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Chapter 1. The Conjugate Product in
Dirac’s Electron Theory

In this third volume some of the major practical advantages of the Evans-Vigier

field, B® [1—15] are described through the concept of fermion resonance, familiar in
contemporary NMR and ESR. The key to much of our development is the empirical

evidence for the existence of the optical conjugate product, AW x A® [16—21],

where A® = A®* is the complex vector potential in vacuo of electromagnetic radia-
tion. It may be shown using Dirac’s electron theory [22—25] that the classical
electromagnetic field always interacts with the half integral fermion spin to generate the
energy

En - -i(ios)-sw', ()

where

B®* - B(S) - —iiA(l)XA(Z) (2)

is the Evans-Vigier field developed in Vol. 1 and 2 [1,2] using the circular basis (1),
(2), (3)) of those volumes. This result is a new general theorem of field-fermion
interaction when the field is classical, and is equally valid in quantum electrodynamics,
where there are only electrons and photons. In Eq. (1) and (2), which use S.I. units, e
is the charge of the fermion, m its mass, % is the Dirac constant, ¢® the third Pauli
spinor,

(,(3)=,,=10, 3)
Z 1o -1

and B® = B®* is real and physical, a magnetic flux density [1,2] which is free of
electromagnetic phase but which, nevertheless, propagates in vacuo at the speed of light,
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¢. Clearly, the B® field can always be detected experimentally through its interaction
with half integral fermion spin, and one of the most sensitive detection methods is

resonance, akin to NMR and ESR. The B® field is directly proportional in Eq. (2)

o the optical conjugate product A® x A®  and is gauge independent and real, because
the conjugate product itself is pure imaginary [1,2]. Equations (1) and (2) describe the
ransfer of energy and angular momentum from the electromagnetic field, considered
classically, to the quantized fermion, for example an electron, proton or neutron.

Since A® x A® clearly has magnetic symmetry from Eq. (2), this is a process closely
akin to the original description by Dirac {26] of the motion of the electron in a classical,
static magnetic field, leading to his famous explanation of the anomalous Zeeman effect
and the Stern-Gerlach experiment. It is well known that this, the original relativistic
juantum field theory, leads to NMR and ESR, which are essentially absorption
spectroscopies [27—31] in the radio frequency and microwave regions of the spectrum.

Therefore in this first chapter we describe the origin of the conjugate product

A® »x A® in the first principles of relativistic quantum field theory, using the minimal
rescription [1,2,22—25] to describe the conservation of energy and linear momentum
yetween fermion and field. It is well known that the minimal prescription is a
onsequence of special relativity through local gauge invariance and charge-current
onservation. In this picture, the elementary charge e is a conserved quantity which
cales (or determines the magnitude and sign of) the interaction of a gauge field, the
lectromagnetic field, with matter. Linear momentum is generated through the product
eA , and potential energy through the product ecA,, where A, is the scalar part of a
our-vector of which A is the space component [1,2]. Conservation laws in field
ermion interaction are therefore built up from a consideration not of the electric and
nagnetic field components of the electromagnetic wave, but from its potential four-
ector A . The Aharonov-Bohm effects [32—37] confirm that A , is physically
neaningful in contemporary orthodoxy, which replaces the original nineteenth century
erception of A, as being a mathematical intermediary leading to the d’Alembert wave
quation [22—?25]. It has been known since the work of Weyl [38] and others [39]
hat A is physically meaningful in quantum mechanics and therefore in relativistic
juantum field theory. From this twentieth century perspective, electric (E) and
nagnetic (B) fields are derivatives of Au , and are related to it in such a way as to
roduce force equations such as that of Lorentz [22—25]. It is well known that these
esults can be obtained from the principle of least action applied to field-matter interac-
ion. Therefore, Eq. (1), although new to physics, is an entirely natural outcome of the
ole of the vector potential in conserving energy and momentum in field-fermion
nteraction. In the last analysis, it is itself a statement of conservation, based on the
Noether Theorem {1,2,22—25].

In terms of beam intensity (I, W m?), otherwise known as power density, and beam

ngular frequency (w, rad s), the B® field from Eq. (1) is [14,15}
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where i, is the permeability in vacuo in S.1. units (p, = 4m x 107 Js’C?m ™) and

where ¢® is a unit vector in the (3) axis of frame ((1), (2), (3)) [1,2]. Equation (4)
is derived in Chap. 2 using the well-known classical relation

B = Vx A, &)

between A and B, a relation which originates in the principle of least action [22—25].
Thus if A is a plane wave in vacuo, so are B and E, the latter being interrelated
through Maxwell’s equations. The plane wave A is in general complex because as such
it is a solution of d’Alembert’s equation in vacuo [1,2,22—25]. It A were pure real
the conjugate product A® x A® would vanish, and this in itself is enough to show
that B® cannot be a static magnetic field, because a static magnetic field is defined as
the curl of a pure real A, as used by Dirac in his original theory of the electron [26].

For a given intensity, 7, therefore, B® is inversely proportional to the square of
the electromagnetic beam’s frequency, f = w/(2n) (hertz or cycles s'). This inverse
square frequency dependence of B® means that it is orders of magnitude more intense
(in tesla) for a given I at radio frequencies (MHz) than at visible frequencies (100 THz

region). For I, for example, of 10 watts per square cm (10° W m?) the B® field
reaches an order of magnitude of nanotesla at 5,000 cm’ (inverse centimeters or

wavenumbers [40]) in the visible. In the visible under these conditions B® is therefore
one hundred thousand times weaker than the earth’s mean magnetic field, but for a 10.0
MHz radio frequency field it becomes 14.5 megatesla, causing proton resonance from
Eq. (1) in the infra-red at about two thousand wavenumbers |14,15]. This result is
derived in this opening chapter using the original Dirac electron theory [26] but with
a complex A instead of a real A. This is the only difference between our theory and
Dirac’s well known original [26].

Proton resonance in the infra-red is entirely out of reach in contemporary NMR
practice, which is based [27—31] on permanent magnets. The highest contemporary
resonance frequency in conventional NMR is typically about 0.5 GHz (500 MHz).
Using Eq. (1), it is clear that NMR can be practiced at will in the much more accessible
infra-red-visible frequency range, resulting in an enormous resolution enhancement
achieved without the use of expensive superconducting magnets and with an ordinary
Fourier transform absorption spectrometer. These advantages result directly from the

appearance in Eq. (1) of the Pauli spinor ¢®. Whenever a classically described
electromagnetic field interacts with a fermion such as a proton, the B® field produces
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wo observable energy states whose existence can be traced to the topological properties

of o® [2,22—25]. Proton resonance occurs when a photon, he,, , of a separate probe
field is absorbed to induce a change between the lower and upper energy states defined

y the mathematical properties of the spinor 6® of Eq. (1). Electron resonance occurs
similarly when the probe photon is tuned to the right frequency. These resonance
yrocesses parallel exactly those occurring in everyday NMR or ESR, but with the

yermanent magnetic field replaced by B® as defined in Eq. (1). Therefore the perma-
ient magnet of a contemporary NMR or ESR spectrometer is replaced by a circularly
yolarized electromagnetic field from an ordinary radio frequency or microwave
yenerator. Not only is this process of vast potential utility, but it is also an excellent

nethod of proving the existence of B® experimentally. Experiments such as these

would, if positive, also prove the physical nature of A® x A® and underline the
ontemporary view that the potential four-vector is physical in nature. There are
ompelling reasons, therefore, to pursue this type of investigation, not least of which

s the empirical, i.e., experimental, evidence for the existence of AD x A already
vailable from magneto-optics [16—21].
Dirac’s original methods [26] are used in Sec. 1.1 of this chapter to derive Eq. (1),

vhose key feature is the interaction of A x A® with the spinor 6®*. Using Eq. (2),
iq. (1) is identical in structure with the equation first derived by Dirac [26] of the
inomalous Zeeman effect. This equation gives rise to NMR and ESR, in which the
ermion is respectively a nucleon (e.g. a proton), and an electron. The factor two
vhich gives rise to the everyday term "half integral spin”, is the result of a non-
elativistic approximation, to be demonstrated in Sec. 1.1 below, and the fundamental
eason for the existence of NMR and ESR is the topology of space itself, which allows
L global distinction between SU(2) and O(3) [1,2,22—25]. The same topology allows
he existence of equation (1), which gives rise to an entirely new absorption spectrosco-
y based on the Dirac equation itself, and allows nucleon resonance to be observed to
reat advantage over contemporary NMR and ESR. It is advantageous always to bear
n mind that Dirac derived his equation purely from the general principles of relativity
nd quantum theory. These considerations force the use of four by four anti-commuting
dirac matrices [26] of which the Pauli matrices are two by two components. Therefore
he fermion intrinsic spin has a deeper meaning than angular momentum, and it is well
nown that the fermion spin cannot be pictured classically (e.g. as a spinning object in
pace) because it is essentially a consequence of the topology of space itself.

There is no reason, therefore, to assume that NMR and/or ESR must always be
racticed with static magnetic fields, or that a Pauli spinor must always interact with a

tatic magnetic field, and Sec. 1.1 will show that the conjugate product AP x A® can
e derived from first principles. This is an advance on the original phenomenological
nference of Pershan {41], which first indicated that there might be an inverse Faraday
ffect (phase free magnetization by light [16—21]), and also an advance on approxi-

nate, semi-classical theories {42] involving the related product E® x E® | It is well
stablished experimentally [16—21] that the optical conjugate product

2
AD 4D - C o, go _ ! po, go (6)
w? w?

produces observable effects, prominent among which is the inverse Faraday effect.
Therefore Sec. 1.1 confirms that relativistic quantum field theory produces the inverse
Faraday effect. This is a reassuring result both for fundamental field theory and
experimental magneto-optics.

The theory in Sec. 1.1 is based on a classical view of the electromagnetic field,
whereas more rigorously, there are radiative corrections due to quantum electrodynamics
(QED), on which there is an extensive literature [22—25]. In respect of electron
resonance, QED leads to a 1% correction in the factor 2 appearing in Eq. (1), and so

is not of central importance in resonance due to A® x A® or the B® field, being a
minor correction of the classical view. In the delicate understanding of photon-electron
interaction however, QED is essential, and it is necessary to show that the conjugate
product has a precise meaning in QED. This is left to later chapters of this volume.
The experimental effects, now known to great accuracy [22—25], of the anomalous
magnetic moment of the electron, first discussed by Schwinger [43], should become

observable also with B® because B® is a physical magnetic field. The original
experimental measurements, ably described by Dirac [26,44], should be repeated with
a radio frequency, circularly polarized, electromagnetic field rather than a static
magnetic field.

This line of reasoning can be extended to all magnetic effects in which a free
fermion spin is present in a sample, and there are many of these effects now known.

In each case the static magnetic field of the measuring apparatus is replaced by B® of
an ordinary radio frequency generator, provided that the radiation is circularly
polarized. Finally, in Sec. 1.2 of this chapter, the original Dirac theory of Sec. 1.1 is
updated and reworked consistently in contemporary notation and standard representation
[2,22—25].

1.1 B® FROM THE ORIGINAL ELECTRON THEORY OF DIRAC

Dirac’s famous theory of the electron {26| is recovered exactly if A is pure real in

what follows. In other words, Dirac assumes that A is real in order to recover a theory
of the fermion in a static magnetic field, and to explain the elegant experiment of
Gerlach and Stern [45] and the anomalous Zeeman effects [46] then known. In this
section Dirac’s clear and powertul description {26] is deliberately and closely followed

to show the existence of B® from the first principles of this, the original relativistic
quantum field theory. Dirac’s development is based [26] on the relativistic quantum
wave equation
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(Po + €Ay — py(0 - (P + €A)) - pymec)y = O, N

for a fermion (in his case an electron) in a classical electromagnetic field. Equation (7)
is written in S.1. units whereas Dirac uses Gaussian units, and this is the only difference
in notation. The momentum four-vector used by Dirac is, in S.I. units

pp = (Po: p)1 (8)

and the potential four-vector in S.I. units is

A, = (4, A). 9
The matrices p, and p, are [1]
0010 10 0 O
p1=0001, p3=0100, (10)
1000 00 -1 0
0100 00 0 -1

and ¥ is a column vector, described in contemporary terms [2,22—25] as the Dirac
four-spinor. In his original account [26], Dirac does not use parity to interconvert
components of the four-spinor, as is the contemporary practice [2,22—25].

The Hamiltonian for a classical electron in a classical electromagnetic field is now
used by Dirac as a guideline to the properties of Eq. (7). The wave equation expected
from analogy [26] with the classical theory is

(1P + eAof’ - (p + eA)? - m*c?}y = o, (1

and was written from the outset [26] for a real A. For complex A Eq. (11) becomes
((Po + er)<p0 + eA(;) -(preA)-(p+reA”)- m202)1!1 =0, (12)

because mathematically real, and therefore physical, quantities may always be formed
from the product of a mathematically complex quantity with its complex conjugate. In
order to make his theory of the electron resemble Eq. (11) as closely as possible, Dirac
multiplies Eq. (7) by the factor

B® from Dirac’s Electron Theory 7

Pyt eAg+ p, (0 (p+eA))+ pyme, (13)

which for a complex potential four-vector becomes

poredg +p (a-(p+ed®)) + pyme, (14)

giving the product

(o= e45) o et) = (o~ ea e e -mic?
- P1<(Po * eA(;)(o ‘(p+eA))-(c-(p+eA ‘))(po + er)))‘l’ - 0.
This, in our theory, replaces Eq. (31), Chap. 11, of Ref. 26. The product (15) contains

several terms which are developed as follows.
Firstly, the conjugate product term leading to Eq. (1) originates in

e’ (c-A*)(c-A)Y. (16)

As shown by Dirac [26], if B and C are any two three-dimensional vectors that
commute with what is now known as the Pauli spinor o, then

(6-B)e-C)=B-C+i(c-BxC) 17

For a pure real A there is only one term on the right hand side of Eq. (17), but for
complex A, there enters into the Dirac theory of the electron an all-important new term,

which describes the interaction of the conjugate product A® x A® with the Pauli

spinor component ¢® . This term is inherently electromagnetic in origin, and does not
exist in a static magnetic field.
Following the development by Dirac, but allowing now for complex A, we set

p - —itV, (18)

and obtain the terms

D) (pxp)¥ = (M>Vx Wy =0, (19)
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2) A xp)Y = 0= -iheA x V§ = 0, (20)

3) (epx A"\ = ~iheVx A"y -iheVy xA*= ~iheB* . 1

The last of these uses the quantum prescription (18) to describe the interaction of the
intrinsic spin of the termion with the ordinary magnetic component of the electromag-
netic field, usually described as a plane wave,

B* =VxA* (22)

For a static magnetic field, term (3) leads to the famous result [26] that the intrinsic
angular momentum of a fermion is half integral in the non-relativistic (but non-classical)

limit {2,22—25]. In our development, however, B* is a plane wave, and averages to
zero over many cycles of the field. Term three is therefore of no further interest in the
derivation of Eq. (1) from first principles. We follow Dirac in discarding term one, the

cross product p x p. The term eA x p is also discarded, as usual [2,22—26], because
it is a classical quantity multiplying a del operator on ¢. (In contrast, the term
ep x A* becomes -iehVx A* which is a del operator on A *, and this is non-zero.)

Continuing in this way, we find that Dirac’s original Eq. (34) of Chap. 11 of Ref.
26 is replaced for complex A by

((po + edg )(po + edg) ~ (P + eA*) - (p + eA)
(23)

-ie?6-A*x A-m’® - ¢ho-B* +ipene-E)y - 0,

in which there appears the conjugate cross product term, and in which products
involving A are conjugate products. The term in o - E in our Eq. (23) can contain a

real part if E is a complex plane wave, but the symmetry of this term is T and P

negative |1,2] and does not appear to be physical. (This is the same kind of reasoning

that is used to explain why there is no electric analogue of the Faraday or inverse

Faraday effects.) For this reason we take no further interest here in this term. It is

notable that Dirac [26] also discards this term as unphysical but for different reasons.
So the final result of our calculation is

((p0+ eAO‘)(po+er)_(P+ eA*):(p + eA) - m*c? 24)

~ie?0-A*x A)y =0,

in which there appears the gauge independent term -ieo-A*x A which allows

B® from Dirac’s Electron Theory 9

resonance to occur between the two physically distinct energy states generated by the
topological properties of the spinor o. The conjugate cross product A* x A plays the
role of an entirely novel type of magnetic field, the Evans-Vigier field B® of Eq. (1).
This term vanishes if A is real, and the original Dirac theory is recovered because B *
becomes a conventional static magnetic field.

The non-relativistic, non-classical, limit of Eq. (24) can be obtained using the
standard approximations introduced by Dirac [26],

2 (25)

En ~ mec*, p~0,

in which case the eigenvalue of the interaction energy between field and electron is

ec¥o-A)a-A")

W := En - mc? ~ 5
En+ mc” + ecA,

ecA,, (26)

In the radiation gauge, A, is zero, and in the Coulomb gauge A, is a constant which
can be zero [22—25], and if A, is zero,

2
W~ (A-A*+io-AxA*) 27)
2m

The resonance term is the second term on the right hand side of this equation, and using
Eq. (2), which was derived in Vol. 2 {2], we recover Eq. (1) from this resonance term.

This development from original first principles shows that the B® field always
exists in field-fermion interaction provided that the field is an electromagnetic wave.
In other words, we reach a new theorem which states that the electromagnetic wave
interacts with intrinsic fermion spin as if the wave were a phase free magnetic flux

density, the Evans-Vigier field, B® .
1.2 CONTEMPORARY DEVELOPMENT

1.2.1 MINKOWSKI NOTATION

In contemporary notation [2,22—25] it is convenient to rework Sec. 1.1 from the
Dirac equation,

V(P + €A V() = -mcl(p) (28)
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Here y is Dirac’s four-spinor, Y, is Dirac’s matrix in standard representation, and

p* eAp is the energy-momentum of the fermion in the electromagnetic field. We

develop the theory in this section with Minkowski notation, as for example in the classic
text by Jackson {47]. We continue to use S.1., standard, contemporary units. In vector
notation, Eq. (28) becomes [2,22—25]

(Yo(En + ecAg) - cy - (p + eA)) ¥ = mc?y, 29

where

u 0 o 1 0
- - - . (30)
R G

Here u and v are two-spinors (column vectors with two components) interconvertible
by parity inversion, P. Therefore Eq. (29) splits into two equations,

(En + ecAgju - co - (p + eA) = mc’u,

3n
~(En + ecA,)v + co - (p + eAu = mc?v,
which describe the dynamics of the fermion in the field.
It is convenient to work in the circular basis [1,2], v
e® =@ - Ly W co g (32)

where i, j , and k are real, Cartesian, unit vectors respectively in X, Y, and Z of the
laboratory frame. The basis (32) |1,2], has O(3) symmetry

e® x e® = je®* et cyclicum, (33)

and is therefore a representation of the rotation group in three space dimensions. In this
basis, the vector potential of the electromagnetic wave can be written as the plane wave

©) .
A - q00 A7(ii +J)e, (34)
2

Minkowski Notation 11

and so, from Eq. (5), the magnetic field can be written as

© i
B® - B@* - BT(ii +j)e®. 33
2

Here ¢ is the electromagnetic phase [1,2]

é=0wt-x'r, (36)

where w is its angular frequency at instant ¢ , and x its wave vector at point 7 .
Using Dirac’s original approximations (25), i.e., working in the non-relativistic
limit with a very slow fermion, [2,22—25], Egs. (31) become

(En +ecA, —mcz)u = eco * Av,

37
(En + ecA, + mcz)v = eco - Au,
and their Hermitian transposed counterparts become
u'(En + ecA, -mc?) = ecv'(c - A)',
(3%

v*(En + ecAy + mcz) = ecu’(o - A)".

In these equations the spinors are row vectors and are operated upon to the left |2]. The
superscript "+ " denotes Hermitian transpose |2], which is transposition with simulta-
neous complex conjugation of elements. It is convenient to develop (Appendix A) the
Pauli spinors in the same circular basis ((1), (2), (3)):

W - [0 OJ, 6@ = g - (0 \/5} ® - (1 0), 39

V2 0 00 0 -1
giving the SU(2) commutative algebra

c® @

27 2

= _ﬂ, et cyclicum. (40)

2

The product algebra of
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Appendix B, leading to
(6® e@) (0D - eW) = ¢W. @, i .M, @ (41a)

(0 - e®@) = (6@ . o), (41b)

We can therefore write the Dirac equations (37) and (38) as

(En +ecA, - mcz)u = eco® - AWy,

(42a)
(En + ecA, + mcz)v = eco® - AWy,
u*(En +ecA, - mc2) =ecvio®-AD,
(42b)
v(En + ecA, + mc2) = ecu" oW A9,
in which
0D AD - (oW . 4@y G 4@ _ (@ . 4O) (43)

It is convenient to solve these equations using firstly the transverse gauge, in which
A, = 0, and secondly the Dirac condition [48,49], in which A, = |A]. In the trans-

verse (or radiation) gauge, we obtain, with En ~ mc?,

2
Wu = S (c@ A0y, (44a)
2m
B 2
WW = 2y (c®-ADP, (44b)
2m

Multiplying Eq. (44a) by Eq. (44b),
m

2
A Wiy = u+(2€i) (6D - AD D - AWy 45)

The eigenvalue of the square of the energy of interaction of fermion and field is
therefore

Minkowski Notation 13

2
W2 - e oM. 4D gD . 4® (46)
2m ’

giving the possibility of positive and negative energy expectation values |2,22—25],

W = ie_zoa) LADGD . AW @7
2m

This leads to the prediction of anti-fermions as is well known and well verified
experimentally [2,22—26|. For our purposes the positive expectation value of energy
can be developed with the spinor algebra

GV - ADGD . 4D _ 4D 4@ 4 ;@ . AD , 4O 48)

and the second term on the right hand side leads to equation (1) as we set out to show.
The original and contemporary approaches to the Dirac theory produce the same,
potentially very useful, result, that fermions interact with the electromagnetic wave
through the B® field.

In the radiation gauge, A , 1S not completely covariant, because A, i$ zero in one
special Lorentz frame. This unsatisfactory feature of the radiation gauge has been
discussed in the recent literature [1,2]. Roy and Evans [50] have recently suggested a
novel gauge theory which reconciles non-zero photon mass with type two gauge in-
variance

A papp. 1Al 49

so that

AA, Fapp O ©0

In this notation, FAPP denotes for all practical purposes, and Eq. (50) is a limiting
form of, and an excellent approximation to, the condition introduced by Dirac [48,49],

AuAu = constant. &2))

We refer to Eq. (49) as the Dirac condition. It has the advantage of rendering A,

completely covariant and of being compatible with the Lorentz gauge (1,2,22]. It also
allows the Proca equation [1,2] to be derived from a suitable Lagrangian, and so has
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useful properties.

The theory of electromagnetism developed in Vol. 1 and 2 augments the vacuum
Maxwell equations with a system of which Eq. (2) is an example. Maxwell’s original
derivatives are replaced |2] by gauge invariant counterparts, and these are the same as
those of the Dirac ¢lectron theory being developed in this chapter. Non-Maxwellian
terms are developed within O(3) gauge theory [2] and are quadratic in Ap, as illustrated
in Eq. (2). Terms such as this are derivable in Evans-Vigier field theory [1,2] from
O(3) gauge theory and are quadratic in the six field F, . These terms imply the use
of complex fields and potentials as in de Broglie’s theory of the photon [51]. The Dirac
condition (49), which we are about to develop further, is an intrinsic part of the Evans-
Vigier theory, some parts of which [1,2] border on the theory of finite photon mass.

The self-consistency and physical good sense of the Dirac condition can be
illustrated as follows by incorporating into it Eq. (1), which becomes

elc?

E,=-——" 0" - A®¢® . AW _gcq . (52)
m En +mc? + ecA, 0

This equation defines the non-relativistic limit of the interaction energy of a fermion in
a circularly polarized electromagnetic field using a completely covariant A, defined by

Egs. (49) and (50), and which is light-like in vacuo for all practical purposes. It can
be shown as follows that Eq. (52) makes sense by considering the limit

ecA, > (En+ mc?), (53)

which represents a very intense, relatively low frequency, electromagnetic wave
interacting with a fermion. In the approximation En ~ mc?, Eq. (53) becomes [1,2]

o <« <50, (54)
In this limit, Eq. (52) becomes
Ep ~ S0 -AD + 109 A0 x AD) - ccA, (55)

0

and using

Minkowski Notatiol

AD.AD - 42 AD 4O - iAle®, (56)

we obtain

E, ~ FecA,. 7

ntl
Finally, using the minimal prescription for the free photon [2],

eA =tk = h—, (58)

Eq. (57) becomes

E_ - 7he, (59

int

which is consistent with energy conservation. The rotational kinetic energy of one
photon, hw , has been transferred to the fermion in an elastic collision. The * sign in
Eq. (59) is due to the topological properties of the Pauli spinor, and has no classical
meaning. That is to say, the fermion can be in one of two energy states, because its
intrinsic spin has eigenvalues +%/2.

In the radiation gauge on the other hand, Eq. (59) can not be obtained, because the
limiting condition (53) is never valid. The radiation gauge is therefore inconsistent with
the physical result (59) and is inconsistent in this context with the law of conservation
of energy. The origin of the inconsistency is that in the radiation gauge the potential
four-vector is not consistently covariant. This leads to other well-known difficulties
[1,2] in the canonical quantization of the electromagnetic gauge field. The failure of
the radiation gauge in Dirac’s theory of the electron becomes apparent, furthermore,
only in the limit (53). In the opposite limit, which is almost always used in the
development of the non-relativistic limit,

ecA, < (En + mc?), (60)

there is no practical difference between the Coulomb gauge and the Dirac condition,

because A, ~ 0 is equivalent to Eq. (60). In the rest frame approximation En ~ mc?,

Eq. (60) becomes
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€ 0)
® » —BO, (61)
2m

in which Eq. (1) is valid in both gauges. In the opposite limit, Eq. (54), Eq. (1) is no
longer gauge independent in this way, meaning that the radiation gauge can no longer
be used because it does not lead to energy conservation as just shown. Equation (55)
is an experimentally verifiable test of the validity of Dirac’s condition (49). As such,
it is also important for the theory of finite photon mass [1,2], and is a prediction of the
Evans-Vigier theory [1,2].

1.2.2 FEYNMAN SLASH NOTATION
In contemporary Dirac theory, field-fermion interaction is described with Feynman

slash notation [22—25], which allows a compact description of Dirac algebra. In this
section we demonstrate Eq. (1) using these contemporary methods, in which reduced

units h = ¢ = 1 are used. The field free Dirac equation in this notation is
i@-m)y =0, (62)
where i = p := y“pp, the reduced energy momentum four-vector. The Hermitian

transpose of Eq. (62) is, in contemporary notation [22—25],

- (63)
The product of Egs. (62) and (63) produces
T -m)y =0 ©4

in which the quantity between the spinors ¥ and  is a scalar. We first show that Eq.
(64) produces the Einstein equation of special relativity through the equivalence

principle. It is convenient to proceed by expanding the product gp,
# = p'p, - o, p*p", (65)

where, as usual, S, is the commutator of Dirac matrices {22—25],
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o = —;;[‘y“, v, (66)

If it is assumed that there is no spin contribution to gp, then,
W= b, - B P )

where En is energy and p is linear momentum in reduced units of H = ¢ = 1.
Therefore Eq. (64) becomes

¥ (En? - p?-m?)y - 0, (68)

which in S.1. units is

¥ (En? - p%c? - m%c*)y = 0. (69)

This is the quantum mechanical version (Klein Gordon equation) of the Einstein
equation of classical relativistic dynamics,

En? = p2? + m2c*, (70)

and Eq. (69) means that the expectation value of the quantity between the spinors is
Zero.
In the del representation, Eq. (69) is

1T1(|] + mz)w =0, )

where (1 is the d’Alembertian operator [1,2]. If interpreted as

Oy, = -m?y, i=1,.,4 (72)

Eq. (72) becomes another form of the Dirac equation with Klein-Gordon components
[2] as required. If we interpret the spinor as the column vector,
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Yy = E > 73
iB

where E is electric field strength and B is magnetic flux density, and if we assert that
the mass, m, is zero, we recover the equations

OE=0B =0, (74)

which become the d’Alembert equation in vacuo |52} if |A| is proportional to |B |
(and thus to |E|) in vacuo. This proportionality is satisfied by Eq. (5) which gives,

Al - <18 - LE|, (75)
w w

for plane waves in S.1. units. The representation (73) allows the Maxwell equations to
be expressed in the form of a Dirac equation [22—25].

The interaction of fermion and classical field is described in contemporary slash
notation using the minimal prescription in the form

-i - -ib - ed". (76)

id ~ id - ed,;

Since p = id, and @ is real, the complex conjugate of p - ed is given in general by

(B -ed) = -p-ed". an

The Hermitian transpose |2,22—25] of the Dirac equation of a fermion in a classical
electromagnetic field is therefore obtained from the original by (Appendix C)

(# - ed -my -0, (782)
v

Y(-p-ed* -m) =0. (78b)

Multiplying Eq. (78a) and (78b) gives
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T(p+ed +m)p-ed -my =0. (79)

The expectation value of the scalar quantity which appears between the spinors

and ¢ is zero. The equivalence principle shows that the classical relativistic version
of Eq. (79) is

En® =p>+m*+ A4 + em(4" + 4) + e(p4 - 4°P), e

and it is seen that the electromagnetic field has added several terms to the Einstein
equation (70).
The resonance phenomenon which we want to demonstrate arises from the

conjugate product term e’4*4, which is phase free [1—I5] and non-zero after
averaging over many cycles of the electromagnetic field at any frequency. It is not,
however, a static property, because it propagates in vacuo at the speed of light. Terms
such as emd” average to zero over many field cycles and we take no further interest in
them here, as in the previous section. We note that the conjugate product term has
appeared from the principle of local gauge invariance, meaning that the standard
minimal prescription leads to it as a consequence of current conservation and Noether’s
Theorem. Not surprisingly, therefore, the conjugate product term is gauge invariant,
and therefore physical [1—I5]. It has been assumed only that A is complex, as
discussed for example by Barut {52], and on countless other occasions. The term

e’4*4 is therefore a direct outcome of the Dirac equation and for this reason should
produce observable experimental effects.
In reduced units we obtain [22—25}

A = —ic®-AD AD L g2 40 .40 (81)

where A, is the scalar component of the four-vector A,. For a non-zero 4, in general
we obtain

En? =m2+p2+ o242 -e2(io® - AD x AD + AD . 4D), (82)
In order to proceed we use the approximation
(m + eA, ~ m*+ e2A;, (83)

which is valid if: 1) m > eA;, 2) eA, > m. The first limit is the non-relativistic one,
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discussed in several standard texts [22—25|. Using this approximation, and the related
approximation Er ~m, p ~ 0 produces, in reduced units,

W:=En-m-~ g AD 4D 4 4 S22 440, (84)
2m ¢ 2m

In S.1. units, this equation becomes

2 2
W:i=En-mc?~ it 6®-ADx AD +eca - £ AD-AO, (85)
2m 2m

for the extra energy added to the Einstein equation of the fermion by the electromagnet-

ic field. The expected resonance term is -i(e?2m)a® -A® x A® and is real,
physical, and gauge independent as expected.

In Chap. 2, it is described how this result leads to a new resonance technique which
if developed, has the capability of making unnecessary the use of superconducting
magnets in NMR and ESR. This is the result of the exact solutions to the Dirac
equation that we have been discussing in this chapter.

Chapter 2. Limits and Resonance Conditions

The resonance method of detecting features outlined in Chap. 1 is potentially of
great practical utility, because, as explained in this chapter, it can lead theoretically to
ultra-high resolution NMR and ESR without magnets. In contemporary terms this is a
seemingly impossible aim, the best available superconducting magnets produce about 20
tesla at most, resulting in resonance at about 0.5 GHz [20]. The basic reason for using
high intensity magnetic fields in NMR is the need for high resolution. It will be shown
that it is possible in theory to remove the magnets and at the same time achieve a much
higher resolution than hitherto attainable. Furthermore, this aim can be achieved in
principle with mature contemporary radio frequency technology.

