereof was not identified

(179)

(180)

o -i 0 0

i 0 0 0

o 0 0 0

o 0 0 0

o 0 0 0

o 0 0 0

o 0 0 1

o 0 -1 0

iEO)

J =z

R '"z

o 0 i. 0

o 0 0 0

-i 0 0 0

o 0 0 0

o 0 0 0

o 0 0 1

o 0 0 0

o -1 0 0

J =y

R '"y

it (2) 0= E (0) R(2) e -i.p,

B (0) ~ (3),

o 0 0 1

o 0 0 0

o 0 0 0

-1 0 0 0

o 0 0 0

o 0 -i 0

o .i 0 0

o 0 0 0

J =x

R '"x

The relation between fields and generators in space-time can
be summarized as

The complete Lie algebra of the infinitesimal boost and
rotation generators of the Lorentz group can be written as we
have seen in either a circular basis, Eq. (166), or a
Cartesian basis, Eq. (167). In matrix form, the generators
are

in terms of the real boost generator R(3).

5.3 LIE ALGEBRA OF ELECTRIC AND MAGNETIC FIELDS IN THE
LORENTZ GROUP, ISOMORPHISM



82 Chapter 5. Transverse, Longitudinal Photons and Fields Eigenvalues of the Massless and Massive Photons 83

(184)

(185)

(183)

(182)

o i _ i. ( 3 }i A (~)Y --- J ,
1 r 41t

J(3) 6 (2) = -16 (2) ,

Ali ( 3 }1. A (1)Y = __ 7.J
-1 r 41t '

J(3) 6 (3) = 06 (3) ,

J-(3) 6 (1) = +16 (1) ,

and to the scalar spherical harmonic operators by

There is no paradox in the use of 6(3) as an operator as well
as a unit vector, in the same sense that there is no paradox
in the use of the scalar spherical harmonics as operators.
This is discussed for example by Silver [89]. The rotation

operators in Eucl idean space are first rank T operators,
which are irreducible tensor operators and under rotations

transform into linear combinations of each other. The T
operators are directly proportional to the scalar spherical

harmonic operators. The rotation operators, J-, of the full

rotation group are related to the T operators as follows,

where J(3) is the rotation operator,

until recently [9-15]. It is important to realize that these
relations link together the spin and wave fields in such a
way that the existence of one implies the other: if one is
set to zero arbitrarily the other vanishes and we lose all
electromagnetism. It is also important to realize that the

conjugate product B (1) X B(2), although a pure imaginary

quantity, is made up of a pure real B(J) multiplied by iB(O).

The conjugate product can, for example, form a real interac­
tion Hamiltonian by multiplication with another imaginary
quantity (a susceptibility), or a real magnetic dipole moment
by multiplication by an imaginary hyperpolarizability as
shown by Wozniak et al. [15]. Although imaginary in nature,
the conjugate product is therefore a physical quantity, and
is the antisymmetric part of light intensity (Eq. (131)).
Obviously, the conjugate product per se is not an electric or
magnetic field, being the product of two fields, and the rule
that an imaginary field is unphysical, a real field is
physical, cannot be applied to the conjugate product. The
latter owes its existence to the fact that it is the cross
product of a complex field with its conjugate, the complex
nature of the field being derived from that fact that it is
the solution of Maxwell's equations in vacuo. If the field
were not complex, then the cross product of that field with
its own conjugate would always vanish identically, and there
would be no antisymmetric part of light intensity, contra­
dicting experimental data as in antisymmetric light scatter­
ing.

In this chapter it has been shown that B(3) and its dual

-iE(3) I e are essential to retain isomorphism with the Lorentz

group. In other words, geometry is contradicted if B (3)

and -iE(3) Ie vanish because the infinitesimal generators J-(:»

and R(3) would vanish. This point is emphasized in the next
section by the use of vectorial spherical harmonics.

This implies in turn that the fields fj(i) , fj(2) and fjO) are
also operators of the full rotation group, and are therefore
irreducible representations of the full rotation group.
Specifically,

5.4 THE EIGENVALUES OF THE MASSLESS AND MASSIVE PHOTONS:
VECTOR SPHERICAL HARMONICS AND IRREDUCIBLE REPRESENTATIONS OF
LONGITUDINAL FIELDS

In units of n, the reduced Planck constant, the eigen­
values of the massless photon are -1 and +1, and those of
the massive photon are -1, 0, and +1. In Euclidean space
the latter are obtained from eigenequations of the type

(186a)

(186b)
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which shows that 13(3) =7 6 violates the fundamentals of group

theory. Essentially, Eqs. (186) represent 13 (1), 13 (Z) and B (3)

in spherical polar coordinates (r , e, <1» where <I> in this
context should not be confused with the phase <I> of the plane

wave. Therefore 13(1), 13(7.) and 13(3) in operator form are all
non-zero components of the same rank one scalar spherical

harmonic Y~, M= -1, 0, +1. Furthermore, since the operators

J(1), J(7.) and J(3) are components in a circular basis of the
spin, or intrinsic, angular momentum of the vector field
representing the electromagnetic field, the fields 13 (1) , 13 (7.)

and 13(3) themselves are components of spin angular momentum,

as we have seen in Chaps. 3 and 4. It is also clear that J(1)

is a lowering (annihilation) operator,

and the vector spherical harmonics are compound irreducible
tensor operators [89],

specific vector fields which are eigenvalues of j2 and of 5z '

where 5 is the operator for vector fields of infinitesimal
rotations about axis (3). They have definite total angular
momentum and occur in sets of dimension (2j + 1) which span in
standard form the D representations of the full rotation
group, and are therefore irreducible tensors of rank i .
Defining the total angular momentum as the sum of the

"orbital" angular momentum 1 and intrinsic (spin) angular
momentum J, we have,

(191)

(190)5 i » J,

(186c)B (3) = B (0) r(~)'~ 9:1
3 0 I

and that J(7.) is a raising (creation) operator,

J(1)e(3) = -leo.),

J(2)e(3) = -le(a), J (2) e (~) = +1e (3) , (188)

They are formed from scalar spherical harmonics Y,;, which

form a complete set for scalar functions, and the e(i) opera­
tors, which form a complete set for any vector in three
dimensional Euclidean space. Therefore the vector spherical
harmonics form a complete set for the expansion of any
arbitrary classical vector field,

The total angular momentum J2 is also an eigenoperator, for
example,

(192)

The rotation operators therefore operate on the unit vectors

e(~), e(2) and e(3). The operator J(3) is therefore also an
intrinsic spin and can be identified in the quantum theory as
an intrinsic spin of the massive photon, with eigenvalues -11,
0, and h, or of the massless photon, with eigenvalues -h and
h.

For a classical vector field, its intrinsic (spin)
angular momentum is identifiable with its transformation
properties under rotations, and within a factor h the

rotation operators J are spin angular momentum operators of

the spin one boson. Recognition of a non-zero E(3} is there­
fore compatible with the eigenvalues of both the massive and
massless bosons. The vector spherical harmonics [89] are

1(l + 1) e (3) , 1 1. (189) in a Cartesian basis. For this vector the 1z operates on the

Ax, A y and A z. The operator J z on 1., j and k . Therefore 1z

operates on the spatial part of the field, and Jz{ = )(:3») on
the vector part.

Therefore, the operator for infinitesimal rotations

about the Z axis contains two "angular momentum" operators, 1
and ), analogous to orbital and spin angular momentum in the
quantum theory of atoms and molecules. The infinitesimal
rotation is therefore formally a coupling of a set of spatial

fields transforming according to D (1) with a set of three
vector fields, (e (~), e (a), e (3» transforming according to

ov: , Equation (191) is an expression of this coupling, or
combining, of entities in two different spaces to give a
total angular momentum. It follows from these considerations
that the vector spherical harmonics are defined by
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Y~:l1 = E <limn 11ILM> Y;' 8",
mn

(193) in addition to the non-linear equations (4) we have the
linear set,

where <11mnll1LM> are Clebsch-Gordan, or coupling, coeffi­
cients [89]. For photons, regarded as bosons of unit spin,
it is possible to multiply Eq. (193) by <l1OMlllLM> and to
sum over L [89]. Using the orthogonality condition

E <j1mU2m - miljlj2jm> <jlj2jmlil Tn1 j 2m - »> = 0m,m{ (194)
]

B U I B (01 6 (31 = :!1a B (0) (6 <11 + 6 (21) + B (0) b
2

- .;; cB (0)(8 (1.) - 8 (:II) + B (01 d,

(197)

where the coefficients are defined by the following combina-
it is found that tions of scalar and vector spherical harmonics:

1+1

y~(a, <1»8" = L-~-li <110Mll1LM> y~ll' (195)

which shows that B(3) is non-zero and proportional to the

vector spherical harmonic Yo0; , which is of course also non­
zero. There is no way of asserting that B(3) is zero without
destroying the fundamentals of group theory.

Since all three of 6 (1), 6 (2) and 6 (3) can be expressed
in terms of vector spherical harmonics, they are 1 inked
linearly, as well as non-linearly, in Euclidean space. Thus,

(198)8
0

: = 6 (3) ,6_
1

: = 6 {ll ,61. : = - 6 (:.II,

In our new approach, which considers the experimentally
proven existence of B(31, the case M = 0 is also considered
to be physically meaningful. In consequence, there is an

addi tional pure real magnetic 2L
- pole component of the

electromagnetic plane wave in vacuo corresponding to Sl3I.

The longitudinal 2L
- pole electric component is pure imagi­

nary from fundamental considerations, as we have seen from
previous chapters, but is also non-zero. The vector spheri-

cal harmonics Y;rr.l' with 1 = L, are no longer transverse
fields and the vector 6(31, which is longitudinal, can also
be expressed in terms of the L = 1, M = 0 vector spherical
harmonics as in Eq. (196). This result augments arguments
such as that leading to Silver's [89] Eq. (28.15), where are
displayed other, transverse, combinations of vector spherical

This result shows that B (3) is not zero because B {ll and B {21

are not zero.
The standard theory, as described by Silver (Chap. 29

of Ref. 89) concerns itself with the multipole expansion of
a plane wave in terms of the vector spherical harmonics. In
this approach, there are considered to be only two, physical­
ly significant, values of M in Eq (195), corresponding to
M = +1 and -1, which translates into our notation as follows,

(196)
Y. 1

2B(0)~y;
B(0)6(3)B(3)

which is an expression for the unit vectors 6" in terms of
sums over vector spherical harmonics, i.e., of irreducible
compound tensors, representations of the full rotation group
of Euclidean space.

It is usually asserted in the conventional approach [4]
that in the theory of free space electromagnetism, the
transverse components of 6" are physical, but the longitudi­
nal component corresponding to M = 0 is unphysical. This
deduction corresponds to only two states of polarization,
left and right circular, in the classical theory of light.
However, we see from our previous considerations that this

assertion amounts to 6 0 : = 6 (31 =7 0" meaning the incorrect
disappearance of some vector spherical harmonics which are
non-zero from fundamental group theory because some irreduc­
ible representations are incorrectly set to zero. This point
can be emphasized [89] by expanding B(3) in terms of Wigner
3-j symbols, which gives results such as
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harmonics. Equation (196) now shows that the longitudinal
e (3) (and therefore the longitudinal B (3» can be expanded
for all integer 1 of that equation in terms of vector spheri­
cal harmonics. Since B(~ and its dual, -iB(~/c, satisfy the
four Maxwell equations, then so do these combinations of
novel vectorial spherical harmonics. Each value of 1 for

M = 0 in ytl1. defines a different non-zero component of B(3)

and iB(J). Therefore the L = 1 components in the expansion

of B(3) are dipolar fields. It follows, finally, that many
other aspects of standard electromagnetic theory must be
augmented to take into account longitudinal fields, for
example the discussion on coherency matrices.

CHAPTER 6. CREATION AND ANNIHILATION OF PHOTONS

We have already had occasion to use creation and
annihilation operators in previous chapters, and have seen
that the novel and fundamental field algebra (4) can be
expressed in terms of these operators, the very existence of
which means that photons can be created and annihilated.
This is a process which satisfies the law of conservation of
energy, and its generalizations, usually described with
Noether's theorem [54]. The behavior of photons in a light
beam must be described statistically, and since photons are
objects which arise from a consideration of wave mechanics,
these statistics are also expressible in terms of the
Heisenberg uncertainty principle. Theoretical considerations
such as these lead into the subject of quantum optics, and
towards the prediction [90-95J and recent experimental
verification [96, 97J of phenomena, such as light squeezing
and anti-bunching, which have no cOllnterparts in classical
optics. In quantum optics there are eigenstates of the
photon, for example the number state, denoted In> and the
coherent state, denoted 1«>, introduced by Glauber in 1963
[98J. There are numerous textbooks available in this area,
which is also reviewed and updated constantly in the appro­
priate literature [99, 100]. In this chapter some character­
istics of quantum optics, and creation and annihilation
operators, are discussed within a frame of reference built on
the emergence of Eqs. (4) . In particular, it is shown
that B (3) is defined rigorously in quantum optics, as indicat­
ed by the considerations given to one photon in Chap. 3. In
that chapter, the concept of photon creation and annihilation
was not used, and the simplest case of one photon considered,
so that statistics were not necessary.

6.1 THE MEANING OF PHOTON CREATION AND ANNIHILATION

The creation operator, denoted a+~), and the annihila­
tion operator, denoted a~), are basic to the particle
interpretation of field theory. The quantization of a scalar
field ¢(X) , such as that used in Chap. 4, proceeds by Fourier
analysis, in terms of the wavevector ~, an analysis which
expands the field ¢(x) in a Fourier integral proportional [54J

89
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to the sum of terms §+(IC)ln(IC» and §(lC)ln(lC» are eigenstates of ]l.\1C) with eigenvalues
n(IC) + 1 and n(IC) - 1 respectively.

This allows the identification [54] of ~K) as a photon
number operator, i.e., the operator for the number of parti­
cles with momentum ~IC and energy ~KC. Thus ~lC) is a photon

annihilation operator and §+(IC) is a photon creation operator.
Particles (photons) which are quanta of this field obey Bose­
Einstein statistics [54] and the photons are therefore
bosons, there is no restriction on the number of particles
that may exist in the same quantum (e.g. momentum) state.
This conclusion follows directly from the postulated position
momentum commutation relations of the scalar field, as
described, for example, by Ryder [54]. Quantization of the
Dirac field leads to fermions, with different types of
commutation relations (involving anti-commutators [54]).
However, another enigma of the photon is that if it can be
described with a Dirac equation, as in Chap. 4, then Bose­
Einstein and Fermi-Dirac statistics must be interchangeable,
as indeed is the case in the most recent thinking on the
subject, reviewed by Vigier [72].

For our present purposes, however, it has become clear
that there are operators §+ and § in quantum field theory
which increase and decrease the number of photons in a beam,
so that that number is not a constant. This is possible,
furthermore, without any infringement of the laws of conser­
vation summarized in Noether's theorem.

(202)

(201)

(200)

(199)

delta function. Therefore, like
it can be shown that the operator

also obeys the commutation relation,

where Oij is a Dirac
operators commute, and
defined by the product

where § and §+ are operators. Since this is a quantization
procedure, there are commutation relations between the
operators § and §+. At two different points x and s:", there

are two corresponding wavevectors IC and IC', and it can be
shown [54] that the desired commutation relations are

This means that the eigenstates of the operators ~IC) and ~IC~

may be used to form a basis, with eigenvalues n(IC) defined by
the Schrodinger equation [54] 6.2 QUANTUM ClASSICAL EQUIVALENCE

(205)

There exists a quantum mechanical equivalent of any
classical quantity, including the electric and magnetic wave
fields associated with electromagnetic radiation. Contempo­
rary quantum field theory solves the classical d ' Alembert
equation in Fourier integral form [54], the latter being once
more proportional to an integral over a sum of operators of
the type (199). The route taken to quantization of the
electromagnetic field represented by A~ depends on the gauge
being used, e.g. the Coulomb or Lorentz gauge, but leads to
the concept of photon creation and annihilation operators as
for the quantization of the scalar field $(x) (Klein-Gordon
field [54]). The details of this procedure are well de­
scribed in a contemporary monograph such as that by Shore
[101] and leads to the result that the electric and magnetic
fields of electromagnetism become field operators directly
proportional to the creation and annihilation operators.
Following Kielich et al. [102] for example, the electric

(204)

(203)

so that if the state In(IC)> has eigenvalue n(IC) , the states

The commutation relations

show that [54]
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field operator is typically

E (2) = ( 'hw )1 e (2) 8 (0) e - icll
€oV '

(206)

This is the classical-quantum equivalence rule which
allows the straightforward extension of nonlinear optics into
nonlinear quantum optics, with the added richness of non­
classical effects such as light squeezing.

6.3 LONGITUDINAL AND TIME- LIKE PHOTON OPERATORS; BILINEAR
(PHOTON NUMBER) OPERATORS

Having established classical quantum equivalence it
becomes necessary in the light of the new classical develop­
ments leading to Eq. (4) to construct operators corresponding
to the classical, longitudinal, phase free, spin field B (3)

and its dual -iB(3)/c in vacuo. It is both convenient and
incisive to base this development on the classical Eqs. (157)
and (160) of Chap. 5, and to define photon creation and
annihilation operators through one to one identities with the
uni t operators e (l), e (2) and eO) in the circular basis,

where V is the volume occupied by electromagnetism in the
classical picture, and becomes known as the quanLization
volume in quantum field theory. In Eq. (206) 8(0) is the
annihilation operator of a particle, the photon, with
momentum 'hx and in a circular basis rather than Cartesian.
As discussed by Kielich et al. [102] the circular basis has
a clear advantage over the Cartesian for solutions of
equations of motion. In the circular basis denoted (1), (2)
and (3), the transverse field vectors are related to the
creation and annihilation operators as follows:

e (ll : = 8 (1) , e (2) : = 8 (2) , e(3) :=&(3). (209)

The well known Stokes parameters of the classical theory are
therefore described as bilinear products of the creation and
annihilation operators as described, for example, by Tanas
and Kielich [103],

(208)

s = ('!iW)8+(O)8(O)(e(l'e(2) +e(1)e(2,)
2 Eo V X Y Y x ,

from which it can be seen that the complex conjugate pairs
such as B(l) and B(2) or B(l) and B(2) are simply replaced by
bilinear operator products.

We recall from Chap. 5 that the e operators are directly
proportional to the classical infinitesimal rotation genera-

tors J in three space-like dimensions. In the four dimen­
sions of space-time these generators are given in the
circular basis by Eqs. (161), and in quantum mechanics they
are angular momentum operators. The classical e operators
in three dimensions are matrix representations of the axial
unit vectors 1, j and k used to define the magnetic compo­
nents of the electromagnetic field in vacuo in Eq. (157).

The corresponding definition in terms of classical J
operators (infinitesimal rotation generators) is given in Eq.
(160) .

In Eq. (209) therefore the quantized creation opera­
tor &(1) has been identified directly with the classical eel)

operator, and the annihilation operator 8 (2) with the e (2)

operator. In this definition, the e(3) operator is therefore
associated with &(3) longitudinal photon operator which has

been designated &(3), and which is not associated (Eq. (157c»
with the electromagnetic phase. We shall refer to a simply
as tne longitudinal photon operator in vacuo, or "longitudi­
nal operator". In conventional quantum field theory, the
longitudinal operators are discarded, along with the time-

like photon operator 8 (0), as unphysical, as discussed in



94 Chapter 6. Creation and Annihilation of Photons Longitudinal and Time-Like Photon Operators 95

Using Eqs. (180) shows that the electric wave and spin fields
in vacuo are relativistically correctly defined by bilinear
products (photon number operators) which involve physically
meaningful a (3) and a (0) operators in vacuo, as required.
Equations (212) also lead back to Eqs. (210) as required.

Similarly,

(213)

(211)J(3) '" -ia (3),

(212)

'" -i(a (1) a (2) -a (1) a (2»)y z z y ,

J '" -i(a(l)a(2) _a(l)a(Z')z x y y x •

J(2) '" ia (2) ,

a?)
o 0 0 l
o 0 0 0 ap)
o i. 0 0 a?)
-1 0 0 0 iao( 2 )

o 0 0

o 0 -i

o i 0

o 0 0

J(l) '" -ia (1),

J = -i(a(1)a(2) _a(1)a(2»)
y 7. X X Z r

K '" -i(a (1) a (2) _ ~ (1) '" (2»)
y 0 y ay aO ,

K = [a (1) a (1) ~ (1) .; '" (1)]
X X y az .LaO

J '" [a (1) ~ (1) a (1) i. ~ (1)]
X X ay 7. ao

so that angular momentum and photon number operators are
related in such a way that if the longitudinal operator a O )

is discarded as unphysical, J(ll and J(2) become unphysical,
which is again an incorrect result.

These results can also be generalized to the four
dimensions of space-time through Eqs. (179) for the four
dimensional rotation and boost generators of the Lorentz
group. The correct definitions in vacuo of the electric and
magnetic fields of electromagnetism are obtained through the
scalar operators generated by the following matrix multipli­
cations, which lead to Eqs. (167) (with the notation
ao(l) : '" ao(2) : = a (0) : '" ao' : '" ao and a (3) : = a; : '" a?J : '" az : '" ap) for

longitudinal a(3) operators), and a(l) '" (ail) - iaJ 1J)/.f2,

a (2) '" (a?) + iaJ2»)/.f2.

ing the definition (209), through

[a (1) , a (2)] '" - ia (3) , and cyclic permutations (210a)

.8(1) B (O)(a (3) a (2) - a (2) a (3») ei.p, (210b)

.8{~) B (O)(B (3) a (1) - a (1) a (3») e-i.p, (210c)

B (3) iB (O)(a (1) a (2) - a (2) a (l)), (210d)

for the magnetic fields in Eq. (160). The fields become
bilinear products of a photon operators, and so are defined
in terms of photon number operators. It is important to note
from Eqs. (210) that if a(3) is discarded as unphysical, the

fields .8(1) and .8(2), the usual wave fields, become unphysi­
cal, an incorrect resul t. This result of quantum field
theory is equivalent to the result in classical field theory
that if Bf3J is discarded as unphysical in Eqs. (4), all
electromagnetism vanishes in vacuo. The infinitesimal

rotation operators J (which are angular momentum operators
in quantum mechanics) are linked to the a operators, fo11ow-

previous chapters. In view of the newly identified Eqs. (4)
of classical field theory, this procedure is no longer
tenable, and it becomes necessary to include the operators
B(3l and a(O) in quantum field theory as physically meaning­
ful.