2.1 LIMITS FROM THE DIRAC EQUATION

Before developing the theory of resonance which will possibly form the basis of
NMR and ESR in the future, it is instructive to infer the physical meaning represented
by mathematical limits of the Dirac theory of Chap. 1. In particular, it is necessary to
explain how the equation self-consistently deals with seemingly disparate definitions of

B®  namely,

1) B®* - BO.O _ —%B(I)XB(Z), (86)
B
D) BO" - -iZA® A, 87

Definition (1) [1,2] simply puts B® proportional to the amplitude of the magnetic

component of vacuum electromagnetism, meaning that B® is proportional to the square
root of intensity (I). Definition (2) [2], which was derived rigorously in Chap. 1,

has B® proportional to the conjugate product A® x A® and thus to intensity itself.
How can definitions (1) and (2) both apply; which should be used to describe the field-
fermion interaction; and how can one definition be equivalent to the other? The answers
are obtained straightforwardly as follows from a simple inspection of limits.
Definition (2) represents the usual experimental limit, under which all magneto-
optic results known to us have been obtained to date. These results appear always to

show that the magneto-optic phenomenon is proportional to the intensity (I) of the
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pump laser or electromagnetic field. Some of the key references to the available
experimental data are collected in [16-21]. The lowest frequency circularly polarizgd
pump field used to date was at three GHz, by Deschamps et al. {17]. In this
experiment the inverse Faraday effect [16] was detected experimentally using pulsed,

circularly polarized, microwaves, and the effect found to be proportional to I. The

definition (2), also has B® proportional to I, through a universal constant e/h, and
inversely proportional to the square of . It is now realized that this result can be
shown from the first principles of relativistic quantum theory, as demonstrated in Chap.
1. In Vol. 2 it was inferred from O(3) (non-Abelian) gauge theory.

It corresponds to the limit

hw > ecA,, (88)

where A, is the time-like component of A, and where © is the angular frequency of
the field in which the fermion is immersed. In the radiation, or transverse, gauge [47],
it is asserted that A, = O, so that in this gauge the limit (88) is an exact result for finite
o . In this limit, Eq. (27) shows that the energy transferred to the fermion is second

order in the vector potential, i.e., first order in the intensity, /. This result is quantum
relativistic in origin, although obtained in a non-relativistic approximation as described
in Chap. 1, and although the electromagnetic field is still treated classically. Classical
physics cannot account for the existence of the spinor term (e.g. in Eq. (27)), nor can

it account for the definition (2) of B®, a definition which includes %, the Dirac
constant of quantum mechanics [22-25]. Conservation of energy-momentum is
represented in the transverse gauge by an equation such as (27), but the gauge is not
manifestly covariant [22-25) and produces well known difficulties in canonical
quantization of the field. As discussed in Chap. 1, conservation of energy-momentum
in the transverse gauge is also not entirely satisfactory. These caveats apply, however,
to a well accepted gauge assumption [47] rather than to the method being used, and it
can be shown (next section) that the classical limit of an equation such as (1) is precisely
that obtained by Talin et al. [54] for the inverse Faraday effect and is precisely that
predicted by the classical, but relativistic, Hamilton-Jacobi equation of one classical
electron or proton in a field [1]. This is discussed further in Sec. 2.2, where the Dirac
equation is transformed into a Pauli equation, and finally into the Hamilton-Jacobi

equation [1}. The inverse Faraday effect in the limit (88) is proportional to I as
observed [16-21] to date and can be understood through B® in definition (2). This

high field frequency definition should almost always be used in experimental
applications.

The definition (1) of B® was the first to be inferred heuristically [1,2], however,
and from the work of Chap. 1 it is clear that it applies in the limit,

ecAD - ho, A®=(4 .A')lﬂ ~ Ag. (89)
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In this limit, nearly all the energy-momentum of the photon (anticipating the quantized
interpretation of the field) is transferred to the fermion, which is thereby accelerated
very close to the speed of light. As discussed in Chap. 1, and in Vol. 1 and 2 [1,2],
this is a low frequency, high intensity limit,

< ZLB«D, (90)
m

and since A, the time-like component of Au, cannot be zero in this view, this limit
cannot be attained in the transverse or radiation gauge. Using it in Eq. (1) produces,
with definition (1), the result,

eBO 1,
En.  -—-» BTN o 00
" ecAy - hw  m 2° on

which shows that the energy formed between field and fermion in the limit (89) is
proportional to the square root of I and ultimately becomes independent of @ . This
is experimentally distinguishable from Eq. (1), which was obtained in the opposite limit
of the Dirac equation, although no experimental investigations have been made to our
knowledge under the required conditions of very low pump frequency, very high pump
intensity. These investigations would show experimentally whether or not the Dirac
condition is more representative of free space electromagnetism than the transverse
gauge.

It has been demonstrated theoretically, therefore, that limiting forms of the Dirac

equation produce both the heuristic definition of B® (definition (1)), and the more
recent [15] definition (2) appearing in Eq. (1) from fundamental first principles of

relativistic quantum mechanics. Clearly, definition (1) of B® can only be used under

the right conditions, represented by Eq. (89); and B® cannot be defined at all under
these conditions in the transverse gauge. Self consistently, therefore [1,2], the
definition (1) of B® requires a finite time-like component of Ap ( = (AO, A) ).
Definition (2) can however be arrived at if the time-like component is zero. In both
cases it is possible to retain the useful condition

Ady o5 0 92)

recently suggested by Roy and Evans [55] as a means of reconciling the theory of type
two gauge invariance (which we support) and the theory of finite photon mass |1,2].
Under the Dirac condition (of which Eq. (92) is a limit {55]),

AD . AW 4O 4O% , 4O O - 42 (93)
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can always be obtained if the magnitude of the space-like and time-like components
of A, are equal. For all practical purposes Au is a fully covariant, lighr-like, four-
vector in this view. In the transverse gauge, the Roy-Evans condition (92) applies if

AO2(e® . g% 4 @ . (@), 402 . ®%) = 08

A® = JTiAO,

i.e., if a pure imaginary and phase free third component is introduced for the space part
of A,, there being by definition no time-like component [47]. The longitudinal

component of A in this view is unphysical, and so the usual assertion that the radiation
gauge [47] is pure transverse is retained in the usual physical applications. Therefore
we arrive at the rather unexpected conclusion that a massless particle may be described
mathematically with three states of polarization, provided that only two of these are
physical. In the usual Wigner theory [56], there can be only two physical polarization
states, and these must be transverse. The Wigner theory does not appear to prohibit a
mathematically imaginary longitudinal state of polarization, even for a massless particle.

The very concept of a massless particle, however, is fraught with great difficulty,
because mass is a Lorentz invariant scalar [1,2]. A good text such as that by Marion
and Thornton [57] explains clearly that, for this reason, mass does not change upon
Lorentz frame transformation any more than it changes from one Cartesian frame to
another. The term rest mass is misleading therefore because mass in the rest frame is
the same as mass in any other Lorentz frame [57]. It is well known that mass is one
of the two invariants of the Poincaré group [23], the other being loosely referred to as
spin. The commonly held notion that mass must go to zero for a particle travelling at ¢
is therefore a gross misconception. It is truer to assert that for a particle mathematically

translating at ¢ there is no rest frame, and so the meaning of transformation from one
frame to another is lost. In other words, there is only one frame possible, and the
Lorentz transformation is not defined from a frame in which a particle is moving at less

than ¢ to a frame in which it is moving at c, because if the mass is invariant, the
transformation produces a zero in the denominator of some transformed quantities. A
dynamical quantity can become mathematically infinite if Lorentz transformed into a

frame moving at ¢ and such a transformation cannot be physically meaningful. This
is easily checked by identifying the relative frame velocity, v, appearing in the

transformation [1,2] with ¢. Once the concept of massless particle is abandoned,
derivative deductions such as a massless particle having two degrees of polarization also
become physically meaningless. Therefore if a photon is indeed a particle (which is
open to serious doubt [6]) it is massive and has three degrees of polarization in three
dimensional space.

The artificial nature of the radiation gauge [47] is also discussed in Ref. 1 and 2
and Chap. 1. Its use in canonical quantization leads to serious difficulties because it is
not fully covariant. The gauge is an assertion [47] made for convenience. In Dirac’s
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original development of his electron theory [26] it is not used, because the time-like
component of A is finite. The Roy-Evans condition (92) is always valid in the Dirac
electron theory if

AO2e®D . W2, (0. @) | g2 4GB . ¢®) 95)

and this is always possible, not surprisingly, because the Roy-Evans condition (92) is
a limiting form of the Dirac condition itself [48,49],

A, = constant. (96)

The condition

AA =0, o7

should not therefore be referred to as light-like in general because it can apply to any
four-vector. This mathematical result shows that the concept of zero mass for a particle
travelling at the speed of light is meaningless.

Our discussion of limits is summarized in Table 1, which is also a summary of
the properties of fermion spin in a classical, circularly polarized, electromagnetic field.

The Table shows that the intrinsic spin of the fermion always interacts with the B®
field in one form or another. The most general result is (I), and (II) and (III) are well
defined limits of the same fundamental equation. Limit (II) is reached when the fermion
energy is much greater than the energy ecA,. In the radiation gauge, 4, is zero by
definition [47], in which case (I) and (II) become identical and (III) can never be
reached because in relativity mc? is never zero. That B® is much more than a
mathematical convenience is revealed by a careful consideration of limit (III), in which

the energy ecA,, is much greater than the total fermion energy, including its rest energy,

2

mc”. In this limit,

ecA, > (En + mc?) ~ 2mc?. (98)
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TABLE 1
Limits from the Dirac Equation
Limit Description B® Field
1 (En + ml) - ecAO, Energy ecAO and fermion B(g). ~ _l.x_e_A ) xA(z)
. h
m=eA©, ed, energy about the same

II (En + mc?) > ecA, Initial fermion energy much

B(S)n - _if_A(l) XAG)
h
k=eAQ >ed,

greater than ecA,.

111 ecA,>(En + mc?), Energy ecA, much greater BO - _ i B . BO
an initic i . ©
T =eA® - ¢ A, than initial fermion energy B

x = 2mc¥(En + me* + ecA,)

We have seen in Chap. 1 that in the limit (III), and in the quantized interpretation of
the field, the photon energy hew is transferred wholly to the fermion for all practical
purposes (F.A.P.P.),

hw -~ ecA,, 99
and if
A - AO - (4 .A')l/z’ (100)
then
B . __L pw, po (101)
B©
where
BO - © 40 (102)
c

It is important to note that Eq. (101) is a result of the Dirac equation, provided that Eq.
(98) and (99) are used as limits. They imply,

(hw) > (2me?)smion> (103)

photon
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which can be interpreted physically to mean that the energy acquired by the fermion in
a F.AP.P. elastic collision with a photon is much greater than twice the fermion’s
initial rest energy. If we prefer to retain the classical interpretation of the field, Eq.
(103) is

ecAy > 2mc?. (104)

Equation (101) has also been deduced heuristically [1], and implies that B® is a
property of the free photon — the photomagneton operator [1,2] of the quantized field.

Table 1 shows that B® in this limit can be isolated experimentally only under the
appropriate conditions, also discussed in Vols. 1 and 2 [1,2]. These conditions must
be such that the electromagnetic field is of very great intensity, so that its ecA, is much
greater than the initial fermion energy. In order for this to be possible at all, we must
follow Dirac [26] and use a non-zero A, in the theory. Furthermore, we must use

A© - A, asin Eq. (100), and this is precisely the Roy-Evans condition [55], a limiting
form of the Dirac condition [48,49] itself.
In classical electrodynamics [47] it is well known that the classical electron, when

translating infinitesimally near ¢, radiates plane waves indistinguishable from transverse
electromagnetic waves under this condition. This conclusion can be reached using
special relativity [47]. Therefore, in quantum mechanics, if a fermion (electron) were

to acquire hw as in limit (II1), it would become a photon. In this state it would retain
the B® field defined in limit (IIT), a definition in which the electron’s charge, e, has

been incorporated into the scalar amplitude B® . Conservation of C symmetry in this
exchange has been discussed in Ref. 1; a symmetry conservation which requires,

consistently, both e and B® to be C negative. Conservation of angular momentum

[1-15] in classical physics also requires the B® of the incoming electromagnetic field
to be transferred to the classical electron, and in an elastic exchange the angular
momentum is transferred entirely to the electron along with the B® field. Any other
conclusion for a finite écAo would be in violation of the Dirac equation, because the
latter conserves energy and angular momentum.

It can always be asserted that A, is zero, as is the accepted practice [47] in the
transverse, or radiation, gauge, and this assertion can be used to force us to the flawed
conventional wisdom that B® does not exist. As discussed in Chap. 1, this is in
violation of the principle of conservation of energy if it is assumed, reasonably, that a

photon’s incoming energy is hw, and that under well defined experimental conditions
this can be transferred, F.A.P.P. in its entirety, to a fermion in an elastic collision.

However, this same assertion, that A, is zero, has caused fundamental difficulties

[1,2,22—25] ever since the first attempts were made to apply the principles of canonical
Quantization [22] to the classical electromagnetic field. Therefore, an attempt to assert
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that B® in limit (II) is zero on the grounds that 4, must be zero by assertion will run
into exactly the same problems. Such an assertion also spoils the symmetry‘of' Table
1, in that it forces limit (I) to become the same as limit (II), and makes limit (III)
impossible if it is accepted that rest energy, mc?, can never be zero. It also means that
A, , which is now accepted to have physical meaning in classical electrodynamics [58],
must always have a time-like component which is zero. il‘hig cannot be trl{e _fqr a four-
vector in general, because as soon as Lorentz transformation is applied, an initially zero
time-like component can become non-zero in another Lorentz frame. It can only be true
if the mass associated with A, is rigorously zero, so that Lorentz transformation loses
meaning because there is no rest frame [1,57]. (Alternatively, we can think of a zero
mass particle as implying the existence of only one Lorentz frame, so that Lorentz
transformation is by definition prohibited.) However, we have already argued that ‘the
notion of a zero mass particle is physically meaningless, and the Photon as partlc_le
should be interpreted as the originators of special relativity probably intended, as an aid
to understanding. It has been pointed out repeatedly down the years [59,60] th‘at tlfe
photon is an enigma. Much of the received wisdom about the photon as particle is
flawed, as pointed out, for example, by Einstein [61]. Table 1, based on an elementary
development of the Dirac equation of a fermion in the classical field, shows that the

assertion that B® is zero [62—65] is incorrect.
The conservation of C symmetry in Table 1 leads to an interesting line of thought
that will be pursued later in this volume. In agreement with Noether’s Theorem

{22—25] and the much older Ampere Hypothesis [66] C conservation shows that the

symmetry of e and B are both negative. The photon as an idea in natural philosophy
must allow for elementary charge to be present in its theoretical framework. This is
simply an expression of charge-current conservation and the contemporary- orthodoxy
that elementary charge is a conserved quantity in nature {22—25]. ‘The notion that the
photon is an uncharged particle [67] must therefore be based on the idea that thf: photon
shows no ner charge, because if charge is elementary and conserved in nature, it cannot
be annihilated. In the received view of electron-positron annihilation [67] two photons
are produced,

e +e’ - 2y. (105)

The charge on the electron is elementary and negative, that on the positron is element.ary
and positive, so it is asserted usually that each of the two photons produced on the right
hand side of equation (105) must be uncharged. This view means that the cl}arge and
mass present on the left hand side of Eq. (105) have disappeared from Fhe right hand
side, because conventionally, photons are also claimed to be massless particles [22—25]
travelling at exactly the speed of light in vacuo, c.

If mass and charge are elementary and conserved in nature, however, they cannot
be annihilated, which leads us to the view that the electron and positron combine to
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form a single entity, a new type of photon, which translates infinitesimally close to ¢,
and which is made up of a combination of plus and minus e. This new photon
structure therefore rests on equal and opposite elementary charge and allows for the
smallest possible unit of elementary mass to be present, the mass of the photon [68].

In this view rest energy is mc?, as usual, but m can never be zero, because if so, rest
energy would vanish entirely, in contradiction to the principles of special relativity. In
the conventional view, mass can be zero by assertion, and in a massless particle, there
is zero rest energy and no rest frame. In the conventional view, therefore, there is no
notion of elementary mass (an indivisible, constant, universal and scalar unit of mass),
because mass is allowed under certain circumstances to disappear. If so, there cannot
be an indivisible and constant elementary unit, and in our view, this conclusion is
unphysical. Mac Gregor [69] has recently discussed the history of the new type of
photon which we wish to develop, a photon which can be shown to be consistent with
relativity. For example, French {70] has shown that equal and opposite elementary
charges, co-propagating exactly at ¢, can never attract, so that this photon can never
collapse in on itself. In a photon with our very small elementary mass travelling
infinitesimally near ¢, the attraction is very weak and only very gradually will the
photon collapse, as it slows below ¢. This process becomes noticeable [68] only after
the photon has travelled millions of light years. It is well known [68) that Tolman
described this eventuality many years ago, and coined the term tired light. More
contemporary texts such as that of Itzykson and Zuber also discuss photons with finite
mass [23]. It will be shown later in this volume that this photon implies the existence

of the B® field if one charge is situated at the origin and the other at the tip of the
rotating electric or magnetic field vector of the classical electromagnetic field.

2.2 THE PAULI EQUATION AND OTHER LIMITS OF THE DIRAC
EQUATION

By reducing the Dirac equation to the Pauli equation [22], it can be shown that the

effect of A x A* on a fermion is indistinguishable in general from that of a magnetic

field, provided that the latter is interpreted properly as discussed in Sec. 2.1. The Pauli

equation is obtained from the Dirac equation (23) as follows, in a non-relativistic

approximation. Various limits of the Pauli equation are then discussed in this section.
We consider as starting point equation (23), with

En = pyc, (106)

and consider that A4, =A, is the real, scalar, amplitude of the time-like component of
the four-vector A,. In the transverse gauge this amplitude is zero by assertion, but
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more generally it is non-zero, as used by Dirac [26]. Therefore Eq. (23) becomes

((En - mc? + ecA,) (En + mc? + ecA,) - c*(p + eA*) - (p + eA) (107)

-ec’ho-B*-ie*c’c-A*x Ay =0,

in which B * is the oscillating magnetic component of the classical electromagnetic field,
and in which A x A* is phase free. This is a Dirac wave equation in which the eigen-
function is a four-spinor, . It reduces to a Pauli equation in the non-relativistic limit

in which En ~ mc?, with the additional condition,

(En + mc?) > ecA,, (108)

As we have seen, this condition is exact if we choose to work in the transverse gauge,
but then we introduce difficulties in canonical quantization and energy conservation as

discussed already. .
In the limit (108) we obtain the Pauli wave equation in the form

(En ~mcHy ~ (i{p +eA*) - (p + eA) - ecA,
om (109)

+-2 (vo-B*+ieac-A*xA)|y.
2m

This is a wave equation in a four-spinor ¢, whose two two-spinor components are
interchangeable by parity inversion [2,22—25]. It is similar in structure to the
Schrodinger wave equation and its four components are Klein-Gordon equations
[22—25]. The equation (109) differs from the standard Pauli equation only in one

respect, that A is complex. Since A is accepted as complex in the literature [47], our
new term ieo - A* x A will lead in theory to novel resonance effects described later in

this chapter. _
Equation (109) is a Pauli equation for one fermion in a circularly polarized

electromagnetic field, and as such, it is able to describe both the intrinsic spin (25) and

orbital (L) angular momentum of the electron through the well known factor L +2S§ .
There are several limits of the Pauli equation which are well discussed in the standard
texts [22—25}, but which are considered here in order to explore the effect of the new

magnetic term in o - A xA*. The positive energy solutions of the terms
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(En-mc)y = (i(p +eA‘)‘(p+eA)-ecA0)¢, (110)

give the classical Hamiltonian as an expectation value of this wave equation

H,_ - -2—1—{p+eA‘)-(p+eA)—ecAo. (i1
m

The classical result (111) identifies ecA, as a kinetic energy and shows that the vector

potentials A and A* also contribute to the kinetic energy. The rest energy mc? has
been incorporated into the factor two of the classical Eq. (111) in our non-relativistic
limit. The first kinetic energy term in Eq. (111) can be expanded as

H, = 51‘(1' ‘p+e’A*-A+e(p-A+A*-p)), 112)
m

where p is the initial, non-relativistic, fermion linear momentum. Averaging over
many cycles of the field leaves

1 .
(Hi) = 5-(p P +e?A"4), (113)

an equation which has the same dynamical content as the equation first derived by
Volkow in 1935, using a different route [22], of the Dirac electron in a linearly
polarized plane wave. In Volkow’s notation 122],

A7 =A*A =AD .40 (114)

This checks that our own derivation of the Pauli equation and its above classical limit
is consistent with literature derivations. The latter, however, miss the key new term in
A x A*, which in our Pauli equation (109) multiplies the Pauli spinor and therefore
gives rise to rwo energy states between which resonance can be made to occur. This
is a perfectly general result that applies to all types of fermions, including nucleons, so

that A xA* can cause nuclear resonance as well as electron resonance.
If we reinstate this term into Eq. (110),
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(En -mc?)y = 21 (p -p+e*(A-A*-ic-A xA')—ecAo)qJ. (115)

m

The term in B* has been left out because it vanishes after averaging over many cycles

of the field [47], B* being a classical plane wave component, and not a static magnetic
field as in the standard derivations of the anomalous Zeeman effect [22—25]. The term

in A x A*, however, is non-zero after averaging over many field cycles, simply because
it is free of the electromagnetic phase [1,2]. Equation (2) of Chap. 1 shows that it is

directly proportional to a new type of magnetic field, B® . Using Eq. (2) reduces Eq.
(115) to a new type of Pauli equation [22],

2
(En -mc?)§ = 2—;1 P+ ?e”—lﬁo") ‘BO* + 2£n_nA ‘At -ecAy |y,

(116)

in which the Evans-Vigier field, B® | is the magnetic field.

Obviously, B® in this equation must be interpreted as in Eq. (2), and Table 1
defines the condition under which this interpretation is applicable. The Pauli equation
(116) has been obtained from the Dirac equation (23), in which the standard property
was used that A is complex [47] in general. The standard Pauli equation can be
reduced [22] to the form,

(En - mc*)y = (ip -p—L(L+2S)-B—ecAO)¢, 117
2m 2m
in which B is the standard static magnetic field, where L denotes the electron’s orbital

angular momentum, a classical concept, and in which 2§ denotes its spin angular

momentum with § defined as /2. It is well known that 2§ does not appear in
classical physics. The reduction of Eq. (116) to this general form can be achieved with
the Hamilton-Jacobi formalism of Chap. 12 of Vol. 1, a formalism which allows the
calculation of the orbital angular momentum of the fermion through the classical

L, = Xp, - Ypy. (118)

Here p is the linear momentum and r (:= Xi + Yj + Zk) the position of the fermion in
three dimensional space. The momentum components are given by [1],
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py = eA® cos wt, p, = -eAQ sin wt, (119)
and the position components by
X = _ecA(O) sin wt, Y = -5 40 ¢os wt, (120)
Yo Y
where
y2 1= m%? + %47, (121)

is the relativistic factor. In the non-relativistic limit [1,54],

Yy - mc, (122)

and the angular momentum of the fermion in the field is

e24 02
.= ) (123)
mne
| Incorporating this into the Pauli equation (116) gives in the limit Eq. (122),
| Wy - [Lpp+l(l+a® e®oL,|y. (124)
2m 2

The physical meaning of this equation is found through comparison with the work of
Talin er al. [54], whereupon it becomes clear that the term in wL,/2 describes the
inverse Faraday effect [1,2] for one fermion. Talin ez al. [54] left out of consideration
the spinor term in (1/2) 6®* - ¢® w L, because the conjugate product A® x A® was
unconsidered in their classical theory. The quantum relativistic theory developed here
for the first time reveals the existence of the spinor term.

If we use the definition (2) for the field B® we obtain

B

: L, - % . BO = Be®, (125)

é
m

i.e., the angular momentum of the fermion is proportional directly to B®. The final
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form of the Pauli equation is therefore

Wy - _l_p P+ h-(1+ 0D - e®B, |y, (126)
2m 2m

which shows that the Evans-Vigier field is responsible for the inverse Faraday effect,
and for a novel, as yet undetected effect due to the fermion’s intrinsic spin. The
following sections develop resonance theory based on the existence of this new term.
We shall see that in theory, this term makes conventional NMR and ESR obsolete,

because the A® x A@ property of a radio frequency field can be substituted for the
static magnetic field of a permanent magnet, one of the most costly parts of a
contemporary NMR spectrometer.

It should be noted that despite the presence of the Dirac constant in Eq. (126),

the B® field has been defined as proportional to the inverse of %, so the all important

new term in " is, overall, independent of %. It is not classical, however, because
spinors do not appear in the classical understanding [54] of the inverse Faraday effect.
This term is new to physics, and has many interesting properties, theoretical and
practical.

2.3 RESONANCE EQUATIONS IN NOVEL NMR AND ESR
SPECTROSCOPIES

Equation (115) shows that the intrinsic spin of a fermion forms an interaction
energy with the optical property A x A*, and that the classical angular momentum of
the fermion also contributes to this fundamental process of field-fermion interaction
through A-A*. The latter process was first described by Talin er al. [54] when
developing the classical theory of the inverse Faraday effect. The conjugate cross
product A x A* is inversely proportional to the square of the field angular frequency

. These properties make it ideal for the development of powerful new resonance
spectroscopies, and in this section the fundamental equations are given of the optical
equivalent of NMR and ESR.

In S.I. units the fundamental equation linking A to a magnetic field B is, in
classical electrodynamics [47],

B =VxA. (127)

So if A is a plane wave in vacuo then so is B (and its electric counterpart E). If the
plane wave A is a solution of the vacuum d’Alembert equation then it may be written

Resonance Equations in NMR & ESR 35

as

© .
AD 40 _ AT(ii +j)e®. (128)
2

From Eq. (127), the plane wave B is

0) ,
Wa0 - BTG jei, (129)
c 3

BD - p®+ _

and using the classical vacuum Maxwell equation, the plane wave E is

©) .
ED = EO= _ ET(i_l:’-)ekb_ (130)
2

Here ¢ is the electromagnetic phase [1,2], A®?, B® and E© are scalar amplitudes,
and i and j are unit Cartesian vectors in X and Y, perpendicular to the propagation
direction Z of the wave. The following key relations then follow using elementary
algebra,

| o

AD L AD zzB“)xB‘” - %Ea)an)’ (131)
w

€

and show that the product A® x A® js proportional to B® x B® divided by the

square of the angular frequency. Expressing B x B® in terms of beam intensity or
power density (I in W m?)

BWx B® - (*op,00 (132)
c

where p, is the vacuum permeability in S.I. (Chap. 1).

The basis of the resonance phenomenon to be developed here is that a probe
photon he,  at a resonance angular frequency ,. can be absorbed under the
resonance condition [71],
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2 2p02
Mo = L1~ (-1)), (133)
2mw?

defined by a transition from the negative to positive states of the spinor o®. This
process is precisely analogous to ordinary optical absorption, in which terms NMR is
a radio frequency spectroscopy, and ESR a microwave spectroscopy. The probe

resonance frequency (f,,,) in this theory is therefore

fo- Ores _ ezl‘oc I (134)
res 2nhm | o2

and is inversely proportional to the square of the angular frequency ® of the circularly
polarized, pump electromagnetic field which takes the place of the superconducting
magnet of conventional NMR or ESR [71,27—31].

For 'H (proton) resonance the result (134) is adjusted empirically in our
development for the experimentally different Land€ factors of the proton and electron
[71}, respectively 5.5857 and 2.002. A more complete theory must rest on the internal
structure of the proton, and similarly for other fermions whose Landé factors differ
from that of the electron. In principle the theory developed here gives rise to a means
of investigating nuclear properties using readily available radio frequency generators
instead of magnets.

For proton resonance our final equation is

2
_ (55857 uoc)i 1530« 1025%, (135)

Ores ( 2.002h 2
R m 'R ®

and some data from this equation are given in Table 2, which shows that it becomes
possible in theory to practice NMR at much greater resolution than at present using
much higher resonance frequencies. The latter can easily be chosen at will by changing

the power density of the radiation being used to generate A® x A® . The relative
separation between chemically shifted resonance lines [27—31,71] becomes much
greater at, say, visible frequencies than the radio frequencies accessible in contemporary
apparatus [27—31], and so the instrumental resolution is increased dramatically. This
is the major advantage of our technique in chemical physics, in which contemporary
NMR is already used extensively. In ESR the same overall advantage obtains, the
equivalent of equation (135) becomes

o, = 1007 x 108-L, (136)
(1)2

Resonance Equatior

TABLE 2

Resonance Frequencies from Equation (135)

Pump Frequency B® Resonance Frequency
5,000 cm™ (visible) 64.5 nT 0.28 Hz

500 cm’! (infra-red) 6.45 uT 28.0 Hz

1.8 GHz (microwave) 448 T 1.8 GHz"

1.0 GHz (microwave) 1.45 kT 6.18 GHz

0.1 GHz (r.f./micr.) 145 kT 20.6 cm™ ?

10.0 MHz (r.f.) 14.5 MT 2,060 cm™ ®

1.0 MHz (r.f.) 1.45 GT 206,000 cm™ ©

" auto-resonance, at which the resonance frequency is the same as the applied field frequency
* far infra-red

® infra-red

¢ ultra-violet

and it is possible, in principle, to practice ESR without magnets at any convenient
frequency, say in the visible. In this design the probe radiation can be broad band
radiation from the source of a contemporary Fourier transform infra-red spectrometer
[40]. The spectrum picked up by the interferometer is then the ESR (or NMR)
spectrum, giving a great resolution advantage over contemporary NMR spectra
laboriously gathered in the radio frequency range. Fine details of NMR and ESR
spectra, currently obscured by lack of resolution, become easily observable in theory

using the interaction energy between A® x A@ and the third Pauli spinor ¢®*. This
novel term is the key that nature provides through fundamental topology [1,2,22].

The magnetic field in Table 2 is calculated directly from Eq. (2) expressed in terms
of field intensity and frequency,

B® - 2L Lo - 5723 107 L - (137)

h wz @

The flux density in tesla from this equation is tabulated for various frequencies for an
illustrative power density I of ten watts per square centimeter (10° W m?). At visible
frequencies it is in the nanotesla range, ten thousand times weaker than the Earth’s
magnetic field. This produces NMR resonance in the hertz range (Table 2), roughly the
same as some experimental data obtained by Warren et al. [20], data which support the
general validity of our simple one fermion theory.

For a 1.0 GHz pump field (by which term we mean the field that produces

AD « A @) the magnetic field defined in Eq. (2) is in the kilotesla range. A 10 MHz
pump field of intensity 10 watts per square centimeter produces NMR resonance in the
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infra red, in which range it can be picked up in principle by the probe field of an
ordinary Fourier transform infra red (FT IR) spectrometer. If this advantage can be
realized in practice it would make contemporary NMR obsolete in the sense that
expensive superconducting magnets would no longer be needed, and it would be possible
to pick up the nucleon resonance with ordinary absorption spectroscopy. As we have
seen, these major developments in practice are the result of the Dirac equation, i.e., of
rigorous relativistic quantum theory based on the fundamental principles of relativity and
quantum mechanics. These principles have been known and used for over sixty years,

our contribution has been to use a complex A instead of a real A, and to realize that

the spinor interacts with A xA*.

There are other major advantages of the new resonance technique which can be
sketched using simple Maxwell-Boltzmann statistics as follows. If the relevant energy
of interaction of field and fermion is taken to be, from Eq. (115)

2
AEn(m) = En(m + 1) - En(m) = ~ ""Ciz, (138)
m o

then the relevant Maxwell-Boltzmann exponential is

exp( - AE| _ | _AEn (139)
kT kT
and the population ratio [75] of the up and down states of the spinor is
2
N(m) | _ € #d (140)

N(m +1) mkT

For a radio frequency-microwave range field of intensity 100 watts per square
centimeter at 100 MHz at 293 K, this ratio is 0.87, indicating a 13% difference in spin
population between the two fermion states. This compares with about seven parts per
million for a contemporary NMR instrument at 293 K, 1.0 tesla magnet. An elementary
population analysis reveals another advantage of our new technique, which for want of
a more evocative description we refer to as radio frequency NMR (RF-NMR). The
advantage is that the applied radio frequency field does not have to be manufactured to
any great degree of homogeneity because we can tolerate fluctuations in the 10% range.

In summary therefore, the Dirac equation of one fermion (a proton or an electron
for example) in a classical electromagnetic field produces a powerful new spectroscopy
which if developed makes obsolete our contemporary NMR and ESR technology. It is
convenient to understand the magnetic nature of the new phenomenon through the
Evans-Vigier field defined in equation (2) of Chap 1. It is equally straightforward to

understand it in terms of the product A x A*, which forms an interaction energy with

Resonance Equation

the intrinsic fermion spin, a famous concept in twentieth century physics. In the next
chapter we discuss the impact of this term on the Aharonov-Bohm effects, which typify
the advances being made in contemporary fundamental field theory.
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of A x A* by the Dirac equation for a quantized fermion matter wave interacting with
a classical electromagnetic wave, and find that in theory it does, being proportional to 1
and inversely proportional to the cube of the angular frequency, w, of the electromag-

netic field used to generate A x A*. We continue to maintain a classical description
of the field, but there are undoubtedly effects of this kind due to quantum field theory.
Perhaps there are non-classical effects akin to light squeezing which require careful
statistical development [73].

3.1 VACUUM TOPOLOGY NEEDED FOR AN OAB EFFECT

The B® field manifests itself in interaction with matter as described by the Dirac
equation and contemporary developments thereof [22—25]. The equation is fairly
simple in structure and can be solved exactly (Chaps. 1 and 2) when matter is
represented by a single fermion, more accurately the de Broglie matter wave of a single

fermion. The existence of an OAB effect due to B® would mean that the group of

vacuum electromagnetism is more naturally O(3), because B® is longitudinal, i.e., is
an axial vector in the axis of propagation. This makes the transverse gauge seem to be
an unnatural assertion of classical electrodynamic theory {47] rather than a property of
nature itself. It is clearer to think of electromagnetic waves propagating in vacuo as

producing a quantized flux vortex [23], which is identifiable with B® [1,2]; a vortex
which is stabilized by the doubly connected vacuum topology of the group space of O(3)

[1,2,23]. The interaction of B® with one fermion then takes place as in Table 1,
which defines limits which again emerge from the Dirac equation itself. Under

experimentally accessible conditions the analysis summarized in Table 1 shows that B®
must be interpreted through Eq. (2), i.e., through the conjugate cross product A x A *.

The latter therefore generates an optical Aharonov-Bohm effect (OAB) if B® is a
physical magnetic field.
This is an understanding based on relativistic quantum theory and is an advance on

the heuristic theory of B® pursued in Vol. 1 and 2. That theory must be interpreted
in appropriate limits of the Dirac equation and is the high field limit, the applied
electromagnetic field is of such very high intensity as to accelerate the fermion
infinitesimally close to the speed of light. In the opposite case it has now become clear
that Eq. (2) follows from the Dirac equation in the low field limit, and the Dirac
equation must be solved under the circumstances appropriate to the sample being used.
For example, if the sample has no free electron spin, Eq. (2) is not directly applicable.
In such circumstances a non-relativistic, semi-classical theory such as that of WoZniak,
Evans and Wagnitre [42] must be developed with the Dirac equation, a completely non-
trivial task, even for the fermions of the hydrogen atom. The most appropriate methods
to use are based on RF-NMR as developed in the previous chapter. Experiments such
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as those of Rikken [74], carried out under inappropriate circumstances, will, unsur-
prisingly, produce a negative result. To interpret such a result as implying the non-

existence of B® implies a rejection of the Dirac equation itself.

Vacuum topology is now thought to be highly non-trivial, and to be responsible for
the existence of the various Aharonov-Bohm effects now known [32—37]. They can
exist only in certain types of group space, such as the Abelian U(1) or non-Abelian
0O(3). They cannot exist in the SU(2) group space because the latter is singly connected.
The topological arguments to date have been applied to the original Aharonov-Bohm
effect, and have assumed that the group space of vacuum electromagnetism is the
Abelian U(1) = O(2). In Vol. 2 |2] however, we have argued that electromagnetism
in vacuo exists in the non-Abelian O(3) group space, because of the existence in vacuo

of the new field B®. Equation (2) was derived |2] using O(3) gauge theory, and e
interpreted in vacuo as a constant of this non-Abelian gauge theory, meaning that the

momentum magnitude of a photon in the vacuum is both hx and eA”. The vacuum
Maxwell equations are written down {47] with source terms missing, the charge and
current being located infinitely far away from the field at a given point in phase space.
Despite this, the origin of the fields (an oscillating charge at infinity) betrays itself in

the € negative symmetry [1] of the amplitudes B© and E©, so charge is, after all,
present in the vacuum Maxwell equations. This is a consequence of the conservation
of elementary charge, e, i.e., of Noether’s theorem and Ampere’s hypothesis.
Conservation of charge is the origin of the minimal prescription [22—25] through
type two gauge invariance, and the minimal prescription defines the additional energy-
momentum, e, acquired by a charged particle in a classical field. If eA is such as

to accelerate the fermion infinitesimally close to ¢, the fermion becomes essentially
indistinguishable from a photon, and F.A.P.P., complete transfer of energy-momentum
has occurred from field to fermion. If so, the momentum acquired by the fermion must

be both eA and »x. This allows the B® field in vacuo to be defined in two ways

B®* - —i%A“)xA‘z) - —ﬁB(l)me, (141)

and this definition is the high field limit. It is easily checked that the identity in Eq.
(141) produces

eA® = ¥, (142)

which was derived independently in Vol. 2 [2] as the charge quantization condition. It
is a high field limit because the field intensity needed to accelerate a fermion
infinitesimally close to the speed of light is enormous. It demonstrates clearly however
that e can be a field property, because it is simply the charge on the fermion accelerated

infinitesimally close to ¢. Under these conditions the transverse gauge does not apply,
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as argued in Chaps. 1 and 2, because the highly accelerated fermion must have a time-
like component in its energy-momentum four-vector, i.e., must have energy as well as
momentum, and part of this energy must be its original rest energy, an invariant of the
Poincaré group for a given fermion mass. In other words e4, must be a physical ener-
gy-momentum, as indicated by the Aharonov-Bohm effects [32—37].

In the opposite limit (IT) of Table 1, when the electromagnetic field’s intensity is

such that the initial fermion energy En + mc? is much greater than ecA,, the Dirac

equation shows that B® must be interpreted as Eq. (2), because the fermion energy-
momentum does not begin to resemble that of a photon. In this limit, the identity in
Eq. (141) does not apply, and the transverse gauge can be used as an aid to calculation,

but not, in our opinion, as anything that is physically meaningful. If e, is physical
in nature, then in general its time-like component is not zero, as asserted in the
transverse gauge. In general however, when a photon collides with a fermion as in the

Compton effect [45] a fraction of %x is transferred in an inelastic collision, and this can
always be put equal to eA. There then occurs the well known Compton frequency

shift, indicating a loss of momentum by the photon. This is a gain of eA by the
fermion according to the minimal prescription. In this sense, the charge quantization
condition always applies because it is a consequence of Noether’s theorem and the

quantum hypothesis. Therefore B® as defined by Eq. (2) in this situation is a fraction

of the free space B®.
The simplest theory of electron-photon collision [45] can be used to illustrate the
above discussion with equations. Consider the traditionally massless photon colliding

with an initially stationary electron of rest emergy mc?. The electron acquires
1

momentum (p) and its final energy is [45] (p%c? + m%c*)? in the observer’s frame of
reference. The change in energy of the electron is, according to the minimal

prescription [1,2,22—25], ecA,. Therefore

1
ecA, = (p%c? + m*c*)* - mc? (143)

is the energy gained by the electron, where

p=eA, pl=e’A-A" (144)

The energy lost by the photon is the Compton frequency shift in its simplest form,
%(mi— mf). So,

ecA, = hAw = h(m,. - mf), (145)
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where o; and o, are the initial and final angular frequencies. Conservation of energy
therefore leads to

1
o = (e2c?A-A* +m%*)? - mc?, (146)

which, for the electron, is a classical but relativistic equation with no spinors. The left
hand side is a quantum mechanical representation of the change in electromagnetic
energy, whereas the right hand side contains a classical representation of the same thing
through the minimal prescription. Equation (146) is therefore an expression of the
equivalence principal, as well as the result of conservation of energy.

The initial electron momentum is zero and its final momentum is p = eA. The
momentum gained by the electron is the same as that lost by the photon, h(xi - K!).
Conservation of momentum leads to

hAK := h(k, - %,) = eA. (147)

Physically, this equation means that the (classical) electron is put into a helical trajectory
[75] by a travelling, circularly polarized, plane wave. The Lorentz force on the electron
is

F = ¢(E+vxB), (148)
where
O0A
E = -—— - cVA,, 149
ot 0 (149)

is the rotating electric field component of the plane wave and where

B = VxA, (150)

is the rotating magnetic field component. Here v is the velocity of the electron in the
field. The transverse momentum, hx, of the photon is used on the left hand side of Eq.

(14.7) because eA is the classical transverse momentum of the electron in its helical
trajectory. Again, the intrinsic spin of the electron has not been considered in Eq.
147).

Equation (142) is recovered from Eq. (147) if L% is zero, and where the amplitude
of x, is the scalar x = w/c of the free photon. The scalar magnitude A® in Eq. (142)
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A _ (A-A*). (151)

In these calculations, A, E and B are complex plane waves of the circularly polarized
classical field in vacuo, given by Egs. (128) to (130) respectively. Equation (142) is
therefore the limit in which all the photon’s transverse momentum is given to the
electron. If so, the free photon has also lost all its energy, the angular frequency of the
incoming field has been changed from ®, to 0, and the photon (the field’s quantum of
energy) has been lost entirely, i.e., annihilated. In this limit Eq. (146) becomes

1
hw = "h(,)i = (eZCZA A+ m2c4)2 _ mcz’ (152)
and this can be consistent with Eq. (142) if and only if
Ay~ A9 = (A AP 5> T2 (153)

e

This is limit IT1 of Table 1 when we make the theory more precise through use of the
Dirac equation of an electronic matter wave interacting with a classical electromagnetic
wave. Obviously, Eq. (141) applies only in limit (153), but nevertheless shows that

B® emerges from the Dirac equation in this limit in the form

BO* - —%B“) x B®, (154)
B

The B® field is therefore fundamental in nature [1,2]. The electromagnetic A, of the
plane wave always interacts with one fermion as if the electromagnetic plane wave were
a magnetic field B®. Since this is a fundamental interaction between field and
fundamental particle, it occurs in matter such as atoms and molecules.

Using A@ = ¢B9/w, Eq. (153) becomes

BO > M, (155)
e

which is Eq. (411) of Vol. 1 [1], obtained from an independent analysis based on the
classical but relativistic Hamilton-Jacobi equation of the classical electron in the field.
Equation (411) of Vol. 1 becomes recognizable in its quantized form as limit T of
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Table 1. Using I = cB®?%p, shows that Eq. (155) is equivalent to

2
I> | |02 = 772 x 1062, (156)
Koe”

for the electron. For the proton

I > 0.026 w2 (157)

We refer to these as equations of the strong field limit. For a visible frequency laser
as used by Rikken [74], with @ = 1.77 x 10" rad s (10,640 cm™), Eq. (156) gives

I>24x102 Wm2. (158)

The peak intensity used in the experiment [74] was only 5.5 x 10> Wm ™ and the
sample used was benzene, with no free electrons. Under these conditions, Eq. (141)
does not apply because: 1) the field intensity is at least ten orders of magnitude too low;
2) there are no free electrons.

In the opposite limit, limit II of Table 1, or Eq. (414) of Vol. 1 [1], the field

energy ecA, is much smaller than the rest energy mc? of the fermion. In the transverse
gauge it is asserted [47] that A, is zero, in which case Eq. (145) shows that there can
be no Compton effect, contrary to experiment [71]. In the limit A, - O, however,
0~ @, and there can be a small but non-zero Compton shift. From Eq. (146) in this

limit,

mc? > e?A-A", (159)

which in terms of intensity becomes

I< [”"2 ]w2. (160)

|J.062

We refer to this, purely for convenience, as the weak field limit. A glance at Eq. (160)
shows that most, if not all, experiments in magneto-optics to date have been carried out

well within the weak field limit, under which B® is defined through Eq. (2) as a result
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of the Dirac equation. Even in this limit, however, the experimental results by Rikken
[74] cannot be compared with Eq. (1), because the sample used, benzene, has no free
electron spin. There is however, an optical (B term) Faraday effect in benzene due to

perturbation of the polarizability by A x A™ |76—78]. The experiment failed to detect
this effect, but it had been detected already by Flytzannis er al. {79] under more
appropriate conditions, and was first predicted by Kielich [80]. Our demonstration of

the origins of the fundamentally non-zero A x A* in relativity (Chaps. 1 and 2) shows

the incorrectness of any claim that B® | as defined by Eq. (2), is zero. The only way
to sustain such a view is to assert, arbitrarily, that the left and right hand sides of Eq.
(2) cannot be identified. There is no known symmetry argument or dimensionality
argument that supports this assertion, and no known experimental data.

We have therefore illustrated the emergence of the condition eA® = ¥x in the
strong field limit. This relation was obtained independently in Vol. 2 [2] from O(3)
gauge theory. The primary theme of this section is to show that vacuum topology [23]
allows the existence of the OAB in the O(3) group space as well as that of U(1). In
order for any Aharonov-Bohm effect to exist, vacuum topology must define an
appropriate group space, a space that cannot be singly connected [23]. The fundamental
topological arguments have been applied to date mainly to the original Aharonov-Bohm
effect [23,32—37] and have assumed that the group space of vacuum electromagnetism
is the Abelian U(1) = O(2). In both the weak and strong field limits, however, there

exists a magnetic field, B®, perpendicular to the Abelian plane defining A® and A® .
Self-consistently, therefore, relations such as Eq. (2) must be considered in group theory
as being non-Abelian, because they contain three space indices, (1), (2) and (3).
Proceeding on this basis, Eq. (2) was derived in Vol. 2 |2] from general O(3) gauge
theory [23], with ideas adapted from general relativity.

Within the O(3) group space in vacuo the field equations of Evans and Vigier [1,2]

supplement the Maxwell equations in vacuo with terms quadratic in Au , of which Eq.
(2) is an example. The theory [2] shows that A® x A® is gauge invariant within the
O(3) group space. Within the U(1) = O(2) group space [23] A® x A® is still gauge
invariant but is not put equal to a magnetic field in axis (3). This is a key conceptual
dlfferepce betyveen Evans-Vigier and Maxwell electrodynamics in vacuo, and leads to
many interesting ramifications in the theory of finite photon mass [1,2]. It also has
consequences in the elementary (i.e., fundamental) nature of charge, e, because in the
0(3) gauge € can be a field property. We have illustrated this by accelerating a
:harged_ fermion infinitesimally close to the speed of light, whereupon it takes the
properties of a photon, F.A.P.P. This idea has been neatly illustrated by Jackson [47]

n classical electrodynamics, and can be traced [81] to the time of Bragg, Bateman and
contemporaries.

In the conventional U(1) gauge theory of electromagnetism in vacuo [22—25], there

s also to be expected an OAB, because A x A* and A - A* exist in U(1) as well as
0(3). As we have shown, however, the U(1) group space does not allow the left and
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right hand sides of Eq. (2) to be identified. This is because fields are defined in a plane

in U(1), and B® is a field that is obviously not in this plane, being perpendicular to
it. However, there is nothing in fundamental symmetry [1] or dimensionality that
prohibits the identity in Eq. (2), which asserts, quite naturally, that magneto-optical
effects are magnetic in nature. The equation (2) emerges rigorously as a field equation
[2] in the group space O(3) and so B® is a property of this group space. Experimen-
tally, the magnetic effect of B® can be distinguished from that of A® x A® in the
strong field limit, because the effect becomes proportional to the square root of I in this
limit, as argued in Vol. 1 and 2 [1,2]. Evidence for photon mass [82] is also evidence
for B® . In the weak field limit, the magnetic effect of B®) must be understood in
terms of A® x A® | and is proportional to beam intensity I, as known experimentally
[16—21]. All magneto-optic experiments to date have been carried out well within the
weak field limit and the I proportionality always found in consequence.

Therefore we expect that the OAB (as yet unobserved) will be due to B® defined
in the weak field limit by Eq. (2) because this is the only experimentally accessible limit
at present. The only consistent way to view a positive result would be to assert that
vacuum electromagnetism is non-Abelian in nature, and described within the O(3) group
space, because Aharonov-Bohm effects are always ascribed to a magnetic field’s vector
potential [32—37]. The theory of vacuum topology [23] must allow this result
therefore.  Topological arguments are existence arguments, giving very general
conditions which must be fulfilled in order that solutions similar to B®, such as
solitons or stable vortices 23] can exist. Vacuum topology is thought to set the stage
upon which any subsequent argument must be played out. They show for example [23]
that string-like solutions to spontaneously broken gauge theories [2] cannot exist in a

group space such as SU(2) because w($?) is trivial, where the group space of SU(2)
is §* and where , is the first homotopy group. The mapping =, ($?) is trivial because
every closed curve S' on §* may be shrunk to a point: boundary conditions may be
shrunk to a trivial constant condition ¢ = const., and no stable vortices [23] exist. [t
follows that no field equations can produce the stable vortex B® within the group space

of SU(2); and conversely if B® exists in vacuo, the group space needed to sustain it
cannot be that of SU(2).

The O(3) group on the other hand is doubly connected topologically [23]. There
is a 2 : 1 mapping of SU(2) on to O(3), and the group space of O(3) is obtained from
that of SU(2) by identifying opposite points on the three space, $*, since these points
correspond to the same O(3) transformation. The group space of O(3) being doubly
connected, there are two types of closed path !, those homotopic to a point and those
homotopic to a line. The O(3) group space sustains, in consequence, one non-trivial,
stable, vortex [23], which in the Evans-Vigier field equations becomes [2] B® . The

O(3) group space is a vacuum group space, so B® is sustained topologically in vacuo.
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The vacuum in this contemporary view is a complicated entity, anything but trivial in
nature.

The Evans-Vigier field equations [1,2] are also those of particles, through the de
Broglie principle which is the basis of matter waves [83]. The O(3) group is that of
particles with integral isospin, the SU(2) that of particles with half-integral isospin. In
the field equations of Vol. 1 and 2, the isospin indices are identified with the circular
indices, (1), (2) and (3), of three dimensional space itself. The non-trivial vortex line

sustained by O(3) is B® itself and there is a non-Abelian OAB effect, meaning that

solitons [23] exist in O(3). Therefore the existence and stability of B® is ensured by
the doubly connected O(3) vacuum topology. The particles with integral isospin become
photons with mass, and the Evans-Vigier field equations become equations describing
three dimensional photons with mass, such as the Proca field-particle equation [1,2].

Thus, B® is a solution of the vacuum Proca equation |1,2].

In the conventional U(1) framework, in which photons are asserted to have
identically zero mass, and to propagate in vacuo identically at c, solitons are also
considered to create a vortex line perpendicular {23] to the U(1) plane. This view is

obviously inconsistent with itself if B®, a physical field, can be described in terms of
this vortex line in vacuo. The Lagrangian used conventionally in building up this result
is that of the Higgs model |2,23] with spontaneous symmetry breaking (SSB). It is
structurally identical with the famous Landau-Ginzburg Lagrangian that leads to the

Proca wave equation itself. The soliton flux, if identifiable with B® must be a
quantized flux in vacuo, or in matter must be exemplified by observable quantized flux
lines such as those of Abrikosov in type II superconductors. The same Lagrangian is
used for superconductor and vacuum flux, but it is asserted [23], arbitrarily in our view,

that the superconductor flux (Abrikosov line) exists but the vacuum flux (B®) does not.
Ryder, for example, gets out of this quandary by stating blandly that a superconductor
is not a vacuum [84]. The problem, we suggest, is that fields exist in both media and
must be described consistently in both, especially if we are using the same Lagrangian
to do so.

In summary therefore, the conventional theory, although a flat U(l) theory,
produces the Proca equation, which is the wave equation for a boson with mass. It is
nevertheless asserted that the boson known as the photon is massless identically, an
assertion which is inconsistent with the existence of a stable vortex line in vacuo
perpendicular to the U(1) plane. The O(3) Evans-Vigier field equations in contrast are

free of this logical strain in that they recognize that B® can be an intrinsic component
of vacuum electromagnetism, whatever that may turn out to be in future. Finally, Roy
and Evans [50] have adapted the Dirac condition [48,49] to show that the existence of
photon mass can be reconciled straightforwardly with gauge invariance of the second
kind (which we accept because it is the result of a fundamental conservation law of
physics, the Noether theorem). As described already the Roy-Evans condition leads to
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A 2o ;0 (161)

and this condition can be satisfied by B® in both the high and low field limits. There
appears to be no internal inconsistency in the theory of B® .

3.2 THE ORIGIN OF THE OAB

In Chap. 1 and 2 the Dirac equation was used to show that there is a novel
interaction energy (En,) generated between A® x A® and the intrinsic fermion spin,

represented as usual by a Pauli spinor, ¢®. This interaction produces two energy
levels between which resonance can be made to occur. The energy En, divided by «
has the units of angular momentum, which are also the units of action [1,2]. The
action En,/w divided by % is unitless, and as we shall show, is responsible for the
OAB through a phase shift in the matter wave of a fermion such as an electron. This
phase shift occurs in regions where there is no electromagnetic radiation and no

AV x AP and is due to a gauge transformation of A® x A@ into the structured
vacuum, a vacuum whose topology is not trivial. Accordingly, the expected phase shift

is proportional to I/»® where I is intensity and @ is beam angular frequency,

because En, is proportional to I/ ®? as we have seen. The OAB should therefore be
much more readily observable at low frequencies and depends for its existence on non-

locality in the conjugate product A® x A that defines the Evans-Vigier field in the
accessible weak field limit. Therefore electromagnetic radiation acts at a distance
because of the structure of the vacuum: the OAB is caused by a gauge transformation,
in other words, of the type

AD L AD L y0y A0, 40, yO, (162)

into regions of the vacuum in which the original A® x A® is excluded experimentally.
A narrowly collimated microwave beam, for example, which is circularly polarized and
directed in the shadow of two interfering fermion beams, should produce an OAB due

to the multi-valued (periodic) nature of the gauge transformed A® x A@ i.e., due to

periodicity (23] in x” and x® of Eq. (162). This periodicity is possible only because
the group space of O(3) is doubly-connected: the vacuum topology needed to sustain
B® also sustains an OAB due to B®. Due to its implication of action at a distance
in electromagnetic waves, the observation of the OAB might catalyze work within the
interesting framework of deterministic quantum mechanics proposed by Behm [85] after
discussions with Einstein.
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The original Aharonov-Bohm effect [37] was inferred theoretically from a quantum
relativistic theory, in which action, S, was expressed in terms of A4, for static fields.
[n the Dirac equation, the wave functions are four-spinors which can be described as

plane waves [22—25] with phase exponent exp(S/h) where § is a relativistically
defined action, so a fully relativistic theory of the Aharonov-Bohm effect requires a
description in these terms of the observed phase shift [32—37]. In a simplified view
of the original effect [37], the observable shift in a fringe pattern due to interfering
fermion matter waves is attributed [23] to a change in the phase,

a, - al+%p-r, (163)

where p is the non-relativistic limit of the fermion linear momentum at a point 7 in
three dimensional space. The phase e, is an action or angular momentum divided by

the quantized unit of action or angular momentum, h. The intrinsic angular momentum
(8® = 1h/2)6®) of the fermion does not appear in the picture because S is a
relativistic concept. Reinstating S® produces the spin phase of the fermion

a - 1sor. 0, (164)
%

which exists due to topology. In Eq. (164), the angular momentum S is analogous
with the linear momentum p in Eq. (163), and the coordinate 6® is analogous with the

coordinate r . .
The OAB can now be traced to the effect of a circularly polarized electromagnetic

field on the spin phase o4 of one fermion’s matter wave. Following Talin ef al. [54]
we write the field-fermion interaction energy En, in the form

En, = oJ = 68, (165)

which originates in the conservation laws of angular momentum (J) and energy. The

energy of a free photon is hw by definition, and this is a limit in which J has been
replaced by the quantized unit of angular momentum (or action) of an electromagnetic

or matter wave, the Dirac constant }. In the presence of an electromagnetic field the
spin phase of one fermion is changed to

En, (166)
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which is the action En,/w generated by the field-fermion interaction divided by .
This is the change in energy, En,, caused by fermion-field interaction divided by the

photon hw , the quantized, elementary, unit of electromagnetic or matter-wave energy.
Alternatively the phase change can be viewed as J/%, i.e., as the change in angular
momentum, J, generated by the interaction of the fermion and field divided by %, the
quantized, elementary, unit of electromagnetic or matter-wave angular momentum. It
can be checked that if there is no change in energy or angular momentum, i.e., no
interaction energy or angular momentum, there is no phase shift, and vice-versa. The
OAB therefore requires an interaction between a fermion property and a gauge trans-
Jformed field property if the electromagnetic field is excluded from direct interaction with
the interfering fermion matter waves.
For one fermion, the change in phase is, from Eq. (1),

152
Aag = _ @AW 2D (167)
2myhw

and is proportional to the conjugate product in the weak field limit, or in the transverse
gauge. In the strong field limit this result is modified as discussed in section (3.1).
Finally, the phase change (167) is expressible as

2
Aoy = 5| Pof T (168)
5 2mh | o°

and is proportional to I/ w* as we set out to show. If there is no direct field-fermion

interaction, A® x A® in Eq. (167) must have been gauge transformed from an original
electromagnetic beam. If there is direct field-fermion interaction the field property

A® x A® s used without gauge transformation.

3.3 GAUGE TRANSFORMATION AND THE OAB

Equation (168) shows that a circularly polarized electromagnetic field changes the
spin phase of a fermion by an amount which is proportional to I/ »>. The effect can
be positive or negative depending on the spin state of the fermion. The inverse cubed
dependence on @ means that the OAB should be orders of magnitude greater for a

given I at radio or microwave frequencies than at visible frequencies. The OAB is
inversely proportional to the fermion mass and the lightest accessible fermion, the
electron, should be used experimentally to maximize the effect. Theoretically, the OAB
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also exists for other fermion matter waves, such as those of protons, neutrons and
certain atoms and molecules with net-odd total of protons, neutrons and electrons (e.g.
He but not ‘He). An array of OAB (and AB) effects is possible in principle using
various interfering beams and resonance techniques. Clearly, the simple one fermion
theory will not be adequate in detail for interfering atomic and molecular beams and
must be developed appropriately. The OAB is closely related to RF-NMR and other
magnetic effects of light as described in Chaps. 1 and 2.

In order to demonstrate the OAB experimentally it is necessary to show that the
phase shift occurs in regions where there is no direct field-fermion interaction. The
only physical possibility of an OAB in this experimental configuration is through gauge

transformation. Since A® and A® are both vector potentials of the electromagnetic
field in the complex representation they each undergo, by definition {22—25], type two
gauge transformation as follows,

AD S AD L 4O, 4D, yOy , By (169)

and since the original cross product A® x A® is physical, the gauge transformed cross

product, V@y x V®y . must be such that gauge invariance of the original A® x A®
is maintained. This is analogous with the well known requirement of gauge invariance
in the curl, Vx A, of a physical magnetic field. It is therefore convenient to think of
the OAB as the original AB effect [37] with the magnetic field of that effect replaced

by A® x AP The Evans-Vigier field B® plays this role precisely if defined as in
Eq. (2) in the experimentally accessible weak field limit.

The OAB is therefore an AB effect due to the Evans-Vigier field.

Gauge transformation into the vacuum [23] can therefore be symbolized in exactly
the same way as in the original AB theory, bearing in mind that B of the original

theory is replaced by B® of Eq. (2). The OAB can equally well be understood in
terms of the gauge transformation into the vacuum of the physical conjugate product,
physical because it is known |16—21] to produce physical magneto-optic effects. In
order for an electromagnetic conjugate product (OAB) or a static magnetic field (AB)
to be physical, they must each be gauge invariant. This is the requirement that leads
to non-trivial vacuum topology [23] in both cases. The only contemporary difference
is that the AB has been observed [32—37] while the OAB has not yet been observed.

In the original AB effect [23] gauge transformation into the vacuum can be
summarized by

0 -0+Vy, (170)

because initially there is no magnetic field or vector potential present in the vacuum,
thus O on the left hand side. The right hand side of Eq. (170) symbolizes the fact [23]

that for an AB effect to occur V x Vy must be non-zero in the vacuum. (In the
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vacuum there is no B and no A because B = Vx A by definition.) In order for

V x Vx to be non-zero, x must be periodic as discussed by Ryder [23] and this can
only be so if the vacuum itself possesses a non-trivial topology. In classical electrody-

namics of the pre-AB era, B was physical, and A was mathematical, because it was
thought that the type two gauge transformation,

A - A+Vy, am

changed A to A + Vy but left B unchanged. This assumed implicitly that the
quantity Vx Vy was always zero, implying a trivially structured (or non-structured)
vacuum.

Using a combination of the quantum hypothesis V® := ip®/% and the minimal
prescription p@ := eA® we obtain

VO - yor - L0 172)

|~

and the analogous argument for the OAB can be developed conveniently as follows. We
consider the eigenequations,

vOY - i€A0y  yOx - i€ ADY, (173)
h h
where the wavefunction is
X = ae X i (174)
in which ¢ is the electromagnetic phase [1] itself. Therefore
VOy, x V®yx, = _:_2ng<1) XxAD = AD L AD (175)

and A® x A® js invariant under gauge transformation as required by its physical
nature. This result is consistent with Noether’s theorem [1,2,23] which implies that in-
variance of action under space-time translation or rotation produces conservation of
energy-linear momentum and energy-angular momentum respectively. The action in our
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context is

12
§ =1 _AD 4D . GO
2myw

(176)

and, self-consistently, is invariant under type two gauge transformation if and only

if A® x AD is so invariant. If so, ¥ must be periodic as in Eq. (174), leading again
to the concept of non-trivial vacuum topology as in the AB effect. Furthermore, the

periodicity in ¥ is supplied by the electromagnetic phase itself, and the OAB becomes
a phase shift, which in quantum mechanics is a phase shift in the wave function .
Since § in Eq. (176) is the magnitude of an angular momentum, the OAB is the result

of the necessity for conservation of angular momentum when A® x A® is gauge
transformed into the vacuum. Finally, therefore, if there is no OAB, there can be no
conservation of angular momentum and no Noether theorem. It is very likely on these
grounds that the OAB will be observed experimentally.

3.4 EXPERIMENTAL INVESTIGATIONS OF THE OAB

There are several elegant experimental methods [32—36] now available to detect
the original AB {37] and each can be adapted in principle for the OAB provided the
necessary experimental configuration can be attained in practice. Phase shifts in the
original Aharonov-Bohm effect can be observed with high precision using a Wien filter.
Hasselbach and co-workers [86] have developed very accurate instruments based on
electron interferometry. The Wien filter is a device that uses magnetic and electric
fields mutually perpendicular to interfering electron beam paths. The electric force on
the electron is balanced by the magnetic force when the Wien filter is compensated.
Hasselbach er al. [86] have discussed the role played by the electric and magnetic
Aharonov-Bohm phase shifts in such a device, and have shown that the Aharonov-Bohm
effects are responsible for the experimentally verifiable fact that the fringe system does
not change its appearance with increasing deflection angle. Thus, the original
Aharonov-Bohm quantum phase shifts [37] are responsible for the practical utility of
electron-optical elements. The magnetic field in the conventional Wien filter causes an
Aharonov-Bohm phase shift due to the difference in magnetic flux enclosed by the two
coherent electron beams. Therefore the novel Evans-Vigier field defined in Eq. (2), a
physical magnetic flux density, is expected to produce an OAB if the Wien filter is
modified to accommodate a circularly polarized radio frequency field mutually
perpendicular to the electron beam paths and electric field.

Such an experiment would be of fundamental importance because it would imply
that the group space of the electromagnetic sector is O(3), and not U(1), in contempo-
rary string and superstring theory [2]. The OAB can be understood entirely equivalently

through the conjugate product A® x A® which affects the relativistic spin phase of the
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electron wave function, as discussed already. In the modified Wien filter, the shift in

electronic spin phase caused by A® x A, or equivalently B® | is observable because
it is different for the two interfering electron beams. In other words, the magnetic flux

density B® enclosed by the two interfering electron beams is different, and this flux
density is AY x A® multiplied by -ie/h. Therefore the phase shift per electron due

to A® x A®  Eq. (42), is non-zero and observable after appropriate path integration.