In quantum mechanics, the classical e operators and J
operators of Chap. 5 become angular momentum operators, so it
becomes clear that the operators B (1), B (2) and B (3) are also
angular momentum operators in the circular basis of three
dimensional space, a result which is consistent with the well
known results of angular momentum theory [103] in quantum
mechanics which lead to the identification of the operator
J(2) as a raising operator and J(l) as a lowering operator.
The creation operator B(l) is therefore a lowering operator
of angular momentum and the annihilation operator a (2) a
raising operator (Sec. 6.4).

The definitions (209) have the great advantage of
allowing the corresponding definition of the electric and
magnetic fields of electromagnetism in vacuo in terms of
bilinear products of creation, annihilation and longitudinal
operators. Using the commutator relations (156), (158),
(162), (163) and (166) leads to the result
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products in Eq. (210d). The three fields fjO), fj(Z) and fj(3)

can also be described directly in terms of single a opera­
tors, as in Eqs. (207), a result which follows from the
commutator relation (210a). The latter shows that each a
operator is described in terms of appropriate bilinear
products of a operators because these are angular momentum
operators. These deductions are necessarily based rigorously
in the theory of special relativity, and show that the

field fj(31 is a fundamental magnetic field of the photon, the
longitudinal photomagneton. It is unreasonable to assert

that fj (I) and fj (7.) are physical and fundamental without

automatically implying that fj(3) is also physical and
fundamental.

Experimentally, little is known about the nature of the

longitudinal photomagneton fj (3). A key experiment in this
context is the inverse Faraday effect, as described in Chap.
1, which is the phenomenon of magnetization by light. There
are several independent corroborations in the literature
[20-26] of the original experiment by van der Ziel et al.

[19], but more data would be very useful. The field BC]) is
new to science, but is rigorously based in special relativity
and electrodynamics. As argued already, it is consistent
with photon mass, and is rigorously non-zero, real and
physical. It is dual to the imaginary and unphysical

-i.m / c and is consistent with the fundamental laws of
conservation of energy, momentum and charge. In this chapter
we have shown that it is rigorously defined in contemporary
quantum field theory in terms of appropriate photon number
operators, a definition which shows conclusively that the
ordinary wave fields fj(1) and 13(7.) also need the longitudi­

nal a (3) operator. To discard this as unphysical means

discarding 13 (1) and 13 (2) as unphysical, an obviously incor­

rect result which shows that to discard fj(3) as unphysical

means discarding 13 (1) and 13 (7.) as unphysical, and conversely,

to accept 13 (1) and 13 (2) as physical means accepting 13 (3) as
physical.

This is yet another illustration of the enigmatic
nature of the photon and concomitant fields, because its

conventional description accepts 13 (1) and 13 (7.) as physical and

discards 13 (3) as unphysical, despite the experimental evidence
to the contrary (for example the inverse Faraday effect).
The conventional view has held sway for so long and is so
influential in contemporary thought that the notion of a

physically meaningful 13 (3) in free space needs more experimen-

(215)

(214)

1 a := a
o
(/')

C at
: = ai") I

a
az

z: = ap) I

~ ,( a z a)K = ~ct-+-- ,
z sz eat

~ ,( a x a )K = ~ct-+--
x ax cat'

Y:= a?) I

a .- a~(/')ay . - Y I

The identification of X with the creation operator ail) for
example, means that X is to be regarded as a unit length
operator, and similarly for Yand Z, these identifications
being consistent with those in Eqs. (209) of the a and e
operators. The latter are of course unit length operators
because they originate in unit vectors i, j and k. Similar­
ly the differential unit operator a/aX is identified with the

annihilation operator ai2
) and so on. The time-like opera­

tor ad l
) is identified with -ct, and the operator a~2) with

the differential operator (l/e) (a/at). As expected, time, t: ,
appears explicitly in the definition of the time-like
operators, and the latter are clearly physically meaningful.

To summarize, the ordinary, transverse wave fields of
free space electromagnetism, such as B(l) and B(2) , have been
rigorously described in special relativity using bilinear
products of a operators, products which are photon number
operators and wh i ch show that fj (1) and fj (7.) must be described

in terms of the longitudinal operator a (3) as in Eqs. (210b)
and (210c). This result shows conclusively that the conven­

tional approach to electrodynamics (4 J, in which a (3) and the
time-like a(O) are discarded as unphysical is at best
incomplete, and at worst incorrect. Similarly, the physica~­

1y meaningful fj(3) field is described in terms of bilinear

allowing the following identifications:

The physical meaning of the creation and annihilation
operators appearing in Eqs. (212) and (213) can be elucidated
further by expressing [54J the four dimensional rotation and
boost generators in the form
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and the process of squeezing the vacuum results in the second
term on the right hand side. The average photon number is
therefore affected by the squeezing phenomenon, as is the
variances of the quadrature operators and the Heisenberg
uncertainty relation between quadrature operators.

In this section effects of light squeezing are dis-

cussed on the three fields B (1), B (in and B (3), and it is

shown that the existence of the enigmatic B (3) field is
compatible with contemporary light squeezing theory [104].

From Eqs. (159) the unit vector operators in the
circular basis become angular momentum operators in quantum
mechanics. Thus

tal data to underpin the self-evident theoretical arguments
of these chapters. Equation (6) of Chap. 1 is already
conclusive experimental evidence for B(J) , and for the
observation of the conjugate product B(~) x B(:.I). The recent
claim by Lakhtakia [103] that the conjugate product is
unobservable ignores the existence of experimental data. The
obscure claim by Grimes [104] that B(J) exists but is only
fortuitously useful is subjective, B(J) is as fundamental in
nature as B(~) and B(2). If not, special relativity ceases to
be objective, and more generally, any theory of natural
philosophy ceases to be objective if claims such as those of
Lakhtakia and Grimes are to be accepted. For example, it
could be asserted arbitrarily that acceleration in Newton's
equation is fundamental, but that force is not. i=1,2,3, (219)

where the Itt (i) > denote coherent states of photon angular
momentum. The a operators defined in Eqs. (209) are also
angular momentum operators which create and annihilate photon
angular momentum. Thus

are Schrodinger equations for the coherent angular momentum
states of photons in a beam of light, to which quantum
mechanical angular momentum theory can be applied intact. A
particularly useful account of this theory is given in Chap.
6 of Atkins [105], whose notation is linked to ours by

6.4 LIGHT SQUEEZING AND THE PHOTOMAGNETON B (3)

When there are many photons in a beam of light, such as
a coherent, monochromatic laser beam, the Heisenberg uncer­
tainty principle produces quantum effects which are not
present classically. One of these is light squeezing, a
subject on which there is now a substantial literature,
including special issues of journals and reviews [99, 100].
Kielich and Piatek, for example [104], have summarized the
properties which characterize a one mode squeezed state as
follows. The average value of the annihilation and creation
operators are

i=1,2,3, (220)

<a>=tt, (216)
(221)

where tt is defined by the Schrodinger equaton for the Glauber
coherent state Itt>,

These average values do not depend [104] on the squeezing
parameter and are not subject to squeezing effects. The
average photon number is the expectation value of the
operator fl,

where 1- and 1+ are angular momentum lowering and r'a t.s i.ng
operators. All the results given by Atkins in his standard
text [105] can therefore be transferred to the coherent
angular momentum states of photon angular momentum. From the

direct proportionality of magnetic field operators B (1) , B (2)

and B(3) to the e operators described in Chap. 5, it becomes

clear that the B operators are themselves angular momentum
operators. The latter operate on the angular momentum
coherent states 1«(1» of a beam of many photons. This leads
directly to the result

(217)

(218)

(222)
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i. e., that the eigenvalues ±B (0) of the boson operator 13(3)

are non-zero arid observable. These eigenvalues are the
classical components of the field B(3) , showing again that the
conventional assertion that B(3) is zero is in error, and that

the field operator 13 (3) is directly proportional to an angular
momentum operator which is also the e (3) or a (3) operator.

These results apply unchanged to the photon with mass,
which is described by the angular momentum theory of hosons
as described by Atkins [105], for example, or in a large
number of other standard texts on angular momentum theory in
quantum mechanics. It therefore becomes clear that the field

13(3) exists both for the photon with mass and the photon

without mass. It is also clear that the operator 8(1) is an

angular momentum lowering operator (denoted 1- by Atkins) and

a(2) is a raising operator (1+). It is well known that the

1+ and 1- operators act as follows on an angular momentum
eigenfunction denoted in general by li,Mj > ,

(226)

(225)1

a 'In> = (rz + I)" In+1>,
1

aln> =n zln-1>,

Therefore the operators a (1) and a (2) create and
annihilate angular momentum components in a coherent beam
of N photons. These angular momentum components are eigen­

values of coherent eigenstates I~(i» of photon angular

momentum. The e, a, .J and 13 operators are therefore all
angular momentum operators of quantum theory, and all operate
on coherent (Glauber) photon states which are angular
momentum eigenfunctions in quantum theory. In a beam of N
photons therefore all these operators are subject to the
Heisenberg uncertainty principle as applied to angular
momentum, leading to the conclusion that they are all subject
to light squeezing effects. To assert arbitrarily that the

operator 13(3) is unphysical is the same thing as asserting
erroneously that one out of three angular momentum operators
is unphysical.

The Heisenberg uncertainty principle for a single
photon was described in Sec. 3.4 and it applies also to a
coherent state of many photons in a light beam. As discussed

in Chap. 4, the existence of a non-zero 13(3) follows directly
from the Heisenberg uncertainty principle, for without a non­

zero 13(3), there is no Heisenberg uncertainty. Our introduc­
tion of the 8 operators also has the great advantage that the
existing knowledge in light squeezing theory can be used to
discuss light squeezing effects in photon angular momentum
states. Following Tanas and Kielich, for example [103], the
four Stokes operators can be expressed in terms of bilinear
products of a operator components in elliptical polarization
states of a coherent light beam, such as a laser. As shown

by these authors, light squeezing effects occur in the ~

and 52 operators, but the So and 53 operators are constants

for a given j therefore, these number states can be identi­
fied with angular momentum M states as in Eq. (223). The
initial coherent state I~> can in general be related to the
initial number state In> through a relation such as that
given by Tanas and Kielich [106],

Kielich and Piatek [104],

(224)1

e- = (jU + 1) -M(M-l»".
1

e' '" (j() + 1) -M(M+l»',

where the eigenvalues are given by

Following Atkins [105], 1+ is a raising operator because
when it operates on an angular momentum state with Z compo­
nent ~, it generates from it the angular momentum state with
the same magnitude but with Z component one unit greater,

(M+l)n. The operator 1- generates the state one unit lower.
Therefore 8 (2) and a (1) do exactly the same thing, they create
and annihilate photon angular momentum states, states which
are scalar components in the Z axis of the photon angular
momentum vector. (Note carefully that because of our

definition 03°) := (l/{2)(El.x - i o3 y) the 03(1) creation operator is

identified wi th the angular momentum lowering operator 1- and
vice versa. There is no conceptual difficulty in this
because our definition of 03(1) is equivalent to arbitrarily
labelling, or choosing, the direction of angular momentum in
space.)

The effect of the a (1) and a (2) operators can be
compared directly with that of creation and annihilation
operators of photon number states, described for example by
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of motion, and are not affected by squeezing.

The Stokes operator 83 of 'I'anas and Kielich [103] is
described by the same bilinear product of a operators as that

defining jj(3) in Eq. (2l0d) , and the original derivation

[9-15] of jj(3) was based on this fact. The field operator

/3(3) therefore commutes with the Hamiltonian and is a constant

of motion, not subject to light squeezing. The fields f3 0 )

and jj(Z) however, defined in Eqs., (nOb) and (2l0c) , are
subject to light squeezing effects because they are not
constants of motion. These fields, unlike the Stokes

operators §l and 82 , exist in circular as well as elliptical
polarization, and are of course the ordinary transverse
magnetic wave fields. We arrive at the fundamental conclusion
that the wave fields of electromagnetism are subject to light
squeezing effects when expressed as operators of quantum
optics. These squeezing effects are due to the fact that
both f3(1) and jj(Z) are defined in terms of products such as

a(3)a(Z) which are photon number operators. For this conclu­
sion it is essential that 3 (3) and 8 (0) be regarded as
physically meaningful as discussed earlier in this chapter.
The cyclic operator relations in Eqs. (210) are simply
angular momentum commutator relations with the inclusion of

exponential phase factors of opposite sign for f3 0 ) and /3(2) •

CHAPTER 7. EXPERIMENTAL EVIDENCE FOR B (3)

Much of the discussion in the foregoing chapters has
revo1ved around the recent discovery of the longitudinal

photomagneton f3 (3), because the latter represents a new
dimension in electrodynamics, in free space and also in
matter. It is therefore necessary to devote a chapter or two

to the experimental evidence for /3 (3) and suggestions for
further experiments with which to measure its presence.
Equation (6) of Chap. 1 shows that the magnetization observed
in the inverse Faraday effect (IFE) vanishes if B (3) were

zero, showing that B(3) is non-zero experimentally and also
showing, as discussed already, that it has all the properties
of magnetic flux density. If this were not the case, then
JII(3) could not be a magnetization, and could not be observable
as such. The cyclic symmetry of the classical Eqs. (4), and
the isomorphism of this algebra with that of the Lorentz
group of special relativity shows that the field B(3) is "as
fundamental" as the fields B (].) and B (:I) • Indeed, the
numerous standard texts now available in classical electrody­
namics allow for the fact that the Maxwell equations can be
solved to give longitudinal magnetic and electric fields in
free space. However, these are discarded as being of no
interest because wave fields must be transverse. Equations
(4) now show that while the wave fields B(].) and B(:I) are
still transverse, as usual, they are linked inevitably to the

spin field B (3), which becomes the photomagneton /3 (3) in
quantum theory. The spin field is not a wave field because
it has no phase dependence, and in quantum theory is generat­
ed directly by, and is directly proportional to, the spin
angular momentum whose eigenvalues are ±h for the photon
without mass, or 0, ±h for the photon with mass. In other
words the ordinary conjugate product, proportional to the
antisymmetric part of light intensity, and denoted B(].) x B(:I) ,

has been identified as iB (0) B (3), where B (3) is a real and
physical magnetic flux density. The question that remains to
be answered by experiment is whether B (3) can act at first
order on matter, e.g. the liquids and solids in which the
inverse Faraday effect was first observed [19], or whether it
must always act at second order because it is always generat-

103
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ed by the second order product B (1) X B (2). Equations (4) and

developments thereof prove without doubt however that: 1) B (3)

is non-zero; 2) B(3) is a magnetic flux density, i.e., has all
the known properties of magnetic flux density.

Whatever the outcome of these experiments it is already
clear that the algebra (4) is isomorphic with the Lie algebra
of infinitesimal rotation and boost generators of the Lorentz
group, and therefore has the happy consequence of making
electrodynamics more self-consistent and less obscure. This
finding was illustrated in Chap. 6 using longitudinal and
time-like t!i operators, and has important consequences in
field theory, not least of which is to point towards the
existence of finite photon mass. This may be the most useful
consequence of the establishment of Eqs. (4); another is the
removal of the obscurities involved in the quantization of
the electromagnetic gauge field, specifically, t!i (3) and t!i (0)

no longer have to be regarded arbitrarily as "unphysical" in
well known procedures such as that of Gupta and Bleuler,
described for example by Heitler [107] or Ryder [54J. In the
following we review the experimental evidence for »(3) from
various sources, and show that considering all sources
combined, the existence and observation of B(1) xB(:1) = lB(0)B(3)

is beyond reasonable doubt. Some indications are also
reviewed of the ability of B(3) to act at first order, but
these are not yet unequivocal. Much further experimental
work is needed to elucidate the fundamental nature of B(3) .

Before proceeding to the description of the experimen­
tal evidence for B(3) some recent criticisms are discussed

briefly. Barron [53 J has suggested that the existence of B (3)

would violate C symmetry. Chap. 2 however, shows that Eqs.
(4), which define B(3), conserve all the discrete symmetries,

including C, and discusses the meaning of C in the context
of classical electrodynamics. In so doing, it was argued

that the amplitude BCO) is to be regarded as positive definite
in electrodynamics, an inference which follows from the fact
that e is regarded conventionally as negative definite.
Barron [53J also asserts that B(3) is zero because it violates

C, but this assertion is clearly untenable because if B(3)

were zero, the ordinary conjugate product, B (11 X Ben, would
vanish, a trivially incorrect result. Lakhtakia [103J
appears to argue that Bll) x B(2) is non-zero, and therefore

inevitably equal to lB(O)B(3) , but is unobservable. This
contradicts experimental data from several sources, and
therefore Lakhtakia's paper appears to be fundamentally

incompatible with experience. It does not refer, for
example, to the well known experiments by van der 2iel et a1.
[19J which first demonstrated the IFE, and to none of the
corroborative experimental work which has appeared since then
[20-26 J • Lakhtakia argues that B(3) exists in elliptical
polarization, which is an obvious consequence of the well
known fact [106J that elliptical polarization is a weighted
mixture of two circular polarizations. (Equations (4) are
written in circular polarization.) Grimes [104J appears to
argue that B(3) is non-zero but only "fortuitously" useful.

This is subjective opinion, B ( 3
) is as useful as any other

quantity in electrodynamics. The criticism by Barron [53J,
who asserts that B(3) is zero, and by Lakhtakia [103 J and
Grimes [104J who assert that B(3) is not zero, but is somehow
"not fundamental" are symptomatic of the considerable
confusion which can arise if the notion is adhered to that
all solutions of Maxwell's equations in free space must be
transverse. In attempting to assert subjectively the non­
existence of B(3) on this basis, these authors have inadver­
tently contradicted each other diametrically. In the light
of our arguments in previous chapters, these criticisms
appear to be superficial. For example, Barron [53J does not
refer to the defining Eqs. (4) of the classical theory, and
appears to base his argument on diagrams, a procedure which
is subjective as argued in Chap. 2. Lakhtakia [103J asserts
the non-observability of the ordinary conjugate product
B (1) X B (2) and ignores all experimental evidence to the
contrary (see Sec. 7.1). Grimes [104], in an obscure paper,
appears to accept that B(3) is non-zero (as is inevitable from
Eqs. (4)) but that it can be useful only "fortuitously", a
conclusion which is outside the bounds of objective natural
philosophy. We stress that Barron [53] comes to precisely

the opposite conclusion (B(3) =7 0) to that of Lakhtakia [103J,
echoed by Grimes [ 104 J, (B (3) * 0) so that in our opinion,
these criticisms merely demonstrate a subjective unwilling­
ness to accept Eqs. (4). They are therefore valueless
scientifically and have the overall effect of producing
confusion in the literature.

7.1 THE INVERSE FARADAY EFFECT. MAGNETIZATION BY LIGHT

The inverse Faraday effect is the phenomenon of
magnetization by circularly or elliptically polarized light,
and was proposed independently by Piekara and Kielich [108]
and by Pershan [109 J. I t can be shown that the magnetization
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(ensemble averaged induced magnetic dipole
directly proportional to the conjugate product

the form B(1) x sv>. A recent analysis is given,
by Wozniak et al. (26]. In free space we have

moment) is
of light in

for example,

(227)

(230)

and as shown in Eq. (131), the conjugate product is propor­
tional to the antisymmetric part of light intensity, and is
a standard feature in nonlinear optics [15). It is described
clearly by Wagniere (110] in the context of novel birefrin­
gence phenomena of light, and is reviewed in magneto-optics
by Zawodny [15]. The systematic and pioneering work of
Kielich et al. (15] results in expressions such as follows,

where I o is the intensity of the beam in W m- z. So in, for
example, a circularly polarized laser beam of intensity
101 Wm-z (1.0 wcm-Z ) the magnitude of B(l) is about 10-5

Tesla, or about 0.1 G, roughly a tenth of the earth's
magnetic field. It can be shown then that the inverse
Faraday effect can be described [14) in samples with a

permanent magnetic dipole moment miO) as

for the light induced magnetic dipole moment m}ind) in the

IFE. Here mXijk(O; W, -W) is a molecular property tensor, a
hyperpolarizability. Atkins and Miller [111) and Manakov,
Ovsiannikov and Kielich [112) have developed the core
expression (228) in quantum field and semi-classical theory.

In this section, the IFE is discussed in terms of B(l) with
reference to the well known experimental results of van der
Ziel et al. (19).

Using the vector B(l) of the classical theory it becomes
straightforward [15) to develop any magnetic effect of light,

in any polarization. The magnitude of B(l) is given in S.I.
units by

where the my;"j'rc: denote hyperpolarizabili ty components, N is

the number of molecules per m3 ; kT the thermal energy per
molecule; and where 'ij is the molecular magnetizability. In

samples where <miO)2>o is zero, the term directly proportional

to B(l) is zero. These samples include the diamagnetic
liquids used by van der Ziel et al. [19). In samples where

there is a permanent net magnetic dipole moment, and if B(3)

is capable of acting at first order, there should be observ­
able experimentally a light induced magnetization term
proportional to the square root of intensity mixed in with
the others of Eq. (230). This term, if observed, would
provide unequivocal experimental evidence for the a bil i ty

of B( 3
) to act at first order. The data of van der Zie1 et

al. (19) already provide evidence for the existence of a non­

zero B{l) acting at second order.
To estimate (14) the various orders of magnitude of the

contributing terms in Eq. (230) the magnetic dipole moment m
is set at about a tenth of the Bohr magneton, i.e., at about

10-2
4. JT- 1 • A rough order of magnitude estimate of the

hyperpo1arizability mvUk can be obtained from the Faraday

effect theory of Wozniak et al. (108] as about 10-'15 Am'l v-z

for a typical diamagnetic. For a paramagnetic with a
permanent magnetic dipole moment it is assumed that the
hyperpolarizabili ty may be about 100 times bigger, i. e. ,

10-BAm4V-2
• In Eq. (230) N is typically about 10 2 8 mole­

cules m- 3 and kT at 4 x 10-21 J moLecul.e? , equivalent to 300 K.

A B (3) field of 1.0 Tesla is obtained from a pulse of mode
locked, circularly polarized, radiation of intensity about

3 x 10 1 5 Wm- 2
• Using these figures gives an order of magnitude

of magnetization of about 2.5 Am-1 for the term in B (3) ,

about 2.0Am-1 for the term in B(3)3, and about 30Am-1 for the

temperature independent term in B (3)2. Clearly, these figures
depend on the estimates used above, but all three terms
contribute in general.