The Wien filter thus modified to take a circularly polarized electromagnetic field
instead of a magnetic field can now be used to detect the OAB. The experimental
method follows the description in Fig (3) of Ref. 86a. Electron wave packets emerge
from two coherent sources and reach the modified Wien filter, in which an electric field
and circularly polarized radio frequency electromagnetic field are arranged mutually
perpendicular to the electron beam baths. In the absence of the modified Wien filter,
an electron fringe pattern is observed which is symmetric about the axis of propagation.
Application of the electric field renders this pattern asymmetric because the two electron
beams traverse different electric field potential regions. The central maximum of the
pattern is shifted off axis, and this effect is exactly equivalent to moving back one of
the sources by n wavelengths. The central axis can be brought back on to the symmetry
axis by application of the magnetic field in the conventional Wien filter, or by switching
on the circularly polarized radio frequency field in the modified Wien filter. This

automatically shows the presence of B® in the radio frequency beam, or equivalently

the presence of AW x A®

An alternative procedure is to take a conventional Wien filter, consisting of crossed
electric and magnetic fields, and to supplement the magnetic field with an additional,
circularly polarized electromagnetic field. The Wien filter is first compensated with the
electric and magnetic fields as usual, but then the r.f. field is applied. The latter should
again make the fringe pattern unsymmetrical, because the total magnetic flux density

being applied has been increased by B® . This effect can be observed in principle with
high precision, because shifts of this kind can be measured to small fractions of a
wavelength [86]. The primary interference pattern in the two electron beams should
also be deflected by the OAB, i.e., the spin phase of the matter wave should be
changed. This is a consequence of Eq. (168) for one electron. As for the electric and
magnetic AB effects [86], the OAB spin phase shift should keep pace exactly with the
path length difference caused by deflection, and the electron fringe system should not
change its appearance with increasing deflection angle caused by the radio frequency
field. In other words, the difference in magnetic flux density, B, enclosed between the
coherent beams compensates the geometric phase shift for every wavelet making up the
wave fronts. The additional path length A caused by the bending of the electron beams
by the additional radio frequency field applied to a compensated Wien filter, and the
corresponding change in phase A/A, where A is the wavelength, are exactly cancelled
by the counteracting OAB effect. With increasing deflection angle therefore there
should be observed no continuous change from bright to dark of a single fringe of the
Pattern with increasing deflection angle caused by the additional r.f. field.
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In order to demonstrate the quantum relativistic nature of the OAB, it is necessary
in addition to these experiments, precise as they are, that resonance can be made to
occur between the two phase states of Eq. (168), negative and positive respectively.

These two states originate in the nature of the Pauli spinor ¢, and this has no counter-
part in classical or non-relativistic quantum physics. A complete appreciation of the
OAB requires therefore a resonance experiment. It has been demonstrated theoretically
in Chaps. 1 and 2 that a circularly polarized radio frequency field produces fermion
resonance akin to NMR and ESR. For an electron, the resonance frequency is

0, = 20¢0, a77)

i.e., is twice the OAB phase shift of Eq. (168) multiplied by the angular frequency of
the resonance causing (pump) field. The resonance frequency for a 100 watt cm?
microwave beam interacting with one electron is at about 150 cm™ in the far infra red,
and detection of this frequency would also be a demonstration of the OAB and of the

Evans-Vigier field B®. A complete appreciation of the OAB therefore requires a
combination of the elegant methods based on the Wien filter [86] and resonance
technique. The latter specifically demonstrates the quantum relativistic origins of the
OAB.

The OAB as proposed in this chapter would allow action at a distance in

electromagnetism, and would signal the existence of the Evans-Vigier field B®. The
Bohm model of quantum mechanics [72] has been much discussed [1—15] as an
alternative to the Copenhagen interpretation, but requires at the outset action at a
distance. The experimental observation of the OAB might go some way towards
explaining action at a distance through vacuum topology, and towards reconciling two
strikingly different interpretations of quantum theory, leading to a deeper understanding

of both. The discovery of the non-zero B® and its implication of non-zero photon
mass is another feature which may become useful in a realist interpretation of quantum
mechanics, or in efforts to reconcile the realist and Copenhagen points of view.

3.5 OBSERVATIONAL CONDITIONS FOR B® IN GENERAL

This chapter has been concerned with the delicate and interesting optical Aharonov-
Bohm effect and outlines the conditions under which experiments should be pursued.
Recently, an experiment [74] has been reported which did not detect the optical Faraday
effect (OFE) [79,80] in liquid benzene. This negative result was used to conclude that
the Evans-Vigier field does not exist [74]. The existence, however, of magneto-optic
effects [16—21] is well supported by data and the OFE had already been observed [79]

under appropriate conditions. The claim that B® does not exist contradicts the Dirac
equation as developed in Chaps. 1 and 2, and seems vanishingly improbable. In this

&
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section a summary is provided of the conditions under which B® interacts with a
fermion in the weak and strong field limits. We hope that this summary will be useful
in defining appropriate experimental conditions.

We have seen in earlier chapters that the interaction of a fermion with a circularly
polarized electromagnetic field is described by the following Dirac equation after -
averaging over many field cycles,

((En - mc? + ecAy )(En + mc? + ecAy) - c*(p + eA*) *(p + €A)

(178)
-ie’c’c-AxA*)y = 0.
In the weak field limit it has been shown that this equation reduces to

2
Wy = (En-mc?) ¢y ~ (;%(A'-A+ia-A‘xA4ecAo))lll (a79)

m

and in the strong field limit it reduces to
Wy - leco- A xAly. (180)

A©

The Evans-Vigier field from Eq. (179) is defined by Eq. (2), and this definition makes

the termin o - A* x A an ordinary Zeeman effect term, with fermion half integral spin

eigenvalue + h/2 as usual. The Evans-Vigier field from the strong field limit (180) is
defined by

B® - i X AxA*=-_‘BxB",

A© B©® (181)

and is fundamental because B, B and B* are fundamental. The concept of B® is
analogous in some ways to that of Poynting’s vector [1—15], another fundamental

vector, and another field cross product. The origin of A x A* however is to be found
in the fquqdmg axioms of special relativity itself — the Einstein equation of motion is
quadratic in energy and momentum, and so therefore is Dirac’s equation of motion.

Assuming only that A is complex in general, so that it is not equal to A”, the
(quadratic) term in A x A * follows from either the Einstein or Dirac equation, and this

term_ defines the Evans-Vigier field B®. The latter is therefore also a consequence of
Special relativity, and being a field, can be observed only by field-matter interaction.
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Equation (2) is transformed into Eq. (181) in the limit,

K

_

A©

e (182)
h

and Eq. (181) applies only when I > 7.72 x 107 w? for the electron in the field or
I > 0.026 »? for the proton in the field. In these limits the momentum magnitude

eA®@ transferred from field to fermion is, F.A.P.P., the momentum magnitude, ?n.<,
of the free photon itself. Under these conditions the photon gives up essentially all its
energy and momentum to the fermion. Its limits of application were first shown in' Ref.
1, Egs. (411) — (414), using the classical but relativistic Hamilton-Jacobi equation.
Rikken [74] based his claim of non-existent B® on an experiment in which the
peak intensity was only 5.5 x 10'> W m™2 at a Nd-YaG frequency of 10,640 cm®
(@ = 1.77 x 10" rad s™). Equations (156) and (157) both show that he would have

been working well within the weak field limit, a limit in which B® must be defined,
according to the Dirac equation, by Eq. (2). His sample (benzene) did not have free
spin, however, so his conditions were entirely inappropriate for comparison with one
fermion theory. Unfortunately, Rikken appears not to have been aware of Ref. 1 or of

any recent reference to work on B®, and interpreted the negative result in terms of Eq.
(181) of the strong field limit as discussed earlier in this chapter. He appears then to
have asserted that B® is zero under all conditions, whereas the precise opposite is
indicated by the Dirac equation. Finally, the emergence of B® from the Dirac
equation means that earlier criticisms [1] of B® based on symmetry and so for.th' are
incorrect if the Dirac equation is accepted as a working hypothesis in relativistic
quantum theory [22—25). The Dirac equation is by no means perfection [22] but for
our purposes it is perfectly adequate.

Y
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In the previous chapter it was shown that in the strong field limit and therefore in

the vacuum, the B® field is defined through an equivalence principle eA® = %k that
describes the complete transfer of photon momentum to fermion momentum in a photon-
fermion collision. In this chapter this relation is developed systematically and a total

of ten forms of B® are derived and tabulated (Table 3). It has been shown in earlier

chapters that the B® field is the fundamental magnetizing field of relativistic magneto-
optics: phenomena such as the inverse and optical Faraday effects the optical Zeeman
effect, the OAB, RF-NMR and related technology, all depend on its existence in the
vacuum. In the strong field limit these phenomena are experimentally proportional to

the square root of beam intensity (I) and the ratio of x to A© goes to the limiting
constant ¢/h. In this condition the fermion has been accelerated infinitesimally near the

speed of light, ¢, so that its charge has become a field property. Based on these
considerations, the fine structure constant can be interpreted classically, and the vector

potential in vacuo, A becomes physically significant.
The existence of B® was first inferred [1—15] from the experimentally verified
existence of the conjugate product, not in the form A x A*, or Bx B*, but in the

form E x E* originally suggested phenomenologically by Pershan [41]. It has been
clear for some time [16—21] that this cross product has magnetic symmetry, but the
conventional viewpoint asserted that this symmetry does not imply the existence of a
physical magnetic field. It is now understood that this view is insupportable because
it would mean that the left and right hand sides of Eq. (2), for example, could not be

equated; or that B® could not appear in the Dirac equation while iA x A */A©® does
appear in the same Dirac equation (Eq. (180)). It is tantamount to asserting that a
physically observable quantity on one side of an equation cannot be equated to a
quantity on the other side of that equation with the same units and symmetry. When
the quantity on the right hand side is a physical observable, that on the left hand side
must be the same observable. The development [1,2] of cyclically symmetric relations
based on the above conjugate products showed, therefore, that they produce in vacuo

a physical and observable magnetic field, B®. It was shortly afterwards realized
[1—15] that these cyclical relations have the same O(3) symmetry [1,2] as rotation
generators (or angular momenta) in three dimensional space, or their equivalents [1,2]

in four dimensional space-time. This reinforced the initial inference that B®, B®
and B® are three physical fields in vacuo. The same symmetry arguments [1,2] show
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that there is no physical E® the cyclical symmetry of the field relations demands,
however, an imaginary iE® whose scalar square modulus E©®? = —i?E® - E® is real
and which can contribute to the total field energy. The fact that there is no real E®
means that there is no free space Faraday induction [1—15], i.e., the time derivative

of B® does not produce the curl of a real E® unless there is a sample present, as in
the inverse Faraday effect. Experiments [87] to date confirm this expectation and the
Dirac equation shows that the fermion spin interacts always with a magnetic field, there
being no interaction term in the imaginary and unphysical electric field that emerges
(Chap. 1) from the same analysis [26]. Finally, this conclusion can be shown to hold
in the classical limit, when the Dirac equation becomes a Hamilton-Jacobi equation
(Chap. 2). As described in earlier chapters, interesting new resonance effects are

expected due to B® . There can be no reasonable doubt, therefore, that B® is a novel
and useful physical magnetic flux density arising from the fundamentals of special
relativity, both in classical and quantum mechanics.

4.1 FERMION ACCELERATED INFINITESIMALLY CLOSE TO ¢
PRODUCES B®

The pre-B® approach to magneto-optical phenomena typified by the inverse
Faraday effect therefore relied on the conjugate product in the form E x E*. This
quantity multiplied by the vacuum permittivity €, has, formally, the units of an electro-
magnetic torque density, Tq,, or torque per unit volume carried by electromagnetic
radiation in vacuo. The torque density is also given by -iB x B*[p,, where p, is the
vacuum permeability, and, as shown in Chap. 7, can be expressed in terms of
wavelength. The quantity c|Tq,| is the antisymmetric part of the tensor of light
intensity, a tensor whose scalar part is

1= SBo2, (183)
Ko

an equation used in Chap. 1 to 3. Similarly, the energy density of the electromagnetic

radiation in vacuo is given by the relation B® - B@/p | and the intensity is ¢ times the
energy density.

The B® field emerges from Tq, as follows:
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Fo p,

BO©

BO - (184)

and, like Tq,, is real and physical. Its existence in vacuo implies that of the magnetic
dipole moment whose origin is rotating charge e,

m® - Lpo (185)

Ko

Similarly, Maxwell’s rotating electric field strength E®(V'm ™) in electromagnetic
radiation propagating through the vacuum can be expressed in terms of the same rotating
electric charge in vacuo,

E® = £ ,0, (186)

(Y]

where dimensionality requires the rotating radius vector, r*’ . The latter is complex in

general because E is complex. This analysis, based on fundamental S.1. units and
definitions, introduces the charge e into electromagnetic radiation in the vacuum, and
shows the origin of the C negative symmetry of the scalar amplitude E@ [1]. It is
therefore possible to describe electromagnetic radiation as a charge rotating around the
origin. The length of »® can be shown as follows to be

ro ooy 2 1o A (_V)lﬂ, (187)

where A is the wavelength of the radiation contained in a volume V', and where e is
the fine structure constant. If V is the radiation volume, it is easily checked that Eq.
§187) is dimensionally and physically consistent in the theory of electrodynamics [47]
n S.1. units. The electromagnetic field propagates in the axis perpendicular to the plane
of the rotating charge, which draws out a helical path at the speed of light in vacuo.
In analogy with the solenoid, this movement produces the magnetic field B® . If an
electron is placed in the rotating E® of an electromagnetic field in the strong field
limit, its classical trajectory would be exactly the same as that of our rotating charge and
would be described by the Hamilton-Jacobi equation of Chap. 12 of Vol. 1 in this limit.
This also leads to the B® field.
Under these conditions we have shown in previous chapters that
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eA© = %, (188) } = eA©,O (195)
where % is a constant which must have the units of angular momentum or action. It can Therefore the first principle of quantum theory, the Light Quantum hypothesis, has

be shown as follows that this definition implies that % must be the Dirac constant, emerged fr(_)m classical thepry in a new way. ‘Tl_lis is a consequence of thinking of an
because it implies the Planck-Einstein condition. The latter is therefore a direct electron being accelerated in the strong field limit infinitesimally close to the speed of

consequence of accelerating an electron in the strong field limit. light ¢, and this point is vividly underlined if we identify r© with x™, the inverse of
From Eq. (186) the scalar magnitude of the rotating Maxwellian E® s the wavevector, which for radiation propagating at ¢ is the quantity ¢/w. The
radius r© is, in this condition, the ratio of the forward and angular velocities of the
E© - € @ (189) radiation. The identification r@ = x™' produces from Eq. (195) the equivalence
eoV' condition (188), i.e.,
. . . . eA©
The classical electromagnetic energy in the volume V is h o= , (196)
LY
En = ¢,E®%V, (190)

which in Vol. 2 [2] we also obtained from O(3) gauge theory of vacuum radiation. In
Chap. 3 we saw that this condition is precisely that required to transform the weak field

where the following definition is used of average volume : solution of the Dirac equation into the strong field solution, in which the fermion is
accelerated infinitesimally near ¢. Equation (196) in Eq. (194) produces, self-consis-
V= deV, (191) tently, the familiar
0 ‘
En = ho, (197)

and so the energy in volume V is expressible in terms of the radius r©@, |

2,02 of the famous Light Quantum hypothesis [88] first proposed heuristically by Planck and

_ 0 _ €
En = eEQr© = 7 (192) | then by Einstein.
Using the usual relation between E© and A, 1,
: 4.2 PHOTON RADIUS AND QUANTUM OF LIGHT ENERGY
© ’
40 - E7 (193) ; Using Eq. (188), with the equation
o ‘
o . ‘ ® = ¢
it is found that e 4 (eo ®? V]e, (198)
En = (AQrO®)o, (194)

the quantum of electromagnetic energy hw is defined as

i.e., the electromagnetic energy is proportional to the electromagnetic angular
Jfrequency, and this is the Planck-Einstein relation provided we make the identity
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2
o = —5 | (199)
eosz

and is proportional to e?. This result can now be expressed in terms of the fine

structure constant [89,90],

2
o« = & , (200)
4mceyh

of quantum electrodynamics. From Eqgs. (199) and (200),

v
“ (201)

and so we arrive at Eq. (187) for the radius of the rotating charge, as we set out to
show. The quantum of light energy is therefore

2
En - ho - @naVpP2E, (202)
€

and becomes expressible in terms of r©@ . The concept of photon radius r© in classical
electrodynamics has linked the Planck-Einstein hypothesis (197) and the new equiva-
lence condition (188), and has shown that the photon, whatever it is, can be produced
by accelerating an electron in the strong field limit. Significantly, Eq. (187) defines the
Thompson radius {91} of the photon, and so the latter, if particulate, has a finite

radius c/w that becomes longer at lower frequency.
This view is consistent with special relativity and Maxwell’s vacuum equations and

is derived by re-expressing the usual transverse fields E® and B® in terms of elemen-
tary charge e, a procedure equivalent to imagining an electron accelerated in the strong
field limit infinitesimally near to ¢ . This procedure resultsin En = ho if h = eA©Q/x.

The quantity eA©@/x is therefore a constant angular momentum, as required, but an
electronic angular momentum of classical electrodynamics. In the quantum theory it is
of course the universally constant angular momentum of one photon, the latter being the

quantum of energy, hw. Provided that we use the new equivalence condition

eA® = %k the Light Quantum hypothesis is a logical outcome of classical electro-
dynamics.

Furthermore, the re-expression of E® as a rotating electric charge translating very
near c results in the field B®, which can be thought of as the outcome of helical
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charge motion. Conversely the B® field drives an electron in a helical trajectory.
This is consistent with the fact that B® from the Dirac equation in the strong field limit
produces the equivalence condition (196), and consistent with the classical analysis given

in Vol. 1 based on the Hamilton-Jacobi equation of e in the electromagnetic field.
The usual idea of a photon as being uncharged and therefore its own anti-particle
is shown by Eq. (202) to have the narrowest of meanings. The photon can now be

thought of as a classical amount of energy proportional to the square of e, and is not
uncharged. The equivalence condition (196) shows that the origin of the Dirac
constant % is the electronic charge e multiplied by A©/x, where A is within a
constant ¢ the scalar potential of the classical wave in the strong field limit. Re-
expressing A@ through Eq. (199) leads to Eq. (201), which produces the fine structure
constant of quantum electrodynamics in the form of a simple ratio of volumes, the ratio

of Vito VO = (4/3)nr® the Thompson sphere. The fine structure constant is

(203)

vV
@ = =-—.
Yo

[SSRI

Equation (187) shows that the magnitude of the classical Maxwellian wavevector is
defined by the volume ¥V through

‘- (41; « )‘/3’ (204)

and because o is a universal constant [2,22—25], the de Broglie photon momentum
becomes

1/3
p = hie = 411:(!?13 _ 82?12 113‘ (205)
vV €cV

The Planck-Einstein photon therefore becomes expressible as

2,2 2\1/3

En = ho = tke = |[EC| . (206)
€V

These equations show that the quantum of radiation energy hw and the quantum

of radiation momentum, %k, are both defined in terms only of ¥V and the universal fine

structure constant « . This is consistent with the fact that they are fundamental quanta
of energy and momentum, and with the fact that the magnitudes of these quanta vary
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only with the volume V introduced in Eq. (186). On the most fundamental level in this
Maxwellian theory, everything depends ultimately on e. In generalized gauge theory
[2], from which the equivalence condition (188) emerges, e simultaneously plays the
role of the elementary charge and a gauge scaling constant. Therefore e can be thought
of as being topological in nature, so that an angular momentum such as h becomes
understandable in terms of a geometrical entity, e, an elementary geometrical measure
of the known universe. In electromagnetic radiation in the vacuum (or free space), e

becomes subsumed into the definition of E® through the radius »® as in Eq. (186).
The enigmatic photon, if it is a particle, must always have a finite radius.

The mass of this particle [1,2], if it exists, must be concentrated very near to the
origin if the particle has a finite radius and is rotating about this origin. Otherwise it
would rotate about a center of mass somewhere between the origin and the negative
charge. What is known as photon mass may therefore be residual electron mass.

Almost all of the latter’s rest energy mc? must be transformed into other forms of

energy as the electron is accelerated infinitesimally close to ¢ in its helical trajectory,
leaving a small residual mass, the photon mass, which we consider here to be
elementary (Chap. 2) and irremovable in nature. If the electron mass is about 10*' kgm
and the photon mass no greater than about 10* kgm [92], a large fraction of the

electron rest energy mc? is lost as other forms of energy; but not all. In the
Maxwellian picture, radiation travels through a simple vacuum at ¢ precisely, so there
is no mass specified and no rest frame. The Maxwell equations in vacuo then show that
the charge e rotates about an origin that is translating at ¢. The orbit of rotation is the
Thompson radius, which becomes shorter at higher frequencies. The next section
develops these ideas through the classical Hamilton-Jacobi equation of one electron in

the strong field limit, and shows that the relativistic electron momentum p becomes hx
in this limit.

4.3 DERIVATION OF THE PLANCK-EINSTEIN CONDITION FROM THE
RELATIVISTIC HAMILTON-JACOBI EQUATION

In this Section the equivalence condition (196) is used to derive the Planck-Einstein
condition (197) from the classical Hamilton-Jacobi equation of a charge e in the
electromagnetic field. In the limit where all the momentum of an incoming photon is
transferred to an electron, the latter is accelerated to a state where it becomes indistin-
guishable from a photon, i.e., is accelerated infinitesimally near the speed of light, in
which condition its concomitant electromagnetic fields become indistinguishable from
those of Maxwell’s vacuum theory, as discussed by Jackson [47].

By considering the classical, but relativistic, motion of an electron of mass m in
the electromagnetic field, the Hamilton-Jacobi (HJ) equation can be used [1] to show
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that the induced orbital angular momentum of the electron is given through B® as
follows (in which spinors are missing)

7O _ (2)2( ;5 BO. (207)
(

W m2m2 +e2B(0)2 )1f2

where o is the angular frequency of the field and of the electron in equilibrium with
the field. The relativistic factor in Eq. (207) is

y = i(m2m2+e23(°)2)”2, (208)
®

and using B® = wA©@/c this becomes

En? = ¢%y? = m%* + c2(e2A0?), (209)

where En is total energy. The units of both sides in this equation are those of energy
squared because y has the units of linear momentum. Using the equivalence condition
(196) is tantamount to assuming

ecA, -~ ecA® > mc?, (210)

because Eq. (209) is obtained in the strong field limit (Chap. 3). Therefore Eq. (209)
becomes

En -+ ecAQ = ke = ho, (211)

which is the Planck-Einstein condition (197). If it is assumed that mass in equation
(209) remains finite, Eq. (208) gives the de Broglie matter-wave equation

wr=C L2 (212)

which is well known to be the Einstein equation after application of the quantum
hypotheses,
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(213)

En = ho, p =¥k

If Eq. (212) is to be regarded as a matter wave equation for the electron of mass m
then the electron must have acquired a linear momentum hx from the quantized electro-
magnetic field. The classical momentum eA® introduced by the gauge has been
identified with the quantized momentm hx, and in the limit ecA® > mc? the

relativistic factor of the classical relativistic Hamilton-Jacobi equation becomes the
quantum relativistic Planck-Einstein condition. If we ignore the electron rest energy

mc?, it can be accelerated to such a degree as to become a photon, because a photon
is defined by the Planck-Einstein condition. The electron, in order to be accelerated
into a conventional photon, must lose all its rest energy in the form of radiation, but

must retain its charge, e, fully intact.
Using the equivalence condition (196) the HJ equation (207) can be rewritten as

7o . ke’ poy (214)
(m2c? + wi?)? o?

in which the field B® drives the electron in an orbit at an angular frequency w . All
the other quantities in this equation are particulate in nature, describing an electron that

has acquired a linear momentum hx from the quantized field. In the strong field limit,

(215)

bk > mc,

and Eq. (214) reduces to

2
J® - £ g
wz

(216)

b

showing that the orbital angular momentum acquired by the electron is directly

proportional to B® . This produces a characteristic 12 dependence in the strong field
limit, as discussed in Chap. 3 and earlier volumes [1,2]. In this limit, the wavevector

becomes indistinguishable from w/c, and using B©® = xA©@  we obtain

2p(0) )
B w47 0o, @17)
w? 3

J® -

The equivalence condition (196) finally reduces this equation to
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J® - 1e® (218)

in which J® is the angular momentum of the photon as we set out to show. The
maximum orbital angular momentum that the electron can attain is %, a universal

constant, and this is so only if the rest energy mc? is regarded as negligible in
comparison with the energy ecA‘® acquired from the quantized electromagnetic field.

In this limit, eA® of the field becomes hx of the electron, and if mc? is negligible,
this becomes the total quantized linear momentum of the electron.

If the B® field were zero, no orbital angular momentum could be transferred from
the photon to the electron, and this is something that contradicts conservation of angular
momentum. There would be no magneto-optic effects, in contradiction with experience

[16—21]. A similar analysis from the Dirac equation shows that if B® were zero, the

intrinsic spin of the electron could not interact with the field through a Pauli spinor.
In other words, there would be no optical anomalous Zeeman effect [1,2]. The
field B® is the fundamental field responsible for magneto-optical effects and also for
the interaction of fermions with the electromagnetic field.

The major unsolved problem, or so it seems at present, is to define more precisely
the circumstances under which the rest energy of the electron can be rendered

negligible. This is not a trivial question because if the electron is given a mass m

of ~ 107 kgm, its energy mc? is a constant of special relativity unless it is transmuted
into radiation energy.

4.4 THE DERIVATION OF B® FROM A ROTATING CHARGE e IN VACUO

A magnetic field is due to a rotating charge, and in vacuo the field is the vacuum
permeability multiplied by the magnetic dipole moment caused by the rotating charge.
The S.I. unit of magnetic dipole moment is C m” s and so it is possible to define a
magnetic dipole moment in vacuo,

m®| = £2¥ (219)
14

where e is the elementary charge rotating around the origin at the end of a radius »
with tangential speed v in a volume ¥V of electromagnetic radiation. It is straightfor-
ward to show, as follows, that the magnetic field B® = p,m® from Eq. (219) is

precisely equation (2). This derivation is given firstly, and the discussion of the validity
of equation (219) secondly.
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The magnetic field B® from Eq. (219) is

B - MV o) (220)
V

and V can be defined as the average volume (191) without loss of generality. The

radius r is the Thompson radius x! as discussed already, and the tangential velocity v
is by definition

vV=wxr, (221)

where @ is the angular velocity. Therefore,

vj = wk x —C—i, (222)
®

where i , j, and k are Cartesian unit vectors, and so v = ¢. Therefore,

2
B® - B0,® _ (“o“ ]e“’, (223)
wV

s the magnetic field due to the rotating charge e used earlier in this chapter.
The validity of this result can be checked using the equivalence condition (188),
which can be written as

n

& ho (224)
® eB©®
Using this in Eq. (223) produces
ho = LBO2Y, (225)
Ho

which is the well known expression [47] for the photon in vacuo in terms of B© and

he radiation volume V. The photon in equation (225) is the usual quantum of
lectromagnetic energy in vacuo.
Using Eq. (225) in Eq. (223) produces (cf. Eq. (4)),
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e. ¢ B@2e® - € 402,0) (226)
how?

B® -

which can be re-expressed as

B® - ‘iéAm xA® 227

and this is equation (2). Therefore Eq. (224) links Eq. (223) and Eq. (227), showing
them to be equivalent for radiation in vacuo. This result was first derived in Vol. 1 and
2. The representation of electromagnetic radiation in vacuo by the rotating elementary

charge e, propagating both tangentially and forward (along Z) at c, is therefore

entirely self-consistent with the existence of the vacuum B® . This result is consistent,
furthermore, with O(3) gauge theory [2], which produces equation (2) using methods
adapted from general relativity, and is also consistent with analysis based on rotation
generators and developed elsewhere [1—15]. Thirdly, it is consistent with the
equivalence equation (188), which was first shown in Vol. 2 [2], and referred to there

as the charge quantization condition because it makes e proportional to x/A© through
. Fourthly, the result is consistent with Jackson’s analysis [47] of a radiating electron
accelerated infinitesimally close to ¢ , whereupon the concomitant fields become vacuum
electromagnetic fields.

If it asserted that B® is zero [62—65]|, then e must be zero, a reduction to
absurdity.
Mass is absent from the above demonstration, which is relativistic in nature because

we are describing radiation propagating in vacuo exactly at ¢. Obviously, the calcula-
tion is valid only in the vacuum, as soon as B® interacts with a fermion the Dirac
equation shows that the two definitions of B® interlinked in vacuo by equation (188)
remain valid, but become inequivalent because Eq. (188) is no longer valid. They must

be used in the appropriate limits as discussed already, e.g. equation (2) is valid only in
the weak field limit as shown by the Dirac equation. Equally obvious is the fact

that B® can never be observed in vacuo, it can be observed only when it influences,
or interacts with, a fermion. The same is true of any field [22—25].
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4.5 ORIGIN OF THE ROTATING VACUUM CHARGE IN SIMPLE
RADIATION THEORY

In this section we follow closely the classical (and classic) discussion by Jackson
47], of simple radiative processes. The origin of radiation is oscillating charge and
-urrent density, p and J, i.e., charge per unit volume and current per unit area. In
he Maxwell equations, these are the famous source terms. In the vacuum Maxwell
quations, the source terms are set to zero, because the density of charge and current
s vanishingly small, the source of vacuum electromagnetic radiation can be thought of
15 being infinitely far away, but this is a mathematical ideal rather than anything that
an be accepted as being physically meaningful. The important point is that charge
‘onservation (the Noether theorem) demands that e cannot disappear from the analysis,
0 that even when the source terms are missing, charge conservation must be taken
iccount of in the vacuum Maxwell equations, and therefore in the vacuum fields

hemselves. This means that the charge conjugation symmetry {1] (C symmetry), of the
ield amplitudes E© and B (and also of A®) must be negative. Since A is
xpressed [47] in terms of J, which is expressed in terms of e, the latter must appear
n the vacuum fields themselves. This section demonstrates this conclusion mathemati-

ally using simple radiation theory. The classical picture therefore replaces the early
1ineteenth century concept of action at a distance (Coulomb interaction between two

harges) by interaction via electromagnetic radiation propagating at ¢ in vacuo. The
I’ Alembertian derivative [1,2] of the potential four-vector A, is equated to oscillating

harge-current density Jp (S.1. units),

04, = 2%, (228)

ind since J, is defined in terms of e, so must A, and since e is elementary and
iniversal, it cannot disappear. Therefore electromagnetic fields in vacuo can be
lescribed through e as in the opening sections of this chapter. The charge e moves
hrough the vacuum in a helical trajectory at ¢, depending on the radiation’s
wvavelength, the propagation being made possible by the interaction of magnetic and
lectric fields as in Maxwell’s vacuum equations. The source is an oscillating (or
otating) electron and the process of radiation can be thought of as transmutation of part
f the electron energy to photon energy. This means that the photon carries with it the
lementary charge e as in Eq. (202). In this process, as in any other, energy,
nomentum and charge must be conserved.
In S.I. units the general solution of Eq. (228) is given by Jackson [47],
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AN 7
Ay = —L (@3 [ard50) 5(r’+ jr=r] -r), (229)
4ne,c? lr—r| c

where the current density is defined through a Dirac delta function,

J = evd(r-r'). (230

Here r is a coordinate vector. Equation (229) shows that radiation is a product of e
with a space-time factor. For sinusoidally varying sources [47],

_py .
Al = ef —L [y i g1, (231)
4me,c?’ |r-r|

Therefore the fields E and B of classical electromagnetic radiation are directly
proportional to e, even though they propagate through the vacuum. This is precisely
in accord with earlier sections of this chapter. This conclusion must carry through into
relativistic quantum field theory {22—25] through the usual methods of canonical
quantization, or alternative methods such as those proposed by Weinberg [93]. The

photon as quantum of electromagnetic energy is proportional to e? (Eq. (202)) and can
be thought of as uncharged, as in the literature on elementary particles {67], only with
the utmost conceptual strain. Quantized fields, however, are creation and annihilation
operators [1,2,22—25], and are proportional to e at first order. Consistently,
electromagnetic energy (Eq. (225)) is again proportional to the square of field
amplitude. An overemphasis on photon as uncharged particle leads to very great
confusion, as evidenced in some recent theoretical papers [62—65] which attempt to

assert that B® in vacuum is zero. As we have seen, this can only be so if e is zero,
reductio ad absurdum.

In the radiation zone [47], the condition holds that r » d, where d is the
dimension of the source. The oscillating electromagnetic field components become
transverse to the direction of propagation. In much simpler language, and in a

circularly polarized electromagnetic wave, the charge e describes a helix as it
propagates in vacuo at ¢. The radius of the helix is Thompson’s radius, x™!, and as

discussed in the previous section, B® is formed by this motion, in analogy with a
solenoid. In the latter, of course, the charge is carried by electrons, in the vacuum, Eq.
(231) shows that electron mass is not present, but e clearly is present in free space. In
the radiation zone {47], and in the standard dipole approximation,
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AW = —e| —— [Vova(r-rie®d’’|, 232)
4me,c?

an equation that can be re-expressed as

Ar) = Aje'®, (233)

where ¢ is the phase of the electromagnetic radiation,

¢ =ot-x-r. (234)

Therefore electromagnetic radiation in vacuo can be described entirely, and very simply,
in terms of the motion of elementary charge, e. If e spirals through the vacuum with
circularly polarized plane waves, we have

B-LlixE, (235)
C

and, as in Eq. (186), the transverse electric field component is

E® - ¢ ;0 (236)

€V

The transverse magnetic field component from Eq. (235) is

BO = _€ p,,0 (237)
eocV

whose magnitude is B, given by

(238)

This is also the magnitude of B© from Eq. (220), a result which is consistent with the
cyclical field relations,
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B® x B® = iBOB®* et cyclicum, (239)

derived independently in Vol. 1 and 2. Again we find precise self-consistency in our
theory. Experimentally, electromagnetic radiation is known to cause magnetization
[16—21], and this magnetization can be pictured as circulating charge, motion caused

in matter by an incoming electromagnetic field which is itself helical motion of e
through the vacuum. A source electron at one end of the universe influences a matter

electron at the other end through a helical journey of e through free space. This
process conserves energy, charge and momentum, and the range of electromagnetic
radiation is very great because there is very little mass associated with the radiation’s

e.