In their original experiments van der Ziel et al. (19),
wi th a peak intensity of lOll Wm- 2 from a pulse of giant ruby

laser radiation, observed a magnetization of about 0.01 Am-1

(229)

(228)

1

IB (3) I = B (0) - 10-7 Io" I
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in 3.1% EU++ doped calcium fluoride glass. They also verified
the results with several organic and inorganic liquids and
doped glasses at low temperature. The magnetization was
detected with a 30 turn coil and spurious signals carefully
eliminated. Oscilloscope traces clearly showed signals of
opposite sign for opposite senses of circular polarization,
and results were cross checked ....lith measurements of the
Verdet constant. Graphs of magnetization versus 1/ T and
laser intensity showed a linear dependence (Fig. (2) of Ref.
19), as described in Eq. (6) of Chap. 1. Several different
checks were made of the fact that the IFE was indeed being
observed, for example the l/T behavior was found to be
independent of laser power, and the plots of magnetization
versus intensity found to be linear for a variety of liquids
and paramagnetic glasses. In the latter, the effect is
described by a simple equation of the type (6) of Chap. 1,
indicating that 11(3) is proportional to iB(O)B(3) multiplied by
the imaginary part of a molecular hyperpolarizabili ty as
described theoretically by Wozniak et al. [26].

The recent claim made by Lakhtakia [103] that
iB(O)B(3)=B(l)xB(:1) is unobservable ignores the careful cross
checking procedures carried out by van der Ziel et al. [19]
and indeed ignores all the available experimental data on
magnetization by light [15].

Finally in this section, it is noted that van der Ziel
et al. [19] refer to the t.e rrn in the conjugate product
B(l) x E(:ll in the paramagnetic IFE as an effective magnetic
field term, and it is now clear that the magnetization is
caused by a non-zero B(3) , a real and physical magnetic field.
There is no sign in the data of van der Ziel et al. [19] that
this acts at first order, but it is clear that it acts at
second order through Eq. (6), thus proving its relation to
B(:l) x.8(2) in Eqs. (4).

7.2 OPTICAL NMR. FIRST ORDER EFFECT OF B(3)

The phenomenon of magnetization by light has been
used recently [113] to shift NMR resonances with circularly
polarized light far from optical resonance. It can be shown
[114, 115] that the observed shifts are about fourteen orders
of magnitude larger than expected from conventional perturba­
tion theory applied to shielding constants in NMR, constants
which determine the chemical shift used to identify the
sample analytically. The observed shifts must therefore be
due to a hitherto unrecognized magnetic property of light, a

property which does not time average to zero, and which
affects the sample at first order in the magnetic field of
electromagnetism. It is tempting to assert that this

property is the field B(3) , but the experimental evidence is
not yet unequivocal. In this section we describe briefly the
resul ts of the first ONMR experiment [113, 116] and the
extent to which the simplest, (vacuum B(3» theory can account
for the data.

If the experimental results of Warren et al. (113, 116)
are accepted, however, they indicate without reasonable doubt
that there exists a magnetic property of light which has not
been recognized hitherto. The reasons for this deduction are
discussed as follows.

The ONMR technique relies in the simplest case on the
use of a continuous wave, circularly polarized laser of low
intensity directed into the spinning sample tube of a
conventional NMR spectrometer. (The same technique can be
used, in principle, for OESR.) The first series of ONMR
experiments, carried out by Warren and co-workers [113, 116,
117], involved several painstaking checks of repeatability
and reproducibility, and were carried out under a variety of
conditions with several samples. Special care was taken to
remove heating artifacts, or otherwise to differentiate the
effect of heating from the magnetic effect of laser light.
A conclusive demonstration [116] involves heating the sample
to equilibrium with the laser, then rapidly switching from
left to right circular polarization, whereupon the resonance
line shifts upwards or downwards in frequency in synchroniza­
tion. Such rapid modulations cannot be due to heating, and
the observed shifts are many orders of magnitude greater than
allowed for in standard perturbation theory applied [114,
115] at first order in laser intensity (second order in the
field) .

A detailed discussion of the application of B(]) theory
to these results has been given elsewhere [15] and shows that

if the vacuum value of B(3) is used, the observed shifts
appear to be overestimated theoretically by about one or two
orders of magnitude. This compares with an underestimation
by the conventional second order perturbation theory [114,
115] of about fourteen orders. In this rough and ready
understanding therefore, the B(3) theory does far better than
the second order theory but does not yet lead to a satisfac­
tory description of the data [113, 116, 117], the most
significant feature of which is the fact that reversing the
circular polarization reverses the direction of the light
induced shift.
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7.3 THE OPTICAL FARADAY EFFECT (OFE)

features, but the reversal of shift with circular polariza­
tion is conclusive, and very unlikely to be an artifact of
experiment.

It is therefore concluded that ONMR is evidence, albeit
incompletely understood, of the ability of B(3) to act at
first order at the nucleus.

We refer to the optical Faraday effect (OFE) as the
rotation of the plane of polarization of a linearly polarized
probe beam by a second, circularly polarized, pump laser.
The latter substitutes for the magnetic field of the ordinary
Faraday effect [15]. The circularly (or elliptically)

polarized pump laser generates a B(3) field which acts at
first and second order. This means that the field B(3) can
shift the ordinary magnetic circular dichroism (MCD), for
example, set up in the sample by a standard static magnetic
field. The complete MCD spectrum is shifted upwards or
downwards in frequency according to the sense of circular
polarization of the pump laser applied to the sample in the
MCD spectrometer. If B(3) acts at first order its effect is
simply to augment or decrease the effective magnetic field
applied to the sample,

where B o is the static magnetic flux density used in the
spectrometer. Sanford et al. [22] have recently reported
this effect in ferroelectric samples such as CdCr2Se 4 • These
authors noted a large shift in the Faraday rotation spectrum
of this compound at 78 K, a shift caused by a circularly
polarized laser. It was observed [22] that the shift was
reversed by reversing the circular polarization of the pump,
the displacement being to lower energy when right circularly
polarized light was used and vice versa. The intensity of
the pump laser was only 0.7 Wcm-2 , and the sample thickness
was only 25~m, so the OFE effect observed by Sanford et al.
[22] is a very large one. It was observed at 78 K that the
complete Faraday rotation spectrum near 1000 nm was shifted
wi thout distortion of the bandshape to higher or lower
frequencies by the pump laser, an effect which was interpret­
ed in terms of a pump induced increment in the effective
magnetic field, which was observed at remarkably low pumping

(231)B = B o ± B(3),

This property is reminiscent of the similar observation
in the inverse Faraday effect [19J that reversing the
direction of circular polarization reverses the sign of the
voltage produced by the induction coil. These are raw pieces
of data which point towards the ability of light to magne­
tize, at first order in ONMR and at second order in the IFE.
The ONMR data, however, display [113, 116, 117] what appears
to be a complicated dependence on the light intensity, and
refinement of the prototype technique is necessary. This may
become possible in future with improvements in instrumenta­
tion. The reversal of shift direction with laser polariza­

tion is however a conclusive piece of evidence for a B(3)

mechanism at first order, because B (3) also reverses sign with
circular polarization and does not time average to zero as

do B(I.) and B(2) when acting at first order. If attention is
focused on this feature, it becomes clear that there can be
no other mechanism for ONMR shifts which reverse direction
with circular polarization. This is simply because at the
optical frequencies used in the experiment [113, 116, 117],
any first order mechanism due to the oscillatory B(l) and B(2)

would average to zero because the phase is e i 4> = cos 4> + i. sin 4> ,
whose average value is zero. Any second order mechanism due
to B(l) and B(2) is fourteen orders of magnitude too small in
standard second order perturbation theory as worked out in
Ref. 114. If we are not to dismiss the whole series of
experiments [113, 116, 117] as producing mere artifact, we
are driven inevitably to the conclusion that the shifts are
due to a B(3) mechanism, because there is no other reasonable
possibility. (The fact that perturbations at first order in
the transverse fields of light average to zero is the very
reason why the perturbation theory is always conventionally
applied at second order in the transverse field, i.e., at
first order in the light intensity.)

If the shifts are caused by a B(3) mechanism, however,
then there must be a reason why they are much smaller than

expected on the basis of a vacuum IB (3) I of about 10-7 I~/2

Tesla. This is not clear at present, possibly there is a
simple experimental reason, for example loss of intensity in
guiding the laser into the sample tube. Another possibility
is that the vacuum value of IB(3)1 (a property of light) does
not reach the nucleus because of the surrounding electrons.
This would tend to fit in with the observation [113, 116,
117] that the shifts are (usefully) site specific, i.e.,
dependent on the electronic environment of the nucleus.
Obviously, much more work is needed to clear up these
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where (,) is the angular frequency of the probe, ~o the free
space permeability, c the speed of 1 ight in vacuo, 1 the
sample thickness, N the number of atoms or molecules per
cubic meter of sample, €OlIlY the Levi-Civita symbol, kT the

thermal energy per molecule, and "YOl~(f), mnOl and ex~(f) the
standard Faraday effect molecular property tensors [15],
properties of the sample. Respectively, these are the
hyperpolarizabil i ty , permanent magnetic dipole moment (if
non-zero), and antisymmetric polarizability. The semi­
cl~ssical structure of the hyperpolarizability is given by
Wozniak et al. [26], and that of the other two property
tensors is standard [15].

It is clear from Eq. (232) that Ii.e is directly propor-

levels, and which was reported to be ten times greater in
magnitude in circular than in linear polarization.

The classical BU) can be used straightforwardly to
explain these observations qualitatively, because as in Sec.
7.1 and 7.2, B(3) changes sign with circular polarization and
shifts the MCD spectrum of the ferromagnetic upwards or
downwards in frequency without distorting the bandshape ,
precisely as observed. The field B(3) is, as we have argued,

the expectation value of the free space photomagneton 13 (3) ,

generated directly by photon spin. The operator 13 (3) is
therefore a phase free spin operator, generated directly by
the photon's non-zero intrinsic angular momentum. If it is
assumed a priori that the classical BU) acts directly at
first order on the electrons of the sample in the OFE, its
overall effect, as we have argued, would be simply to shift
the MCD spectrum in either direction, depending on the
laser's sense of circular polarization. If the pump laser
were linearly polarized there would be no shift, an inference
which is again borne out qualitatively by the data of Sanford
et al. [22] in their Fig. (2). These authors report that
circularly polarized pumping was an order of magnitude more
effective than linearly polarized pumping.

Assuming in the first approximation that the vacuum
value of B (3) can be used, standard Faraday effect theory [15]
gives the following expression for the angle of rotation of
a 1 inearly polarized probe beam caused by B (3) of the pump
beam,

Ii.e - -l:.- (,)11 clNIB (31\€ (ey em (f) + mnOl ex" (f))12 r-o Ol~y OlIlY kT ~y ,
(232)

tional to B(3) and will be shifted without distortion upwards
or downwards in frequency according to the sense of circular
polarization. Such a shift should be proportional experimen­
tally to the square root of the pump laser intensity. No
intensity dependence of the shift is reported by Sanford et
al., but in other respects their results are explained
qualitatively by Eq. (232). Sanford et al. themselves
interpret the shift in terms of ± 0/2) Jlf where JI is the
first order intra-Cr exchange and f the fraction of chromium
sites with excited electrons. In the notation of Eq. (232)
this mechanism is described semi-classically through the term

II h i h .mnOlex~y, w t.c i s temperature dependent. The detailed mechanism
of Sanford et al. [22] is contained within the structure of
these molecular property tensors. Sanford et al. note [22]
that as the temperature is changed from 78 K, where the
Faraday rotation peaks are close to the fixed pump frequency,
there is a gradual loss of symmetry in shifts for the right
and left circularly polarized pump. Sanford et al. [22]
explain this gradual loss of symmetry as being caused by the
temperature dependence of the energy splitting between sub­
bands, a mechanism which is allowed for in Eq. (232) through
the fact that the optical resonance structure for the
molecular property tensors depends on the energy splitting
between sub-levels and on temperature. For example, the
resonance structure of the IFE, worked out for a model two
level atom by Wozniak et al. [26], shows asymmetry near and
away from optical resonance. Sanford et al. [22] refer to
their interpretation of their data as a first order magnetic
coupling, and Eq. (232) is, significantly, one to first order
in the magnetic field B(3) .

It is important in further work to study these effects
as a function of pump laser intensity, in order to separate
out t.he effects of B(3) at first and higher orders. If B(3)

were zero, however, as suggested by Barron [53], there would
be no effects of the type described in this chapter, at any
order in B (3), something which is obviously contrary to
experience in the three independent experiments of Sec. 7.1
to 7.3. Therefore the spin field B (3) is not zero, and
effects due to it have been observed unequivocally at second
order in the IFE (Sec. 7.1). By inference, all the well
known magneto-optic effects reviewed recently by Zawodny [15]

are due to B (3) and its various interactions with material
matter. There are signs that B(3) can act at first order, for
example in ONMR (Sec. 7.2.), and it is interesting to note
that the nonlinear Faraday rotations reported recently by
Frey et al. [118] fallon a straight line when plotted
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here, the angular brackets denote averaging over appropriate
molecular property tensors, defined in Ref. 15. This effect
depends on the conjugate product directly, expressed as
iB(O)B(3} , and as such also changes sign between circular

polarizations of the pump laser. However, the effect of B(3}

at second order is proportional to pump laser intensity, and
in general accompanies the effect to first order in B(3} just
described.

against the square root of pump intensity. These effects are
discussed more fully elsewhere [15].

From Eq. (232) and the experimental results of Sanford
et e I , [22] a pump of 0.7 W cm:? produces at a fixed frequency
an ordinate shift of about 10 degrees (roughly 0.2 rad) in
the MCD spectrum at 1000 nm (roughly 61t x 101'1 rad S-l), at 78 K

and for a sample thickness of 25 microns. Assuming that there

are of the order 1026 atoms m- 3 in the sample, we obtain rough

estimates of the effective orders of magnitude of mn",a~y

and ey",~m., in Eq. (232),

In a diamagnetic liquid such as CS2 , Wozniak et ai. [26] have
calculated a value for the hyperpolarizability of the
ordinary Faraday effect: 10-'15 Am'1 V- 2 • In a paramagnetic with

a permanent molecular dipole moment, the term Imn",a~1 is very
roughly of the order 10~9C2m2T-1. Consistently, therefore,
the atomic molecular property tensors in the ferromagnetic
sample used by Sanford et ai. [22] are much greater in
magnitude than in a paramagnetic or diamagnetic. This is
experimentally consistent with the fact that some magnetic
semiconductors, such as those used by Frey et ai. [118] show
giant Zeeman and Faraday effects orders of magnitude greater
than encountered in ordinary diamagnetics such as water.
Sanford et e I , [22] have elegantly amplified the effect
further by tuning the pump laser to peaks in the original
Faraday effect spectrum of the sample. This is precisely what
is proposed theoretically by Wozniak et ai. [26] for the IFE.

In general, B(J} can also act at second order in the

As we have seen, there exist signs from the three
sources described in this chapter that B(3} can act both at
first and second order in material matter. (It can, of
course, act also at higher orders under the right condi­
tions.) These three experiments have been chosen to illus­
trate the experimental existence of B(3} because they were
carried out with particular care, and produced incisive
resul ts. Mention was also made of the nonlinear optical
rotations reported by Frey et al. [118], and of corroborative
experiments on the IFE [20-26]. A range of magneto-optic
effects, obtained by numerous groups over the past thirty
years or more is reviewed by Zawodny [15]. It is well
accepted that these nonlinear effects are due to the conju­
gate product B(l} x B(:1l , which can now be expressed as in Eqs ,

(4) as iB(O)B(3} , and therefore in terms of the real field

B(J}. This simple re-expression of the ordinary conjugate
product was not realized until about 1992 [9-15] ,so that the
existence of a field such as B(n was not suspected.
Accordingly, these experimental data were naturally inter­
preted in the conventional view that all magneto-optic
effects of this type must be due to the conjugate product and
must therefore be proportional to light intensity. This
effect is now recognizable as that of iB(O)B(3} but there is

also expected an effect due to B(3) itself, which should be
proportional to the square root of light intensity. Because
B ll), B(2) and B(J} form a group which is isomorphic with the
group of rotation generators, either in space or space-time,
the three fields are physical and it is not valid to assert
that anyone is unphysical. Equations (4) therefore repre­
sent a Lie algebra which automatically ensures that B(3} is
phase free, having been formed from the product of B(l) and

B (2) • This product is the ordinary conjugate product of
nonlinear optics. A subjective refusal to accept Eqs. (4),
such as evidenced in the papers by Barron [53], Lakhtakia
[103], and Grimes [104] will lead inevitably to obscure and
incorrect results, internal contradictions and qualitative
disagreement with experimental data. For example Barron
asserts that B(l} x B(:l} exists but that B(J} does not, and this
is trivially inconsistent by Eq. (4a). Lakhtakia asserts
that the conjugate product is unobservable, which is trivial­
ly inconsistent with the data presented in this chapter and
reviewed in depth in Ref. 15. Grimes asserts that B(J} is
useful by coincidence, whereas Eqs. (4) are algebraic.

7.4 SURVEY OF DATA

(234)

(233)
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CHAPTER 8. THE CONCEPT OF PHOTON MASS

8.1 THE PROBLEM

The idea that the photon may have a non-zero mass was
developed by de Broglie over many years of investigation.
His first massive photon equations were proposed [119] in
1934, shortly after the emergence of the Proca field equation
(68) in 1930 [120]. The work of de Broglie in this area is
recorded in numerous books and articles which are accessible
through Library of Congress Listings [121]. The de Broglie
photon equation of 1934 (not to be confused with the de
Broglie Guiding theorem (1» is described by Goldhaber and
Nieto [85] for example as coming from the product of Dirac
particle and antiparticle spaces. From the very outset the
photon is regarded as a particle with mass, and the anti­
photon as an anti-particle with mass. The de Broglie photon
equation is related to the Duffin, Kemmer and Petiau equa­
tions (similar to Eq. (125» in their fundamental, reducible,
representation. The latter can be defined as a symmetric
product, or composite, of two Dirac particle spaces. The
Duffin, Kemmer, and Petiau equations reduce [122] to the
Klein-Gordon and Proca equations if it is assumed that the
wave function transforms as a product of two Dirac wave
functions. The Klein-Gordon equation becomes the irreducible
representation corresponding to a five dimensional pseudo­
scalar equation obtained for a plane wave and diagonal matrix
elements. The Proca equation becomes the irreducible
representation corresponding to a ten dimensional spin one
equation. The de Broglie photon equation on the other hand
decomposes into a one dimensional pseudo-scalar irreducible
representation; a five dimensional irreducible representation
corresponding to a scalar Klein-Gordon equation and a ten
dimensional axial vector representation of the Proca equa­
tion. Duffin [123] has given a general discussion of the
characteristic matrices of covariant, quantum relativistic
systems.

The de Broglie massive photon equation of 1934 consid­
ers Dirac spaces for particles and anti-particles which are
photons and anti-photons (Chap. 2) with mass. The Duffin,
Kemmer and Petiau equations [85] on the other hand consider
only Dirac spaces, and therefore only photons, which are

117
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considered conventionally as their own anti-particles (but
see Chap. 2). If these equations are applied to photons (and
anti-photons) in the classical limit Tao-O, the Maxwell
equations of the classical electromagnetic field must be
recovered. An example of the Maxwell equations written in
the form of a Dirac equation has been given in Eq. (126),
following Barut [46]. As seen in Eqs. (83), the d'Alembert,
Dirac and Schrodinger equations for the photon without mass
become identical in structure, each being represented by a
d' Alembertian operating on a potential four-vector AI" a
Dirac spinor 1jJ, or a scalar field 4>.

As discussed in Chap. 2, the C operator applied to the
photon produces a distinct anti-photon, and this is allowed
for in the de Broglie photon equation. The photon in this

picture is not its own anti-particle, C has the effect of
reversing the sign of all four components of the potential
four-vector AI' and of the scalar quantities e, E(O) and B(O).

(In contemporary field theory the vacuum is the Dirac sea,

and C has the effect of changing the particles of the Dirac
sea to anti-particles.) Its effect on the de Broglie photon
equation is to produce the de Broglie anti-photon equation.
The fact that

(235)

means that the photon is an eigenstate of C = -1, which in
contemporary understanding [52], is a consequence of the
covariance of the D(l) electromagnetic sector field equations
under C and CPT (Chap. 2). The de Broglie, Duffin, Kemmer
and Petiau equations, being physical laws, must be invariant
under the discrete symmetries, unless there is symmetry
violation, a property that implies the conservation of the
negative charge parity of the photon (and anti-photon). If

negative charge parity is conserved, there is no observable C
violation in the natural universe, which has evolved (Chap.
2) in such a way that it appears to be composed, naturally,
of particles and fields rather than anti-particles and anti­
fields. Thus, the fact that all electrons in the natural
universe appear to be negatively charged does not mean C
violation, but is a consequence of initial (boundary)
conditions. Positrons and other anti-particles can be
manufactured in the laboratory, but appear not to occur
naturally. Similarly, some natural products such as sugars
and alkaloids occur as one enantiomer, and not as a racemic

mixture. This does not imply f3 violation, because the

opposite enantiomer can be synthesized. Similarly, the anti­
photon can be synthesized under appropriate conditions,
although this remains to be demonstrated experimentally.

In contemporary field theory, however, the notion that
the photon is its own anti-photon is prevalent, but as
discussed in Chap. 2, is apt only for the photon as particle,
not for the photon as particle and concomitant field. In
this framework the Duffin, Kemmer or Petiau equations are
descriptions of the electromagnetic field as a massive gauge
field, whose quantization produces well defined massive
photons with three space-like polarizations, not two, as in
the conventional picture. This equation must be invariant
under local U(l) gauge transformations [54]. This leads to
the limiting gauge condition described by AI'AI' = 0, which is
a consequence of the Dirac condition for vanishingly small
photon radius. This condition therefore is valid for finite
photon mass (mo) and an infinitesimally small photon radius,
represented relativistically [72] by the radius four-vector
II" The four-vector II' is orthogonal to the energy momentum
vector PI' of the photon in its rest frame.

The usual contemporary description of the U(l) sector
differs from this in that the photon mass is considered to be
identically zero. Goldhaber and Nieto [85] have shown that
there is no evidence for this assertion, and standard tables
now show the mass of the photon as non-zero. There can be no
logical evidence for identically zero photon mass, because
this would imply an infinite range for the electromagnetic
field in a universe with presumably finite radius. In
contemporary unified field theory, such as SU(5) or GWS,
finite mo can be made compatible with the powerful results of
GWS, for example its prediction of massive intermediate
vector bosons. Huang discusses the fact that non-zero mo
implies a finite electron lifetime within a given model
structure.