As we have seen in Chap. 1 and 2, B® can be detected only as it interacts with
matter, and this interaction is controlled in the Dirac equation entirely by A and A*,
and not directly by the fields themselves. This lends support to the feeling that the four-
potential A, is something more fundamental than the derivative fields, a line of thought
that is supported by the Aharonov-Bohm effects [32—37,39}] as described in Chap. 3.
If this point is not appreciated, confusion will multiply, as in the experiment by Rikken
[74]. This author’s conclusion that B® is zero must mean that e is zero, and if there
is no e, there is no radiation at all. Conversely therefore, B ® is non zero whenever
there is circularly polarized radiation present. Linearly polarized radiation is a
superposition of left and right circular components, and B® is again present, but equal
and opposite for these components. Similarly, B® is non-zero in elliptical polarization.

Finally in this section we emphasize a little known, but important, conclusion of

special relativity, that two charges co-translating at ¢ do not attract or repel. This point
has been made clearly by French |70}, and is used in a recent paper by Mac Gregor
[69]. Therefore charged fields on neighboring photons (traditionally of zero mass and

propagating at ¢) do not attract or repel in vacuo. As soon as field-matter interaction
occurs, there is charge-charge interaction because the matter charge velocity is less

than ¢ and the incoming electromagnetic field influences an electron as demonstrated
by Hertz in the nineteenth century. Photon-photon scattering appears to take place

without Coulomb interaction because both beams propagate very near c.

4.6 BIOT-SAVART LAW FOR B® IN THE VACUUM

The origin of magnetic fields in moving charges was demonstrated [47] in the early
nineteenth century by Biot and Savart, whose work was extended greatly by Ampere.

Therefore if B® is a magnetic field, it must be described classically by the Biot-Savart-
Ampere (BSA) law as usual. In this section this expectation is supported by the
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following analysis in vacuo. If classical electromagnetism in vacuo is simply the
spiralling motion of e at c, then our derivation follows clearly. The source of B® is

a moving charge, e, but this is not the electron, because mass is not present in the
Maxwellian point of view, it is in that view the elementary charge propagating without
mass. If the photon has mass, then this is thought [1,2] to be at least thirteen or

fourteen orders of magnitude less than that of the electron. The BSA law for B®

follows from the fact that classical electromagnetism is the spiralling motion of e in
vacuo, and the law can be expressed as

BO. _ __iz,,u) « E®, (240)
C

in S.1. units. Here »® is the transverse velocity of the charge in vacuo, and as shown

earlier in this chapter, the magnitude of this velocity must be ¢. Equation (240) is also
a direct consequence of special relativity. In the circular basis ((1), (2), (3)) [1,2] the

field E® is a rotating electric field, and so v is also a rotating transverse velocity,
that of the spiralling charge e in vacuo.

The self-consistency of Eq. (240) can be checked by expressing E@ as
ED - joa® - A% (241)
ot
in terms of the rotating vector potential A® . Similarly, the complex conjugate E®

(whose physical, real, part is the same as E® by definition) can be expressed as

E® - ioa® - A% (242)

The BSA law for B® therefore becomes expressible as

B®* - X, 0, 4@ (243)
c

The factor xw®/c in Eq. (243) has the units of a wave-vector, and can be expressed
in quantum mechanics as a momentum operator (hx = ip), giving the result
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BO - lp0, 40 (244)
h

Re-expressing p®, finally, as a del operator, p® = -imV® we recover the
fundamental definition of a magnetic field in terms of the curl of a vector potential. As
demonstrated in Vol. 1 and 2 [1,2], there is no physical A® or E®, and so in the

Dirac equation, the field and fermion interact through A® and A® only, these being
the only physical components of the vector potential in vacuo. If classical electromag-
netism is spiralling charge, then there is no longitudinal electric field in vacuo, in
analogy with a solenoid. The latter produces a longitudinal B® but no longitudinal
E® . The only conceptual difference is that in a solenoid, the charge is carried by a
massive electron in the windings of the solenoid, in the vacuum the charge is massless,
F.A.P.P. There is no Faraday induction in vacuo of a putative E® from B® because
for a given frequency w, there is no experimental method available of changing the
spiralling motion of e in vacuo. Its radius is fixed at ¢/w and its forward and

transverse velocities at ¢. In contrast, the ordinary Faraday induction law in vacuo is
one of the Maxwell equations, and deals with the physical transverse electric and
magnetic fields.

4.7 EQUIVALENT FORMS OF B® IN VACUO

The fundamental and widely known axioms of the quantum theory assert that

En = %o, p =%k, p- -itV, En - ih%, (245)

and so it is possible to write transverse momenta in the circular basis as wave-vectors
and del operators. For example

pO = 1x® = VD, p® - 1@ - _j3vD, (246)

The origin of these transverse momenta is, as we have seen, simply the spiralling

motion of e at ¢. The famous axioms (245) identify the particulate and undulatory
nature of radiation and matter, and make all particles waves and vice-versa. This is the
idea originally proposed by de Broglie [94]. The classical forms of the Evans-Vigier

field B® show that it is a physical observable, directly so in the strong field limit, and
show that the group space of electromagnetism is that of O(3). The electromagnetic
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sector of unified field theory is therefore O(3), perhaps with far reaching consequences.
Some of these have been sketched in Vol. 2 [2]. In other words, vacuum electromagne-

tism is elementary and universal charge, e, spiralling through free space, and the often
complicated mathematical machinery of field theory is subsidiary to, and dependent
upon, this very simple view. Nature at the fundamental level appears to be inherently
simple provided the source of understanding is found.

The most intricate derivation of B® must therefore depend on the simple,

spiralling e, and all the expressions given for B® in this chapter must be equivalent.
By using condition (188) in wave-vector form,

PO = eAD = 1x®, (247)

two more equations for B® can be derived. In Eq. (247), x® = x®@* is a rotating,

transverse, wave-vector in the circular basis [1,2], a vector whose magnitude is x.
Using Eq. (188) we obtain

R T R LA R} (248)

X p 0)2

The various forms of B® are collected in Table 3. They can all be interpreted
physically to mean that e spirals forward at the speed of light, the radius of the spiral
being ¢/ w. The elementary charge appears explicitly in the O(3) form, and implicitly
in the nine others. All balance €, P, and T symmetry [1]. The BSA and curl A
forms are standard, classical expressions for a magnetic flux density. Condition (188)

produces a Dirac form directly from the O(3) gauge form. Therefore the equivalence
condition (188) is confirmed as a fundamental part of vacuum electromagnetism. The

same conclusion is obtained from the relativistic HJ equation of e in A,. The BSA
form is obtainable from the double A form using it, and the BSA form is the earliest
classical understanding of the source of a magnetic field. The source of B® is found
in the propagating electromagnetic plane waves, which can be understood in circular
polarization simply as spiralling elementary charge e. Each photon can be thought of

as producing its own quantum of B® | which we have alluded to as ithe photomagneton
[4].

S
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TABLE 3
Forms of the Evans-Vigier Field B®
Form B®*
Double A

B = —i L A® 4@
)

0(3) Gauge B - _iEAD 4O
)

Biot-Savart-Ampére 1

B®* = - p® x E®
p®
AE B®* = -1 A » E®
cA®
Curl A BO* = -V x A®
Dirac BO®* - _ip(l) x A®
hl
Double B BO* - __i_B(l) < B®
BO
Double E B - - _I g0, g
cE©®
Double p B©®
@ . _;B” o, o
B =P P
Double & BO* - —iﬂxm x k@
2
x

With the benefit of hindsight, the double E, B and A forms of Table 3 have already

shown that iBOB® has been observed [16—21] experimentally many times using
visible frequency radiation, and once with 3 GHz microwave radiation [17¢]. Examples
include the inverse Faraday effect [17], optical Faraday effect [79,95], and light shifts
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in atomic spectra [18]. Less clearly, but definitively, light induced NMR shifts have
been reported [20] as described in Chap. 1 and 2. It is now clear from the work of
Chap. 3 that these are phenomena of the weak field limit, and are proportional to
intensity, /. The conditions of the strong field limit appear not to have been
approached yet, as discussed in earlier volumes [1,2]. Electric and magnetic fields are
space and time derivatives of vector and scalar potentials, and the latter determine the
way in which electromagnetic fields interact with matter. This is the minimal prescrip-
tion, a consequence of gauge theory and the conservation theorems. The interaction

of B® with a fermion is therefore determined by the fermion’s interaction with A and

A", a consideration which shows that our first, heuristic, theory of B® [1—15] is the
strong field limit of this chapter. In the weak field limit, Eq. (2) applies.

The existence in the vacuum of B® neatly demonstrates the acute weaknesses
inherent in the view that electromagnetism is a flat U(1) sector of unified field theory.

The B® field is both physical and perpendicular to the plane used to define the U(1)

group. Furthermore B® is the immediate result of a spiralling e , which emerges from
classical radiation theory [47]. The Euclidean little group E(2) [1,2,23] must be
replaced by an O(3) little group. For this reason the photon as particle can no longer
be thought of as massless, because in that view the little group is the unphysical [23)
E(2) and fields in vacuo are transverse. Our overall conclusion is that there are no
massless particles in nature.

4.8 CONSERVATION OF ENERGY-MOMENTUM IN VACUO

It is well known that the electrodynamical conservation laws are fundamental to any
consideration of light in free space or the interaction of light with matter. The
momentum and energy of a radiation pulse totaily contained within a finite volume V
[52] has the same Lorentz transformation properties as a material point particle, and so
the laws of conservation of energy and momentum must be similar to those of a particle.
The latter is conventionally asserted to have no mass, and is the standard photon. The
previous section concluded, however, that there can be no massless particle in nature,
so the standard photon is a flawed concept. In the received view [52] the energy-
momentum conservation law of classical field theory can be expressed as

aai’: -0, (249)

where T*" is the energy momentum four-tensor and x* the metric. This implies that
the quantity
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G*G, = W*- c%G* = 0, (250)

is a Lorentz invariant, where W denotes classical electromagnetic energy density and
where G denotes classical electromagnetic linear momentum density

he = deV - chdV. (251)

These relations remain valid in the presence of the magnetic field B® , because the

same concept that produces (249) and (251) produces B® . This concept is simply that
of e spiralling in vacuo at c. In this section it is shown that the validity of the

Rayleigh Jeans and Planck laws remain unaffected by B® . This must be so because
the source of B® (e spiralling through the vacuum) is the same as that of the
conventionally accepted transverse fields B®, B® E® and E®.

For example, the value of the Planck constant remains the same, because B®
simply causes the available electromagnetic energy density to be re-distributed among
three space indices rather than two. The radiation oscillator must therefore be

associated at each angular frequency o by

u,, - i(B“) .B®* , B® . B~ , BO) . O, (252)
Ho

instead of the traditional

U - -L(B“) .BW* , p@ ~B(2)‘), (253)

Ho

When the sense of circular polarization (handedness) is switched from right (+) to left

(-)1

BY-BO" BV O 5O, @)

and the total field is defined in both right and left circular polarization by three circular
indices,
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B,-B+BY + BY,
v (255)
B_-BY +B? + BY,

n terms of the electric components

U = EO(E(I) EO* L, FO . FD+ ;g (iEm)‘), (256)

new

eplaces the conventional

U= eO(E(l) .EO L EOD . E(Z)'). (257)

Che premultiplier (factor of two) in the density of states calculated from the Rayleigh-

eans law is therefore two in the presence of B® because there are still two senses of
ircular polarization (+ and - subscripts).

The Rayleigh-Jeans law determines the number density of oscillators with
requencies in the range @ to w +dw. For each oscillator there are two senses of
ircular polarization, each of which is described by three circular indices. The two
enses are physically distinct, and for each there exists the cyclically symmetric algebra
239). In left circular polarization the helical motion of e through free space at ¢ is
he mirror image of the motion in right circular polarization. These two physically
listinct components determine the premultiplying value of two in the Rayleigh-Jeans law
or the density of states,

2
dN = 8": dv, (258)
C

vhere v is the frequency of the wave. The existence of B® does not therefore affect

iq. (258) for the density of states, but B® does of course introduce the third space
ndex to the anmalysis. When the sense of circular polarization of the beam is
witched, B® changes its direction. In the strong field limit this effect might become
:Xperimentally observable. In the weak field limit, the interaction is determined
1y B® at second order, through A® x A®

The Planck hypothesis of November 1900 [61] asserts that a radiation oscillator can
rossess only discrete energies, measured in quanta, hw, of radiation energy. The

[uantum is the dictionary definition [61] of the photon. The effect of B® is to change
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the mathematical expression of the Planck hypothesis for one photon from

ho = —l“f(B“) -B®* + B® . B®@*)qy, (259)
Ho
to
Yo = —l—f(B“>~B(1)‘ + B®.B®* ; BO . BO*\qy, (260)
Fo

Thus, classical electromagnetic energy is expressed as a sum over three circular indices
instead of two, but the total available energy density is the same. The numerical values
of the right hand sides of equations (259) and (260) are the same, and the Planck

constant % is unchanged. The photon also remains the same and there is no change in
the Planck radiation law,

) 81chv3( e hvIkT . @61)

au
o3 k [ - g hoikT

The total energy density of black body radiation is obtained by integrating dU over all
frequencies [61]. Since hw is redistributed among three circular indices, so is black
body radiation, but it is not possible to isolate the specific effect of B® from that
of BY = B®* simply through measurement of black body radiation with heat
detectors. The specific effect of B® can be measured in the strong field limit,

however, by isolating the expected 1" profile in magneto-optic effects, as described
in Vol. 1 and 2 [1,2].

The equilibrium between radiation and matter was shown by Einstein to be made
up of several distinguishable processes, described by the well known Einstein coeffi-
cients [61]. The rate of absorption of electromagnetic radiation is described in terms
of the Einstein B coefficient,

from an initial quantum state |i> to a final quantum state of higher energy |f>.
Here p is the energy density of states at the absorption frequency v, and p must be
evaluated at the transition frequency. For electric dipole transitions W _, is proportion-

al to Enpy/V where En is the energy of the field at frequency v and p is the
frequency density of states for a given volume V occupied by the electromagnetic
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radiation. The specific effect of B in these calculations is to cause the electromagnet-
ic energy to be redistributed among three space indices (1), (2) and (3). The rate of
absorption (262) is therefore also unaffected.

We conclude that the absorption of a photon of energy hw by an atom at a
frequency v, defined by a transition from |i> to |f> is affected by B® only insofar
that the definition of h & is modified by B® as in Eq. (260). The angular momentum
conservation rules that apply in the absorption of a photon are not changed by the
existence of B® | which is generated by the angular momentum of the photon about the

propagation axis. The specific 7'2effect of B® has evaded detection because the
strong field limit has not been attained.

4.9 CONSERVATION OF CHARGE

Charge is always conserved experimentally, and this feature of the natural world
has become understood in terms of a continuity equation,

vI+® _y.a. 109 4 (263)
ot c? ot

The scalar potential ¢ of electromagnetic radiation in vacuo due to a point charge ee "
[96] is identical to the equivalent electrostatic potential except that ¢ — R/c is substituted
for ¢ where R is the source to observer distance. The potential corresponds to a state

of the charge at a previous time t - Rjc. Therefore the appearance of e in the vacuum
equations in previous sections can be understood as corresponding to its state in the

source volume at a time R/c earlier. If the charge e had been circling in the source
at this time, then it would have formed a longitudinal magnetic field according to the

Biot-Savart law. At a time R/c later this field appears in the vacuum and is the curl of
a vector potential which can be defined in general through the retarded current, [J],

(7]
A=F dv. 264
4n f = R 264)

This is the well known mechanism of Liénard and Wiechert |96} and it is a mechanism

which conserves e. The vacuum B® field corresponds to its state in the source a
time R/c earlier, a source in which it was formed by circulating charge. This is also
true of the transverse oscillating fields, and the circulating charge does not produce an
axial electric field because the Biot-Savart law does not do so in the source. The phase
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velocity of light in vacuo is ¢ for the conventionally massless photon, and we see
distant stars as they were, millions of years ago, due precisely to the Liénard-Wiechert

mechanism. The complex nature of A® and A® allow therefore for phase differences
in the source, as they were a time R/c ago [96].

Therefore all observable field components propagating in vacuo also correspond to
a state of charge a time R/c earlier, and this is how e must be interpreted in vacuo.

A circulating charge in the source transmits its influence, via the vacuum B®, to
produce a circulating movement of charge in matter, i.e., a magnetization known as the
inverse Faraday effect. The machinery of interaction of field and matter is governed,
however, through the Dirac equation using the potentials, and not directly through the
fields themselves. This is a statement of the minimal prescription [22—25], which is
itself a consequence of gauge invariance and the conservation of charge. This leads to
the weak and strong field limits discussed in Chap. 3.

At a time ¢ the field B® corresponds to a state of circulating charge a time R/c
earlier; at time ¢’ the field B® corresponds to a state of circulating charge a time R’/c
earlier; and so on. So it is clear that B® propagates in vacuo at the phase velocity ¢.

It propagates at the same phase velocity as the transverse components B® and B®,
the rotating transverse magnetic components that correspond also to a state of charge a

time R/c earlier. Since B® is the curl of a vector potential by definition, its influence
on matter is determined by the influence of that vector potential on matter, and this
occurs through the use of the minimal prescription in the Dirac equation. The radiative
corrections of quantum electrodynamics can now be incorporated in this classical

picture, and it is clear that B® violates none of the principles of electromagnetic theo-
1y.
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either pushed (repelled) or pulled (attracted) in an orbit by the rotating A4, clockwise if
A is moving clockwise, or vice-versa. The motion of B is the result of the magnetic
field set up by A. If this macroscopic laboratory model is replaced by a system A
consisting of a source electron moving in a circle, and a system B consisting of a sample
electron, the sample electron will move in a circle due to the magnetic field set up by

the source electron. This is the field B® | and the source and sample electrons can be
separated by millions of light years because electromagnetic radiation from the former

reaches the latter through the radiated B® . In the strong field limit, the angular
frequency of the radiation is low (source electron moving slowly) and its intensity is
high. In this limit, as shown by the Dirac equation, the circling motion produced in the

sample electron is proportional to B® and to the square root of beam intensity.

In the weak field limit the massless object 4 is weakly charged (low field intensity)
and is spinning very rapidly (high frequency). The effect on B will be indirect, it will
take many revolutions of 4 before B starts moving, and it will be out of synchronization
with A. In the weak electromagnetic field limit, the Dirac equation shows that the effect

on the sample electron is second order in the magnitude of B® and first order in field

intensity. Intermediate cases will show a dependence on both I and square root I as
discussed in Chap. 12 of Vol. 1 |I1].

In both cases discussed above, the sample electron (charge) is set in motion in a
circle by the source electron (charge), and this is magnetization. The magnetic

field B® is simply the rotation of charge. In the magneto-optics literature the
magnetization is known as the inverse Faraday effect [16—21] if the circling motion is
caused by a circularly polarized electromagnetic field. It becomes clear that the

radiated B® field is due to the rotation of the potentials A® and A®, which

according to the Liénard-Wiechert law refer to a state of charge [96] a time R/c earlier,
as discussed in Chap. 4 (R is used in this section to distinguish the observer to source

distance from the radius, r, of a charge circling in a source a time R/c earlier.) Ata
time R/c prior to that at which B® is observed in the vacuum, the state of the charge
was its state in the source of radiated B® . The radiated A® and A® are transverse
to the direction of propagation, but they represent a state of circling charge a time R/c
earlier. This circling charge produces the B® field, and the magnetization of the

inverse Faraday effect. In order to observe the direct effect of B® at first order, it is
necessary to observe the square root intensity dependence of the magnetization [1,2].

The same rotating charge that produces A® and A® must inevitably produce B®,

and since A® and A® exist in vacuo (being Liénard Wiechert potentials) so does B® .
By causality, it is not possible to obtain electromagnetic radiation without a source of

radiation having been present a time R/c earlier.
Conversely, if B® is zero in vacuo, there are no potentials present, and no
electromagnetic radiation. Any argument [62—65] that attempts to show that A®
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and A® are non-zero while B® is zero is therefore incorrect, because that argument
violates the Biot-Savart law. This conclusion holds independently of the details of the

argument because, as we show next, the rotating elementary charge, e, radiates
AP A® and B® simultaneously. In other words, the fact that e radiates the
Liénard-Wiechert potentials means that it must also radiate B® , because without B®
there isno A® = 4@+

5.2 RADIATION FROM THE ROTATING ELEMENTARY CHARGE ¢

Corson and Lorrain [96] have provided a clear summary of classical radiation
theory, which produces electromagnetic fields in vacuo through the scalar and vector

potentials, ¢ and A respectively. In S.I. units these can be written as a single potential
four-vector,

A, = (cA, §). (265)

The Aharonov-Bohm effects [32—39] show that the potentials are physically meaningful
in classical electrodynamics and the interaction of radiation with matter takes place

through the minimal prescription, i.e., through the four-vector A " and not through the
ﬁele E and B. Electric and magnetic fields are therefore secondary concepts. In
particular, a magnetic field is essentially a moving charge, and it is shown in this
section that the circular motion of one elementary charge, e, radiates A® = A®*
simultaneously with B® | meaning that if B® were zero there would be no source for
the electromagnetic field, and by causality, no field. This conclusion is easily seen from

the cyclic relations (154) by setting B® = 0. This results in B® = B® = 0 and the
complete loss of electromagnetic radiation in vacuo.
The electromagnetic potentials satisfy the nonhomogeneous wave equations,

2 2
Vi - ep.aa—? - —%, VA - ep% = ud, (266)
t t

where p and J are the source charge and current densities respectively. The solutions
of these equations for ¢ and A at time 7 are expressible in terms of p and J defined
at the earlier time ¢ - Rfc. The time R/c is that taken by an electromagnetic wave to

travel Fhe distance R between the element of volume where p and J are evaluated to
the point of observation [96]. In the laboratory this interval of time is very short, and

! ’the interaction between charges appears to be instantaneous. On a cosmological scale
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the interval can be millions of light years, but the p and J must still be defined as they
were in the source. If there was no source there is no radiation. For electric dipole
radiation for example [96], a transverse spherical wave radiates away from the dipole,

and E@/B® is the same as for a plane wave in the vacuum. Nearer the source, the
radiation is more complicated in form. In essence, the transverse plane wave is a
charge spiralling forward in the vacuum, and this single charge produces both

A® = A®P* and B® The latter are therefore descriptions derived from the same
moving charge, and it is not possible to assert that B® is zero for non-zero A®

because at an instant t they are descriptions of the same thing, a circling elementary e
defined a time R/c earlier. Being different ways of describing the same thing, they
must be equivalent and so one cannot be zero while the other is non-zero. These points
are clarified by the following simple example.

Consider an idealization of a source of electromagnetic radiation, an idealization

consisting of the elementary charge e describing a circle of radius r at an angular
frequency o . In the basis ((1), (2), (3)) this motion defines the dipole moments [96],

p?P = ere -iorg @) (267)

PO = ere’e®,
at the instant r. The real parts of these two equations are the same, and describe a

charge e rotating clockwise in a plane. As shown in Chap. 4, this motion produces the
magnetic flux density,

@

B® -y m® - Kol (268)
0 v

Without loss of generality, the volume V can be defined as (4/3)nr?, i.e., as a sphere

of radius 7. The magnitude B® of B® is therefore

BO - Eﬁe}" (269)
4nr

which has the right units of J s C' m?, i.e., tesla or Wb m? i.e., Vs m?. So B© is
a magnetic flux (3/4)p,ev in Wb divided by the area = r?. This is another way (more

complicated and more obscure) of saying that e circles with a radius » and angular
velocity @ . The magnetic flux in Wb is proportional to the product ev. In terms of the
dipoles,
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ere® - __Lp(l) x p®. (270)

lp|

The transverse current (Crad s') is I = ew. Therefore,

3ul

3

BO _ (271)

4nr

and the magnitude of the B® field is proportional to the current divided by the radius.
Putting these definitions together gives

BO* - _

3
Ho® p0 . p@, @72)
4nrie

which shows that B® is proportional in the source to the conjugate product of p® with

p‘z)’. This example clarifies what is meant physically in electrodynamics by any
conjugate product, it represents, essentially, a circling motion of charge and therefore
a magpetic flux density. The magnetic flux density B has been defined in the source

in terms of circling charge, and in so doing the exponents e‘®* and e 7’ have been
used in a conjugate product.
This source radiates because the charge e is accelerating. The radiation is

measurable at a point in space at an instant 7 if wt is replaced in Eq. (272) by
w(t-R/c). The B® in free space is no longer static and reappears as

3
o - _H® m, (p®], (273)
dnrie

where [ p(l)] and [p®] signify [96] that the state of charge is defined at a time R/c
fial'llel': This may be millions of light years or may be nanoseconds. As we have seen
In earlier volumes [1,2] and chapters, Eq. (273) may be redefined as

BY* = ;X A0, 40 (274)
A© ’

where A® = A®* s the radiated transverse vector potential. Far enough away from
the source, the only vector potentials present are the transverse potentials, as in classical

o radiation theory [96]. The transverse vector potential is defined in terms of the
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transverse current [ as

AD - %[J(l)] . f%[J(l)]d;z, (275a)
T 0
O] = [eior-xR)o® (275b)

where ¥, can be taken to be a sphere or any other volume. Similarly, its complex
conjugate is

AD - _34&[.’(2)] . f%[«’m]d" - }%}_’e-«m-m)e(z)’ (276)
13 0 '3

and this is the result of standard radiation theory [96] applied to a rotating and radiating

e in a source. Gradually, the whole of the energy of the rotating e will be dissipated
by radiation and it will stop radiating. The energy loss per unit time is given up as

radiative power [96] and this can be expressed in terms of B® . Finally, using the free
space relation B® = x A© | we obtain from Eq. (275)

2
B® - ¥ Lo Q77)
wV,

which is equation (223). Therefore B® originates in the radiating e circling at radius
r a time R/c prior to the instant, 7, at which B® is detected in free space. The
conjugate product A® x A® represents exactly the same thing, but in a different
mathematical language, and since A® and A® are the ordinary radiated vector
potentials, B® is also radiated. This is an inference which is missing from convention-

al radiation theory, but the fact that B® is radiated simply means that there was a
charge e circling at 7 a time R/c ago in the source of that radiation. A circling charge
does not produce an electric field in the axis perpendicular to the plane in which the
charge is circling, and there is no radiated E®. Finally, the interaction of B ® with
matter is controlled by A, interacting with matter, and is the reverse of the radiative

process. The correct way to describe this interaction is through the Dirac equation, as
described in Chap. 1 and 2. Qualitatively, the interaction can be understood in terms
of a mechanical model which can be set up in the undergraduate laboratory and which
has been described in this chapter.

In summary, the field B® in the source is static and is
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BO* - A“;“’ ip® x p®, (278)
€%o

where V, is a volume defined by the radius of the rotating elementary charge, e. The

radiated B® in the vacuum is propagating and is

O = B2 00, 0], (279)
eV,

where V, is the volume of radiation being considered, €.g. the sphere defined by the

Thompson radius A/2n. Since B® is non-zero in the source, it is non-zero in the
vacuum.

5.3 CONSERVATION OF ANGULAR MOMENTUM AND ENERGY
The quantum theory asserts that the angular momentum of the photon is H. The
classical angular momentum magnitude of the rotating charge in the radiating source is

eA®r, where A® is the amplitude of A® in the source. In the radiated field,
r = x!, and we have, from Eq. (182),

©) 2
h=ed - o po, (280)
K (o2

The angular momentum radiated by the circling charge e is therefore the field angular
momentum,

2
J® - ¢S p0,e _ _1 por Ve®, (281)
(02 Ho®

from Chap. 4. This means that

g - Ho® (282)

. as in Eq. (277) or (223).

The magnetic dipole moment per unit volume of the radiated field is obtained
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1

with r = x and v = ¢ as

m® = £V,.0» | ﬁze@_ (283)
14 oV

Therefore the magnetic dipole moment of the field is

Vm® - €00, (284)
W

Equations (281), (282) and (284) give the field’s magnetogyric ratio

2
v, - 2%, (285)
Boec
such that
Vm® =y 0. (286)

It is easily verified that the units of y; are C kgm’, the units of the conventional
magnetogyric ratio [45], e/2m, where m is mass. The equation

e
=L (287)
Ys 2m
gives
2.2
m=tE (288)
20
or,
gl Yo (289)
Ko

where x’ is the susceptibility,
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2,2

y = £€ , (290)
2mw

used in Chap. 12 of Vol. 1 [1] for the electron. Here it is being used for the
electromagnetic field itself, and m is the equivalent mass of the field [52].
Therefore the circling elementary charge radiates, among other things: an angular

momentum, J® ; a magnetic dipole moment, m® ; a magnetic field, B®; a field mass,

m; a field susceptibility, x’; and a field energy, ©J® . All these quantities are present
in free space at the instant 7 and refer to the state of circling charge [96] a time R/c
earlier in the source, where R is the source to observer distance.

Introducing the fine structure constant [22—25],

2
e? e p.oc, . 91)

a =
dnhey,c 4nth

it follows from Eq. (288) that

mc? = —;—a%w. (292)

This equation links the field energy mc? to the photon he , the quantum of electromag-

netic energy. Since a is unitless, the equation is consistent, and should be compared
with Eq. (1) of Vol. 1 [1], the de Broglie Guiding theorem.

moc'2 = ho, (293)
where m, is the mass of the photon. Comparing equations (292) and (293),

m - %amo. (294)

If the photon mass were zero, as in much of the literature |23], then m would be zero

from Eq. (294), because « is made up of the universal constants. Since m can be
expressed as
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m = (i p,oezc)w, (295)
8n

it is zero if and only if ® is zero, in which case there is no classical radiation present.

Therefore the photon mass is non-zero if B® is non-zero, because the gyromagnetic
ratio from which m is calculated is defined in terms of the magnetic dipole moment

vm® - Y go - 4/go® (296)

The appearance of the fine structure constant in this analysis is probably deeply
significant [6], because « is the hallmark of quantum electrodynamics, or QED
[22—25].

The conservation of angular momentum and energy can be demonstrated using Eq.
(402) of Vol. 1 [1], derived from the relativistic Hamilton-Jacobi equation of the
classical electron in the classical field. If we replace the electron by a sample consisting
of the elementary charge, e, and assume that any mass associated with the charge is
very small, we obtain from Eq. (402) of Vol. 1 [1],

Jo _ ek’ B® B9 297)
w? ( 2.2 2 po2\12 ’
my,w-+e°B )
—— ﬁBa) = }e®
m,~0 . (298)
0

This result is a clear demonstration of the transfer, under the right conditions, of all the
field angular momentum (% per photon) to the sample. This process conserves angular
momentum and the elementary charge e rotates on a radius ¢/ with angular velocity
. (If it had mass, the sample charge would be made to spiral, because the field has
linear momentum.) Energy is similarly conserved through hw, the photon energy,
given up entirely to the sample charge e. The process of absorption can be thought of
in these terms, because the light quantum hypothesis asserts that absorption takes place
through the photon of energy %w. This process is now seen to be controlled by B®
through equation (297) or its quantized equivalent, the Dirac equation.

From Eqs. (297) and (298) it is clear that if B® were zero, there would be no
field-charge interaction, contrary to experience. Equation (297) shows that the interac-
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tion is quadratic both in e and B© | and the angular momentum given to the charge by
the field is independent of the sign of either e or B even in the limit m, ~ 0, the
strong field limit. A rotating charge pushes around a charge of the same sign
(clockwise, for example), and pulls around a charge of opposite sign in the same sense,
clockwise. The magnetization caused by B® (the inverse Faraday effect [16—21]) is
proportional to J® and is independent of whether B? is radiated by a negative charge
(-1|e]) or positive charge (|e|). In experiments such as the inverse Faraday ef-
fect, m, in Eq. (297) is always non-zero, both in the weak and strong field limits,
because a real material sample must be made up of massive particles. Therefore the

observed magnetization does not change sign with the sign of B® .
Unfortunately, there is a book review [97] in the literature that asserts without

proof that J® changes sign with the sign of B@ | but the dependence of J® on B©?
in Eq. (297) shows that this assertion is erroneous. The error is compounded by the

assertion [97] that B® is zero because it is claimed that there is no experimental
evidence for this assumed change of sign. Equation (297) shows that no such change
of sign occurs in relativistic field theory. A related article {62] completely misap-

plies € symmetry [1] in an attempt to show that B® is zero. Any such conclusion
violates the Biot-Savart law, that a magnetic field is rotating charge. Two related

papers [63,64] appear to assert (obscurely) that B® is zero, but as argued self-
consistently here and elsewhere [1,2] this would mean the disappearance of all radiation.
These papers display a fundamental lack of understanding of electrodynamics and

relativity. Similar papers [98] on topics other than B® but based on related symmetry
arguments are probably incorrect, as argued elsewhere ]4]. Their conclusions are at
best fortuitously in accord with experience, at worst misleading.

In summary of this section it has been shown that a source consisting of a circling,
elementary charge, e, with unspecified mass, radiates B®, which induces circular
motion in a sample consisting of the elementary charge e, again with unspecified mass.
If the target mass is assumed to be very small, the angular momentum of the radiated
field is given up entirely to the charge, and this is a process which conserves angular
momentum and energy. The rotating charge e in the source produces a B® field
through the Biot-Savart law, a field which induces rotation in the e of the sample. The
whole process can be described in terms of the motion of the elementary charge e. In
the source it circles at @ on a radius r, which is identified with the Thompson
radius ¢/w in free space radiation, which is the spiralling motion of e at the speed of

light c. The charge e in the sample is put into motion when the spiralling e of the
field interacts with it. The sample charge is pushed or pulled into circular motion by
repulsion or attraction of the field charge. The language of fields, potentials and
relativity which permeates these volumes is an attempt to describe this simple process.
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5.4 MAXWELL’S CONCEPT OF THE ELECTROMAGNETIC FIELD

The electromagnetic field according to Maxwell’s point of view is an agent of

interaction berween two charges. The existence of the B® field is a consequence of
the Maxwellian picture, which leaves mass unspecified in the sense that mass does not
appear directly in the Maxwell equations or the wave equations. The electromagnetic
field is an example of the philosophical concept of fields in physics, a concept which
has been clearly described by Barut [53], whose discussion we follow here.

External scalar or electromagnetic fields produce an action at a distance force on
a sample particle or charge. More fundamentally, a field is a self-contained mechanical
system in its own right, and can be described by equations of motion constructed in the
appropriate mathematical limits |53]. The field carries energy, and has a continuously
infinite number of degrees of freedom. It fills the whole of space like a fluid and has
physical reality in relativistic field theory. The potential four-vector, 4, of the electro-
magnetic field is therefore directly proportional to the energy-momentum four-vector
through the scaling constant e, which is also the elementary charge. Chapter three has
shown that A is physically meaningful in contemporary classical field theory because
of the topology of the vacuum. In relativistic particle theory [53], the classical system
is the mass point and the fields are auxiliary, phenomenological quantities. In
relativistic field theory [53] the physical system is the field itself and physical laws are
obeyed by the fields themselves. Interaction between fields and particles is described
by an extra term in the appropriate Lagrangian [1,2], a term based on the minimal
prescription as used in Chap. 1 and 2 for example. Therefore the field interacts with
a particle through the vector and scalar potentials. This is why there occur weak and
strong field limits.

The electromagnetic field is an energy carrying physical system in its own right
[53], a system which produces interaction between charges. Therefore the field is an
agent of interaction. Instantaneous action at a distance is replaced in special relativity
by a signal velocity, or phase velocity, which is ¢ in vacuo for an assumed massless
photon. If there were no charges there would be no field, so the latter is described
fundamentally in terms of the former, as we have shown in this and the preceding
chapters. As described by Barut [53] the field is produced by a charged particle whose
existence is assumed as the starting point of the analysis. The field is measured through
the acceleration it produces when acting upon another charged particle. The field cannot
be detected if this acceleration cannot be detected and all depends ultimately on the
existence of the elementary e in the primordial universe. The equations which describe
the motion of e are the Maxwell equations, or d’Alembert wave equations to which
they are equivalent. The electromagnetic field propagates (moves forward) in vacuo
because the relevant unit of time is # - R/c as we have seen. Static electric and
magnetic fields do not propagate and are equivalent to the limit R = 0, so the unit of

time is t and there are no moving waves. The B® field propagates for precisely the
same reason, it can be defined in terms of exponents in which appear the unit ¢ - R/c.
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The B® field becomes static, as for any other static field, when the exponents contain

the time unit # and R = 0. This point has been illustrated in Egs. (278) and (279).
The fact that radiation of any kind occurs at all is due to the empirically supported

equivalence of [JA, and -J /€, in the d’Alembert equation. Therefore radiation is
energy transfer from charge to charge and as we have seen in Chap. 4, the quantum of
energy of the field, the photon, is proportional to the square of e. This is consistent
with the fact that if there were no e there would be no photon. The interaction energy-
momentum between field and charge is eA , which is again proportional to the square
of the elementary charge e. This gives the general rule that all equations of electrody-
namics must conserve C symmetry, and that the C symmetry of fields and potentials
is always negative.

These arguments are inherently relativistic, as is well known. For example Faraday
induction is a relativistic phenomenon as pointed out clearly by Barut [53]. If we move

a closed circuit in a magnetic field with velocity v,, a charge in the loop will be acted
on by a Lorentz force ev,x B with the same units as eE where E is an electric field.

However, if v, is parallel to B, there is no force at all. Since B® is always parallel
to the direction (Z) of propagation of electromagnetic radiation in vacuo, there is no

electric force due to vyx B® and no Faraday induction. Relativistically and
equivalently, if we hold the circuit loop fixed and move the magnetic field, the same
occurs, no Faraday induction. There is no Faraday induction due to B® and there is
no E® |1,2]. This has been verified by available experiments [1,2,99] consisting of

chopping a circularly polarized electromagnetic beam passed through a Faraday
induction coil. These experiments can be repeated to any degree of precision and there

will be no Faraday induction in free space due to B®. (When B® encounters matter
within an induction coil, there will occur the inverse Faraday effect [16—21].)

In the next section, these remarks are put into quantitative form by considering a
radiating charge held in a circular orbit by a static magnetic field. This is a standard
problem developed by Landau and Lifshitz [75] but shows with clarity why there is a

radiated B® .

5.5 RADIATION FROM A CIRCLING CHARGE HELD IN A STATIC
MAGNETIC FIELD AT R = 0

Consider a particle with charge e and mass m constrained to move in a circle of
radius r by a static magnetic field at R = 0. This means that the particle circles around
the axis (Z) in which R is defined, i.e., if R were in Z, the charge circles in the XY
plane. As ably demonstrated by Landau and Lifshitz [75], the transverse acceleration
on the particle in its circular orbit is
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12
w-2l1-2] vy B0, (299)
m Cz

where v is its transverse velocity. This is the result of the Lorentz force equation. The
-elativistic Lorentz force defined by Eq. (299) is therefore

,\-112
F = mw(l - _v_z) = evx B9, (300)
c

ind can be expressed in the basis ((1), (2), (3)) [1,2] as

FO* — _jopy® « BO® . (301)

This particle radiates because of the existence of a non-zero w, a centripetal acceleration
of charge. If the static magnetic field were switched off, the charge would continue to

-adiate away energy until eventually only the rest energy, mc?, would be left. This

srocess is a well known part of standard classical radiation theory [75]. The B9 field
n Eq. (299) is static because it is calculated with R = 0, so that the unit of time being
1sed is . In the absence of radiation, this means that the charge is describing an orbit
in a plane, and this orbit is a circle, not a helix, because there is no forward motion of
charge along the Z direction.

As radiation occurs, however, F decreases in Eq. (300) due to a radiated B®
field; the transverse acceleration w tends always to decrease due to radiation but is kept
;onstant by the applied magnetic field. By considering the limit |v| -~ c, it is easily
demonstrated as follows that the radiation is the propagating B® field discussed earlier
ind in Chap. 4.

The angular frequency of the charged particle in the static magnetic field is given
by {75]

W =

e
m CZ

2\1/2
[1 _V_) BO, (302)

where B© is the amplitude of the field in tesla. In the limit |v| ~ ¢, the strong field
limit, we can apply the equivalence principle, Eq. (280), in the form
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2

eC_2 BO |—v—|—jc h, (303)
A

which shows that in this limit,

2 \-1/2
mcz(l - v—zj I_V_|_*>C ho . (304)
¢

Similarly, the angular acceleration in this limit becomes

~—- 305
|w |v|jC(‘)C, (305)

and using = v/r, the radius becomes ¢/w. The rotating charge in this limit is
described by

lr| - =, |v]-¢, |w]- wc, (306)

c
(0]

and is radiating, because of the presence of non-zero transverse acceleration.
Equation (306) has all the properties of electromagnetic radiation except that we

have not yet introduced forward motion along Z, we have considered the |v| - ¢ limit

of the charge circling in a plane. The property of propagation at ¢ is now introduced
through the familiar equation,

307)

where x is the wave vector. The photon forward momentum is thus identified as

eA©® - %x. The radiation process is now describable by replacing the unit of time ¢

by the unit of time ¢ - Rfc. The introduction of x, and its identification with w/c, is
sufficient to describe the radiation process. Here R is the source to observer distance
introduced earlier in this chapter. The dynamics of the system are now to be evaluated

[96] at the instant ¢ - R/c, and in so doing, we refer to a state of circling charge at
observer point R a time t, = R/c earlier in the source, situated at R = 0. Since all is
unaffected except ¢, the quantities r, v and w remain as they were originally, meaning
that e at point R must be the charge described earlier at point R = 0. Similarly the
charge at a point R, further along the Z axis is the same as that described at point R a
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time (R, - R)/c earlier and so on. The charge e spirals forward at ¢ through the

vacuum. The magnetic field B® is radiated from its position at R = 0 to its position
at R a time R/c later, and the forward propagation has been introduced through the
equation x = ®/c linking the wavevector to the angular frequency. (If B® were not
propagating there would be no wavenumber, no spiralling motion of e forward at ¢,
and no radiation.)

To summarize therefore, the analysis has been based on the idea of a charge e
attached to a particle of mass m circling at R = 0. The circling motion is caused by
an applied static magnetic field. The circling motion of charge produces the static
magnetic field

BO* _ _ 3ue0 ip® x p®, (308)
dnrie

through the Biot-Savart law, as shown in Eq. (278). In this expression the time

parameter is £. Conversely, therefore the field B® is the same as that needed to keep

the charge in its circular orbit. In the limit [v| ~ ¢, it has been demonstrated that the
circling charge has all the characteristics of electromagnetic radiation except for forward

motion (propagation at ¢ in vacuo). The latter is introduced through the concept of
wavevector x = /¢ and this is sufficient to describe the phenomenon of radiation of

B® . The charge e spirals forward, and no longer remains in a plane. The
radiated B® at position R a time R/c later is the same as in Eq. (308), except that

t-1- & Iv| - c. (309)
c
The radiated B® is therefore
B9 - 3p,0(oe e® .= B(O)e(3), (310)
4rr

and is proportional to e. If there were no e there would be no radiation, in accord with
the philosophy of the electromagnetic field summarized briefly in the previous section.

The radiated B® is accompanied by the radiated plane waves B® and B?,
through which B® is defined, and the radiated B and B® are proportional to the

radiated E® and E®. As demonstrated in Chap. 4, all these fields can be thought of
in terms of a spiralling charge e. In the limit |v| - ¢, the range of the radiation is
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effectively infinite, and the electromagnetic wave at the point R must be evaluated at
the instant ¢ - R/c. This remains true of B® because the latter is evaluated in terms
of a product of conjugate phase exponents, each containing ¢ -~ Rfc. Therefore the

circling e at R = O is the disturbance that initiates the travelling wave, and transmits
the energy associated with the disturbance.

In the limit || -~ ¢/w Eq. (310) becomes

o> 3mge 311)
BO > o 02, (
7]~ clw 41:Cm ¢
showing that the intensity associated with the radiated B® is
2
;- € gon _ | ke ot (312)
ko 16t

and proportional to the fourth power of angular frequency. The intensity is inversely
proportional to the fourth power of the wavelength

2.3
= DM (313)
14
It is interesting that the long wavelength limit of the Planck distribution,
2
IAT) = zl};i(ehc/(m) -7, 314)
A
is
I, T) —~—> An’hckT (315)

A"OO 14

and is also proportional to the inverse fourth power of wavelength. Therefore the result
(13) is for one photon before thermal averaging in an ensemble of photons. In
deriving Eq. (313) the volume occupied by the photon hag been defined as a sphere of
radius (4/3)nr3, but the result can be generalized to any type of volume.

In essence, therefore, electromagnetic radiation is the replacement of time ¢ by

- R/c, which is equivalent to the introduction of the relation (307) between wave-
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number and angular frequency. In general, radiation is controlled by the d’Alembert
wave equation, whose solutions in the plane wave approximation we have been
considering in this section. In this context, the conventional literature asserts that
radiation in the plane wave approximation is transverse to the direction of propagation,

and this remains true in our analysis, the radiated potentials A® and A® are trans-
verse, but their existence in vacuo means that there is a B® in vacuo. Under the right

conditions, the characteristic square root intensity dependence of B® becomes observ-
able experimentally [1,2].

5.6 THE LIENARD-WIECHERT POTENTIALS FOR B®

The Liénard-Wiechert potentials are discussed in many excellent texts [7,52,53,96]
to which we refer the interested reader. They describe radiation from a charge in an
arbitrary trajectory. Radiation at observer point R is described at the instant ¢ - R/c,
and so the Liénard-Wiechert potentials are related to the retarded potentials. In general,
and in S.1. units, the scalar and vector potentials radiated from the source are

o - € (1 _k.Lvl)'l, (316)
4neR c
and
2 ﬂ‘&[v](l _k.M)'l, 317
4nR c

where k is the unit vector R/ |R|, and where [v] is the velocity of the elementary
charge e in the source at the instant # - R/c. The potentials are a direct outcome of
special relativity [47,96]. Equations (316) and (317) are generally valid because they
are manifestly covariant under Lorentz transformation, and therefore hold in any
Lorentz frame. The theory of radiation is developed in many texts in terms of situations
of interest and for various approximations to Egs. (316) and (317). The fact that there
is a source being considered means that the radiation emanates from that source, and
this satisfactorily causal in character. If the charge in the source were not moving at

t-Rlc,

e A =0, (318)
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which is Coulomb’s law.
In this section we use the Liénard-Wiechert potentials to describe the radiation

of B® from a charge e circling at radius r with angular frequency  on a mass m .
This can be a circling electron, for example. The tangential (or transverse) velocity of

the charge can be represented in complex form v = y®* ip the circular basis [1,2]
((1), (2), (3)). There is always present an inward seeking (centripetal) acceleration
because the charge is constrained in a circular orbit, for example by a static magnetic
field as in the previous section. The complex vector potentials radiated by the

centripetal acceleration of the charge e are, in general, the complex Liénard-Wiechert
potentials,

AD - A@= _ Zpo; [BY1(1 - k- [BV] )‘1’ (319)
b

where B := [v®1/c. It is important to note that mass does not appear specifically
in these potentials, and that the velocities are evaluated at ¢ ~ R/c. There is energy
flow associated with the radiation. The radiated B® field is therefore

BO* - _,-_;;A(n xA®, (320)

is described in terms of these potentials and is always non-zero in radiation from a
circling electron. The radiated B® is described without the mass of the sample being

specified. The B® field in the sample depends on the mass as in Eq. (299). We will
return to this key point later in this section.
The usual transverse radiated fields are [53], in S.I. units,

. . 1
g0 pae_ o (- B x 8”1 +k(k-[p¥1x 871)) OV

4R (l—k'[ﬁm])3

b

and
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E® _ gos - EHC (k x (k- 18®1) x 1B™1)) (322)
4t R (1-k~[p(l)])3 ’

and these are generally valid equations without approximation. They illustrate the
geometrical and dynamical intricacies associated with the many phenomena of radiation,

e.g. from antennae [96], and at electron velocities close to ¢ (synchrotron radiation).

When the source electron is circling slowly, then f < 1 [53], and in this limit the
radiated vector potential at point R becomes directly proportional to the transverse
velocity at time ¢ - R/c,

®m -———> €l w (323)
AT pet gmr™ T
The radiated B® field therefore becomes
en, (324)
B® 5 it L @ x v,
p<1 '3\ 7mr) ! ]

where the conjugate product of velocities [v® x v®] must as usual be evaluated at the
instant ¢ - R/c. The radiated B® field is governed by A® and A® therefore, and
50 its interaction with matter is described by the interaction of A® and A® with
matter, e.g. one electron. The equations of motion to be used to describe this
interaction are the Dirac or Hamilton-Jacobi equations, based on the minimal
prescription. This leads to the strong and weak field limits as described in Chap. 3.
The radiated B® field adds nothing to the Poynting vector (energy flux) because it adds
nothing to the linear momentum of radiation. Because it is radiated, it does however
produce a novel rotational contribution to the vacuum energy density [1—15],

En - L [B® - B"av, (325)
L)

so that the radiation laws should be adjusted to take this into account, as described in
Chap. 4. This simply means adjusting the effective volume of radiation V, leaving the

value of % the same.
For low source electron velocities, the usual transverse radiated fields (321) and
(322) become
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® _ g ———> €ko . (326)
BT = B™ pet rpe Fx DL
o _ pe ———> ko . (327)
E E <1 4anx (kx [v97),
BY 7 L1k x EO, (328)
c

and are radiated plane waves because Eq. (328) characterizes plane waves. There is a
relation between the Liénard-Wiechert and retarded potentials which is satisfied by
representing the source transverse velocity by

[

r®] = %(ii +J) exp(—im (t - 5)), (329)

in which v, is the transverse speed of the source electron in its circular orbit. The

transverse acceleration [v®] is,

P = -iopp®), (330)

giving the center-seeking, or centripetal, acceleration of charge,

Ex[F®] = o[v®], (331)

which is responsible for the radiation of B®. From these equations we find

BY - kA0 .- L0 (332)
c

which is Eq. (11) of Vol. 1, an equation which describes a plane wave in vacuo as
expected, provided x := w/c.

The amplitude of the radiated B® from this analysis is given in terms of Vy, @
and R,
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BO - g0 - (o (333)
47 Re

and is the same as the amplitude of the radiated BY = B@*  However, the radiation

in vacuo must propagate at ¢, and must propagate as plane waves, as we see from Eq.
(328), so from the analysis of Chap. 4 this means that in the vacuum,

voe, Lok, r- L. (334)
c N
From Eq. (220), however, we know that
BO = ep, Y, (335)
Ro v

where V is formally, a volume of radiation. It is therefore possible to find an
expression for V/R in the limit where the radiation becomes a plane wave propagating

at ¢ in vacuo. This volume in the present analysis can be thought of as being the
volume of a cylinder [96] of length R and radius r, which in vacuo becomes the

Thompson radius 1/« as discussed in Chap. 4. The cylinder’s volume is

V:= nr’R, (336)

and in the limit of plane waves propagating at ¢ in vacuo we find

!qﬁf (337)
R 2

This is an area, proportional to the square of the wavelength, through which passes the
magnetic flux in weber associated with B® , whose units are tesla, i.e., weber m?. The
magnetic flux density at observer point R is B® . Equation (337) shows that whatever
the magnitude of V and R, the area defining the radiated flux density B® is always

A2/4. This can be thought of as the area of a circularly polarized laser or microwave
beam, or the area of starlight collected in a telescope. The source of the starlight may
be many millions of light-years distant, so that the light being collected by the observer
represents the state of the star many millions of years ago. More generally, the
radiation from a source is radiated in a sphere, in which case spherical geometry must
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be used to calculate the radiated energy density and flux density per unit solid angle in
three dimensions [47,52,53,96].

In summary, therefore, the source of the radiated B® is the elementary charge e
in a circular orbit of radius r. The angular frequency of this motion is @ and the
transverse orbital speed is v, ; the motion is that of a particle with mass, m, such as an

electron. The radiated B® is charge e in a spiralling orbit with Thompson radius
A/(2m) and both forward and transverse speed c¢. There is no mass specified with the
charge e in this motion in free space. 1f there is mass associated with this radiation,
it is the mass of the photon [1,2], which is many orders of magnitude less than that of
the electron. Therefore the radiative process (transfer of essentially massless energy)
extends the range of e enormously, while leaving essentially all the mass of the radiating
particle in the source. In this process, e itself is unchanged, or conserved [1,2,
22—725], but ceases to be localized in the source. This process is described through

charge (p) and current (J) densities using the continuity equation [96],

v-g- -9 (338)
ot

Thus, a circling charge at one end of the universe influences another charge at the other

end through the electromagnetic field. When the latter, carrying the radiated B,
meets the target charge, (matter consisting of one fermion), the latter is made to circle
according to the appropriate equations of motion. The radius and transverse speed of
this circling motion depend on the mass of the fermion. The Hamilton-Jacobi equation,
for example, shows that if the fermion is massless (a limit not encountered experimen-
tally), it is made to circle at the Thompson radius with transverse speed ¢, and is
therefore indistinguishable from a photon. This is the strong field limit. Otherwise the
radius and transverse speed depend on the target fermion mass, and the circling of

charge (magnetization) is proportional to a mixture of terms in I and I'/? where I is
the field intensity.

The radiated B® field is therefore associated with a very small amount of mass.
This distinguishes it from an ordinary induction field, such as the static magnetic field
in a solenoid. The latter is caused by circling electrons and is not a radiated field.

The B® field, being essentially massless, has, F.A.P.P., no rest frame, and can never
be static in any frame of reference. It can be observed only through it interaction with

matter, an interaction that must be described through A® and A® through which B®
is defined.
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5.7 THE VACUUM POYNTING THEOREM FOR B®

We have seen in Eq. (202) that the quantum of electromagnetic energy in vacuo,
the photon hw , is proportional to e?, and therefore the propagation of hw past the
observer at point R is due to an acceleration of charge at the earlier instant ¢ - Rfc.
The B® field in the source is due to a conjugate product involving exponents i w ¢ and
—iwt; the B® field in vacuo is the same precisely, but with ¢ replaced by ¢ - R/c,
the unit e being maintained constant. This section develops the Poynting theorem for
B®, the energy due to which is defined in Eq. (325). This is rotational energy, and
the Poynting vector due to B® is proportional to an anguler momentum density of
radiation in vacuo. The vacuum B® does not contribute therefore to the well known
Poynting vector N [1,2,47,52,53,96] which is a /inear momentum density of radiation

in vacuo. The novel Poynting vector due to B® | and the energy density due to B®
form a four-vector of special relativity, an angular momentum-angular energy four-
vector.

In S.I. units the Poynting theorem in vacuo is

v-Nn--9U (339)
ot

where N, Poynting’s vector, is the electromagnetic power per unit area, i.e., the
electromagnetic energy flux, and U is the electromagnetic energy per unit volume, the

energy density. Since B® is a novel vacuum field, it generates the novel energy
density [1,2),

1 3
U, - —B®-B®

Ho Ko

- _1_3(1).3(1):), (340)

which is rotational energy density. If U, is constant in a given radiation volume V,
then oU,/at is zero, meaning that

v.(J_"’ L (341)
v at ?

so that the Poynting vector associated with U, is divergentless and independent of X,
Y, and Z. Since there is no E®, there is no contribution to N from a putative cross
product of B® and E® | as discussed on page 4 of Vol. 1. From Eq. (281) of this
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volume we know, however, that there is an angular momentum, J®, of vacuum
radiation,

Jo - 1 ypogoe, (342)
Mo @

so that its angular momentum density is proportional to B®,

Jo ( B(O))B(s)_ (343)

7 e

The radiation’s angular energy density is

u, - _ Lgo.gor (344)
|4 Ko

and dividing Eq. (343) by Eq. (344) gives

En = o |J9|. (345)

We recover from this the definition of the photon if the angular momentum of radiation
is the angular momentum, %, of one photon, so Eq. (345) becomes the familiar Planck-
Einstein hypothesis En = hw .

The Poynting theorem for B® is therefore

v-J® . ? -0, (346)
¢

and the four-vector defined by this theorem is

7 - (Jw @) (347)
“ ’ w 3

which is Lorentz covariant. Finally, the classical definition of J®, as given, for
example, by Jackson [47], is



114 Chapter 5. The Classical Radiation Theory of B®

7o - EﬂE(l) « BD|dv|e®, (348)
K

and is seen to be closely related to N integrated over V,

PO - ¢,[E® x BOY. (349)

The ratio of Egs. (349) and (348) is x, which for one photon in the quantum field
theory is the ratio of tx to h.
It is possible, therefore, to define Poynting’s theorem entirely in terms of B .

5.8 Q.E.D., BOSON ENSEMBLES, AND B® IN VACUO

Dirac [26] was among the first to consider the application of the new quantum
theory to radiation, initiating the subject of quantum electrodynamics |22—25]. 1t is

convenient in this final section of this chapter on the irradiation of B® to sketch an
introduction to the methods by which it can be quantized in free space, leading to the
concept of the photomagneton operator [4], the phase independent magnetic flux density

operator equivalent to the classical B® . We first consider the question of the complex
nature of the vector potential in the classical theory, a seemingly mundane property but
one which is responsible for travelling waves from Maxwell’s vacuum equations. In so
doing we follow the clear discussion by Jackson [47] of plane wave solutions, in
particular,

"A basic feature of Maxwell’s equations is the existence of rravelling wave
solutions which represent the transport of energy from one point to another.
The simplest and most fundamental electromagnetic waves are transverse plane
waves."

The travelling wave equation has the form [47]

2
va_%i;:m (350)
v ot

where v = ¢f(ue)? is a constant, and where € and p are material permittivity and
permeability respectively. The plane wave solutions of Eq. (350) are [47]
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u = ei(k~x—wt) (351]

where k = /v and the fundamental solution is

u(x, t) = Aei~ 00 4 Bg i+ an) (352)

which represents waves travelling to the right, with complex exponent x - vt and tc
the left with complex exponent x + v¢. The phase angle ¢ - z/u is a constant, and the
wave fronts are perpendicular to the axis of propagation. In the classical theory,
causality leads [96] to the neglect of the term in x + v, leaving a fundamental solution
of the form

u(x, t) = Ae*&-", (353)

Additionally [47], electromagnetic plane waves have a vector character and can be
circularly polarized. This means that circularly polarized transverse electric anc
magnetic fields rotate as they advance.

The novel B® field satisfies the above criteria of electromagnetic plane waves, the
reasons being as follows.

1) The B® field is a travelling and spinning solution of the vacuum
Maxwell equations, because it is defined in terms of a conjugate product tha

includes the exponent product e ®e'® where ¢ := w(t - R/c) is characteristic of

a travelling wave as we have just seen. Thus, B® is situated at a unique point R,
which propagates through the vacuum, and at no other point. At some later

instant B® will be situated at another point in space, and thus propagates, of
travels, with the wave front. Roughly speaking, it is carried along by the

transverse plane waves. It is entirely wrong to think of B® as a uniform field
stretching throughout the whole of space, at a given instant it is at a given locality
and no other. Similarly, the photon is situated at a point in space, and as in the

Compton effect, can act as a particle. The B® field is proportional to the angular
momentum of this particle and is a pseudo vector.

2) There is a Poynting theorem for B® as described in the preceding

section, and so B® , as required, carries rotational energy and angular momentum
through the vacuum. The field creates rotational energy density and angular
momentum density. In contrast the transverse plane waves create translational
energy density and linear momentum density.

3) The source of B® at observer point R is circling charge at the instant
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t - R/c earlier. This is also the source of the transverse plane waves.

4) The interaction of the classical B® with matter is described by the
potentials through which it is defined. The minimal prescription, in which A, is
complex in general, is the way in which this interaction is understood. This gives
the weak and strong field limits and also describes the interaction of the transverse
fields with matter. Since B® propagates, F.A.P.P., at ¢ this interaction is
relativistic in nature, requiring a relativistic factor in the Hamilton-Jacobi and Dirac
equations.

When we come to apply Dirac’s method of quantization [26] of the electromagnetic
field it is necessary to find a way of translating these ideas into quantum mechanics, but
there is no fundamental conceptual difficulty posed by the existence of the classical

B® . In Vol. 1 [1], for example, a simple scheme of quantization was adopted whereby

B?Y B and B® were recognized as angular momentum operators of quantum
mechanics, which are within a factor % [23] infinitesimal rotation generators of O(3).
This scheme is easy to develop and removes the anomaly of the unphysical E(2) little
group |11, which is replaced by the physical O(3) little group. Dirac’s method [26], the
original methodology leading to Q.E.D. in the Heisenberg picture, relies however on
areal A, and in Q.E.D. [58], fields are real in k (momentum) space. For example,
Dirac [26] uses the Fourier expansion,

A= f(Ak + x_k)e—ikxdi;k, (354)
which in our notation is
A - f(A((,;)eﬂ'kx + A‘()i)eikx)dSk, (355)

meaning that A is pure real. This is still classical, but quantization takes place directly
from this Fourier expansion in k space by replacing the integral by a sum over a dust
[26] of k values representing individual oscillators of the electromagnetic field. In

order to get B® from this type of Fourier expansion, it is necessary to proceed on the
basis of the Poynting theorem for B® by recognizing that

2
En = _l_fBG) -BO=gqv = if(_(_‘_)_) A(l) .A(z)dV’ (356)
Ko Ko ¢

so that the quantized B® can be developed in terms of cross products of complex
amplitudes Af.l) and its complex conjugate Af,z) for each k. For each photon,
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therefore, there is a B® field, and in quantum mechanics it is proportional directly to
an angular momentum operator. (In the classical theory, Eq. (342) shows that B® is
proportional to the angular momentum, J® , of radiation in a given volume V.)

With care, therefore, the quantization of B® using Dirac’s methods [26] becomes
straightforward, and there is no violation of the concepts of Q.E.D. This is intuitively

acceptable because B® violates no classical concepts and exists in the classical theory
of fields.
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The existence of the B® field in vacuo has the fundamental implication that if the
photon can be considered to be a particle, it must have mass in the theory of special

relativity. Since iB@B®* is routinely observable in magneto-optical effects, then it
is no longer possible to accept the idea of a massless, particulate photon. The Wigner
little group becomes the physical O(3), and not the unphysical E(2). Empirical evidence

for the expected I'? dependence of magneto-optic effects due to B® will strengthen
this conclusion with further data, but it has already become clear that the observation

of I dependent magneto-optical effects |16—21] means the existence of iB@B®* and

therefore of B® . This conclusion means the introduction [1,2] of various mechanisms
by which gauge invariance can be reconciled with non-zero photon mass. There are
several inroads already available in the literature [1,2] to this interesting area of
electromagnetic theory.

The prevailing orthodoxy relies on the assertion that the mass of the photon is zero,
because it appears convenient to do so in the Lagrangian approach to field theory [1,2].
The assertion leads directly in special relativity to the conclusion [1,2,23] that the
Wigner little group is the unphysical E(2). Therefore the theory of the massless photon
is unphysical and internally inconsistent in special relativity, but is nevertheless routinely
presented as physical and self-consistent. To the present authors this orthodoxy is

unacceptable because it is fundamentally flawed. The recent emergence of B® as an
electromagnetic field, carrying energy in vacuo according to Eq. (346), shows that there
are three degrees of freedom in electromagnetic fields propagating in vacuo; there exist

B® B® and B® in the circular basis (1), (2), (3)). Equivalently there are three
degrees of freedom in the Cartesian frame (X, Y, Z).

6.1 SOME DIFFERENCES BETWEEN THE ORTHODOX AND B®
THEORIES OF LIGHT

It is convenient to list a selection of the major points of difference as follows.

la) In the orthodox theory of light, the particulate photon is identically
massless, and from special relativity must be associated with transverse plane waves

propagating in vacuo. There can be no physical B®, it is asserted, because it is
not a transverse plane wave.
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1b) In the B® theory of light, the particulate photon must be three dimension-
al and therefore massive, because a massless particle must be two dimensional [56]
from Wigner’s paper of 1939.

2a) In orthodox classical electrodynamics the Poynting vector is N, which is
proportional to linear momentum density, and translational electromagnetic energy
in vacuo is defined in terms only of transverse plane waves.

2b) In the B® theory there is a new Poynting theorem, Eq. (346), and a new

rotational contribution to electromagnetic energy density through B® - B®*.

3a) In the orthodox theory propagating fields depend explicitly on the phase
factor ¢ = w(t - R/c).
3b) The B® field propagates in vacuo because it is implicitly dependent on

the phase through a cross product.
43) In orthodox magneto-optics there occur conjugate products such as

B® x B® but these are not accepted as indicating the existence of B®.

4b) In the new understanding iB®B®* is equal to B® x B®, so B® isan
everyday observable of magneto-optics. The orthodox thinking cannot accept this

because B® is asserted to be zero. This is the point at which the old theory
becomes internally inconsistent.
5a) In the orthodox view the mass of the photon is identically zero because
otherwise gauge invariance is violated in the Lagrangian approach to field theory.
5b) In the new thinking there can be no photon whose mass is zero because of

the existence of B®. By making 4 A, infinitesimally small, gauge invariance and
non-zero mass can be reconciled. There are probably several other ways of
achieving the same aim [1,2].