In contemporary thought, electromagnetic field theory
is the U(l) sector of grand unified theory, and it is
essential that meaningful consideration be given to the
existence of a non-zero photon mass, however powerful the
results of GWS or SU(5) may be. The alternative is to accept
by assertion an identically zero mo, for which there can be
no experimental evidence as mentioned already. The logic of
de Broglie's work therefore remains just as valid as ever.
Considerations of non-zero mo date from Cavendish's time, and
were involved, for example, in Einstein's development of
general relativity, in which gravitation bends light as if it
had mass. As soon as the possibility is accepted that mo*O

contemporary theories of gauge invariance are affected at a
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There can be no experimental evidence for mo~O because
the radius of the universe is apparently finite: mo~O

8.2 BRIEF REVIEW OF EXPERIMENTAL EVIDENCE COMPATIBLE

WITH .DIo #- 0 AND B (3) * 0

fundamental level as discussed in Chap. (4). Gauge freedom
is lost, the Lorentz gauge always applies, and as discussed
in Chap. (l), the d ' Alembert equation becomes the Proca
equation, an eigenvalue equation. The Coulomb gauge for
mo '" 0, identically, is inconsistent with mo * 0 because the
Lorentz gauge applies. If (in S. I. units), Eo being the
permittivity in vacuo:

identically implies an infinite range for electromagnetic
radiation, and if the extent of the universe is finite, light
received by an earthbound observer from even the most distant
galaxies has still travelled a finite distance. The radius
of the universe can be estimated experimentally only through
an interpretation of the properties of this type of radia­
tion. The hypothesis [flo ~ 0 therefore has no experimental
support, which implies that if the photon be regarded as a
particle, it can take finite mass, and can travel at speeds
which are different from c. Therefore, the latter becomes
a postulated fundamental constant of special relativity, no
longer to be identified with the speed of 1 ight, whose
properties become different in different Lorentz frames, even
in free space. The photon with finite mass can be assigned
a rest frame, and its properties in any other frame are
determined by the Lorentz transformation of special relativi­
ty. From the de Broglie Guiding theorem, light of different
frequencies propagates at different speeds through a vacuum,
an inference which can be tested experimentally as described
for example by Goldhaber and Nieto [85], who cover the field
up to about 1970. A more recent review by Vigier [72J covers
the experimental evidence compatible with a finite IDa up to
about 1992. It is clear that the twenty or so years separat­
ing these two review articles have seen a great increase in
interest in the inference that IDa is not identically zero.
Unfortunately, contemporary gauge theory is still dominated
by the assertion that mo ~ 0 identically; and there is an
obvious incompatibility between these two branches of
physics. The theory of finite photon mass attempts to bridge
this gap while retaining the powerful results of unified
field theory, for example GWS, SU(5), and chromodynamics,
without having to assert mo~O. Experimental work on these
bridging theories is much needed [72J.

In a brief overview, the various types of contemporary
evidence cited by Vigier [72] are as follows. There is a
direction dependent anisotropy of light in the apex [124] of
the 2.7 K background of microwave radiation in the universe,
an anisotropy which is compatible with finite photon mass.
Experiments on the existence of superluminal action at a
distance [125] have been performed and are being repeated
with increasing accuracy with the overall intention of
proving the central idea of non-locality in the quantum
potential [126 J . Other types of contemporary experiments
investigate directly the Heisenberg uncertainty principle for
single photons, because this is central to the interpretation
of quantum mechanics, through the Copenhagen or Einstein-de
Broglie viewpoints. Interesting recent discussions include

(236)

(237)

( ic4> ). ,AI' =' Eo A,

as usual [4J, Eq. (145) implies the light-like result:

with the important consequence that AI' becomes a physically
meaningful four-vector, as observed in the Aharonov-Bohm
effect [15J. This means that all four components of AI' must
be physically meaningful, as argued in previous chapters.
Finite photon mass means that the basic idea of the Gupta­
Bleuler field quantization procedure [54J must be abandoned,
because the longitudinal and time-like components of AI'

(expressed as creation and annihilation operators) cannot be
discarded as unphysical. As shown in Eqs. (210) of Chap. 6,
these same longitudinal and time-like components occur in the
fully covariant definition of the ordinary transverse fields
of electromagnetism in free space, the wave fields B(l) and
B(2). In this view, the spin field B(3) is described through
the X and Y components of creation and annihilation opera­
tors, operators which also occur in components of a physical­
ly meaningful AI"

Standing back from received wisdom, it becomes unac­
ceptable to assert that two out of four components of a
physically meaningful AI' must be physically meaningless
(i.e., unphysical). This unacceptability of the conventional
viewpoint is precisely the conclusion reached on the grounds
that mo is not necessarily identically zero. Finite photon
mass leads to the inference of a non-zero B(3).
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8.3 THE PROCA EQUATION

The Proca equation can be written in the form (9b) of
Chap. 1, which is equivalent to

resulting in Tolman's "tired light". This type of red shift
could contribute significantly to the cosmological red shift,
and explain anomalous red shifts in objects such as quasars
bound to galaxies by matter bridges. Photon mass is also
consistent with anomalies in data from sources such as:
double star motion, red shift discrepancies in galaxy
clusters, anomalous variations in the Hubble constant, and
quantized peaks in the N log z plot.

Since all these phenomena are evidently detected
through telescopes, i.e., through the use of electromagnetic
radiation, B(3) is present in all of them in one form or
another, as well as in laboratory scale optical experiments
of many different kinds. The field B(3) is a manifestation
of finite photon mass, as we have argued, and is therefore
fundamental in nature.

(238)I1v
v

equations, and longitudinal photons play a role in the

definition of B(l), B m and B(3), all three fields being
physical and all producing observable effects in material
matter such as magnetization at first and higher orders as
described in Chap. 7. The existence of B(3) is furthermore
implied by finite photon mass, as we have argued already. In

the Proca equation, the field B(3) decreases exponentially,
and over large enough distances, Z, on a cosmic scale (e.g.

1 ight from distant galaxies), the decrease in B (3) might
become observable. This would be a direct measurement of
photon mass through the parameter ~ := moc/h (Eq. (9b)).

The photon flux from the Proca equation also decreases
exponentially, and the Coulomb potential is replaced by a
Yukawa potential, [72), thus explaining the Olbers paradox
and resulting in low velocity photons travelling at much less
than c. The residual (combined) mass of these photons
contributes to the mass of the universe and may solve the
missing mass problem of cosmology [72). The factor exp
(-~Z), such as that which appears in B(3) from the Proca
equation (Chap. 1), implies a distance proportional red
shift,

those of Selleri [127) and Grigolini [128). Questions of
non-locality, simultaneous existence of wave and particle,
and finite mo ' are interrelated inextricably so that a
complex of fundamental ideas is being subjected to experimen­
tal investigation at the time of writing. The existence of
photon and particle like trajectories is being tested
experimentally in optical and neutron self interference
experiments. This question is familiar as the Einweg­
Welcherweg problem, which has persisted throughout the
twentieth century. The fundamental ideas of the Copenhagen
School, originally proposed by Bohr and others, in which
light is considered to be made up of particles and waves of
probability, and that of the Einstein-de Broglie School, in
which light is made up simultaneously of particles and of
waves, both of which are observable simultaneously, are being
tested directly. The physical co-existence of wave and
particle is therefore a central point of interpretation: it
is possible in the Einstein-de Broglie interpretation,
impossible in the Copenhagen interpretation.

Experimental tests for the existence of the quantum
potential, which is responsible for the piloting of photons
by wave or spin fields, have been devised [129) using
coherent intersecting laser beams. This type of evidence for
the Einstein-de Broglie interpretation of dualism is also
provided by an experiment such as that of Bartlett and Corle
[129) which measures the Maxwell displacement current in
vacuo and without electrons. Evidence from such sources is
augmented by laser induced fringe patterns, showing an
observable enhancement of photon energy due to the quantum
potential. In this context, the optical equivalent of the
Aharonov-Bohrn effect using the S(3) field would be a critical

test of the ability of S(3) to act at first order. Experi­
ments such as those of de Martini et a1., discussed recently
by Vigier [72) show that it is possible to pass continuously
from Bose-Einstein to Maxwell-Boltzmann (Poisson) statistics
in an ensemble of photons. The passage from one type of
statistics to the other can be explained in terms of non­
locality in the quantum potential, which results in non-local
action at a distance, currently a critical question in
quantum mechanics.

In astrophysics, the consequences of non-zero photon
mass are many and varied, and have been considered repeatedly
throughout the twentieth century. Foremost among these is
that the Proca equation, as we have argued, produces longitu­
dinal photons which do not affect the validity of the Planck

radiation law. The field S(3) , as we have argued, is for all
practical purposes identical in the d' Alembert and Proca
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(239)

in free space. The mass term on the right hand side is well
known to be equivalent to an effective current, a term which
can be derived from the free space Lagrangian term

(240)

where ~ is given by

exponential decay in B (3) leads to observable effects as
reviewed very briefly in Sec. 8.1. If the photon is a
particle with mass, mo , it follows that its properties become
different in different Lorentz frames, and that it has a rest
frame. The Proca equations (243) in free space, unlike the
Maxwell equations, are therefore subject to the Lorentz
transformation, and so are all physical solutions thereof.
To explain this important point it is worth describing
briefly the properties of the free space Maxwell equations,
and to show why they are Lorentz invariant.

(241)
8. 3 . 1 LORENTZ INVARIANCE OF THE MAXWEll EQUATIONS IN FREE
SPACE

The complete Lagrangian corresponding to this form of the
Proca equation is therefore

In Minkowski notation, xI': ~ (X, Y, Z, ict), the Maxwell
equations in free space can be written as

(242)
0, (244)

in S.I. units, where c and h are not in reduced units, as
usual, and where Eo is the free space permittivity. The
asterisk in this equation denotes "complex conjugate".
Written out in three dimensional notation, the free space
Proca equations correspond with the following, in S.I. units,

which means that the four-divergence of F", vanishes, a four­
divergence which is by definition a four-vector in K.
Equation (244) means that this four-vector vanishes in K. In
frame K', following Jackson [4], Eq. (244) becomes

VxE ~

(243)

0, (245)

the only difference between these and the free space Maxwell
equations is that there appears a mass term in two of them,
made up of the vector and scalar components of the four­
vector AI' of Eq. (236). Since mo is of the order 10-5 1 kgm at
most [130], the difference between the free space Maxwell and
Proca equations is very small for laboratory purposes (which
is why the mass of the photon is so difficult to measure),
but physically, they represent entirely different concepts of

1 ight in vacuo. The new B (3) field is a phase free, constant,
spin field in the Maxwell equations, but in the Proca
equations, is a very slowly decaying exponential, which has
a Z dependence. This is typical of the Yukawa potential in
nuclear physics [72], and over cosmic dimensions, the

V'B ~ 0, VxB and the transformed four-vector also vanishes in frame K'.
This transformed four-vector can be given the symbol ~i in

frame K'. By definition

(246)

under the Lorentz transformation a", [4]. Therefore

(247)

in frame K. We have simply back-transformed Eq. (245) (frame

K') to Eq. (247) (frame K). Equation (247) must be the same
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showing that Maxwell's equations in frame K are the same as

in frame K' in free space. (253)

(252)

p (eff)

(
J(d~ )JJeff) : c= --c-' ip (MOf) ,

so that there is an effective current three-vector and charge
defined by

(248)0,

as Eq. (244), and so

8.3.2 COVARIANCE OF THE PROGA EQUATION IN FREE SPACE

Applying the same procedure to the Proca equation in
the form (239), it is seen that under the Lorentz trans­
formation

These equations show that the
the presence in free space
current. The product

A J,(effl

~ "

photon mass is equivalent to
of an effective charge and

(254)

(249)
is an invariant free space electromagnetic energy density,
and with our new gauge condition

and the equations become different in different Lorentz
frames. Applying the Lorentz transformation to individual
electric and magnetic fields, and to the four-vector A~ in
Eq. (249), it is seen that the right and left hand sides will
transform as

(250)

from frame to frame, and the equation will therefore depend

on the velocity v of the frame K' with respect to the frame
K.

8.4 ANALOGY BETWEEN PHOTON MASS AND EFFECTIVE CURRENT

We now write the Proca equation in the form

(255)

introduced in Eq. (145) Chap. 4 we arrive at the important
result that photon mass adds nothing to the free space
electromagnetic energy density. The condition (255) is
equivalent to assuming that the four-vector A" is physically
meaningful, and has longitudinal and time-like components as
in any four-vector. From the cyclic relations (25b) of Chap.
1 we see that these components are pure imaginary, whereas
the transverse components are in general complex waves, as
usual, with real and imaginary parts. These inferences are
consistent with the Aharonov-Bohm effect [15] which shows
experimentally that the four-vector A" is physically meaning­
ful.

The condition AliA.. = 0 has the important consequence
that finite photon mass is made consistent with gauge
invariance of unified field theory.

The Proca equation can be written in covariant contra­
variant notation as [54]

and the inhomogeneous Maxwell equations as [54]

where J,(eff) is an effective current four-vector. This
~

corresponds to Eqs. (243) if we use the Minkowski notation,

0, (256)

(257)
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so that it becomes clear that the term _~2Av in the Proca
equation in free space is analogous with the current term in
the inhomogeneous Maxwell equations in matter. In both the

Maxwell and Proca equations the four-tensor F~V is the four­
curl of the four-vector A~. In three dimensional notation

the interior of a superconductor. The equation (260) leads
with Eq. (258) to the relation

B = VxA, E = -V<l> - ~~. (258)
a physical solution of which is

B = B(Q) e-~z, (266)

A simple solution to Eq. (243d) can be obtained if it
is assumed that aEjat = 0, i.e., that the electric field has
no time dependence, whereupon

(259)

showtng that the longitudinal magnetic field B(3) from the
Proca equation is damped exponentially. In precise analogy,
the longitudinal B in the Meissner effect is damped exponen­

tially in a skin depth k-1
, i.e., [52]

which becomes the equation B = B (0) exp(-kZ). (267)

Vx ('\Ix A)

using the relation (258) between
classical quantum equivalence

A and

i-t; En,

B.

(260)

Using the

(261)

The damping in the Meissner effect takes place very quickly,
but the damping due to ~ in Eq. (266) occurs very slowly,
because ~ is a minute quantity.

Mathematically, the Proca equations in free space have
the same form of solution as the Maxwell equations in the
presence of charges and currents, photon mass produces an

effective free space current four-vector J: eil
)

results in the equation

which is Einstein's equation of motion of special relativity
with

which is the theoretical basis for the well known Meissner
effect in which magnetic flux density (B) is excluded from

8.5 GENERAL SOLUTIONS OF THE PROCA EQUATION

Using the fact that finite photon mass introduces an

effective current J:ef f
) it is possible to find general

solutions of the Proca equation using the standard methods
devised for the inhomogeneous Maxwell equations in the form
of the d'Alembert equation. The four-current of the d'Alem­
bert equation is replaced by the effective current of the
Proca equation. Methods for solving the d'Alembert equation
in matter are well developed and are described in a contempo­
rary textbook such as that of Jackson [4]. For example the
description of the Lienard-Wiechert equations given by
Jackson in his Chap. 14 can be adopted directly by assuming

that the effective current J: e ff
) caused by photon mass can be

further described in terms of a localized effective charge
and current distribution without boundary surfaces. Convert­
ing to S . I. units and using Jackson's notation and the
relation (251) between A~ and the effective four-current, the

(264)

(263)

(262)

The relation (253a) between effective current and vector
potential for finite mo is analogous with the London equation
of superconductivity [52],
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(269)

general solution for A~ from the Proca equation is

where R '" (Z - r(t)~ and the del ta function provides the usual
retarded behavior given the Lienard-Wiechert potentials. The
effective current of the Proca equation is given in this
model by

been shown already in this chapter that the equation does

indeed produce a longitudinal S(3) with a very slow exponen­
tial decay in free space. Conventionally in field theory the
Proca equation is described as a massive vector field [15]
equation, which for the massive photon becomes a massive
spin-one field with three independent components. The
Lorentz condition implied by the Proca equation is used to
"eliminate" one of the components of A~, namely the time-like
component. This procedure replaces the full covariant
term A~A~ in the Lagrangian by the space-like -A'A, and so is

equivalent to assuming arbitrarily that A(O), the time-like
component of A~, is zero. This appears to be an unjustified
assumption in field theory, and the existence of the cyclic
relations (4) bears this out. It is clear that from Eqs.
(25b) of Chap. 1, the cyclic equations for components of A~,

that the time-like part is pure imaginary, and not zero. As
explained in that chapter, the cyclic relations between
components of A are self-dual to the cyclic relations among
components of B. In the previous chapter we have discussed,
furthermore, the existence of experimental evidence for the

effect of B (3), and it follows that there is experimental
evidence which contradicts the arbitrary assumption that the
time-like component of A~ is zero. There is "therefore a need
to re-examine the approach of conventional field theory to
the Proca equation, which involves h through the mass
parameter ~, and is therefore an equation of the quantized
field theory.

We have argued that the four-vector A~ is physically
meaningful, and that gauge invariance of the second kind is
satisfied by the light-like condition

(271)

(270)

(268)

A = e (eft)! P~(t~ &(t l + R(t~ - t)dt l ,
~ R(d c

in S.I. units, where Eo is the permitivity of free space. If
the finite photon mass is thought of as producing an effec­
tive point charge e(eff) moving with velocity p at the
point r(t) the charge-current density is

where ~~ '" (p, iv . This line of reasoning introduces a
fundamental conceptual link between the mass of the photon
and the effective elementary charge e (eff) in free space.

Within this concept of effective elementary charge e 1ef fi , the
four-potential from the Proca equation can be written as

which is directly analogous with Jackson's equation (14.3),
which uses the elementary charge on the electron, e, in

preference to the effective elementary charge e(~fi produced
by photon mass. Mathematically, however, Eqs. (14.3) of
Jackson and Eq. (271) are structurally identical.

Treating the Proca equation in this way has the double
advantage of allowing a direct identification of photon mass
with effective charge and of allowing solutions of the Proca
equation using the well developed techniques [4] of electro­
dynamics in matter, described by the d'Alembert equation with
"real" four-current JI" It is important to note however that
the discovery of the cyclically symmetric equations (4) means
that solutions of the Proca equation for magnetic fields in
free space must produce S(3) as well as S(1) and S(2). It has

(272)

If this is so, then AI' must be physically meaningful, and so
it is important to argue that there is experimental evidence
that supports this view. That this is indeed the case is
explained in the next chapter, devoted to the Aharonov-Bohm
effect and to the expected optical Aharonov-Bohm effect due
to the novel and physical B(3) in free space.



CHAPTER 9. AHARONOV-BOHM EFFECTS

In previous chapters it has been argued that the four­
vector A~ should be a fully (or manifestly) covariant four­
vector in the theory of special relativity, and therefore a
physically meaningful quantity. Experimental evidence for
this assertion has been available for over thirty years, in
the Aharonov-Bohm effect. Essentially, this is the shift in
an electron diffraction pattern caused by the space-like part
of A~, the vector potential A, in which terms the magnetic
flux densi ty is described by B = Vx A. If the space-like part
of A~ is physically meaningful, then we assert that in
general, so is the complete four-vector A~. The cyclic
relations (25) show that the longitudinal and time-like parts
of A~ are pure imaginary, and in general the transverse parts
are complex. From the light-like relation A~A~ = 0, it
follows that the magnitude of the space-like A must be equal
to that of the time-like A (0). Therefore the time-like A (0)

cannot be zero as asserted in the conventional approach to
field theory.

It is important to provide a description in this
chapter of the Aharonov-Bohm effect because the observed
electron diffraction shift provides evidence for the physical
reality of A~, and therefore for the physical reality of the
cyclic relations (25b) which tie together the transverse and
longitudinal components of A~. Aharonov and Bohm [131], in
introducing the effect theoretically, argued that contrary to
the conclusions of classical electrodynamics, A~ affects the
trajectories of charged particles even in regions where the
magnetic and electric fields are excluded. The prediction
was shortly afterwards verified experimentally by Chambers
[132], using the shift in the fringe pattern in an electron
interference experiment. The Chambers experiment has
subsequently been repeated independently several times, and
the effect has become useful in mapping flux lines in
contemporary superconductor technology. It is proven beyond
reasonable doubt, therefore, that the space-like A is
physically meaningful.

133
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9.1 THE ORIGINAL THEORY OF AHARONOV AND BOHM
IX .... IX - ~A'r'h .

(275)

The change in the phase difference between the trajectories
of the two electron beams is then calculated to be,

In this section we follow the original paper by
Aharonov and Bohm [131] in order to explain the original
intention of the theory. The basis of the argument is that
in the quantum theory the canonical formalism is necessary

and the potential functions A and A (0), the space-like and
time-like parts of A~, cannot be excluded as in the classical
theory of fields. Despite the fact that the equations of
quantum field theory are gauge invariant, Aharonov and Bohm

[130] argued that the potentials A and A (0) have physical
significance. These authors calculated the phase difference
due to the interference of two electron beams, and expressed
it as the integral around a closed circuit in space-time,

The phase of the wave changes according to

~ IX = - ~ fA . dr
'h '

and the change in phase over an entire trajectory is

~IX = -~fA'dr
1 'h 1 '

(276)

(277)

(273)
(278)

where P is the linear momentum of one electron and where r
is its position.

The interference pattern is then changed by an amount
which depends on the vector potential A due to the field B,
even though the latter is excluded from the electron beams
the nature of the interaction being described essentially b;
the requirement of gauge invariance which leads to

It is therefore clear that the integral considered by
Aharonov and Bohm involved from the outset both the time-like
and space-like components of the four-vector A which was
considered manifestly covariant and physically~~eaningful.
The original theory was then specialized by Aharonov and Bohm
to the space-like case: "As another special case, let us now
consider a path in space only (t = constant)."

In contemporary descriptions such as that due to Ryder
[54] the effect is attributed to the space-like A, and
described in terms of the interference pattern set up by two
electron beams in a double slit experiment. A solenoid is
placed between the two slits, a solenoid contained within
which is a magnetic field B. The latter is therefore
prevented from interacting with the two electron beams, made
up of electrons conventionally described by a wave function,

The solenoid therefore causes a shift in the interference
pattern even though the field B is excluded from the region
of electron beam interference.

In a fully relativistic treatment of the same effect,
the space-like part A is replaced by the four-potential A ,
as in the original paper by Aharonov and Bohm, and as in
subsequent treatments, notably that by Wu and Yang [132]. It
is clear therefore that the original and subsequent theories
of the Aharonov-Bohm effect use a manifestly covariant four­
potential A~, i.e., an A~ in which it is implicitly assumed
that all four components are physically meaningful. This
approach seems to contradict the assumptions field theory
made, for example, in the quantization scheme conventionally
adapted for the Proca equation, a scheme in which the time­
like component of A~ is conventionally set to zero. These
difficul ties reverberate throughout electromagnetic field
theory, because it is conventionally assumed that A~ has only
two (transverse) components. Following Ryder ( 54], for
example: "The origin of these difficulties is that the
electromagnetic field, like any massless field, possesses
only two independent components, but is covariantly described

(279)

The interference
moves upwards by

where ~ is the flux through the solenoid.
pattern of the two electron beams therefore
an amount,

(274)ljJ = Ivlexp(ip'r) := ItlJlexp(ill),
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where A is the wavelength of the electron beam entering the
two slits, L is the distance between the screen containing
the slits and detector, d is the inter-slit separation

and JB (3) • ds is a surface integral. If an optical fiber is

used the beam is confined to it and the free space value
of B(3) is given by

1

calculated with iB(3)1 - 10 7 I;} . The OAB, if carried out, will
show whether B(3) acts at first order, as in ONMR, described
in Chap. 7. If so the fringe shift should be proportional to
the square root of laser intensity and change sign with the
sense of circular polarization of the laser. There should
also be an OAB effect in elliptical polarization but none in
linear polarization or if the light beam is incoherent. If
observed and developed there might also be several uses to
which the OAB could be put, because the rather delicate
procedure of setting up an iron whisker, or small solenoid,
between the two slits of the electron diffraction apparatus
[131] would be replaced by a laser beam passed through a
micron radius optical fiber.

The OAB is a much more sensitive test for B(3) at first
order than the three techniques briefly overviewed in Chap.
7. The OAB simultaneously and accurately tests for the
ability of B(3) to act at first order, in addition to its
second order effects as evidenced in magnetization effects of
light (Chap. 7). It is therefore a radically new type of
experiment in electrodynamics, both classical and quantum.
Essentially, a circularly polarized laser beam is expected to
produce a Ax according to

by a 4-vector A~. In choosing two of these components as the
physical ones, and thence quantizing them, we lose manifest
covariance. Alternatively, if we wish to keep covariance, we
have two redundant components."

9.2 THE EFFECT OF THE CYCLIC ALGEBRA (25)

It is clear that the novel cyclic algebra (25) means
that the electromagnetic field has more than just two
independent components. For example there are three space­
like components B (1), B (2) and BU), three space -like compo­

nents sv>, g(2) and isv>, and three space-like components
A (1), A (2) and iA (3). The field component B (3) is real and

physically meaningful, and the component ig(3) is imaginary
and not physically significant. For finite photon mass to be
compatible with gauge invariance of the second kind, the
condition A~A~ = 0 must be used, a condition which means that
the time-like part of A~ is non-zero. We have also argued
that there exist time-like components of the free space
electric and magnetic fields of electromagnetism, components
which can be related to the electromagnetic four-tensor F~v

in free space. The longitudinal and time-like components of
the electric field are related as in Eq. (25c) and are both
pure imaginary. The equivalents for the magnetic field are
both pure real. These findings mean that there are more than
two independent components of A~, and that manifest co­
variance is not lost in the theory of electromagnetism.
However, the new cyclic relations (25) also mean that a
novel, rigorously self-consistent, potential formalism for
electromagnetism in free space must be constructed, one which
allows for the possibility of longitudinal as well as
transverse components of fields in free space. Before
attempting this, however, we describe the optical Aharonov­
Bohm effect due to B(3) , the spin field of electromagnetism
in free space.

Ax" LA!!.. JB (3) • ds
d 'h '

1

IB(3) I - 10-7 IJ.

(280)

(281)

9.3 THE OPTICAL AHARONOV-BOHM EFFECT

The fundamental idea behind the optical Aharonov-Bohm
effect (OAB) is the simple one of replacing the magnetic flux
density of the solenoid by the field B(3) of a circularly
polarized laser beam. It is easy to show that only a few
watts of laser power passed through a micron optical fiber
produces a measurable fringe shift, using B(3) in Eq. (279)

From these equations, estimates show that a laser beam of
half a mm radius and about a milliwatt in power should
provide an easily observable Ax.

9.4 THE PHYSICAL A~ AND FINITE PHOTON MASS

Not only would an observed OAB demonstrate the ability

of B (3) to act at first order, but as argued in previous
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chapters it would also be an indirect but firm indication
that the photon as particle has three polarizations in free
space, two transverse and one longitudinal. Such a property
is indicative of finite photon mass, i.e., of a massive spin
one vector field. The experimental evidence for finite
photon mass was reviewed in Chap. 8, and has important
consequences for contemporary gauge theory. The observation

of the effect of B(3) at first order would be strongly
indicative of the fact that the elementary particle known as
the photon has mass. The observation of an DAB effect would,
more precisely, indicate the existence of a vector potential
function defined through its relation to B(3) ,

This vector potential function would be part of the complete
four-vector AI' of free space electromagnetism. In the
Einstein-de Broglie theory of light, this wave vector has
physical significance, in that it pilots, or controls, the
motions and trajectories of particle-like photons which carry
the energy E '" h» . The photons in this view follow real
space-time paths tangential to the field's conserved four­
vector density, associated with Madelung fluid elements [72].
The Einstein-de Broglie theory of light therefore makes
interesting analogies with the hydrodynamic theory of fluids.
Both Einstein and de Broglie assumed that all directly
observable effects and interactions of the AI' field result
from the impact and emission of point like particles which
are identified as photons. The continuous AI' field is only
indirectly observable through its effects on its associated
particle like photons. In an analogous manner, the AI' field
in the AB and DAB effects displaces the electron interference
pattern in a two slit experiment. Inherent in the Einstein­
de Broglie theory of light is the acceptance of finite (i.e.,
rigorously non-zero, or positive definite) photon mass. As
first shown by Bass and Schrodinger [133] and by Moles and
Vigier [134], finite photon mass leads to the modifications
in free space electromagnetism discussed in Chap. 8, one of
the most important of which is the fact that the Proca
equation naturally allows longitudinal solutions in free
space. As first shown by de Broglie [135] these longitudinal
solutions correspond to a Yukawa potential which approximates
the Coulomb field. In this volume we have argued for the
existence of a novel longitudinal B(3) field in free space,
a field which is phase free, and which is a very slowly
decaying exponential solution of the Proca equation. It is

B m ", Vx ~ . (282)

important to note that the original solutions by de Broglie,
Bass and Schrodinger, and Moles and Vigier, corresponded to
a phase dependent, electric, longitudinal fields, and that
Moles and Vigier in their original paper set B (3) "'? 0
arbitrarily. However, their solution of the Proca equation
also allows a non-zero B(3) as discussed already.

In Chap. 1 it was shown that the existence in free
space of B(3) and -iE(3) / C, its dual in special relativity,
makes no difference to the electromagnetic energy density in

free space. Products such as FI'V F;v, (Eq. (7» remain zero.
However, the presence of a photon mass term in the Lagrangian
produces an extra electromagnetic energy density as shown in
Eq. (254) of Chap. 8. It is important to understand there­
fore that B (3) exists for zero photon mass as well as for
finite photon mass, but that the third (longitudinal) degree
of polarization indicated by the presence of B(3) in free
space does not result in an increase by a factor 3/2 in the
Planck constant. The extra contribution to electromagnetic
energy density of a mass term in the Lagrangian is minute,
which is one of the reasons why the Proca and d I Alembert
equations produce practical results which are virtually
indistinguishable.

9.5 IF THE OAB IS NOT OBSERVED

If the DAB is not observed experimentally it would mean
that B(3) does not act at first order, and therefore does not
generate a vector potential in free space. This enigmatic
result would mean that the magnetization described in Eq. (6)
must always be produced by a product of B(3) with its own
amplitude B(O). Therefore B(3) would be a quantity which has
the units and fundamental symmetries of magnetic flux
density, but which would not act at first order as such.
Failure to observe B(3) in the DAB would mean that another
mechanism would have to be sought to explain the optical NMR
results of Warren et al. [113, 116], which, as described in
Chap. 8, are enormously greater in magnitude than allowed for
in conventional, second order, perturbation theory. The
mechanism put forward by Warren et al. themselves [113] time
averages to zero and seems not to explain the observed
shifts. As discussed in Chap. 8, the only first order
magnetic field of free space electromagnetism that does not
time average to zero is B (3). The fields B (1) and B (2), as
used by Warren et al. [113] are phase dependent and at first
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can be very simply re-expressed as iB (O)B(3). It follows that
arguments such as those reviewed in Chap. 7 that assert

that B (3) is zero lead immediately to the disappearance of

B (1) x B (2) and therefore to the disappearance of the IFE.
In previous chapters, arguments have also been given

for the fundamentally geometrical nature of B(3), which has
been shown to be directly proportional to the rotation

generator J(3), an obviously physical quantity, which

generates a physical rotation in three dimensions. Since B (3)

is simply J(3) multiplied by iB(O) , (Eq. (107)), it is

directly self-contradictory to assert that B(3) is anything
other than a physically meaningful magnetic flux density.
The DAB appears to be a relatively straightforward test of
this assertion. The algebra (4) is a Lie algebra because its
components are directly proportional to physical rotation
generators, which form a well-defined group in space, and by
extension of this reasoning, in space-time. In the quantum

theory B (3) becomes the photomagneton operator which is
directly proportional to the longitudinal component in free
space of the photon angular momentum, another obviously
physical quantity, which as obviously acts at first order
upon matter. (Photon angular momentum is transferred in well
defined integral multiples of h when light interacts with
matter, either by ordinary absorption or in magnetization far
from resonance, the inverse Faraday effect.) It has also been

argued that B(3) does not affect the fundamental theory of

light, for example S(3) and its dual, as shown in Chap. 1, add
nothing to free space electromagnetic energy density, and

therefore Planck's law is unchanged. Again, S(3) in free
space is a solution of the d'Alembert equation, and therefore
of the four Maxwell equations in free space, equations which
define the physical meaning of a field. The structure of the
well known electromagnetic four-tensor FflV allows for the
existence of a longitudinal S(3) and its imaginary dual: S(3)

is relativistically invariant (i.e., is not affected by the
Lorentz transformation applied to FflV) and is fully compati­
ble with special relativity in free space.

Since photon angular momentum is well known to act at
first order on matter, it is also expected that a physically

meaningful B(3) would act likewise. This supposition can be
investigated in more detail by writing

order average to zero. At the optical frequencies used in

the DNMR experiment, no shift would. be observed due to B (1)

and B(2) at first order, and shifts at second order appear to
be many orders of magnitude too small.

Non-observation of an DAB would appear therefore to be
fundamentally incompatible with the results of the ONMR
experiment unless the latter has produced artifact. In Chap.
7 it was argued that this is unlikely.

Making, nevertheless, the unlikely assumption that the
series of DNMR experiments at Princeton has produced arti­
fact, and assuming that an DAB is not observable, we would be
driven in the light of the reasoning that has led to equa­
tions (4) and (6) to the conclusion that free space electro­
dynamics, based on the d'Alembert or Proca equations, is not
self-consistent, in that the cyclic Lie algebra (4) produces
a self-contradiction or paradox. If B(l) and B(2) are

physical fields, then the Lie algebra (4) shows that B(3) must
also be a physical field in classical or quantum electrody­
namics in free space. Therefore if B (3) is not observed
experimentally as a magnetic field, acting as such at first
order, electrodynamics has contradicted itself at the most
fundamental level. At the time of writing there appears to
be no satisfactory alternative explanation, some attempted
cri ticisms have been reviewed in Chap. 7. As mentioned
there, these seem to us to be subjective in nature, i.e., do
not lead to a satisfactory objective explanation of why S(l)

and S(2) should be physical, and why B(3) should be unphy­
sical, if indeed, experiments show it to be so. At the time
of writing there are very few incisive data available,
despite the enormity of the contemporary literature, so the

question of B(3) is open and the photon remains an enigma.
Referring to Eq. (6), describing in simplified terms

the inverse Faraday effect, it appears beyond reasonable
experimental doubt that the IFE: a) exists; b) has been
observed to date to be proportional to the product B (0) B (3) •

This shows that if B (3) were not a magnetic field, the

quanti ty M(3) would not be a magnetization and would therefore
not be observable experimentally as a magnetization. The
contrary occurs however, and so by this reasoning, S(3) is an
observed magnetic field. Similar conclusions hold from the
optical Faraday effect, as discussed in Chap. 7. Fundamen­
tally, it is unsurprising that the various observed magnetic
effects of light should have been produced by a magnetic
field, and it is equally clear that the original explanation
for the inverse Faraday effect, given in terms of S(l) x B(2) ,

B(3)(O; -w, w)
B (0) ~

-h- J(O; -w, w). (283)
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it is expected

that it would be

(286)

(284)

(285)J .; J(O; -w, w),

-1-
where y: = (1 - vii c 2 ) Z • If the relative velocity of two
frames is c, then J~ and J y (in the static, observer frame)

become infinite unless Ji; J~ = 0, in which condition J x

and .r; are indeterminate mathematically but in which J z ; J;

is well defined and invariant. The same overall result is

obtained in the quantum theory, the field operators fj (l)

and fj (l.) are not specified if fj (3) is specified.

Therefore B (3) is also invariant, and is an angular
momentum operator which is intrinsically non-linear in

Similarly,

Any description of fj(3) as "static" must therefore reflect the
fact that it has no net (i. e ., functional) dependence on

phase, cI> = wt-K·r. In the same way, J and 83 have none.
For a given beam intensity in circular polarization, 8 3 is a
constant of magnitude ±E(O)2, + for left and - for right
circular polarization.

The Stokes operators and magnetic field operators are
both angular momentum commutators in free space, and can both
be described in terms of bilinear products of creation and
annihilation operators (Chap. 5 and 6). In the Copenhagen
interpretation, the three field components cannot be speci­
fied simultaneously, as usual in angular momentum theory in
quantum mechanics. This is consistent with the fact that the
(3) (or Z) component of photon angular momentum is usually
specified in eigenvalue form, eigenvalues which are longitu­
dinal projections h and -h. For the photon with mass, the
eigenvalues are h, 0 and -h, the usual eigenvalues of the
spin-one boson. In special relativity, furthermore, the
transverse angular momentum components for a massless
particle travelling at c are mathematically indeterminate,
and there is no rest frame. In contrast, the longitudinal
component is relativistically invariant. Thus, in classical
special relativity, angular momenta components behave under
Lorentz transformation as

The eigenvalues of the massless photon are well known
to be 'h or -h, but the classical definition of angular
momentum of light, given in Eq. (44) of Chap. 1, is a volume
integral over the product E(l) x B la) and is therefore non­
linear, in that it is a product of fields with positive and
negative phase coefficients. Similar reasoning leads to the
conclusion that the field B(3) is also non-linear in nature,
because, as we have argued in earlier chapters, it is always
formed from the experimentally observable cross product
B(l) x B(2). Similarly, the Stokes operators of the quantum
field theory are formed from bilinear products of electric
fields but are also angular momentum operators [15].
However, the magnetic fields B (1), B (2) and B(3) are angular
momentum operators which are to first order in the magnetic
field, and as in previous argument, it is unreasonable to
assert that B(3) is unphysical if B(l) and B(2) are taken to
be physical, in the same way that it is unreasonable to
assert that one Stokes operator out of four is unphysical.
The field B(3) is directly proportional to 8 3 , and so if B(3)

were unphysical, so would 8 3 , in direct contradiction with
standard theory [4, 15].

However, it remains true that the interaction of B(3)

with matter must reflect its fundamental character, i.e.,
account for the fact that it is defined (Chap. 3) as:

9.6 NON-LINEARITY OF PHOTON SPIN IN FREE SPACE

The field B (3) in its classical interpretation depends for its
existence on the cross product B(l) x B(2) of negative and
positive frequency transverse modes (1) and (2) which are
complex conjugate pairs. This is the fundamental geometrical
reason why the basis (1), (2) and (3) can be used as an
alternative to the Cartesian basis (X, Y, Z). It follows
that the photon angular momentum itself must be generated
from the same phase free product of negative and positive
frequency waves. However, it is clear that this angular

momentum acts on matter at first order, and so must fj(3}, the
physical magnetic field, on the basis of this reasoning.

That fj(3} is indeed capable of doing so is supported by data
from ONMR [113, 116].

Using all these arguments therefore,
that there should be an OAB due to fj(3) , and
paradoxical if none were observed.
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and fJ (3) commutes with the Hamiltonian operator H, as in
angular momentum theory. This is consistent with the fact
that B(3) and its imaginary dual add nothing to light
intensity, and are frequency independent in nature, so have

nature. Nevertheless, if it is a magnetic field as conven­
tionally accepted, it must act as such on matter. Some signs
of this are apparent in the prototype ONMR experiment, but
the resul ts are not yet unequivocal because there is a
complicated dependence on the light intensity, the cause of
which is not known (Chap. 7).

If we compare directly the classical and quantum
equations

(289)

where f>fJ (1) and f>fJ (2) are root mean square deviations. The
product on the right hand side is a rigorous lower bound in
the quantum theory, a lower bound on the nonlinear product

f>fJ(1)c5fJ(Z) , a lower bound which is defined in terms of fJ(3).

Thus, if fJ (3) were zero, fJ (1) and fJ (z) would commute in the

quantum theory, implying that f>fJ (1) = ° and c5fJ (2) = ° simul t a­
neously. The experimental observation of light squeezing
shows that the quantum theory is valid in electromagnetic
radiation, and produces effects which are not describable in
the classical field theory, effects such as squeezing and
anti-bunching [IS]. On this basis, therefore, light squeez­
ing is a firm experimental indication of the existence of the
product of B(D) and fJ(3) , as is Eq. (6). Since B(O)fJ(3)

vanishes if fJ(3) is zero, it appears clear that fJ(3) is
finite, and that arguments to the contrary are incorrect.

If fJ(3) is finite and rigorously non-zero, and has the units

and discrete symmetries (C, P, and T) of a magnetic flux
density, it is such in field theory.

If the result of the proposed GAB experiment is
negative despite these arguments, it will have to be asserted

that fJ(3) does not generate a vector potential in free space
which is capable of affecting electron interference patterns.
The overall conclusion of such a negative result will be a
paradox in electrodynamics at a fundamental level, a paradox
which would have to be addressed by a modification of the
Maxwell equations themselves. These equations are empirical­
ly based, and as such are built on experimental observation.

no light quantum energy hv in any conventional meaning. In

other words the expectation value of fJ (3) although formed

from the non-linear product S(11 x Sm, is independent of
time, and its eigenvalues are constant. Similarly, the

Stokes operator 83 to which fJ (3) is directly proportional is
also a constant of motion and independent of electromagnetic
phase and time. The spin of the massless photon is ±h, and

the photomagneton fJ (3) is a direct consequence of photon spin.

The classical S(3) is therefore a direct consequence of the
fact that there exists right and left circular polarization
in electromagnetic radiation.

As in Chap. 3, the Heisenberg uncertainty principle
shows that

(288)

(287)and cyclics,

and cyclics,

L; [H fJO)] >
h' ,

.s. (fJO) >
dt

B (1) x B (:I) '" iB (0) B (3) ,

it becomes immediately obvious that Eq. (287) is a relation
between spins in the Maxwellian interpretation. Each spin
component (1), (2) and (3) is formed from a vector cross
product of the other two; this being a requirement of
Euclidean geometry. In order for this geometrical require­
ment to satisfy simultaneously Maxwell's equations in free

space, in particular the equation V. B(~ '" 0, the longitu­

dinal component B(3) must be phase free, otherwise its
divergence is non-zero because the phase has a Z dependence.
In order to satisfy this and the other three Maxwell equa­
tions, the transverse components B(l) and B(:I) must be phase
dependent. Equations (4) tie these considerations together
in a circular basis, in the same way that rotation generators
in classical theory and angular momenta in quantum theory are
tied together.

The field fJ(3) is also a constant of motion, being a

phase free angular momentum operator in free space, while fJ (1)

and fJ(Z) are governed by photon statistics and are subject to
purely quantum effects such as light squeezing, as discussed

in previous chapters. The field fJ(3) , as we have seen, is not
subject to light squeezing and its eigenvalues remain
constant in free space. This result is consistent with the
fact that in quantum mechanics the general expression for the
rate of change of an expectation value is
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If they are contradicted by novel experimental data, they
must be modified in response, and this is of course an
interesting development.

If a positive result to the GAB experiment is observed

experimentally, it would imply that B(3) is a magnetic field
that generates a vector potential in free space. The net
result would be to strengthen electrodynamics as currently
understood in terms of the Maxwell equations in free space,
and their modifications for finite photon mass discussed in
Chap. 8. It appears at the time of writing therefore that
the GAB effect is a key experiment for electrodynamics, and
as interesting and challenging as the original AB effect.
The latter overturned the long-accepted notion that A is

I'
mathematically convenient but unphysical, and has led to many
novel insights as described, for example, by Ryder [52, 54].

CHAPTER 10. MODIFICATIONS OF lAGRANGIAN FIELD THEORY

The novel cyclic algebra (25) requires modifications to
the conventional Lagrangian theory of fields, because the
electric part of free space electromagnetism is described in
that theory in terms of a four-vector,

(290)

and is identified with the conjugate momentum nl'" In Eq.
(290) we have used Minkowski' s notation and the i is not
suppressed as in covariant-contravariant notation. The
Lagrangian field theory is used conventionally [54J in the
Lorentz gauge quantization of the electromagnetic field in
free space, and the conjugate momentum is defined through the
Lagrange equation,

~aAI'/ax(O») ,
x(O) . '= ict, (291)

where Sfp, is the field Lagrangian and aAI' / ax (0), the time
derivative of the four-potential. Comparing Eq. (291) with
the simple equivalent Lagrange equation of classical dynamics
in Cartesian coordinates,

(292)

it is seen that AI' is a generalized position and nl' a
generalized conjugate momentum. Using Eq. (290) it is seen
that in the conventional Lagrangian field theory of electro­
magnetism there exists the concept of an electric field four­
vector EI' which is the generalized momentum conjugate to the
generalized "position" AI'" Thus, if AI' is manifestly
covariant, with four components in free space, then so is EI"
The cyclically symmetric equations (25) of Chap. 1 show that
both AI' and EI' have pure imaginary longitudinal components in
free space, the magnitude of which contributes to the time­
like component. The scalar magnitude of an imaginary
quantity in the theory of complex numbers is a real quantity,
so the light-like condition AI'AI' ~ 0, obtained from the

147
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requirement of gauge invariance with finite photon mass,
means that A~ has a pure imaginary, phase free, longitudinal
component, and a real, non-zero, time-like component equal to
the real magnitude of its space-like part.