6a) In the orthodox approach magneto-optical effects are always proportional
to beam power density, 7, and this is corroborated by available experimental results
[16—21].

6b) In the new approach, there develops under the right conditions an / 2
dependence which has not been observed hitherto. This has been predicted clearly
and independently by Chiang [100] and by Talin ez al. [54], but the significance
of these papers has not been fully realized. Both papers indirectly indicate the
existence of B® through special relativity. The I'2 dependence is actually
implicit in a standard text such as that of Landau and Lifshitz [75], as explained in
Chap. 12 of Vol. 1 [1], but because this is an orthodox text in the classical theory
of fields, B® is not recognized explicitly.

7a) In contemporary orthodoxy, the Faraday induction law is one of the
vacuum Maxwell equations and always links transverse components of the
electromagnetic field.

7b) In the new theory the field B® is dual [1,2] to the imaginary and

unphysical -iE®/c through a relation which is formally equivalent to a Faraday
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induction law. There is no real E® | however, and no Poynting theorem for it.
In other words there is no E® to carry electromagnetic field energy through the

vacuum, only a B® .
8a) In the orthodox vacuum theory there are no cyclic relations such as

B® x B® - iBOB®* et cyclicum, (357

because B® is asserted not to exist. At this point the old theory becomes
internally inconsistent because setting B® to zero in Eqgs. (357) results
in B® = B® = 0, while it is known that this is not the case, and if so, the cross
product of B® and B® leads back to iB©B®*, meaning that B® exists.

8b) In the new theory these cyclical relations indicate that B®, B® and B®

can be understood easily as O(3) rotational generators [1], or Lorentz group
generators in space-time. The theory is easily quantized because these are also

angular momentum operators in quantum mechanics to within a factor % [1,2].
9a) The assertion B® = 0 in the old theory leads directly to the E(2)

inconsistency, which is described for example by Weinberg [93] or by Ryder [23].
The E(2) little group is the planar Euclidean group and is unphysical.

9b) In the new thinking B® is accepted as a routine experimental observable
and is, thereby, not zero. The Wigner little group [1,2,22—25] becomes O(3), the
rotation group, and is physical.

102) In the orthodox view the photon is asserted to be an uncharged particle,
so that it is its own anti-particle.

10b) This view is shown to be untenable by Eq. (202), and by the experimen-

tally observable B® field [16—21]. The energy of the photon is proportional to
e?, and there can be an anti-photon with a different sign of e but with the same

mass [1] and energy but opposite B .
11a) In the orthodox view, canonical quantization is beset by inconsistencies

caused [23] by the fact that A, need not be completely covariant.
11b) In the new view, A, is a fully covariant and physical four-vector, which
in free space obeys a limiting form A A, - 0 of the Dirac condition.

The above selection of some key differences between the old and new theories leads
10 the expectation that there will eventually be found (for example in Q.E.D.) numerous

exz}mples of specific effects due to B® which can be interpreted as specific effects of
finite photon mass. However these, although indicating the existence of such mass, may
not be sufficient in themselves to determine it experimentally without some additional

input [6]. However, B® is sufficient to invalidate the concept of the identically
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massless photon.

6.2 THE CONNECTION BETWEEN PHOTON MASS AND B®
IN THE POINCARE GROUP

In this section the connection is made between B® and non-zero photon mass using
the symmetry of the Poincaré group [23]. The two Casimir invariants of the group are
mass and spin, which are invariant under Lorentz transformations that include boost
generators in special relativity. Spin corresponds to a rotation group symmetry if and

only if m?>>0, where m is the mass of a particle being subjected to Lorentz
transformation including boost, rotation, and space-time translation. In this view [23],
discussed by Weinberg [93] for particles of any spin, the very concept of spin for a
particle with mass is defined by the symmetry of the Wigner little group. The idea of
a particle without mass, m = O identically, results in a non-compact little group, E(2),
which is unphysical. Therefore the obvious inference is that the original idea itself is
unphysical. The E(2) group describes rotations and translations which must be taking
place simultaneously in one plane embedded in three dimensional space. The presence
of the most minute amount of mass means that m is no longer identically zero, and the
little group becomes the physical O(3) {1,2,23].

In the current orthodoxy, which is rapidly losing its validity, the unphysical nature
of E(2) is accepted uncritically because in the Lagrangian approach to field theory a

massless photon is needed to keep the term m”A“ALL invariant under gauge transforma-

tion. Even in this context, however, the Higgs mechanism [2] can be used to input
mass into the boson known as the photon using spontaneous symmetry breaking of the
vacuum. The mechanism is applied for a Lagrangian which is originally compatible
with gauge invariance. These points have been pursued in Vol. 2 [2]. Weinberg [93]

has shown that A, cannot be quantized for an identically massless photon because it

corresponds to a (1/2, 1/2) irreducible representation of the Poincaré group. Such a
representation is not allowed, however, for m =0 because in this case the helicity of the
massless particle must be A = A - B, where the irreducible representations are denoted
(A, B). Thus, we encounter the familiar difficulties with canonical quantization of Au
in for example, the Lorentz gauge: an indefinite metric, negative energies, unwel-
come ¢ numbers, and so forth. In the Coulomb gauge [23], A‘l is not completely
covariant, thus compounding an already severe problem.

These difficulties are usually patched up in the orthodox theory using the Gupta-
Bleuler method {1,2,22—25], but Weinberg [93] chooses to avoid completely the use
of a Lagrangian formalism in favor of one based on an S-matrix. He concludes that all
field equations are simply relations between spin components of the vector field.
Therefore if spin is defined through a Wigner little group, the only physical particles are
those with mass, because E(2) is unphysical. This is a complicated way of recognizing
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that there must be a B® field, because otherwise, the photon has no mass. In other
words if the E(2) little group of a hypothetically massless photon is unphysical, as it
surely must be, the Maxwell equations themselves must also be unphysical. Expressed
in a third way, if the particle spin itself is unphysical, (E(2) little group), any relation
between components of the unphysical spin (i.e., the Maxwell equations) must also be
so. At this point the orthodox view departs from internal consistency, because it
simultaneously accepts an unphysical E(2) but a physical set of Maxwell equations.
This appears at the time of writing to be the most general relativistic argument for

the existence of B® , but there are many others as we have seen.

The defining Lie algebra (357) is cyclically symmetric, non-Abelian, compact and
semi-simple [1,2,23,93]. The Lie algebra of E(2) on the other hand is not cyclically
symmetric, contains an Abelian sub-algebra [93], is not compact and not semi-simple.
These are troublesome features for the orthodox theory because the usual assertion

B® = 0 means throwing away a space dimension and an angular momentum. The
E(2) group in consequence becomes non-compact because one commutator L, L,]is
zero, and zero is itself not a group generator. In contrast, Egs. (357) are ordinary

relations between infinitesimal generators of the O(3) group, which become commutator
relations [1,2] between angular momentum operators in the quantum theory.

Therefore B® is incompatible with the existence of an identically massless photon. We

must abandon either the former or the latter. Since B® was unknown prior to 1992
[7] there is a vast amount of literature based on the uncritical acceptance of the orthodox

theory and therefore of the unphysical E(2) group. Since B® is observable

experimentally [16—21] through iB®@B®* there must be finite mass associated with
the photon if particulate, and effects such as Compton scattering tend to confirm the

latter point of view. We have therefore a valid chain of reasoning linking B® to non-

zero m. Furthermore, these volumes have shown that B® is deeply rooted in
electrodynamics.

The hypothetically massless photon on the other hand is a mathematical idea that
cannot be tested experimentally because it produces concomitant electromagnetic fields
which are infinite in range and not bounded by a finite universe. The range of
electromagnetic radiation is known to be very great, experimentally, but cannot be
shown experimentally to be infinite, because infinity is a mathematical concept. Since
mass is deeply embedded in general relativity theory and the bending of space-time it
cannot be expected to vanish arbitrarily as in the older, orthodox theory of electrody-
namics. As we have just seen, such an idea is equivalent to throwing away a space
dimension, leading to the E(2) inconsistency.

The recognition of B® has the further major advantage of rendering the little
group O(3) for the photon as particle. To know all the representations of the Lorentz
group for the photon with mass we need only know [23] the generators of O(3), which

are directly proportional to B®, B® and B®. These are the three fields of the
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photon with mass. The experimentally verifiable [16—21] existence of B® means that
the photon’s helicities are those of a boson with mass: +1, 0, and -1; and not +1 and -
1 as in the orthodox point of view. If we throw away one of the B fields we no longer
know all the representations of the Lorentz group for the photon with mass, meaning
that the very structure of space-time itself is destroyed. This is another internal
inconsistency of the orthodox point of view. Either we have a well defined space-time
(metric) or we do not. An illustration of this has been sketched already, throwing

away B® in Egs. (357) means throwing away B® and B®, leaving nothing.

We conclude that BY, B® and B® are each irreducible representations of the
0Q@3) little group of the Poincaré group, a little group which leaves the momentum-
energy four-vector p, (or boost generator [23]) invariant under the most general type
of Lorentz transformation. This invariance is an expression of energy-momentum
conservation and the Noether theorem [1,2]. It is therefore also compatible with gauge
transformation, showing that a photon with mass is compatible with gauge transforrqa—
tion. The Lagrangian formulation of field theory (or indeed any other, €.g. S matrix,
formalism) must therefore be modified to be compatible with this very general result
from energy-momentum conservation. Therefore B® is compatible with gauge trans-
formation and is physical.

6.3 CONSEQUENCES WITHIN THE POINCARE GROUP

The boost generators of the Poincaré group disappear from its little group if the
latter is O(3), however minute the particle mass may be experimentally. The
fundamental reason for this is that boost generators cannot form a cyclically symmetric
Lie algebra akin to Eq. (357). In simple vector language, the cross product of two
polar vectors is an axial vector, not another polar vector, whereas the cross product of

two axial vectors is another axial vector. The magnetic fields B®, B® and B® are
axial vectors, and are represented in matrix form by infinitesimal generators of O(3).
The algebra of vacuum electric fields akin to (357) is [1—15]

E® x ED - —EOGE®Y', et cyclicum, (358)

in which the longitudinal ((3)) component is pure imaginary and unphysical. There is
no known experimental effect due to a putative E® . 1t has been shown [1—15] that

electric fields must be proportional to boost generators for a particle with m =0
identically. Its unphysical nature is overlooked in a vast number of papers that assert

that the photon is massless. With the advent of B® this assertion becomes untenable,
and so does the isolated existence of plane waves. The transverse B® and B® do not
exist in isolation of B® | which is also relativistically invariant. The unphysical nature
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of E(2) is an irrecoverable fault in the theory of massless particles. If we try to
associate such particles with fields, relativistic field theory also becomes unphysical.
The specifically Abelian feature of the Lie algebra of E(2) shows up through the fact

that the commutator of L, and L, does not produce a generator in the 3 axis orthogonal
to the plane (1,2) of L, and I:z This is despite the fact that the generator J, appears
in the other two commutators, and as shown elsewhere {1}, is proportional to the B®
field in vacuo. This demonstrates the internal inconsistency of E(2) and the concomi-

tant, orthodox and Abelian electrodynamics it represents, because B as argued
earlier, is an experimental observable. This inference emerges throughout these three

volumes. The rotation generator f3 appears in two out of three commutators of E(2),
and B? is directly proportional to f3. Therefore B® also appears in these commuta-
tors, but does not appear in the first commutator [23] on the right hand side. Since I:l
and 1:2 are two of the basic generators of E(2), (f3 being the third), this group cannot

produce B® self-consistently, and the group is, significantly, also unphysical.

Thus, B® is a physical field component in vacuo, as deduced throughout these
volumes. The physical little group O(3) produces this result consistently through the
defining Lie algebra (357).

6.4 COMPATIBILITY OF B® WITH NOETHER’S THEOREM

Noether’s theorem [1,2,23] relates fundamental space-time symmetries to

fundamental conservation laws, and links the existence of B® to that of the canonical

energy-momentum tensor, 7, , that appears in Einstein’s field equations of general

relativity. It is possible that the existence of B® may provide a new link between
electromagnetic theory on the one hand and general relativity on the other because the
defining Lie algebra (357) is non-Abelian and can be linked as in Vol. 2 |2] to Yang-
B_llills type gauge theory. Noether’s theorem [23] is fundamental to physics, because it
links fundamental symmetries to fundamental conservation laws. It is therefore

necessary to show that B® is rigorously compatible with the theorem. In view of the
link between the photomagneton [4] B and J®

23
B® - pod (359)
h

this can be proven through the fact that Noether’s theorem implies conservation of
angular momentum as a consequence of fundamental space-time symmetries. The
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rotation generators appearing in Eq. (357) are, within a factor h, the three space-time
components of the quantized version of the angular momentum four-tensor M.
Noether’s theorem states that this is a conserved classical quantity,

My o (360)

and this is in essence a statement of the new Poynting theorem, Eq. (346), for energy
transmitted in vacuo by B® . This is confirmed through the fact that if x is defined
in Minkowski notation by (X, Y, Z, ict), then Mpv is given by an integral over the
canonical energy-momentum tensor, T, ,
- 3 361

Mpv = f(Tova - Tvap)d X, (361)
and by virtue of conservation of angular momentum, 7, ~must be symmetric. A
symmetric 7, is also necessary in Einstein’s field equations for gravitation, a non-
Abelian field [2,23], and the non-Abelian nature of the algebra (357) forges a link
between B® T.” and Muv , one which is incomplete in the orthodox view because a

generator is missing. This link may well be useful in developing a unified under-
standing of gravitation and electromagnetism, because both theories are now non-
Abelian.

The compatibility of B® with Noether’s theorem follows from the fact that the
eigenvalues of B® are those of J®, the Z axis angular momentum operator
component. This is the usual, specified [45], or observable, component with quantum
numbers M = -J, ..., J. The only non-zero eigenvalues of the electromagnetic beam’s
B® 3 B® and B® components are therefore those of B® | a constant of motion whose
classical expectation value, B®, is conserved and non-zero. Thus B® is compatible
with Noether’s theorem. In the orthodox view, the expectation values of the phase
dependent B® and B?

The existence of the I'2 profile [1,2] is missed entirely, a profile which isolates B®
within experimental uncertainty under the right conditions. It is of course important to
work under these well defined [1,2] conditions, otherwise there will be a negative
result, as in the experiment by Rikken [74]. It is emphasized, however, that routine

magneto-optics yields data on iB®B®* and so B® is a routine observable at order one
in1[{16—21]. The only way to deny this conclusion is to assert that B® x B® is not
equal to iB@B®* . There are no known physical, algebraic, symmetric or dimensional

vanish and there is no magnetization to first order in B .
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arguments to support this assertion. This is the way in which B® was discovered
originally [7] and is alone sufficient to expose the inconsistency of the orthodox view.

Noether’s theorem is also satisfied in this view, however, because the fields B®
and B? average to zero and zero is a conserved quantity. In the new, self-consistent
theory, in which photon mass is non-zero, we obtain an exponentially decaying B®

B® = BO,i2,0) (362)

where £ is a rest wave-number [1,2]. This is again compatible with Noether’s theorem
because for each Z

dB®
dt

= 0. (363)

6.5 B® IN THE SEARCH FOR UNIFICATION OF ELECTROMAGNETISM
AND GRAVITATION

The B® field is compatible with Noether’s theorem through conservation of
angular momentum in the free electromagnetic field. It is possible to develop several
interesting links between the non-Abelian Lie algebra (357) and the non-Abelian theory
of gravitation in the vacuum [23]. The Lie algebra (357) implies that the gauge group
of free electromagnetism must be enlarged to the non-Abelian O(3) from the Abelian
U(1). As in all non-Abelian gauge structures the field may be thought of as acting as

its own source, thus, the source of iB®B®* at the observer point R, and thus of B® |
is B® x B® at the instant ¢ - R/c, i.e., acircling charge. As we have seen in earlier
chapters, the phase w(t - R/c) is implicit in the definition of B® .

In general relativity the gravitational field carries energy, which is equivalent to
mass, and is itself a source of gravitation. Thus, in the Einstein field equations, both
Sides are tensors whose covariant divergence vanishes. The covariant derivative in

general relativity has a geometrical origin; space-time itself becomes non-Euclidean in
the presence of a gravitating object. The ordinary divergence of the Einstein tensor

G,f? is not zero, even in the absence of matter, and this is an expression of the fact that
the field couples to itself.

In analogy, an O(3) gauge symmetry for free electromagnetism results [2] in the
replacement of the ordinary O(2) field tensor F,, by a tensor G,, which is also a

vector in ((1), (2), (3)). The covariant derivative of G'“ vanishes [2] in vacuo, as for
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the Einstein tensor, but its ordinary derivative does not. The B® field appears as an
intrinsic, irremovable, and gauge invariant component of G,,, a specifically non-
Abelian component,

v’

B®* = —i%Aa) x AD, (364)

Therefore A® x A® is also gauge invariant, because it is part of the gauge invariant
G, provided that the gauge group is O(3). This point is developed in the next sub-
section. In analogy with general relativity, the covariant derivative in O(3) vacuum

electrodynamics also has a geometrical origin 2], and the four-potentials A;'), Af)
and Af) can be identified with connection coefficients, I‘;v , in general relativity [23].
The quantity analogous with G“v of non-Abelian electrodynamics is the Riemann-
Christophel curvature tensor R;,,, which indicates that space-time is non-Euclidean
when there is a gravitational field present. If it were possible to express G,, in the

same tensorial structure as R;pv , then it would also be possible to say that space-time

becomes curved when there is an electromagnetic field present. Continuing the analogy,
the Bianchi identity of general relativity would become analogous with the homogeneous
Maxwell equations in the O(3) gauge group [2]. Finally, our novel equivalence
condition,

eA© = YK, (365)

becomes analogous with the Einstein field equation itself,

1 8nG®
va - EgpvR = - 2 Tpv, (366)

so that p is analogous with the Einstein tensor va. The equivalence condition
emerges as a direct result of the term (364) in G
gauge geometry.

uv» and therefore as a result of 0]6)]
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6.6 THE GAUGE INVARIANT LAGRANGIAN MASS TERM ASSOCIATED
WITH B®

Since A® x A® is gauge invariant in O(3) geometry, being, within a factor .
-ie%, the non-Abelian component [2] of the gauge invariant G“v , the energy density

due to B®, part of the new Poynting theorem, Eq. (346),

En _ 1 po . BO*, (367)
Ko
becomes
En _ 1 e 0, 40.40, 40 (368)
Vo mew
Using the vector identity,
FxG-HxI=(F-H)G-I)-(F-I)(G- H), (369)
the energy density becomes
En _ 1 e_z(Au).A(z)){ (370)
| T

The original expression (364) is gauge invariant in O(3), and so Eq. (370) must also be

so. Using Eq. (288) for the field mass, m, associated with B® we obtain, with Eq.
(282),

eA® = 2me, (371

showing that the momentum eA©® is equal to a mass, 2m , multiplied by c. In the
orthodox view, this mass does not exist. The energy density (370) is therefore

4
B i(zm)zAm 40 - A% 4o 4o (372)
V :h2 p'o:hz

This is an interesting result because it shows that En/V is a mass term in the
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Lagrangian, a term which is gauge invariant in O(3) because the original expression,
Eq. (364) is gauge invariant in O(3). If for convenience we identify 2m with M, Eq.
(372) becomes

En

Vv

2
MC2) 1 g . o (373)

’nw?o

This is consistent with Eq. (367) if and only if

ho = Mc?, (374)

and this equation has the same form as de Broglie’s Guiding theorem, Eq. (1) of Vol.
1 [1]. The mass that appears in de Broglie’s theorem is the mass of the photon, and as

seen in Eq. (294), this is proportional to M. In the orthodox view M =0 identically
and there is an inconsistency, because M =0 means that @ = 0 simultaneously to
retain a finite En/V. If, however w = O there is no radiation. In the orthodox view
there is no B®, which is inconsistent with the experimentally verified cyclic relations

(357). These are experimentally verified because B® x B® is an observable [16—21].

There are several other inconsistencies in the orthodox view of the electromagnetic
field in free space. For example, the energy density in the orthodox U(1) gauge group
is

En _ 1po.go. L9040 (375)
v Ko Ko C2

butif B = V x A, the description of Er/V in terms of B is unchanged if the type two
gauge transformation

A-~A+ VX, (376)

is made. However, the description of the same En/V in terms of A is changed by Eq.
376) to

En  En 1 wz(vx)(l),(vx)(z) - (377)

= 4 20 ¢

and is not gauge invariant in U(1). This is essentially why a mass term, proportional
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to A A, is not used in the orthodox Lagrangian density. In consequence, it is asserted

[23] that the photon mass is zero. This means that there can be no B® in vacuo, and
this is inconsistent with experimental data [16—21| because of the existence of the
cyclic relations (357).

In the new, consistent, theory, in contrast, we have derived a satisfactorily gauge
invariant energy density, Eq. (373), which can act as a Lagrangian density. In order

to do this, however, we must accept B® as a physical field, because it is proportional

to the product A® x A®  This means that a non-zero photon mass has been made
rigorously compatible with type two gauge invariance, a most satisfactory result which
persuades us to abandon the old U(1) gauge group in favor of O(3), thereby curing the
anomaly of the E(2) little group. The assertion that the photon is a particle whose mass
is identically zero becomes untenable in the light of this reasoning. It is therefore
logical to look for signs of finite photon mass using the most precise methods available,
for example the Lamb shift or measurements of the anomalous magnetic moment of the
electron with radiative corrections. Although the present agreement with orthodox
Q.E.D. is satisfactory to several decimal places, the photon mass is minute, (less than
10* kgm. [1,2}) and much greater precision is probably required to discern its effects
on these spectra, accurately measured as they are.

In order to set the stage for these experiments, it is necessary to develop Q.E.D.

with finite photon mass, because B® means the existence of such mass, and as we have
seen, the existence of B® has been shown experimentally in magneto-optics through

iBOB®*  The existence of photon mass itself is therefore shown through standard
magneto-optics [16—21]. This opens up new areas of thought in Q.E.D. {101], for
example in: mass renormalization, photon self-energy, and the ultra-violet divergence.
The gauge invariant mass term (373) in the Lagrangian leads to sharply divergent terms
in the propagator, and to modifications of well known expressions for phenomena such
as Compton scattering, and the spectra of positronium and hydrogen. It is therefore
necessary to amend the theory of radiative corrections of the Lamb shift and the
anomalous magnetic moment of the electron to allow for finite photon mass and to
predict the effect on the data. This may be done through Q.E.D., but also through
other methods, which avoid the awkward divergences inherent in Q.E.D. The method
should then be extended to Q.C.D. as systematically as possible, using all available
sources of data to estimate photon mass. The latter is so minute that the precision of
these superbly accurate methods will probably have to be increased considerably,
surprising as this may seem at first.

In contrast, the orthodox view regards the existence of photon mass as being
incompatible with gauge invariance. Our Eq. (373) answers this objection immediately

and in its entirety, and Eq. (373) is based directly on the existence of B®. The most
glaring and strident inconsistency in the orthodox view is that it is forced into asserting

like a cuckoo-clock that B® is zero. This destroys the rigorously derived and
supported [1—15] cyclic relations (357) and there is no physical or mathematical ground
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upon which such destruction can occur.

6.7 SUMMARY OF INCONSISTENCIES IN THE U(1) THEORY

In the final section of this chapter we summarize some of the major inconsistencies
that have developed in the orthodox theory, in which the gauge group of free space
electromagnetism is U(1) [1,2,23].

1) The cyclic field relations (357) are relations between generators of the O(3)
group in space. The O(3) group is non-Abelian, compact and semi-simple. Each
component equation is dimensionally and symmetrically self-consistent. In the
orthodox, U(1), theory, there can occur no non-Abelian relations such as these, and
the U(1) theory cannot account for their existence.

2) The U(1) theory is forced back on the assertion that B® does not exist
{62—65], or is somehow not a magnetic field. This is an assertion that is contrary

to experimental data [16—21], data which show that iB@B®* is a physical
observable because B® x B® is one. If B® did not exist iB®B®* would not

be an observable and neither, therefore would B® x B® .

3) The planar Euclidean group E(2) [1,2,23] is unphysical in the U(1) theory,
and therefore that theory is unphysical. It follows that the idea of a particle with
no mass is also unphysical. Such a particle is two dimensional in U(1) theory, but
three dimensional and massive in O(3) theory.

4) As discussed by Weinberg [93], the four-potential Ap cannot be quantized
in U(1) theory. Satisfactory quantization of Eq. (357) occurs immediately because
each B is an angular momentum operator of quantum mechanics.

5) In the U(1) theory no method can be found to produce a gauge invariant
mass term in the Lagrangian. The theory is forced to the unphysical conclusion
(see (3) above) that there exists a massless particle. Within the O(3) gauge group,

however, 2], the gauge group required by the existence of B® | a gauge invariant
mass term appears and is given by Eq. (373). This is an expression for the electro-
magnetic energy density, En/V, and can therefore serve as a Lagrangian density.
It is a direct and simple consequence of the gauge invariant proportionality

between B® and AD x A® in the O(3) gauge group [2].

6) Canonical quantization of the U(1) theory is beset with difficulties, and this
is well known [1,2,23]. The canonical quantization of the Proca equation, on the
other hand, proceeds straightforwardly, and with Eq. (373) in mind, it is now
known that it is satisfactorily gauge invariant in O(3). The particles produced by
canonical quantization within the O(3) gauge group are photons with a tiny but non-
ZETO mass.

7) The range of radiation concomitant with the identically massless photon is
infinite, and this is unphysical because all infinities, or divergences, are so. The
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known universe is thought to be finite, and light from the most distant stars has
travelled a finite distance.

8) The little group is the Poincaré sub-group that leaves energy-momentum
invariant under the most general type of Lorentz transformation. This result is
obtained from the fact that energy-momentum is the generator of translations within

a factor h. If energy-momentum is invariant under a Lorentz transformation, the
little group must be a physical group, such as a rotation group, describing a
physically meaningful rotation. However, for a particle of mass m =0 this is not
the case, because the little group is E(2), the group of rotations and translations in
a plane.

9) Equation (373), describing a gauge invariant Lagrangian density, reveals a
new inconsistency in the standard U(1) theory because the latter is based on the
assertion that any Lagrangian mass term must be discarded because it is nor gauge
invariant. Ryder [23] also asserts that a photon must be massless in the Yang-Mills

formalism, but this is at odds with Eq. (373) and the experimentally verified B®
field.

10) It has been shown repeatedly, e.g. by Huang [102], that a finite photon
mass, or field mass, can be incorporated in electromagnetic and unified field
theory, and similarly, methods for incorporating finite mass in Q.E.D. are well

developed [101]. The emergence of B® | which is well defined in electrodynam-
ics, shows that photon mass is identically non-zero.

11) In contemporary field theory, classical, non-linear field equations give
interesting new solutions, and non-Abelian gauge theories, exemplified by our
cyclic relations (357) are also non-linear in nature. If the development of these
equations is confined, initially, to two space dimensions, they automatically
produce a string, or vortex, in a third dimension. This can easily be understood
with the non-Abelian (357), but no U(1) theory can produce a physical vortex field
perpendicular to the plane of definition of U(1) without changing the relevant gauge
group to O(3). If so, the photon can no longer be a two dimensional particle and
must have mass.



Chapter 7. Photon Mass in Electromagnetic Theory

We have seen in Chaps. 1 to 6 that there exists a field, B®  in vacuo which shows
that the photon, if particulate, cannot be two dimensional. If so, it must carry mass,

which we denote m. In this chapter we explore in relatively simple terms the effect of
non-zero photon mass on electrodynamics, classical and quantum mechanical. It is

shown that our ideas about light are changed radically when m is not equal to zero, for
example, there is no longer a simple relation between the classical angular frequency,

o, and the classical wave-vector, x. If the photon is massive, x = w/c is no longer
true in vacuo. The photon of mass m has a rest frame, in which the de Broglie Guiding
theorem holds. The latter defines a rest frequency w,, through

hw, = mc?, (378)

but in any other frame, this theorem has to be modified relativistically using the Lorentz
transformation, as for any other particle with mass. In Sec. 7.1 it is shown that the

potential four-vector is a physical four-vector for the photon of mass m, meaning that
the scalar potential cannot arbitrarily disappear, as in the transverse gauge [47]. This

section is followed by an elementary development of some relativistic properties of A
in free space, with a view to emphasizing its physical nature. It is no longer a
convenience for deriving fields from d’ Alembert’s equation [1,2]. The Proca equation
takes over from the latter, and can be quantized with none of the difficulties associated
with canonical quantization [23] of the photon with m =0. Our novel energy density
(373), which is gauge invariant, shows that photon mass is reconcilable straightforward-
ly with gauge invariance in O(3).

7.1 EINSTEIN EQUATION FOR A "

The Einstein equation is a cornerstone of classical special relativity and is present
in any textbook on the subject. It introduces the rest energy, En = mc?, and relates
it to the Lorentz invariant product of p, with itself, where p is the energy-momentum
four-vector. In standard {23] covariant-contravariant notation
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p*p, = mic%, (379)

where p* = (p, En/c), p, = (-p, En/c). Here p is the particle momentum and En
he total particle energy in a given Lorentz frame of reference, with m denoting particle
nass, a scalar Lorentz invariant. In the rest frame, the momentum is zero, p=0,
secause the particle is at rest (i.e., does not translate) with respect to the frame of

ybservation being used. From these elements it should be borne in mind that the photon
nass must also be a Lorentz invariant, its mass in any Lorentz frame is the same as its

-est mass [57]. The translation of a particle at ¢ with respect to the observer is often
nisunderstood to mean that the particle’s mass vanishes. This cannot be so, however,
f mass is a Lorentz scalar, because a Lorentz scalar does not vary with frame
ransformation. Therefore special relativity runs into fundamental difficulties when the
elative speed between two Lorentz frames becomes c identically. It ceases to be
>hysically meaningful, because mathematical divergence is present in this condition.
The obvious way out of this is to assert that there is no particle without mass, as
shown for the photon by our Egs. (357). This means that the photon never translates
it ¢ with respect to the observer, and that the range of electromagnetic radiation is

inite. The constant ¢ then becomes an axiom of special relativity rather than the speed
of light, because the speed of light varies from Lorentz frame to Lorentz frame. Our
3q. (373) shows that gauge invariance in O(3) is compatible with a photon of mass m.
The problems of accepting a massless photon are well known [1,2,23,93] and are so
icute that the idea is untenable: some of the inconsistencies to which it leads have been
isted at the end of the last chapter. Since the discovery of the cyclic relations (357),
1owever, it has become glaringly flawed rather than tolerably inconsistent, and the
heory of finite photon mass takes center stage in this chapter.

Before writing the Einstein equation for A4, it must be emphasized that there are
10 experimental data that can be used to show that m must be zero identically, despite
he fact that it is confidently asserted to be so in so many textbooks. Equations (357)
10w out-date these texts and show conclusively that m cannot be zero identically. It
s however, very small in magnitude, probably much less than 10 kgm [1,2].
Therefore the existence of B® shows that m is identically non-zero, but does not put
1 number to it without much more work. The photon mass m is very small because
ight reaches us from sources that are far distant from the Earth, and in accord with the
Liénard-Wiechert concept, we are seeing this source as it was in the far distant past, not
1s it is today. The experimental attempts to measure photon mass have been reviewed
yriefly in Vol. 1 [1], and indeed, limits on m appear in the standard tables. Such
:fforts are diametrically at odds with numerous texts in electrodynamics which assert
hat m =0 identically, almost axiomatically and without thought. It is now clear that
he assertion m =0 contradicts Eq. (357) without justification, but it will, perhaps, be
1 long time before this fatal flaw in the massless photon achieves acceptance, so deeply
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immersed in orthodoxy is the claim m =0,
In the meantime, we develop in this chapter a more self-consistent view, based on
special relativity applied in free space to the four-potential A, which we take from the

outset to be a physical four-vector, and not a mathematical convenience as in classical
electrodynamics.

From Eq. (379) the Einstein equation can be written in the familiar form

En? = c%p - p + m%c*, (380)

and we develop this form for a free photon considered as a particle of mass m. Gauge
invariance shows [1,2,22-25] that in the presence of Ap , the four-momentum P, of any
particle becomes p, + eA , where e is the elementary unit of electric charge. This is
a fundamental statement of energy-momentum-charge conservation, a statement which
can be interpreted to mean that the four-momentum of the free photon is eAp. There-
fore the Einstein equation for a free photon with mass m is

2
Ar4, - (zn_c) (381)
e

This equation shows that if the mass m were zero, the product A A, would vanish.