The conventional theory asserts, however, that the
longitudinal space-like components of A~ and E~ vanish, and
removes the time-like components from consideration.
Following the description, for example, of Lorentz gauge
quantization by Ryder [54] the conjugate momentum fields in
his contravariant-covariant notation are given by

(296)

nO again vanishes, and the theory again becomes incompatible
wi th special relativi ty in that it loses covariance. This
problem is addressed conventionally with the Gupta-Bleuler
condition, which is less rigorous than the Lorentz condition,
and which leads in turn to the deduction that physical states
are admixtures of longitudinal and time-like photon states as
discussed in earlier chapters. The Gupta-Bleuler approxima­
tion of the Lorentz condition does not therefore allow the
existence of independent longitudinal and time-like photon
states, and this conflicts with the cyclically symmetric
conditions (4) and (25), which are geometrical in nature.
There is therefore a need for a fundamental re-appraisal of
the conventional approach to field quantization in view of
Eqs. (4) and (25), an approach which takes in its stride the
existence of non-zero photon mass. The conventional approach
to quantization of the massive spin-one field, as described
by the Proca equation, yet again leads back to the result

n(O) =0, i.e., to the disappearance of the time-like compo­

nent gf the cgnjug~tg mgmgntum ~~ ang thu§ gf th@ @±@stris
field four-vector E~. Therefore, the inclusion of a photon
mass term in the Lagrangian does not in itself lead to the
desired result indicated by the condi tion A~AI! = 0, i. e., that
the magnitude of the space-like part of A~ is equal to its
time-like part. Any Lagrangian theory that leads to the
deduction that the time-like part of A~ is zero means that
its space-like part is also zero, and in view of Eqs. (4) and
(25), this is untenable experimentally and theoretically. If

and A o , the time-like part of AI" commutes with nO, the time­

like part of n~. This means that A o becomes in this view a
c-number, following Ryder [54], and not an operator, and
covariance is lost, meaning that the theory is not compatible
with the second principle of special relativity. This is
remedied conventionally by changing the Lagrangian with the
well known gauge fixing technique, well described by Ryder
[54]. For our present purposes, it is worth emphasizing that
the gauge fixing term must be introduced in order to provide

a non-zero nO, i.e., a non-zero time-like component of n~ and

therefore of E~ in free space. This is precisely what is
indicated by Eq s . (25) and the condition A~AI' = 0 (in Min­
kowski notation), introduced on the assumption of finite
photon mass. In the conventional theory (54] however, the
Feynman gauge fixing term simply leads back to

(295)

(294)

(293)

o

1

- -'- F FI!V4" I'V '

leads to the result, in the same notation (54],

and al though 1t~ is in general a four -vector of special
relativity, its time-like component is evidently discarded
from the outset as being zero, and the space-like component
is identified with a purely space-like electric field. This
leads to the conventional view that the electromagnetic field
in free space has two transverse components, unrelated to an
assumed unphysical longitudinal component in free space.

Equations (4) and (25) render this point of view
untenable, because the transverse components are linked

geometrically to the longitudinal, pure real, B(3) , and the

longitudinal, pure imaginary, iE(3) , as argued in detail

already, -iE(3)/c being the dual of B(J) in special relativi­

ty. This duality property means that if B(3) is non-zero and
real, then there exists a non-zero, imaginary longitudinal
electric field in free space, a field which is a solution of
Maxwell's equations.

The conventional Lagrangian field theory also runs
immediately into trouble when quantization of the electromag­
netic field is attempted in the Lorentz gauge, because the
conventional Lagrangian (in covariant-contravariant nota­
tion) ,
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the time-like and space-like parts of A~ vanish, there is no
electromagnetism in vacuo.

10.1 NOVEL GAUGE FIXING TERM

consistent with the fact that the conjugate momentum 'It!' is
properly a four-vector in space-time, i. e., a manifestly
covariant, physically meaningful concept. The novel La­
grangian (297) restores meaning to 'It~, which becomes

Using Minkowski's notation, the Lagrangian in Eq. (294)
is modified to

(301)

A (0) • = icl>
c

(297)

and is fully covariant and fully consistent with special
relativity. Equation (297) is consistent with the d'Alembert
equation of motion, because the latter is equivalent to the
Lagrange equation of motion,

for the photon without mass, i. e., modified with a novel

gauge fixing term which replaces the usual -1/2 (OA!,/OX!,)2 .
Using the Lorentz condition

(302)

0, (298) We have

where g~v is the Minkowski metric tensor, which vanishes for
1.1. "* v. For 1.1. = v = 0, then goo = 1, and

(304)

(303)0,

'It (0)

it is seen that the second term in Eq. (297) adds nothing to
the Lagrangian, and it has the required dimensions, symmetry,
and scalar character. It is also covariant, i.e., is consis­
tent with special relativity, and is invariant to gauge
transformations of the second kind because it is always zero
by the Lorentz condition. It replaces the Feynman gauge
fixing term because it has the necessary property of leading
to an independent time-like component of E!, in free space,

(305)

which is Eq. (299). The space-like part of 'It~ (and therefore
of E~) is given from Eq. (303) by setting v = 0, 1.1."* 0, so
g~o = 0, and

There is therefore a simple proportionality between a
manifestly covariant four-vector 'It!' and E~, proving that the
latter is conjugate to A~ in Lagrangian dynamics.

This result has been arrived at through an appropriate
choice of gauge fixing term in the Lagrangian of the Euler­
Lagrange equation of motion of the classical electromagnetic
field in vacuo. The gauge fixing term adds zero to the

(300)

(299)

o.

'It (0) = _ oA (0)

ox(O) ,

where €o is the free space permittivity. This time-like

component is thereby identified as E(O) , and this also appears
in the fully covariant four-tensor F~v as discussed in Chap.
3. As defined by Eq. (299), the time-like component is real,
an inference which is consistent with the fact that it is the
magnitude of the space part of the four-vector E~ in free
space, i.e.,

We arrive at the important result that the time-like
component of E!, is the scalar magnitude of the electric
component of free space electromagnetism. This inference is
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It is also clear that

The position momentum equal time commutator in the
quantized electromagnetic field [54] is written as

(309)

(308)

in the usual way, but now, 1t v is fully covariant, having been
identified through Eq. (290) with E~. The basic field
commutator is therefore the fully covariant

original Lagrangian because we are working within the Lorentz
gauge, and using the Lorentz condition (298). This link
between the fully covariant A~ and the fully covariant E~ is
a result of the equation of motion given the new gauge fixing
term, and the method shows that E~ contains four components
in free space. The scalar potential A (0) = i<P/ c (in S. I. )
cannot be set to zero as in the conventional theory.

The Feynman gauge fixing term is chosen conventionally
so that 1t(0) = 0 is a result, meaning that the time-like E(O)

has no independent existence, an inference that results from
the Gupta-Bleuler method of field quantization in the Lorentz
gauge.

The d'Alembert equation (or, for the photon with mass,
the Proca equation) is recovered from Eqs. (302) and (303)
using

0, (306)
(310)

10.2 QUANTIZATION OF THE ELECTROMAGNETIC FIELD

and so the Lagrangian (297) is consistent with these funda­
mental classical field equations. The existence of the four­
vector E~ does not contradict this fundamental relation.

Quantization of the Maxwellian field in the Lorentz
gauge becomes a self-consistent procedure with Eqs. (301),
(304) and (305). It is remarkable that although the enigmat­
ic photon as light quantum, hv, is by now a concept familiar
to the layman, the quantization of the Maxwellian field has
been beset with difficulty. The emergence of Eqs. (4) and
(25) however, over ninety years after Planck's original
proposal of 1900, leads to a self-consistent Lagrangian
interpretation as we have argued already. If the real

field S(3) is experimentally observed with more accuracy, and
if the current experimental uncertainties (e.g. Chap. 7) are
removed, and the lack of data remedied, it may well be that
field quantization would have been made entirely self
consistent and consistent with special relativity.

This commutator must be carefully distinguished from one such

as Eq. (181), which commutes E (1), defined as a boost

generator, with E(")') , the complex conjugate of this boost

generator. In Eq. (310), E~ and Ev are not complex conju­
gates.

There is a key difference, therefore, between the
method proposed in this section and the traditional relativ­
istic quantization of the electromagnetic field, in which rt (0)

(and thus E(O» have no independent physical existence. In

the traditional point of view [54] the existence of E(O) is
not recognized fully, but the space-like E; is at the same
time identified with the space-like 1t j • It is recognized,
traditionally, that there is a four-vector 1t~ conjugate to a
four-vector A~ in Lagrangian field theory, and that the
space-like part of 1t~ is directly proportional to the space­
like E~, but illogically, the time-like 1t(0) is set to zero,
and manifest covariance destroyed. This procedure is rescued
with the Gupta-Bleuler method, whose key result is the
inference that only admixtures of longitudinal and time-like
photons can be meaningful physically, the components sepa­
rately can have no independent physical meaning. In our
opinion, Eqs. (4) and (25), which link together the trans­
verse and longitudinal components of free space electromagne­
tism, require the abandonment of the traditional approach in
favor of a more self consistent one. The simple reason for
this is that the novel cyclically symmetric relations (4) and
(25) show the existence of longitudinal components of the

(307)0,

i.e. ,
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This is the admixture condition discussed already. From it

(313)

(315)

(312)

(311)

o.

o.

0,aA1'1- 1fI>ax..

and the contributions of longitudinal and time-like photons
to the Hamiltonian cancel. From this, it is inferred
traditionally that only the transverse states contribute to

This equation is satisfied by the vacuum state. The infer­
ences of Gupta and Bleuler rest on this assertion, which
appears in a critical light to be made a posteriori, with the
purpose of coming to the result described below that only
transverse field components can be physically meaningful.
The traditional theory [54] develops through logical conse­
quences of Eq. (313), the most important of which is

This leads to the difficulty [54] that the negative frequency
operator contains creation operators, so the identity (312)
as it stands is unphysical. It cannot be satisfied in a
vacuum state [54]. This difficulty is met with the assertion
first made in the early days of quantum theory by Gupta and
Bleuler [137], an assertion which through use has become
accepted uncritically,

where 11fI> is a physical eigenstate of the field. In terms of
the traditional positive and negative frequency decomposition
[54] Eq. (311) becomes

argued. The method introduced by Gupta and Bleuler follows
from the conventional need to replace the Lorentz operator
condition by

space-like E, A, and B. The longitudinal component S(3) ,

having the known properties of a real magnetic field, is
physically meaningful, thus contradicting the main result of
the Gupta-Bleuler method - that only admixtures of longitudi­
nal and time-like components can be physically meaningful.

Clearly, the time-like component of E.. , i.e., E(O),

should properly have the same units as its space-like
component, and therefore should be proportional to electric
field strength amplitude in volt m-I . We have argued that ~ ..
must be proportional to E .. , whose time-like part, E(O) , is

non-zero and proportional to ~(O) (Eq. (304)). This leads to
a basic commutator, Eq. (309), which is rigorously equivalent
with the d I Alembert and Euler-Lagrange equations of the
classical field. The four-vector E.. becomes the canonical
momentum of A .. , both being rigorously covariant in vacuo. By
defining E.. as being proportional to the conjugate momentum
~ .. ' it is clear that E.. must behave under Lorentz transforma­
tion in the same way as ~ .. ' which in turn is defined
through A .. by the Euler-Lagrange field equations. The
Lagrangian of this equation contains the four-tensor FI'"

thus establishing a link between E.. , A.. , and F..,.
The use of E.. has the advantage of retaining the

Lorentz equation as a meaningful operator identity, be-

cause aA.. /ax .. is no longer equal to ~(O) as in the traditional
method [54]. If E.. is recognized as a four-vector therefore
the Lorentz condition no longer conflicts with the basic
commutator relations (308) and (310) of the quantized field,
and quantization becomes a self -consistent procedure. It
therefore becomes debatable whether there is a further need
for the traditional Gupta-Bleuler method of field quanti­
zation in the Lorentz gauge, but nevertheless, at this point
in our development the essence of that method is recounted
briefly, following Ryder [54].

The conventional argument [54] for the Gupta-Bleuler
method of quantization of the electromagnetic field rests on
the need to circumvent a particular difficulty. Therefore if
this difficulty is taken away by Eqs. (4) and (25), as argued
already, there is no need for the method at all. The
difficul ty is that the Lorentz condition aA.. /ax .. = 0 cannot be
regarded in the traditional approach as an operator identity
because it conflicts with the commutators (308). However,
this conflict arises because of the use of the Lagrangian
(294). With the gauge fixing term (299) introduced in this
chapter, there is no longer a conflict between the Lorentz
condition and the basic field commutators. This inference is
a powerful result of the novel Eqs. (4) and (25) as we have
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even though it is part of the physical Lie algebra.
To resolve the interpretations theoretically requires

objective consideration of the Lie algebra represented by
Eqs. (4) and (25), an algebra which is rigorously isomorphic
with that of the physical, infinitesimal boost and rotation
generators of the Lorentz group in vacuo. Obviously, theory
prior to the discovery of Eqs. (4) and (25) is based on the
almost universal assertion that only transverse components of
the electromagnetic field in vacuo can be physical fields.
As obviously, the traditional approach includes the various
assertions of the method of Gupta and Bleuler, assertions
which appear in a critical light to have been made in order
to obtain the desired result that only transverse components
can be physically meaningful. In this sense therefore, the
Gupta-Bleuler argument is circular.

Conventionally, it leads to the definition of the total
energy of an ensemble of photons in terms of a field Hamilto­
nian which is an integral over the sum

consisting of bilinear products (Chaps. 5 and 6) of creation
and annihilation operators. The index A over the three
space-like components and the sum also includes time-like
creation and annihilation operators indexed (0). The method
asserts, however, that only admixtures of time -like and
longitudinal photons can be physically meaningful, so that
the Hamiltonian, although it contains these components
explicitly, reduces to a sum over just two, transverse
components, labelled (1) and (2). Ryder, for example,
describes this procedure as meaning that the contributions of
the longitudinal and time-like components cancel. This type
of Hamiltonian arises, however, from a solution of the
d'Alembert equation using a Fourier integral procedure, i.e.,
essentially from an integration of that equation for A~ in
terms of its Fourier components. If A~ is to be regarded as
manifestly covariant and physically meaningful, then all four
of its components must contribute to the field Hamiltonian.
If the magnitude of the time-like part of A~ happens to be
equal to the magnitude of its longitudinal part, then the
procedure outlined by Ryder [54] remains valid. The inter­
pretation of the theory is however fundamentally different,
because both the longitudinal and time-like parts of A~ are
independently physically meaningful, and not just as admix­
tures as in the conventional interpretation of Gupta and

the Hamiltonian, and so only they can be physically meaning­
ful.

By reference to equations such as (7) of Chap. 1,
however, it can be shown that the fields B(3) and -iZ(3)/c are
rigorously dual and, being parallel in all Lorentz frames,
can never contribute to the light intensity (time averaged
Poynting vector in vacuo). The Lorentz invariants L1 and L2

of the electromagnetism in vacuo remain rigorously zero in
the presence of B(3) and its dual -iZ(3)/C. This is a
classical relativistic result to which a correct quantization
scheme must reduce through classical quantum equivalence.
Although B(3) and its dual contribute nothing to L, and L, in

free space, it is clear that B(3) has, at the same time, all
the properties of a classical magnetic field, as argued in
previous chapters. It has therefore a physical existence of
its own, and is also longitudinal. This shows that the
admixture equation (314) cannot be interpreted as meaning
that longitudinal field components have no independent
physical existence. In our interpretation, the longitudinal
component B(3) is independently physical, and so is the time­

like B(O). The latter is a scalar magnitude defined through
the four-tensor F~v as discussed already. The dual field in
vacuo, -iZ(3)/C, is not physical, because it is imaginary,
but is nevertheless an independent field component. Its

magnitude is the real and physical E(O)/c, which is the time­
like component of the free space four-vector E~. Similar
conclusions hold for the imaginary longitudinal component
of A~ in free space and its time-like component.

To resolve these interpretations experimentally needs
considerations such as those given in Chap. 7. At the time
of writing, it is beyond reasonable doubt that the product
iB (0) B (3) produces magnetization in matter in the IFE, and

there are signs from ONMR (Chap. 7) that B(3) can act at first
order, although the data are far from being unequivocal.
Similarly, the experimentally observed optical Faraday effect
(Chap. 7) can be interpreted qualitatively in terms of B(3)

acting to shift the MCD spectrum upwards and downwards on the
frequency scale without distortion of the overall spectrum,
i.e., acting as a magnetic field. It has been suggested in
Chap. 9 that the optical equivalent of the well known AB
effect be pursued experimentally as a sensitive test for B(3) ,

and that if the OAB is negative, the Maxwell equations
themselves need to be reformulated to account for the
fundamental algebra (4), a Lie algebra, and at the same time

to disallow the physical existence of one component, B(3),

,
H DC L (& ().)+a ().) -&(0)+&(0»),

). ~]

(316)
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and gives an iA (3)· whose curl and time derivative are both
zero. Therefore it contributes nothing to the electric or
magnetic components of electromagnetism in free space. The

second cross term gives an iA(3). of the following type,

Bleuler.
To illustrate this point, we develop in the next

section a potential model for A" which takes into account
that there is a physically meaningful B(3) from Eqs. (4), a

field B(3) which must be derivable from a suitable space-like
vector potential using the relation B = Vx A.

iA (3).
B (0)2

i---R?e (3).,
SA (0)

constant (319)

10.3 A POTENTIAL MODEL FOR B (3) iA (3). (320)

The transverse part of the electromagnetic field can be
derived from Eqs. (10) as usual. However, if there exists a

real, physical B(3) in free space, the corresponding vector

potential must also be transverse (because B(3) is longitudi­
nal, and is derived from the curl of the corresponding vector
potential), and must contribute to Eqs. (10). The vector
potential components

(317)

provide the fields

VX(A(l) +A(:I)) = B(l) +B(2) +B(3),

(318)

the curl of which is

(321)

The potential iA (3). therefore produces from its curl a
combination of electric fields in free space, and the real
(physically meaningful) part of this combination vanishes.

This result is consistent with the fact that iA (3). is an
axial vector from Eq. (25), so that its curl produces a polar
vector, and is reminiscent of the Hertz potential method [4]
in which an electric field is obtained from the curl of a
vector potential, the "mirror image" of the usual method.
This result suggests furthermore that the most symmetric
potential representation of Eqs. (4) can be obtained with the
Hertz potentials, suitably modified and generalized. The time

derivative of the vector potential - -iA(3). is both longitudi­
nal and a function of the electromagnetic phase,

so that it does not represent an acceptable magnetic field in
free space because such a field is not a solution of the

Maxwell equation V' B = 0 . The divergence of iA (3) cannot,

furthermore, give an electric field, as for those of A(l) and

A (2), because the symmetry of - iA (3). is axial, while those of

both A(l) and A(2) are polar. Finally, using the light-like
condition A"A" = 0 derived in foregoing chapters, the scalar
potential is obtained in the appropriate circular basis from

in free space, and therefore give the required result that
there are three physical magnetic field components and two
physical electric field components. (The real part of the
longi tudinal electric field 8(3) is zero.)

Equations (25), however, show that the product of A(l)

and A(2) in free space gives an imaginary iA(3)., whose
symmetry is taken to be that of an axial vector. Therefore
the cross product of A (1) and A (2) must also be taken into
consideration in examining the complete consequences of our
potential model. There are two types of non-zero cross term.
The first is given by 41 = clAI = c(A(l) 'A(1)·+A(2) ·A(2)·+A(3) ·A(3).)~,

(322)

(323)
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and its divergence vanishes. The scalar potential obtained
in this way is non-zero, therefore, but does not contribute
to the physically significant magnetic fields B(1) , B(~) and

B(3), or to the physical electric fields E(1) and E(~) •

In conclusion, the potential model (317), although not
yet in the most symmetric form, produces the physical
electric and magnetic components in free space of electromag­
netism, i.e., accounts satisfactorily for the existence of
the inter-related and cyclically symmetric Lie algebra (4)
and (25).

CHAPTER 11. PSEUDO FOUR-VECTOR REPRESENTATIONS OF
ELECTRIC AND MAGNETIC FIELDS

In previous chapters it has been argued that there exist
in free space a real, physical, and longitudinal B(3);

B z = IB(3l l , and a time-like B(O). The equivalent, longitudi­

nal iE(3l is pure imaginary and is dual to B(3) so that the
Maxwell equations in free space are invariant to the trans­
formation B(3) .... -iE(3ljC. These deductions were arrived at
by constructing the Lie algebra (4) and extending this
formally to Eqs. (25). Therefore there exist in free space
three space-like components Bz' By and B z , and the time-like
B(O), and it is inferred that these form a type of four­
vector,

(324)

Similarly, there is, a priori, a four-vector

(325)

The properties of these four-vectors under Lorentz transfor­
mation must be such that the individual components transform
as the components of the well known four-tensor F~v, i.e., as
[4 ],

Bi V(Bx + ~Ey), Ei V(Ex + vBy),

B~ V(B Y - ;2 Ex), E~
(326)

V(Ey - vBx) ,

Bi B z , Ei e.:

1

where V = (1 - v 2jc2 f >' ; and where v is the velocity of frame K/

wi th respect to K as usual [4]. Therefore B~ and EiJ are not
ordinary four-vectors because the latter are defined through

161
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the Lorentz transformation 11.1 RElATION BETWEEN THE MINKOWSKI AND LORENTZ FORCES

where Xfl : = (X, y, z, ict) , X' = X,

t:' = Y( t - ~~) and where

1 0 0 0

0 1 a 0

dflv : = 0 0 Y i}!Y
c

0 0 -i}!y y
c

(327)

v' = Y, Z' = y(Z - vt) ,

(328)

It is well known, following Barut [46], that the
Minkowski force equation is a r e La t Lvistic counterpart of
Newton's equation of force and the product of mass and
acceleration. The Minkowski equation is

(329)

where

(330)

is the four-momentum (or momentum energy vector), and where

known Lorentz transformation matrix. There­
Efl do not have the same transformation proper-

In the K' frame moving at v in Z relative to K, u7, 0 ;

ui = v; and

where IC is ordinary three dimensional force and where u is
the ordinary three dimensional particle velocity. When Ie is
proper in the inertia reference frame K, where U = 0, then

(334)

(331)

(333)

(332)

, K y
K y =-,

y

Kfl = (K, 0).

(
iK' U)'Kfl := yIC, -c- ,

K z' Kz,

The factor y appears in the X and Y components of frame K'
because the proper time is used in the Minkowski equation of
motion. It is seen that the Z component of the force Ie is
invariant if the particle velocity is defined to be zero in

denotes proper time, a Lorentz invariant. Here roo denotes
mass, which is also a Lorentz invariant, and Ufl the four­
velocity of Minkowski's space-time. Following Panofsky and
Phillips [45], the components of Kfl can be expressed in three
dimensional notation as (Minkowski notation):

is the well
fore, Bfl and
ties as Xfl'

The Lorentz transformation of a vector Bfl defined as in
equation (324) is reminiscent of that of the angular momentum
four-tensor, whose space components transform according to
Eq. (286) of Chap. 9, in which the Z component is invariant.

Since B (3) is directly proportional to an angular momentum
operator in free space, Bz is also invariant under Lorentz
transformation, i.e., is independent of the relative veloci­
ty v of two inertial reference frames K and K'. These
considerations lead to the inference that Bfl and Efl are
vectors that are in some way equivalent to the four-tensor
FflV' Analogously, in three dimensional Euclidean space, the
axial vector of rank one is equivalent (Eq. (153» to the
antisymmetric tensor of rank two. Axial vectors, however,
following Panofsky and Phillips [45], cannot form the spatial
part of a four-vector such as Xfl' from which it follows
that Bfl cannot behave in the same way as Xfl under Lorentz
transformation. Therefore in this chapter we seek a method
of defining Bfl in such a way that its components transform as
required (Eq. (326». This is achieved by finding a pseudo
four-vector Vfl that is the sum of Bfl and Efl in free space,
and which is also dual to Fp(J in the theory of tensors.
Maxwell's equations in free space apply equally well to the
components of Fp(J and of Vfl' which has the properties of a
Pauli-Lubansky pseudo-vector [54].
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frame K, the rest frame. Therefore, in this respect, the
space component K of Minkowski's force K~ transforms in the
same way as angular momentum. The latter in special relativi­
ty has the transformation properties

and (337) shows that K~ is dual to F p a in the theory of
electromagnetism and matter.

11. 2 DUAL PSEUDO FOUR-VECTOR OF Fpo IN FREE SPACE

Comparing Eqs. (334) and (335) it becomes clear that K~ = (K, 0)
transforms from frame K to K' in the same way as the space
components of angular momentum. The latter in Minkowski
space is represented as an antisymmetric four-tensor, well
described by Barut [46], and so in general K~ is a represen­
tation of the antisymmetric four-tensor of space-time.
Therefore K~ is a pseudo four-vector of the Pauli-Lubansky
type [54].

The link between the pseudo-vector and tensor represen­
tations of K~ is given by the Lorentz force equation, as
described by Barut [46],

(340)

(341)cPv _ .
11<'> - (0,0, 1,~)

P y = hK(O, 0, 1, i)

for the free photon. There is no Minkowski or Lorentz force
because the free photon does not interact with an electron,
and the four-momentum of the free photon is constant and
light-like in free space. However, €~ypa and €, are both
dimensionless and so the vector defined by

in Minkowski's notation, is its four-momentum. Here K is the
scalar magnitude of the wave-vector as usual. It is there­
fore possible to define a unit momentum four-vector

The photon in free space is a massless particle for
which K~ = 0 and

(336)

(335), J y
.r: = y'

where e and mo are the electron's charge and mass, and
where p~ is the electronic four-momentum. Here Fpa is the
electromagnetic four-tensor in free space. The Lorentz force
equation in the form (336), where €~ypa is the four dimension­
al, totally antisymmetric, unit tensor, is an example of the
generally valid tensorial relation [46]

s~ (337)

(342)

has the same dimensions as F pa , the free space electromagnet­
ic four-tensor. In other words v~ is dual to F pa and is
composed of electric and magnetic field components in free
space. Therefore Maxwell's equations in free space are
invariant under the transformation

in Minkowski's notation. Equation (337) can be inverted,
following Barut [46], to give

(343)

(338)
From Eqs. (339)

0, (344)

and S~ is defined thereby as being dual to the tensor 0op' a
property which implies

(339)
Following Ryder [54], v~ is a Pauli -Lubansky pseudo four­
vector with the light-like properties

in the theory of tensors [46]. A comparison of Eqs. (336)

(345)
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so that the equation

V.. lk> 0< U .. lk> (346)

in free space. Therefore we arrive at our final result,

(351)

where Jk> is an eigenstate of the electromagnetic field,
defines the helicity of the massless photon, denoted by the
dimensionless number A. With considerations [54] of parity where

). : ±l. (347) (352)

It is also clear that €v as defined is the unit translation
generator of the Poincare (or inhomogeneous Lorentz ) group
of space-time [54]. Finally, V.. is directly proportional to
€ ...

The sum of two pseudo four-vectors is another pseudo four­
vector so that Efl and B

II
are both of this type. This result

was first derived [15] in the recent literature using a
different route. Note that Bz is dual to -iEz/c and if the
former is real, the latter is imaginary.

in free space. From Eqs. (349) in (342),

11.3 LINK BETWEEN VII' BII AND BII

It now becomes straightforward to establish the nature
of B.. and E.. in terms of V... In S. I. units, using Min­
kowski's notation,

0 eBz -eBy -Le;
-eBz 0 eBx -lEy

Fp o = Eo
eBy -eBx 0 -iE

,
z

ie, se, lEz 0

which is dual to the tensor

0 -iEz ie, eBx

1 iEz 0 -Le, cBy
GflV 2"eflvpoFpo = Eo

-iEy lEx 0 eBz

-cBx -eBy -eBz 0

(348)

(349)

11 .4 SOME PROPERTIES OF Efl AND BII IN FREE SPACE

(1) An important indication that e, ( = IB (3) I) is
non-zero in free space is given by combining Eqs. (346)
and (350), using the definition of €v in Eq. (341).
This procedure shows that Bz is proportional to the
helicity A of the free photon. Since A : ±l if there
is no photon mass considered, then Bz is non-zero as
argued in detail in previous chapters.

(2) Conversely, the conventional view that B g :7 0
or is otherwise unphysical leads to the result that the
photon helicity is also zero or unphysical, a clearly
incorrect result which shows that the papers by Barron
[53], Lakhtakia [103], and Grimes [104] come to an
incorrect conclusion. The helicity of the free photon
is a physical, non-zero, quantity, and so is Bz .

(3) The pseudo four-vector Wfl has no real longi­
tudinal component, but from the Lie algebra (25) there
exists, mathematically, a pure imaginary but unphysical
electric field denoted iEz. This leads to the defini­
tion of

(350) (353)

a pure imaginary pseudo four-vector in free space.
Note that -iEz/c is also proportional to the helicity of
the free photon.
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11.5 CONSEQUENCES FOR THE FUNDAMENTAL THEORY OF FREE SPACE
ELECTROMAGNETISM

The above argument leads rigorously to a non-zero B7,'

because it shows that B7,' the magnitude of B(3) in free space,
is directly proportional to the photon helicity A. This is
a conclusive demonstration that the conventional view, in
which B7, is considered to be zero, or otherwise unphysical,
irrelevant or similar, is in need of modification. The
duality transformation (355) is also rigorously consistent
with the cyclically symmetric Euclidean space relations (4)
and (25). The most important consequence is the obvious one
that B7, should produce physically measurable effects, as
described in Chaps. 7 and 9. If it does not, then the
Maxwell equations themselves would be in need of modification
as discussed in Chap. 9. It is important to note that B7, is
not a consequence of a "model", or empirical construct, but
a fundamental part of the theory of special relativity, with
its concomitant mathematical machinery. In this sense,
therefore, Bz is a prediction of special relativity, a
prediction as fundamental as the Fitzgerald-Lorentz contrac­
tion; time dilation; relativistic Doppler shifts; and so on.
Therefore if B7, is not observed experimentally an enigmatic
failure of special relativity itself would have occurred.
If Bz is observed unequivocally, the theory of special
relativi ty, which incorporates Maxwell's equations, would
have been strengthened and shown to be self consistent.

(4) Eqs. (345) hold for V.. and E .. as defined,
because V.. is directly proportional to E .. through the
scalar Lorentz invariant EocBz' an invariant which is
proportional directly to the helicity of the free
photon. Furthermore E..E.. is a Casimir invariant of type
one (mass invariant of the Poincare group [54]) and V..V..
is a Casimir invariant of type two (spin invariant of
the Poincare group). Both invariants are zero for the
photon without mass. That V..V.. is a spin invariant
means that V.. has the properties of angular momentum
[ 54]. Therefore so have E.. and B...

(5) For the free photon without mass, V.. is light­
like: it is a null vector in Minkowski space-time, and
its norm, or metric, is zero. (This does not mean that
all its components are separately zero.) The Lorentz
transformation leaves it invariant, i.e., produces
another zero norm. This means that Bz is Lorentz
invariant and non-zero. Following Barut [46], a vector
orthogonal to a light-like vector is space-like, unless
it is proportional to the light-like vector. Since E..

as defined is also light-like for the free photon
wi thout mass, then V.. must be proportional to E.. as
argued already.

(6) If V.. is dual to F pCl then, loosely speaking,
it contains the same information as FpCl ' However, Eq.
(350) shows that the real longitudinal Bz is present in
~, but there is no real longitudinal electric field
component in W... This is precisely as argued in
previous chapters, there is a real, physical Bz but no
real Ez . Considerations of discrete symmetry (Chap. 2)
lead to the same conclusion, which can be checked by
using the generally valid equations (337) to (339) of
tensor theory. If V.. is dual to FpCl , as defined in Eq.
(342), then Eqs. (339) imply rigorously that,

transformation,

(355)

(354)
11.6 CONSEQUENCES FOR THE THEORY OF FINITE PHOTON MASS

which is true if and only if Bz , the real, longitudinal
space component is non-zero identically. Since W, is
simply proportional to E" we can easily check that
W..E .. ~ 0 as required.

(7) Therefore V.. is a pseudo four-vector in the
theory of tensors, being dual to the antisymmetric
four-tensor FpCl in free space. Maxwell's equations in
free space are rigorously invariant to the duality

In previous chapters it has been argued that the

existence of S(3) and that of finite photon mass are interre­
lated, the existence of photon mass leads to a very slow

exponential decay for B(3) in free space. For all practical
purposes in laboratory experiments, V.. is the same for zero
and non-zero photon mass. The key argument in this context

is that the existence of the longitudinal B(3) provides the
photon in free space with three dimensionality, so that
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quantization becomes straightforward, as described, for
example, by Ryder [54], using the Proca equation for a spin­
one field. Quantization of the two dimensional photon of
conventional theory is beset with difficulty, both in the
Coulomb and Lorentz gauges, and the classical relativistic
theory leads to the result that the little group of the
Poincare group is the two dimensional Euclidean group E(2).
The latter is meaningless in three dimensional Euclidean
space. Indeed, it appears with hindsight that the notion of
a two dimensional particle (the conventional free photon) in
three dimensional space is anomalous. The enigma is that
this notion has become a cornerstone of thought and has been
accepted uncritically, despite its obviously unphysical
nature. It has been argued in previous chapters that the
difficulties are removed if it is realized that the existence
of B(l) and B(:u implies that of B(3) in free space. In this
chapter it has been shown, using the rigorous theory of
tensors, that the conventional tensor Fp lJ is dual to the
pseudo four-vector V.. which is a sum of electric and
magnetic pseudo four-vectors. In free space, furthermore,
this sum reduces to

(356)

whose space-like part is purely longitudinal. This appears,
finally, to be convincing evidence of the physically trans­
parent nature of finite photon mass, a notion that is
consistent with contemporary gauge theory with the condition
A..A .. '" 0 . It is important to note that A.. is a four-vector,
while B.. and E.. are pseudo four-vectors which form part of
the pseudo-vector V.. which is dual to the antisymmetric four­
tensor Fp" . The latter is the four-curl of A" as usual, so
that V.. and A" are interrelated. This is consistent with the
fact that Band B are defined in terms of A and the scalar
potential <II.

CHAPTER 12. DERIVATION OF B(3) FROM THE RElATIVISTIC
HAMILTON-JACOBI EQUATION OF e IN A..

In previous chapters the various indications have been

described for the existence of the novel spin field B(3), the

expectation value of the photomagneton B(3). In this chapter
it is shown that the angular momentum of an electron (e) in
a circularly polarized electromagnetic field (A.. ) can be
derived from the fundamental relativistic Hamilton-Jacobi
equation of motion of one electron in the four-potential A ...
The electromagnetic property that governs the motion of the
angular momentum of the electron, and therefore the induced
magnetic dipole moment, is B(3). Under certain circumstances,
to be defined, the induced magnetic dipole moment is dominat­
ed by the term in B(3) and therefore in the square root of the
electromagnetic intensity in watts per square meter. Under
other circumstances the dominant term is that in B (3)2, and in

general, all powers of B(3) contribute. It is emphasized that
these conclusions can be arrived at directly from the
equation of motion of e in A .. , leaving no reasonable doubt
as to the existence of B(3) in free space. Indeed, B(3) is
the only field property involved in permanent magnetization
by light, which is a phase independent phenomenon. This
chapter is based on the excellent account of the relativistic
Hamilton-Jacobi equation of e in A .. given by Landau and
Lifshitz [5], with the key additional inference that the

equation predicts the existence of B(3) directly from the
rotational trajectory of an electron in a circularly polar­
ized electromagnetic field. In a frame in which there is
initially no net electronic linear momentum, this trajectory
is a circle. In this chapter, S. I. uni ts and Minkowski I s
notation are used throughout. In Landau and Lifshitz,
Gaussian units are used with contravariant, covariant
notation.

12.1 ACTION AND THE HAMILTON-JACOBI EQUATION OF MOTION

Our derivation of B(3) in this chapter starts with the
principle of least action, which is defined for a particle in
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the electromagnetic field by [5],

S = I: (-mocds + eA..dx..), (357)

aL j V
2 )-t.

p . = av = p + eA = ill .. ~1 - ~ + eA, (364)

and adds the term eA to the relativistic momentum p.
The generalized relativistic momentum P and Lagrangian

are used in the definition of the Hamiltonian for the
interaction of e and A~,

where mo is the relativistically invariant particle mass,
where the infinitesimal ds is

(358)
H = v' aL - Lav '

(365)

and where the classical electromagnetic field is represented
by the four-vector A~. The principle of least action states
that the variation of the action S is zero,

a Hamiltonian which can be written as

3S = o. (359)
(366)

The relativistic Hamilton-Jacobi equation of motion of e in
A .. is obtained through the equations

which relate P and H to derivatives of action S. In three
dimensional notation the relativistic Hamilton-Jacobi
equation of motion of e in A.. is

, 1 (as )2 2 2(VS - eA? - ~ at - e4> + moc (368)

(367)

0,

as
H = - at'

as
P = ax'

(360)

The basis of this principle is philosophical in nature, it is
an axiom of classical mechanics. Thus, the use of the

principle of least action to show the existence of S(3) would
succeed in proving its physical reality at the fundamental
level in natural philosophy. If the four-vector AI! is
defined as

(as in Landau and Lifshitz [5]) then Eq. (357) in three
dimensional notation becomes

which in Minkowski's notation becomes

(361)

and since

(369)

this procedure identifies the Lagrangian of e in AI! as

P Il : = (p + eA, ~ (En + e4»),

and is obtained from the sum of four vectors,

(370)

which the initial linear momentum
The generalized momentum four-

in a frame of reference in
of the electron is zero.
vector p .. is

(363)

(362)

The generalized relativistic momentum P is a derivative of
the Lagrangian,
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(371) ~ : = -EIl(O, 0, Z, ict) = ct - Z. (377)

As described by Landau and Lifshitz, the fundamental equation
of motion (368) is equivalent to the Lagrange equation of
motion (where v and r are non-relativistic)

Thus ~ is identifiable as the electromagnetic phase

(378)

(372)
when the four-vector

where L is the Lagrangian (363). Equation (372) reduces in
three dimensional notation to

(379)

which is the Lorentz force equation with the well known
identities

dp == -e( oA + Vel» + evx (Vx A),
dt at

(373) is normalized to unit dimensions. The circularly polarized
plane wave is therefore characterized, following Landau and
Lifshitz [5] by the single variable ~.

With Eq. (376), the solution proceeds [5] using the
Lorentz condition

oA
B : == -at -VcP, B:==VxA. (374) (380)

In the non-relativistic limit, the Lorentz force equation
becomes

IDOV' = e(B+ vx 8), (375)

The solution of Eq . (369) for a free particle with four­
momentum p~ = f~ takes the form

(381)

where

which, as we shall see, is also the equation of e in A~ in
this limit, provided that B is replaced by B(3) , and the time
average of B is zero.

(382)

12.2 SOLUTION OF THE RELATIVISTIC HAMILTON-JACOBI EQUATION
(369)

The solution of Eq. (369) is obtained in this section
for a circularly polarized plane wave, in which All is a
function of the relativistically invariant variable

In the presence of electromagnetism, therefore, it is
assumed that the general solution takes the form

(383)

~ = ct - z, (376) where F(t) is to be determined. Using the assumed solution
(383) in Eg. (369) gives

obtained through the definition
(384)
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where

Ignoring the two last quadratic terms, following Landau and
Lifshitz [5], leads to the following expression for F,

(393)

(392)

P y = K y - eA y,

En == (y + p,,)c,

its energy is

(386)

(385)

and its laboratory frame coordinates are

(394)

z
(387)

Therefore the action from Eq. (383) becomes the standard
solution [5]

of the equation of motion of e in A~.

Conversion to three dimensional notation is achieved
[5] with

Averaging over time [5] in the frame where the electron is
initially at rest gives the results

y

and by defining the vector

(388)

(389)

x = -~JAxd~,

y = -fJAydC

Z == e 2. J(A 2 - A2 ) d~ .
2y7.

(395)

so that Applying these equations to the real transverse components
[5 ]

f(O) + f
z

(390)
A = -!2B (0) cos w~,x w !2B(O) sinw~,

co
(396)

The standard procedure [5] next assumes that $ == 0, and
that A(~) is transverse in consequence. If so, the action in
three dimensional notation becomes

gives

7.
£B(O)Z

2 'W

(397)

and so y is identifiable as

The momentum vectors of the electron in A~ are therefore [5]
(398)



178 Chapter 12. B(3) and the Hamilton-Jacobi Equation Orbital Angular Momentum of the Electron 179

12.3 THE ORBITAL ANGULAR MOMENTUM OF THE ELECTRON IN THE
FIELD

The key to the realization of the existence of the
field B(3) is that the orbital angular momentum of the
electron in the field is a constant, and its Z component is
given by

tion is expressible as

(405)

Here Xl and Jill are, respectively, the susceptibility and
hyperpolarizability

(399) WI . = (406)

where, as in the standard theory of Landau and Lifshitz [5],
and the factors a and b are given by

P x = ec B (0) cos w t,
w

2B (0)
X = - ec s i n o z ,

yw 2

ec2B (0)
y=- coswt.

yw 2

(400) (407)

Therefore we arrive at the result that the angular momentum
component of e in A~ is

where

(408)

The angular momentum vector of e in A~ is therefore

(401)
is dimensionless in S.l. units.

12.4 LIMITING FORMS OF EQUATION (405)

J(3) (402) (a) Under the condition

and is governed entirely by the field B(3) .

The electronic angular momentum defines the magnetic
dipole moment

~B(O),
mo

Eq. (405) reduces to

(409)

m(3) (403) (410)

where -e/(2mo)) is the gyromagnetic ratio and the permanent
magnetization is

(404)

where N is the number of electrons. Therefore the magnetiza­
tion due to the circularly polarized electromagnetic radia-

which shows conclusively that the magnetization is a
sum of terms linear in B (3) and quadratic in B (3) •

Recall that this is a result of the principle of least
action, and is therefore fundamental, not the result of
a modelling procedure. In this case the magnetization
is a sum of terms to order one half and order one in
beam intensity.

(b) Under the condition
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(411)

the first term in Eq. (405) predominates and, using a
Maclaurin expansion,

be no magnetization at all. As argued in earlier chapters,
the field S(3) is a novel fundamental property of electromag­
netic radiation. It is noteworthy that Eq. (405) is express­
ible as

M(3) _ NX/(l + x' + x
4

+ .. . )B(3) I

2 2

which reduces to the non-relativistic result

(412)
M(3) = - i .!!.(~ + bPII)S (1) X S (ll)

2 B(O)

(417)

in terms of ipll and the free space conjugate product
(413)

i . e. ,

g(l) X g(ll) (418)

as 0) - 0, i. e ., as the frequency 0) becomes very small
for a given beam intensity (proportional to B (0)2). In
this case the magnetization is to order one half in
beam intensity.

(c) In the opposite limit,

proving inter alia that

S(t) X BIll) (419)

12.5 DISCUSSION

the second term in Eq. (405) predominates, and the
Maclaurin expansion becomes

when the frequency 0) becomes very large. In this case
the magnetization is to order one in beam intensity.

and that the hyperpolarizability pll is the imaginary part of
a complex property tensor. This is precisely the result
obtained in atomic and molecular matter by Wozniak, Evans and
Wagniere [18]. If such matter contains net electronic
angular momentum, the magnetization term linear in S(3) is
also expected, as first discussed by Evans [10]. Magnetiza­
tion proportional to the light intensity has been observed in
the inverse Faraday effect in atoms and molecules [21] as
described in Chap. 7. Other magnetic effects of light
described there were optical NMR and the optical Faraday
effect.

The condition (409) is precisely the non-relativistic
limi ting condition for the cyclotron frequency, 0), of an
electron in a static magnetic field [5], and therefore the
effect of S(3) on one electron is indistinguishable from that
of such a field. This point is discussed further in Appendix
D. More generally, the effect of circularly polarized light
on a single electron can be explained as in this chapter

purely in terms of the magnetic field S(]). Since this effect
can be observed routinely in electron plasma [23] it is

beyond reasonable doubt that the field S (3) is a physical
observable, and therefore a fundamental property of electro­
magnetic radiation of any frequency and any intensity.
Interestingly, the converse also holds true, any static
magnetic field (Bs ) can always be developed mathematically in

(416)

(414)

(415)

M( 3 ) _ !!All B (0) B (3)
2 p ,

M(3) - !'!PII(l +~ + _1_ + .. . )B(O)B{3),
2 x 2 2x 1

which reduces to

Cases (a), (b) and (c) emerge from the same equation of
motion of e in A~ and show conclusively that magnetization
by light is governed by the field S(3). Since 0) is the

angular frequency of the electron in the beam, B(3) is the
only field property present, and if it were zero, there would
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terms of a conjugate product, using the reverse of Eq. (419),

where ~ is the S.I. free space permittivity

(Eo 0; 8.854 X 10-12 J- 1 c? m- 1 ) , Ar the area of the beam in square
meters, and W its power in watts. Therefore I o is the power
density of the beam in watts per square meter. The ratio
elmo is, for the electron,

and so on a philosophical level, the concept of conjugate
product becomes identified with that of magnetic field,
leading to the inference that the antisymmetric part of the
light intensity tensor is proportional to a magnetic field.
This concept, at first strange and counter intui tive, is
nevertheless an inescapable result of the theory of special
relativity applied to the equation of motion of e in A~ at
the most fundamental level in the classical theory of fields
[5] .

Using the condition (411), the experimental conditions

can be deduced under which the effect of B(]) can be observed
unequivocally. The magnetic flux density amplitude in tesla,

B(O), of light (or electromagnetic radiation in general) can
be calculated in S. I. units from the standard free space
expression

example, with intense radio frequency beams of high power
density directed into an electron plasma). Under the
opposite condition (411), achieved with low power densities

and high frequencies, the term in B(O)B(]) dominates, and the
magnetizing effect of light would be observed to be propor­
tional to light intensity, as discussed in the phenomeno­
logical theories of the inverse Faraday effect [10, 18].
Finally, in the condition (409), the observed dependence of

magnetization on power density would be a sum of terms in B(])

and in B(O)B(J) , as described in Eq. (410).
Experimental observation of these effects is important,

because it would demonstrate the existence in free space of

the novel field B(]) , which as shown in this chapter, is a
direct consequence of special relativity. Other important
observations include those summarized earlier in this book,

namely the inverse and optical Faraday effects due to B(]) ,

optical NMR, (which is in its infancy as a technique),

optical ESR, light shifts in atomic spectra due to B(]) , the
optical Aharonov-Bohm effect, and magnetization in an
electron plasma, or electron beam, as described in this
chapter. There is little doubt that several other interest­
ing and useful effects await discovery. Nature shows.

It is therefore clear that the theoretical prediction

of B(]) opens up a new area of research, centered around the
fact that circularly polarized light acts as a magnet upon
interaction with material matter.

(421)

(420). B (1.) x B (:;1)
B = - ~ = B (0) k,

s B (0)

1.602x10-1 9
- 2 X 1011 c kqm:",

9.109 X 10-31
(422)

and so the angular frequency w in Eq. (411) must be adjusted
to be less than - 2 x 1011B(O) rad S-l. If so, the magnetization
of the electron plasma by circularly polarized light is given
by Eq. (412), which for very low angular frequency co reduces
to Eq. (413). Under these conditions, the magnetization of
the plasma is proportional to the square root of the power
density of the electromagnetic beam.

The angular frequency w is the angular velocity of the
electron in the beam and from Eq. (42), the effect of B(]) at
first order dominates over the effect at second order when an
electromagnetic beam is used in the low frequency region (for



APPENDIX A. INVARIANCE AND DUALITY IN THE CIRCULAR BASIS

Throughout the text it has been asserted that the
novel B(3) is dual to the imaginary -iE(J)/c. In this
appendix the meaning of this statement is defined using the
circular basis (46) for the components of the electromagnetic
field tensor F~v and its dual G~v' Equations (7) of the text
are also derived in this basis, showing that the Lorentz
invariants L 1 and L 2 of the electromagnetic field in vacuo
remain zero in the presence of B(3) and -iE(3)/c. If,

however, - iE(3) / c is replaced by zero, or is asserted to be
real, the Lorentz invariants L1 and L2 are no longer zero in
vacuo. The assertion that - iE(J) / c is zero is of course
contrary to the structure of Eqs. (25) of the text. The
assertion that B(3) is zero or imaginary is contrary to the
structure of Eqs. (4).

In the basis (46), the complete electric and magnetic
field vectors are

E = E(1) + E(2) + E(3) , B = B(l) +B(2) +B(3) (AI)

and their complex conjugates are

E> =B(l» +B(:o> +E(3», B> = B (1) • + B (2) > + B (3) > • (A2)

The individual components are

E(l) : = E (1) e (1) , B(l) · = B (1) e (1) ,

.1:(2) • =0 E(2)e(:l) , B (:l)
• =0

B (2) e (2) ,

B(3) • = E(3) e (3), B(3) • = B (3) e (3) ,

(A3)

expressed in terms of the unit vectors e (1), e (2) , and e (3) of
the basis (46) multiplied by the scalar quantities:

B(l} = iB(O)eicl>,

(A4)

B (3) = B (0) •

185



The complex conjugate tensors in Minkowski's

186

In this basis, the tensors F l1v and Gl1v are

0 eB(3) -eB(2) -ss'»
-eB (3) 0 eB( 1 ) -iE(2)

r: Eo eB(2) -eB(l) 0 -iE(3)

iE(l) iE(2) ie'» 0

and

0 -iE(3) iE(2) eB(l)

ie'» 0 -i.e'» eB(2)
Gl1v Eo -lE(2) iE(l) 0 eB(3)

-eB (1) -eB(2) -eB (3) 0

for the unit vectors.

It is easily verified that if B(3) is non-zero and real,

and if there is no accompanying E (3) the Lorentz invar­
iants L] and L2 are no longer zero.

Using these definitions, the fields 8(l) are dual to

leB (1), where i = 1, 2, and 3. Similarly, the conjugate

fields 8(l) > are dual to ieB (1) > • We see that the component

iE(3) Ie is dual to B(3), and if we define a vector 8(3) whose

magnitude is E(3), then the vector -18(3)/e is dual to B(3).

This terminology is arrived at from the mathematical theorem

that F
l1v

is dual to G
l1v

' Thus, if B(3) is real, then the
longitudinal electric field component is imaginary, an
inference which is also supported by the fact that there is

experimental evidence (Chap. 7) for B(3) , and none for a

putative real 8(3). We have seen in Chap. 2, finally, that
discrete symmetry is violated if a cyclical relation is

constructed using a real 8(3).

respectively.
notation are

and

o
-eB(3)'

eB (2»

iE (1) >

eB (3).

o
-eB (1) >

iE (2)'

-eB (2) >

eB (l).

o
lE(3) •

-s.s'» •
-iE(2)'

-iE(3»

o

Appendix A.

(AS)

(A6)

(A7)

Invariance and Duality in the Circular Basis

e (1) • e (1) > = e (:I) • e (,I) > = e (3) • e (3) > = 1

187

(All)

o -iE(3)'

iE(3)· 0
Eo -iE(2» iE(l»

1E(2)' eB(l»

-Le'v : eB (2)'

o eB(3»
(A8)

The Lorentz invariants of Eq. (7) of the text are therefore

(A9)

These results follow from the fact that the magnitudes of the
vectors 8 and B of Eq. (AI), written in the basis (46) are

(AIO)

i.e., are defined in terms of the dot product of the original
vector with its complex conjugate, using results such as



APPENDIX B. ANGULAR MOMENTUM IN SPECIAL RELATIVITY

In special relativity, angular momentum is represented
by an antisymmetric four-tensor of the form

(BI)

where x~ and p~ are both four-vectors. The symmetry of the
angular momentum tensor is the same as that of the electro­
magnetic four-tensor F~v' Following Barut [46] the angular
momentum four-tensor can be written as

0 J z -a; -iJ1 O

-Jz 0 J x -iJ2 0 (B2)J p a J y -Jx 0 -iJ3 0

iJ1 0 iJzo iJ3 0 0

where the space-like elements are interpreted as in Newtonian
theory. The other elements are defined as

(B3)

The dual of the angular momentum tensor is therefore

0 -iJ3 0 iJ2 0 J x

J.(D) 1 iJ3 0 0 -iJ1 0 J y (B4)
IiV 2 ElivpaJpa -iJ'),o iJ1 0 0 J7.

-», -Jy -Jz 0

The Pauli-Lubanski pseudo-vector corresponding to the tensor
(B2) is defined, following Ryder [54] as

(BS)

In general, this pseudo four-vector has four components, and
is formed from the dual tensor (B4) by multiplication with

189



190 Appendix B. Angular Momentum in Special Relativity 191

the linear momentum four-vector p, [54].
It is well known that the helicity of the free photon

is defined through the fact [54] that its angular momentum
four-vector is directly proportional to its linear momentum
four-vector. This means that the Jfl vector of the photon
must take the form

(B6)

because its linear momentum (Chap. 11) is

ly, the factor -i is needed in Eq. (342) of Chap. 11 to
ensure that Bz , which is directly proportional to the photon
angular momentum, is real, as indicated by Eqs. (4). The use
of Minkowski's notation, rather than covariant-contravariant
notation, makes it clear that if Bz is real, its dual -iEz/C
is imaginary, and unphysical, although non-zero.

In conclusion therefore, the retrieval of a real photon
angular momentum from JflV exactly parallels the retrieval of
a real B z from the four-tensor FflV' Thus if J z is physical,
so is B z , and this is precisely the result embodied in Eq.
(5) of the text.

(B7)

It follows that for the free photon, two of the space-like
components of Jfl vanish. If the photon propagates in Z, the
X and Y components vanish, meaning that

J~O + J x '" 0, (B8)

We have seen in the text that rotation generators become
angular momentum operators in quantum mechanics, and are
proportional to magnetic field operators. Similarly,
electric field operators are proportional to boost genera­
tors. It therefore becomes clear that Eqs. (B8) of this
appendix are paralleled by the equations of free space
electrodynamics

Ey+cBx"'O, -Ex + cBy '" 0. (B9)

The angular momentum component J x is proportional to the free
space magnetic field component Bx ' and the component J~o to
the free space electric field component Ey. Therefore J x is
proportional to a rotation generator, and J 2 0 to a boost
generator.

Finally, we note that in Minkowski's notation, it is
necessary to define

(BIO)

in order to retrieve a real Pauli-Lubansky four-vector Jfl'

The factor -i premultiplying the left hand side is a conse­
quence of Minkowski's representation of space-time. Similar-



APPENDIX C. STANDARD EXPRESSIONS FOR THE ELECTROMAGNETIC
FIELD IN FREE SPACE, WITH LONGITUDINAL COMPONENTS

Maxwell's equations remain invariant under the duality
transformation,

E (0) _ icB (O) , (Cl)

which means that the Cartesian components of the tensor F~v

transform as

E - icBx' B -
-iEx

x x
C

E - icBy, By -
-iEy (C2)y

C

E - iCBz, B -
-iEz

z z c

The complete representation of the free space electromagnetic
field in one sense of circular polarization is as follows,

B = B (1) + B (2) + B (3) , (C3)

and each circular component can be represented in terms of
the Cartesian components of F~v'

C. 1 COlfPONENT (l)

B(l) (C4)

where E~l) = EIO)/.[2e i .p , E~l) = -E(O)/.[2ei.p, B~l) = B(O)/.[2e i.p,

B?) = B (0) /.[2 ei.p. Switching from one sense of circular polar­
ization to the other results in

(C5)

The F~v matrix for component (1) is therefore
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so that the duality transformation (Cl) gives the pure
imaginary longitudinal electric component (3),

194

0 0 -CB?) -iE?)

F(l)
0 0 CBP) - iEi1

)

EoIl v
cBill -cHill 0 0

iEP' iE)1) 0 0

Appendix C.

(C6)

The Electromagnetic Field in Free Space

B(3) '= B(O)k = B)))k,

195

(CII)

Switching the sense of circular polarization in this case
results in

(C13)

(CI2)E(3)

(C7)

and the duality transformation (Cl) takes this to the q.(:)
matrix, an operation corresponding to

C. 2 COMPONENT (2)

Similarly, for component (2), the E(3) and B (:0 fields

(CI4)

and the F. 0 ) matrix for component (3) isI'V

0 cB?) 0 0

p(3)
-cBi 3

) 0 0 0
I'V = Eo

-iEP)0 0 0

0 0 iEP) 0

(C8)BunE(:I)

are

where E?) '=E(O)/l2e- i .p , E?' '=-E(O)/l2e- i .p , B?) ,=B(O)/l2e-i .p ,

BiZ) '= B(O)/l2e- i .p and the matrix FJ;) corresponding to compo­
nent (2) is, in free space

the dual of which in free space is GO)I'V

Note that both in the FJ;) matrix and in the GJ;) matrix there

appear a real Bpi and an imaginary -iE~3).

The pseudo four-vector dual to the F~:) matrix is (Chap.

0 0 -cBiZ
) -iEi2 )

p(2) P (1) *
0 0 cBiZ

) - iE~2)
(C9)

= EoI'V I'V
CB?) -CB)/) 0 0

iE.i2) iE?) 0 0

Swi tching from one sense of circular polarization to the
other for component (2) results in,

0 - iEi 3
) 0 0

G(3)
iEP) 0 0 0

I'V = Eo
cBP)0 0 0

0 0 -cBP) 0

(CIS)

(CIO)
11) ,

'G(3)
- ~ ~y E y , (CI6)

C.3 COMPONENT (3) which is v. D) = €oc(O, 0, Bz, iBz), Similarly w. 0 ) is dual toI' I'
G D ) as in Chap. 11. It is important to note that in freepO'

The longitudinal magnetic component (3) is pure real space the pseudo four-vectors, VY' and v.(2) dual to theI' I'
and is given by four-tensors F(l) and F(Z) respectively, are both null,pO' p<r
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because

-iG
f4
(; ) € v = €o(Ei1J +CB~l), -EP) +cB?l, 0, 0)

-iG
f4
(; )€,. = €0(Ei2) + CBP) , -E_J2) + cBiZ) , 0, 0)

0,
(CIl)

0,

(CI8)

Therefore

€ cB (0)(J:(3) + K(3))o JlV ~V'

and the dual pseudo four-vector can be expressed as

(C20)

(C21)

and similarly for component (2). Therefore the only non-zero

pseudo four-vector is VJ3) , which means that the angular
momentum of the photon in free space must be directly
proportional to B(3) , as in the text, and that the helicity

of the photon is directly proportional to B(3) , as discussed
in Chap. 11.

Therefore if B(3) is asserted to be zero, the angular
momentum and helicity of the photon both vanish, an incorrect
result. Using this reduction to absurdity it becomes clear
that for self consistency, the theory of electromagnetism in

vacuo must produce a non-zero B(3) , as in Eq. (4) of the text.
The Maxwell equations produce the result (C17) only in

free space and therefore Vf4(ll and VJ2) are null only in free
space. In general there exist non-zero pseudo four-vectors,
whose components are electric and magnetic field components.
These pseudo four-vectors do not transform in the same way as
ordinary four-vectors under the Lorentz transformation, their
individual components transform as components of the anti­
symmetric four-tensor dual to the pseudo four-vector.
Therefore pseudo four-vectors are four dimensional equiva­
lents of pseudo-vectors in three dimensional space.

C.4 RELATION TO BOOST AND RarATION GENERATORS

The electromagnetic four-tensors FJ;l, FJ;) and FJ: l can
be expressed in terms of the boost and rotation generators of

the Lorentz group [54]. For example, FJ;) is a combination

of the longitudinal rotation generator JJ:) and longitudinal

boost generator KJ;) , where [54]

0 -i 0 0 0 0 0 0

J: (3) i. 0 0 0 K(3) 0 0 0 0 (CI9)
IOV 0 0 0 0 IOV 0 0 0 1

0 a a a 0 a -1 0

with similar expressions for VJll and VJ2) in terms of the
other boost and rotation generators. Equation (C2l) shows

that the pseudo four-vector VJ3l is defined within the
structure of the inhomogeneous Lorentz group (or Poincare
group) with the use of the unit photon linear momentum four­
vector. The latter is proportional to the generator of
translations in space-time, and as first shown by Wigner, the
photon helicity is the ratio of the Pauli-Lubansky pseudo
four-vector of photon angular momentum to the generator of
space-time translations [51]. Photon helicity can be
defined, therefore, only wi thin the Poincare group, and
cannot be defined within the Lorentz group. A similar
deduction accrues for B(3) which must be defined in terms of
space-time translation.



APPENDIX D. THE LORENTZ FORCE DUE TO ~(3) • AND ~(3)pv , pv

In S.I. units, the Lorentz force due to F::) is given by

(3) •
F~, J"

where the current four-vector is defined as

Equation (Dl) gives the result

However, the longitudinal electric field is defined as

so that the physical part of the force four-vector is

which in three dimensions becomes

evx B(3) •

(Dl)

(D2)

(D3)

(D4)

(DS)

(D6)

This means that the magnetic field B(3) drives an electron in

a circle. so that the effect of B(3) on one electron is
qualitatively the same as that of the transverse components.
In other words the transverse and longitudinal components of
a circularly polarized electromagnetic field both drive an
electron in a circular orbit. In the first part of this
appendix, we derive the condition under which this orbit is
quanti tatively the same, i. e., under which the transverse
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momenta imparted to the electron by B(3) and by the transverse
electromagnetic fields are identical.

The transverse electron momentum from the ordinary
transverse, oscillating components of the electromagnetic
field is given by

(D7)

X and Y of the vector potential of B(3) showing that when the

gyration radius of the electron under the influence of B(3) is
c/w, its orbit is precisely the same under the influence

of B(3) and under the influence of the transverse (oscillat­
ing) field components.

Furthermore, the constraint (013) can be used to define

the vector potential of B(3) under condition (012),

where the X and Y momenta are defined from 2c
co 1t

(D14)

_ (1)
Px - -eAx ,

where

A(J.)

(11P y = -eA y ,

B(O) .__c (il + j)e~4J

.f2w

(DB)

(D9)

and therefore to define B(3) itself. We again conclude there­
fore, that the presence of oscillating, transverse, electro­
magnetic field components in free space implies the presence

of B(3) in free space, as in Eqs. (4) of Chap. 1. Recall

that B(3) is defined by the experimentally measurable conju­
gate product,

is the transverse vector potential of the field and e the
electronic charge. We obtain

a well known result in elementary field theory.

If the vector potential of B(3) is given by (Chap. 10)

and although the angular frequency (xo ) does not appear

explicitly in B(3), it is implicit in its definition, and
appears, therefore, in the definition of the vector potential

due to B(3) , i.e., it appears in Eq.(D14) as demonstrated.

The conjugate product is experimentally measurable, so B (3) is
physical, and therefore so is~. The latter should there­
fore cause an optical Aharonov-Bohm effect, as in Chap. 9.

(DIS)iB(0IB(3).,B (1) x B (;1)

(Dll)

(DlO)ecB(O)
P =

.1 W

a similar calculation shows that the electronic transverse
momentum due to B(3) is

P = eB (O).B
1. 2 '

(D12)

D.l THE STRESS-ENERGY-LINEAR MOMENTUM TENSOR T::)
Using a combination of the Lorentz force equation and

the inhomogenous Maxwell equations it is well known (4, 45]
that the Lorentz force can be expressed as

Therefore the momenta (010) and (012) are the same under the
condition

(D16)

Ra "=
2

c
w

(D13) where (in S.l. units) the stress-energy-momentum tensor is

where a is the gyration radius of the electron and A the
wavelength of the transverse part of the electromagnetic
field. The condition (013) is a constraint on the variables

(Dl7)
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an expression first derived by Minkowski. In free space, the
Lorentz force is taken to be zero, so the four-derivative
of TI'" vanishes,

where

(022)

o. (018)
(023)

In free space, the tensor T:;) defined from F:;) by Eq.(D17),
is

0 0 0 0

~(l)
0 0 0 0

1'" = Eo
0 0 -e2B (0)2 -iE(O)B(O)e

e 214>

0 0 - iE (0) B (0) e E (0)7,

(019)

dVO being the infinitesimal of proper volume, where Vo is a
Lorentz invariant. Here PI' is the four-momentum. The latter
is vl'/mo where vI' is the four-velocity and mo the relativis­
tically invariant rest mass. Therefore a relativistically
correct (i.e., correctly covariant) description of the four­
momentum generated by T llv is given by the integral

In each case, the (4,4) element is the electromagnetic energy
[4, 45], and the (i,4) and (4,i) elements, i = 1, 2, 3, are
components of the electromagnetic linear momentum, propor-

tional to the Poynting vector. Therefore T::) has no linear

electromagnetic momentum, because it is diagonal, whereas TJ:)
(and T:;») both generate linear electromagnetic momentum.
This is consistent with the fact that the Poynting vector
-B (3) x .1:(3) / e is always zero, B (3) being parallel to - iE(J) / e.

Note also that TI'(;) , being diagonal, generates no off-diagonal
Maxwell stresses in free space, but retains the property [4,
45]

where €v is the unit four-momentum defined in Chap. 11. For
a particle travelling at the speed of light

That Eq.(D24) has the correct units can be seen from the fact
that Tl'v/e has the units of momentum density (momentum per
unit volume), and Pv has the units of momentum. Here Ev is
unitless and Vo is of course a relativistically invariant
rest-volume.

Using Ev leads to the covariant definition of volume,

(027)

(026)

(025)

Working

e !E(O) 2dv.o 0

EV = (0, 0, 1, i).

'he.> = liKe

for a particle travelling at the speed of light.

out TJ:)E v in Eq. (D24) leads to the familiar result

(021)

(020)

0,

and the tensor ~(3) defined from p,() isI'V I'V

-e2B(0)2 0 0 0

~(3)
0 -c2B (0)2 0 0

= EoI'v
0 0 E(0)2 0

0 0 0 E(O)/'

i.e., the sum of diagonals vanishes in free space.
for the energy-momentum four-vector of a photon.
remarkable fact about this simple calculation is that

The

obtained by
as follows.

An insightful result is
Eq.(D18) in free space, described
istically correct integral is [45]

integrating
The relativ- ~(l.) e

IlV .,
(028)
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a hypothesis which is still valid when there is finite mass.
However, for finite mass, the wave four-vector

is no longer light-like, and we obtain de Broglie's matter
waves, and de Broglie's Guiding theorem, Eq.(l) of the text.
For the massive photon, the unit four-vector E.. is no longer
light-like, and p .. can be related to v.. in Eq.(029) with a
finite mo' For finite mo, there is a photon rest frame, but
for zero mo, there is no photon rest frame, resulting in the
familiar idea that the photon is massless because it travels
at the speed of light.

h h f h t T:,,(.~ ) (or T:,,(.~) )so t at t e energy-momentum rom t e ransverse rV r"

cannot be defined. The only way of defining it in a relativ-

ist icall y correct way is to use the longitudinal tensor T..(;) ,
which a~ we have seen, is diagonal. Equation (024) also
allows for the fact that there may be non-zero mass present
in radiation, because, as in standard special relativity [46]
the four-momentum is the product of rest mass and four­
velocity,
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