This result is precisely the one derived in Vol. 1 [1] and identified recently by Roy and
Evans [11] as a limiting form of the Dirac condition [48,49]. Equation (381) for

finite m becomes identifiable with the Dirac condition itself. If m is of the order 10
kgm or less, then the product A A, is of the order 10 (kgm m s* C')’ or less.
If the four-potential is written in terms of its scalar (¢ ) and vector (A ) components

as
AP e (A’ %) (382)
Eq. (382) becomes
¢ =c?A-A+ '”:204 (383)

This is an equation of electrodynamics for a particle of mass m which we wish to
identify with the particulate photon after quantization. The latter can proceed with the
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1xioms

p-eA=-tx=- iV, En-=ed-ho- i%%, (384)

which convert [1,2] Eq. (383) into the Proca wave equation,

1 & _ (meY? 385
(v: ] ;E)Au - -(m<]a,. (385)

The well known axioms (384) can be combined to give

P! = eA* = 1, (386)
where x* is the wave four-vector,
K* = (x, 2). (387)
¢
Splitting Eq. (386) into vector and scalar components gives
eA = hx, ed =how, (388)

ind taking moduli in the first of these gives the equivalence condition (188). The latter
s seen to be a restatement of the familiar axioms (384) and the Proca wave equation is
seen to be a natural outcome of these axioms and the general physical law of
>onservation (Noether’s theorem).

The second of Eqs. (388) shows that the scalar potential is the free photon energy
fivided by e, and this result is demanded by conservation of energy-momentum in
special relativity, i.e., by type two gauge transformation. Therefore the scalar potential
for the free photon cannot be set to zero arbitrarily, as is the custom inherited from the
1ineteenth century in classical electrodynamics [47]. This result was demonstrated in
1 different way in Chap. 1 by considering limits of the Dirac equation. It was found

here that setting ¢ = 0 violated conservation of energy in a field-fermion interaction.
For the free photon without mass Eqs. (388) are equivalent if ¢ = cA®. This
;ondition was used in Chaps. 3 and 4 as being valid, F.A.P.P., in the strong field limit,
ind the latter is therefore a result of the axioms (384) of quantum mechanics applied to
he free photon.

Einstein Equation for Au 139

The customary assertion ¢ = O is, nonetheless, the one made in defining the

transverse gauge [47]. 1n the Coulomb gauge, ¢ can be a non-zero constant, but is,
again, often set to zero [47]. This procedure is, however, glaringly self-inconsistent

even in the limit m = 0, which we henceforth take to be a mathematical artifice without
physical meaning. For example, for m =0, A“All = 0 identically, meaning that

2 = c?A - A, (389)

so again ¢ is not zero if A - A is not zero. Simple considerations such as these lead
to the more abstract but more general criticisms by Weinberg [93], who shows that A,

cannot be quantized for the massless photon. In contrast, canonical quantization of the
Proca equation (385) is straightforward [23], giving a physical wave-particle in three
space dimensions.

For identically non-zero m, however, there exists a rest frame for the photon,

defined by the condition A + A = 0, in which we recover the de Broglie Guiding
theorem |[1,2],

ed = mec? = hw,. (390)

If ¢ = O then the de Broglie theorem is invalidated for finite m, showing again the
self-inconsistency of this assertion. In a frame other than the rest frame, the de Broglie
theorem becomes

m%c* = e2(¢? - c?A - A). 391)

In the rest frame for identically non-zero m the de Broglie theorem implies, conversely,

that A - A = 0. This condition is not possible unless A is zero while ¢ is non-zero,
the extreme opposite of the usual light-like condition associated with the photon with

m=0. The condition A + A = 0 can never be attained in the transverse gauge, and
corresponds to a photon which is at rest in the frame in which it is being observed.
This condition is possible if and only if m is identically non-zero.

The orthodox view sets m = 0 identically, and this means Lorentz transformation
cannot take place from one frame to another. Momentum can no longer be mass

multiplied by velocity, and rest energy can no longer be mass multiplied by ¢2. The
only basis for these assertions is that the energy-momentum density of radiation

transforms in the same way as the energy density of a particle from Lorentz frame to
,, Lorentz frame [66]. There is, furthermore, no experimental justification possible for
f the assertion that there exists a massless particle. The recent emergence of Egs. (357)



140 Chapter 7. Photon Mass in Electromagnetic Theory

shows conclusively that the idea of a massless particle is self-inconsistent in special
relativity because a massless particle can have only two physically meanipgful
dimensions.  Equations (357) produce, experimentally [16-21}, three physically
meaningful fields in three physical dimensions.

Finally, the wave vector and angular frequency for a photon with mass are no
longer related by the simple k = © /¢, but through the quantized version of the Einstein
equation,

Mol = We2x? + mict, (392)

so that x, whenever it occurs in electrodynamics, must be replaced in S.I. units by
1
X = %L(mz - mty, (393)
c

orin ¢ = h = 1 units by

x = (0? - m?). (394

The theory can be understood in terms of a complex wavenumber, with real and

imaginary part for identically non-zero m ; a theory that then becomes directly analogous
with that of absorption and dispersion [105] in media, for example molecular ensembles
in which the dielectric permittivity and refractive index are complex. The overall effect
of finite photon mass can therefore be thought of as a vacuum which makes the
wavenumber complex, and introduces vacuum friction analogous to the friction
coefficient in a theory of dielectric loss such as that of Debye [103—105]. These
conclusions follow from Eq. (393),

2o (e) _ (meY (395)
c %)’
if we define
¥ =2, ¥ i= me. (396)
c h

This gives
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K = xx* = k% - ¥, (397
where
xi=x +i =2+ (398a)
c h
R U A R L (398b)
c h

At the point ¥’ = x” we recover from Eq. (396) the rest frequency of the de Broglie
Guiding theorem

0, = 2, (399)
h
and therefore in the photon rest frame
kk* = 0. (400)

The physical meaning of this result can be found by using an analogy with the classical
theory of dielectric loss [96] in a medium in which the permittivity becomes complex,

€ =€ +ie, (401)

and ee* = 0 occurs at the point € = €’. This does not mean that the physical

observables €’ and €’ have vanished. In Debye’s theory for example, the condition

€’ = €’ occurs at the peak of the dielectric loss curve, and defines the Debye relaxation

" - time and relaxation frequency.
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7.2 THE DE BROGLIE POSTULATES AND FINITE PHOTON MASS

The Planck Einstein condition En = hw was augmented by de Broglie with his
postulate p = hx and these are two cornerstones of quantum mechanics. While

p = hx has become well accepted in orthodoxy, and has justifiably remained so, de
Broglie’s original path to this great discovery, and thereby to matter waves and quantum
mechanics, has been obscured by time. The recent centennial volume [6], however,
shows that there is a substantial fraction of contemporary physicists involved in devising
experimental tests for the empty wave hypothesis, through which de Broglie arrived

at p = hx in his work published in 1923 [106]. In this section we develop the theory
of the massive photon through use of the de Broglie postulates. In so doing, we make
use of some excellent papers of the de Broglie centennial volume {6].

It is convenient to develop the empty wave hypothesis through an elementary

consideration of the Lorentz transformations firstly of p , the energy-momentum four-
vector, and secondly of x,, the space-time four- vector. The former transforms as

p; =a,p,, where a, is the Lorentz transformation matrix. In S.I. units {1,2]

/
Px| 110 0 o0 ]|Px
cp,/, 01 O 0 ||cpy (402)
00 vy ivB|lcp,
00 -ivB v | iEn

/
Pz

_iEn’J

where B = v/c and y = (1 - p2)"M/2. This transforms the quantities in the column
four-vectors from one Lorentz frame K to another, XK', translating at v in Z with

respect to K. According to Einstein’s second hypothesis, physical equations are Lorentz
covariant, and are valid in both frames. Gauge invariance of type two is derived from
this principle [23].

From Eq. (402) the energy transforms as

En' = -Bycp, + yEn. (403)

The inverse transformation [47] is p, = p‘f a,,, and gives

En = pycp, + yEn'. (404)
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If both particle and frame K’ are moving at v in Z, then the particle is at rest in frame
K', which is therefore called the rest frame, or proper frame. The particle has no

momentum in its own rest frame, and so p,f = 0. Equation (404) becomes

En = yEn/, (405)

an equation which defines the energy of the particle as it appears to the stationary
observer. This is therefore the experimentally measured energy.

Repeating this analysis for x, produces the equations

t' = -yBZ+ yt, t=ypZ'+yt, (406)

and since the particle is not translating in its own rest frame, Z’ = 0, and

t =yt (407)

which illustrates that time as it appears to the observer in the fixed frame is different
from time in the moving frame. The units of frequency are the inverse of the units of
time, so the frequency equation corresponding to Eq. (407), essentially the explanation
of light aberration [47], is

f = Y_lf/‘ (408)

Therefore the experimentally measurable frequency is given by Eq. (408), while the
experimentally measurable energy is given by Eq. (405). These two equations have
been derived from the same Lorentz transformation, and therefore from the first
principles of special relativity.

The first principle of quantum mechanics, the Planck-Einstein hypothesis, asserts
that energy is proportional to frequency through the Planck constant. This principle is
well supported experimentally, and so is special relativity in classical mechanics.
However, Eqgs. (405) and (408) show that if energy is made proportional to frequency
in the rest frame,

En' = hf' = mc?, (409)

thev do not remain so
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2 -1
En = hy*f = hf(l - v—2] ) 410)
c

The B® field now shows that if the photon is particulate in nature, there is a finite
photon mass, so this problem is also present in the theory of electromagnetic radiation.
Equation (409) is the de Broglie Guiding theorem in the rest frame of the photon with
mass m, and in the observer frame it becomes Eq. (410). Stated in another way,
following the interesting discussion by Awobode [107], there are two frequencies
present in the observer frame. Equation (405) gives

-1/2
flzﬂz'"_cz[l_v_z) , 411)

and this is a different frequency from that given by Eq. (408). There is in contrast only
one frequency present in the rest frame, that given by Eq. (409). Furthermore, if v is
made identically equal to ¢, the frequency f, becomes infinite, while the frequency f
becomes zero. Special relativity loses physical meaning unless the concept of Lorentz
transformation is abandoned for v = c.

It is well known that de Broglie discovered this problem as a student, and suggested
his wave hypothesis as a solution [106]. This line of thought predated the famous
p = hx, which first appeared in print as a footnote to a short paper of 1924 [108]. As
sointed out by Ferrero and Santos [109], the relation p = hx was a generalization of
he harmony of phases, or wave hypothesis. The generalization has become well known
ind well supported experimentally, while experimental evidence for the empty wave is
still being sought contemporaneously [110]. The two frequency problem represented
)y Egs. (408) and (411) therefore remains a fundamental challenge to relativistic
juantum physics, because if de Broglie’s own solution is not supported experimentally,
inother must be found. It is not known at the time of writing whether the empty wave
:xists experimentally, although several elegant experimental tests have been carried out
6]. Despite the passage of seventy years or more, this remains a fundamental challenge
o physics, and in particular, to the theory of electromagnetic radiation. The appearance

f the B® field puts it center stage, because the photon, if it is a particle, can no
onger be thought of as massless, and it is no longer possible to by-pass the problem by
isserting that for the photon, Lorentz transformation is not applicable because there is
10 rest frame. In our opinion, this assertion was always dubious, and is shown to be
rroneous by the cyclic relations (357) as argued throughout these volumes [1,2].
Having discovered the two frequency paradox, which is a paradox more severe than
iny other in relativistic quantum theory, de Broglie proposed a solution by using the fact
hat the phase of a travelling wave is a relativistically invariant quantity {47]. If there

Xists a plane wave that propagates in Z at phase velocity w with respect to the
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observer then the phase associated with the frequency f, at position R is

¢=gp-5} (412)

w

If time, ¢ , is now defined with respect to the observer frame, i.e., is the experimentally
measured time in the observer’s frame of reference, then the phase of the plane wave

a time RJw earlier is relativistically invariant and equal to the phase (412) in the
observer’s frame or any other frame. The relativistic invariance of phase therefore
makes it possible to assert that

ﬂzﬂp—ﬁ} @13)
w

an equation which is satisfied by the solutions

[ ]

R=vt, w=5%, 414)
v

This means that the phase velocity w is faster than light, or superluminal, if v<c.

In a scholarly article, Muggur-Schéichter [110] has translated de Broglie’s original
derivation of the wave phenomenon, which he described originally as a periodic
element, a standing wave in the rest frame of the particle described by

¥, = a,exp(2n Wty ) (415)

The inverse Lorentz transformation was then used by de Broglie to express this standing
wave in the observer frame

P o= aoexp(Zm'v(t - 5)), (4106)
w
where

V=YV, W= <. 417)
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Therefore the standing wave in the fixed frame becomes a travelling plane wave in the
observer frame. The wave is a standing wave in the rest frame, and so is always

centered on the particle itself, the essential reason being that mc? is the only non-zero
energy in the particle rest frame, and is the only possible source of the frequency
defined by de Broglie Guiding theorem (409).

The relevance of B® is that the latter shows conclusively that the photon, if
particulate, is massive, and so gives further support to the basic idea that matter waves
and light waves are essentially manifestations of the same thing. This idea is the source
of quantum mechanics, and was a direct result of the basic paradox just described
between relativity and the light quantum hypothesis. The first explanation [110] given
by de Broglie for the two frequency paradox has been developed into an elegant edifice
of twentieth century thought [111—113]. The empty wave concept developed through
the idea that all energy and momentum is carried by the particulate photon, so that the
accompanying plane wave is bereft of these attributes. As we have just seen, the
existence of this plane wave was postulated to account for the two frequency paradox.
At the time of writing, evidence for the empty wave is being sought in several ways [6].
Closely related is the concept of the pilot wave, or guiding wave, and the following

section looks at the connection between B® and the pilot wave.

7.3 B® AS A PILOT FIELD

It has been inferred in these volumes that the conventional view of free space
electromagnetism is incomplete, because the classical theory produces a novel magnetic

flux density in vacuo, B®. The imaginary axial vector quantity,

I, = £ B® 4 B® - iiB("’B‘”', (418)
Ko Ko

is the antisymmetric part of the free space light intensity tensor, and is therefore directly

proportional to B® in the vacuum. The question of how B® acts as a pilot field [6]
can be approached by firstly deriving the equation {7]

3 3
BY _J® _ e®, (419)
BO %,

as a straightforward consequence of the quantization of the electromagnetic field. In
Eq. (419), % is the Dirac constant, and the real and physical
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J® = 3¢9, (420)

is an angular momentum with magnitude % of the particle being considered, assumed
to be the photon. Since B® is produced from a cross product of vector plane wave

functions B’ and B® | it satisfies the criteria originally proposed by de Broglie [6] for
pilot waves, and is also a phase free magnetic flux density directly proportional to the
angular momentum of the photon. It is therefore considered here as the pilot field of
the angular momentum of the photon.

Equation (419) can be derived from fundamentals through a consideration of the
electromagnetic torque density,

. ©
1 - _pgo, po . B go- (421)

Ko Ko
in which

)
m® - po- - B (422)
Ho

are oscillating magnetic dipole moments of the radiation itself. Thus

TS = —im® x BO, (423)

in formal analogy with the definition of magnetically generated torque in electrostatics
and electrodynamics [114]. The real part of T{?) is physical, and is proportional (see

Sec. 7.4) to radiation angular momentum through B® . Thus

T = wI®". (424)

We now use in Eq. (424) one of the standard axioms of quantum mechanics, one based
on the de Broglie relation, the axiom

3)
02 B V] (425)
ot H h

where En is energy. Since J‘(,J) is real, Egs. (421), (424) and (425) give a real
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" - En Jo En ;o (426)
h i1 4

where V is the volume used to define the angular momentum density, J3 , and whereJ®
has the units of angular momentum itself. Using the energy density

U - % - %"’2, (427)
0
we obtain
TY" - BO BO®* - B® Jo* (428)
Ko Boh
from which
B® - p© ? , (429)

which is Eq. (419) with J® = %e® . The result (429) was first derived in 1992 [7]
using an independent method [1,2].

Equation (419) can be derived in a third way by using a straightforward adaptation
of the standard Planck-Einstein equation,

heo = f udv. (430)

Instead of the usual U = B® - B@/p  we use

02
v-L1|po,po| -2 431)
Ko Ho
and obtain
n=—L[|B® x B®|aV. (432)
B
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In the basis ((1),(2),(3)), Eq. (432) becomes

ig©
O .= ine®= = BT [B®av, (433)
o
and rearranging
8o - Y ;o _ g0 (434)
BOV h

which is again Eq. (419); the direct, self-consistent, result of two fundamental axioms
of quantum mechanics, Eqs. (430) and (425), the Planck-Einstein and de Broglie
relations.

To develop the idea of B® as a pilot field for photon spin we consider a Young

experiment for B® carried out with a circularly polarized incident beam which is
diffracted through the double aperture of the interferometer to form a diffraction pattern.
In classical electromagnetism, this requires an exact solution of the Maxwell equations,
as described recently by Jeffers er al. [115] for linearly polarized incident radiation.
Using the free space relation,

I, = £BO?, (435)
Ko

it is seen that lines of diffraction due to B® will follow those due to I,”, and be

similar to those due to I, computed by Jeffers ez al. [115]. This is an interferogram

[116] that shows considerable structure within a few wavelengths of the slits, a structure
which is unobtainable with standard diffraction theory. There is, however, no such
thing present as classical interference, i.e., no radiation actually crosses the symmetry
axis, and no radiation passing through the top aperture arrives at a point below the axis
of symmetry and vice-versa.

If B? is considered to be the pilot field of %, then both quantities must be
simultaneously measurable [6]. Lines of constant B® in a diffraction pattern would be
lines of constant he® . These ideas do not occur in conventional electrodynamics, in

which B® is undeveloped. Its existence in vacuo, however, has been demonstrated
self-consistently in these volumes, for example its magnetizing effect has been shown
using the classical Hamilton-Jacobi equation of one electron (e) in the classical
electromagnetic field represented by the four-potential (4,), a demonstration which

shows that the trajectory of the electron in the beam is governed entirely by B® and
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by no other vacuum field. This can be understood through the fact that Tfs ) is a torque
density of radiation in the vacuum, and to the fact that B is directly proportional to
the radiation’s real and physical angular momentum density (Eq. (434)). Prior to this

anderstanding, B x B® was an obscure experimental observable labelled by some
nonlinear opticians as the conjugate product. (More precisely, it is one out of several
[16-21] conjugate products.) The conjugate product B® x B® is the product of
vacuum permeability and radiation torque density, a torque density which is expressible

as iBOB®*/p,. The real and physical torque per unit volume of radiation is therefore

proportional directly to the real and physical B®* through the premultiplier B©.
Our use [1] of the Hamilton-Jacobi equation of e in A, to demonstrate the

existence of B® from the principle of least action [1] is significant in at least two

ways. Cushing [117] has pointed out that de Broglie originally saw the Hamilton-Jacobi

squation as providing ".... an embryonic theory of the union of waves and particles,
all in a manner consistent with a realist conception of matter”. Equation (429) now

shows that if 1 is the angular momentum of a particle, the photon, then h must be

directly linked with B® , and in the realist view, be simultaneously observable with it.
Rewriting Eq. (429)

(436)

we obtain an expression which is directly analogous with the Planck-Einstein and de
Broglie relations, En = hw and p = hx respectively.

Secondly, as shown by Bohm |85], the Schrodinger equation can be interpreted by
developing it into a quantized Hamilton-Jacobi equation. This procedure requires the
introduction of the quantum potential, and leads to non-locality and superluminal action
it a distance [6]. In this context, Chap. 3 has suggested a connection between these

concepts and an optically induced Aharonov-Bohm effect due to B® . These questions
are addressed in the centennial volume [6] in many interesting ways, and the
contemporary view [23,39] of the complicated topology of the vacuum may give us
some answers. As described in Chap. 3, a particular vacuum topology is needed to
sustain the Aharonov-Bohm effects. In the Copenhagen interpretation of quantum

mechanics [45], the quantum equivalent of the classical B® is an angular momentum

operator, B® , the photomagneton [4]. The latter is directly proportional [1,2] to J® ,
which is governed by angular momentum commutator equations, and operates on an
angular momentum wavefunction. The latter has no physical reality until it is observed,
when the wavefunction collapses.

Is it possible to use the B® field to distinguish between the Copenhagen and
Bohm-Vigier views of quantum mechanics? In order to begin to scratch the surface of

B® as a Pilot Field

this question, it is convenient to look at Bohm’s own discussion [85], and to try to adapt

it to the line of argument that if B® is the pilot field for %, it is simultaneously
measurable with it.

In the classical theory of electrodynamics, B® is modified by diffraction as
described accurately by Jeffers e al. [115] by numerically solving Maxwell’s equations
with well defined boundary conditions. The diffraction patterns caused by the two
apertures are those of B® itself, and so must be those of the angular momentum of
classical radiation. The latter can be represented after quantization by he®, whose
magnitude is k. The particle (photon) concomitant with the diffracted wave thérefore
has angular momentum magnitude %. If so, however, where is the particle after
diffraction has occurred? If the incoming pilot field-particle (B®, 1) is equivalent to
one photon of energy %, what happens to the particulate photon after diffraction?
This question is answered entirely differently in the Bohm-Vigier and Copenhagen
interpretations {6], thus giving scope for experimental investigation of these theoretical
differences.

In the simpler case of light passing through a beam divider, the connection

between B® and h can be described as follows. In a naive interpretation the photon

carries particulate information, and at random goes to one of two detectors, A or B,
after the light has been split by the beam divider. However, radiation consisting of

many photons and carrying the B® field goes to both detectors simultaneously,
detectors which measure split beam intensity. This is a statistical process. Since single
photon (and neutron) generators are now available [6], these assumptions can be tested
directly in principle and the need for statistical analysis by-passed entirely. Aspect et
al. [118,119] appear to have shown that if the particulate photon goes one way in an
interferometer, there is nothing present in the other arm, there is 100% anticorrelation.

This suggests that the photon’s angular momentum and the field B® are both wholly

present at A if the particulate photon has been so detected, and cannot therefore be
present at B if there is nothing detected at B. The Aspect experiments, if interpreted

in this way, show that % and B® are at A, but this interpretation depends on the

reliability and relevance of the available data [6,118]. We would expect that if B®

and % for one photon were both wholly present at A, there would be a heat effect (due
to electromagnetic intensity) and a resonance effect (due to photon angular momentum)
of the type described in Chaps. 1 to 3 in the weak field limit. Neither effect would be
present at B in this naive point of view.

In the Copenhagen interpretation, described by Croca [120], the light incident on
the beam splitter is divided into two wave packets, and when one of these hits a detector
A, for example, the photon has chosen that path. The wave function in the Copenhagen
interpretation is a wave of probability, and a detector is a measuring device that has the
effect of bringing the photon into existence. Thus, causality is lost or obscured, reality
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is something that is asserted to follow measurement. The photon if detected at A has
been brought into measurable existence by the process of detection at A, and is not
simultaneously measurable at B. In the Copenhagen interpretation of quantum optics,

if a photon is made to exist at A, so is B® because the latter is an operator of
quantum mechanics whose eigenvalue is the observable. The operation of B® ona

wavefunction brings B® into experimentally measurable existence as an expectation
value at the detector A, and the wavefunction collapses at A. This view appears to be
in agreement with the results of Aspect et al. [118], but this is contested by several
papers [6].

In the empty wave interpretation [6], the field B® | if it is the pilot field for %,
itself carries no angular momentum. The latter is asserted to be a purely particulate
property of the photon. The empty wave can presumably be divided indefinitely at
successive beam dividers, but the photon, if it is a particle, must always take one path
or another. It is therefore possible that at the detector A there is a particulate photon

and an empty field B® | with halved intensity, while at detector B there is an empty
wave with halved intensity but no particulate photon. Several experiments to test this
point of view have been proposed and carried out [1,2,6]. We have implicitly assumed
that the empty wave has intensity in the presence of a photon, but we have also assumed
that it has intensity in the absence of a photon, because the beam divider has been

assumed to halve the incoming intensity. If so, we would expect heat effects at both A
and B, but resonance effects at A only. In the naive and Copenhagen interpretations

there would be no heat effect at B and both heat and resonance effects at A. If, on the
other hand, an empty field carries no intensity, it would produce no measurable heat

effect at B and we would still not be able to decide which of our interpretations is

applicable. However, if there were empty waves at both A and B they could be made
to recombine in principle to produce a measurable interference pattern. These questions
are discussed in the contemporary literature [6], and are fundamental and central to the
quantum theory of light and to physics in general, because they address the severe and
fundamental paradox represented by the different frequencies in Egs. (405) and (408).
The paradox is that the elementary principles of special relativity are not compatible
with those of the quantum theory, as first pointed out by Louis de Broglie [6]. The
empty wave is a hypothesis put forward to account for this paradox, and in the
Copenhagen interpretation there appears to be no known solution for it, a wholly
unsatisfactory state of affairs. (It is essential to note that the de Broglie matter wave is
not the empty wave, the former was proposed from a comparison [110] of the Hamilton
and Fermat principles, the latter was proposed in an abstract [110] attempt to address
the foregoing paradox. The matter wave was immediately accepted by the Copenhagen

School, the empty wave evidently was not.) The emergence of B® makes the photon
look more than ever like a particle, because it must have mass, cannot be two dimen-

sional, and can translate at less than c.
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The description of B® as a pilot field is conveniently developed [85] by assuming
that there exists an entity, ¢, guiding the particle, an entity which can be written in
terms of the real mechanical action §,

¥ =R exp(i%). (437)

Here R? is the probability that a particle of mass m have a velocity V = VS/m. For

the photon, m is the photon mass suggested by the existence of B® itself. In his paper
of 1952 [85], Bohm showed that this view is plausible, and leads to all the major results
of quantum mechanics. In so doing he met the objections of Pauli to de Broglie’s
original harmony of phases theorem and his later proposal of 1930 [121]. A slight

extension of Bohm’s original idea is all that is need to describe B® as a pilot field,

¥ = RWish - @ (438)

where § is electromagnetic action [1,2] defined by

S = hot-x-r), (439)
and where R® and R® are
RD = ¢® RO _ 0O (440)
In this picture
PO2 = g0 §O (441)

is the probability of finding a particle with an angular momentum given by

o - 58 (442)
o

where [85] ¢ is the azimuthal angle. Therefore B®, which is directly proportional to
J®  as we have shown in several ways, is a pilot field of the particulate angular
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momentum % which we ascribe to the photon.

7.4 A NEW APPROACH TO THE TWO FREQUENCY PARADOX

It is possible to devise a new approach to the paradox which led de Broglie to his
proposal of the empty wave, a proposal which has not yet been verified experimentally,
however. Our new developments, described in this section, are meant to augment de
Broglie’s harmony of phases theorem, which we regard as a valid answer to the
fundamental paradox represented by Eqgs. (405) and (408). Recall that these tv\fo
equations show that special relativity is not compatible with the Planck-Einstein
hypothesis without some additional hypothesis such as that of the empty wave. So the
paradox remains a central issue in contemporary physics, since it appears not to be
addressed at all in the Copenhagen agreement [1,2] or standard texts.

Our suggestion is that the quantum of electromagnetic energy can be expressed in
terms of wavelength as

En = nA, (443)

where %, is a Lorentz invariant force,

h o= 2y, (444)

Thus, Lorentz transformation of the energy proceeds through Lorentz transformation of
the wavelength, i.e.,

A = vhg, (445)

while Lorentz transformation of frequency occurs always as in Eq. (408). Thus
frequency always transforms as frequency, and wavelength always transforms as
wavelength. This self-consistently produces the result

Af = Aofy = ¢, (446)

in all Lorentz frames.

These conclusions are derived as follows. We accept ¢ as a constant of special
relativity from Einstein’s first hypothesis, and if so then the product of wavelength and
frequency must be invariant under Lorentz transformation. This is automatic in the
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conventional theory, because there the photon is massless and propagates at ¢, and it
is asserted that Lorentz transformation has no meaning since there is no rest frame. If

the photon is massive, and it is assumed that its wavelength in its rest frame is A,, then
its counterpart in the observer frame is y A,. The counterpart of the rest frequency f,

is, however, y! 1o » and so equation (446) is recovered. This is consistent with the fact

that ¢ is frame invariant by Einstein’s first hypothesis. Therefore the wavelength
transforms as the energy in Eq. (445), while frequency transforms as in Eq. (408).
Louis de Broglie considered that frequency can also transform as energy, through our
Eq. (411), but this is not clear from the foregoing fundamentals. This assumption by
de Broglie causes two frequencies to appear in the observer frame, and as described
earlier in this chapter, this led to the harmony of phases theorem.

Our new proposal, Eq. (443), is based on the assumption that energy can be
proportional to wavelength, because both transform in the same way from Lorentz frame
to Lorentz frame. The Planck-Einstein relation is therefore augmented by Eq. (443) and
the quantum of energy is proportional to wavelength. This result can be deduced by

first linking the wavenumber to the Thompson radius |122], A/2x,

) = 2T (447)

We express the unit of time as 2n/w. This means that the quantum hypothesis
becomes

p* - },(EAEM, 21), (448)
ct
giving the result
ptp, = mic? - p2[ L - L (449)
B c2t? 32 )

In the limit m ~0 we recover A - ct, which is the counterpart of the usual ® - ck.
Thus,

=c, Ak = 0t = 27, (450)

showing that our assumptions assign a value 27 to the phase wz. More generally,
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Ak = of =271 + «, 451)
where « is an arbitrary phase variable.
The unit of action in the m — 0 limit is
S = hot = hAx = Ent, (452)

where En = hw is the quantum of electromagnetic energy, the photon. The photon
energy En is thus

2
En - 152 = TR9, (ﬁ)l (453)
t 2n 2ne

and becomes proportional to the wavelength of radiation,

En = h A = ho, 454)
where
2
w = 2, (455)
27c

2

. 5 . - 2 K
is a Lorentz invariant because for m -0, the difference w* - -
c

invariant. If a difference of two quantities is invariant, and one quantity is equal to the
other, then both quantities individually are Lorentz invariant. Thus our new constant
is an invariant under Lorentz transformation. Unlike % it is not a universal constant
The product of En="hw

=0 is a Lorentz

because of the presence of ®w? in its definition.
with En =% A gives

En® = hfnh = ¥0?, Af=c, (456)

showing that the product of wavelength and frequency is ¢ as required. Since ¢ is a
universal constant, this result is also Lorentz invariant. In the limit m -0 there-

fore, En? is also invariant.
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Our assertion that energy transforms as wavelength is based on the fact that x,

and p, are both four-vectors of special relativity. Since me? is an energy, the de
Broglie Guiding theorem becomes, with the use of Eq. (454),

h Ay = mc?, (457)
which in the observer frame becomes

WA= hydy = mc?. (458)

Frequency transtorms through Eq. (408), i.e., as a frequency. Therefore we arrive at

5o Ay me?
212 h (459)
1-Y
1.e., wavelength transforms as wavelength, and,
v\ mc?
f=1-=| f= 25 (460)
c? h
Jrequency transforms as frequency.
In all Lorentz frames,
2.4 2.4
A= Aofy = 25 = [ e, (461)
7‘17‘11 En-
and if En = mc?, we recover
Af = Af, = c. (462)

Since En? and m?c* are both frame invariant if m ~0, and since mc? is the only
energy available in the rest frame, Eq. (462) follows from Eq. (461).

Therefore we have arrived at the conclusion that the oscillating phenomenon
postulated by de Broglie [6] can be understood without the use of the harmony of phases
theorem, provided that energy transforms as wavelength, and not as frequency.
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Accompanying the particle, therefore, is a wavelength, A, and through the relation
f,A, = ¢ in the rest frame, a frequency. These are the wavelength and frequency of

the empty wave, and f; and A, are linked in the same way as for an electromagnetic

wave. The empty wave moves forward at the velocity of the particle. There appears
to be no need, however, to postulate a superluminal phase velocity for the empty wave.
These conclusions are important for experiments which try to detect the empty wave
through its interference with an electromagnetic wave [6]. We note that _the energy
assigned in Eqs. (454) is that of the particulate photon, and if this photon is remqve_d
by a beam divider |6] for example, the remaining empty wave has no energy. This is
the standard interpretation.

7.5 ROLE OF B®

The definition of %, in Eq. (455) suggests that it can be related to B® through
Eq. (280), which shows that %, is Lorentz invariant,

hw? = ec?|BO*|, (463)
because B® is so. This equation gives a simple proportionality
h, = ec|BO*| = eE®, (464)

showing that %, has the units of torque per unit length. These are also the units of
force (newtons), but torque per unit length is a pseudo, or axial, vector, and force is a

polar vector. The units of torque (J) are also those of energy, so the modulus of torque
is energy. From Eq. (240) we can write

B - - 1,0, o (465)
c

so that the quantum of torque modulus from Eq. (454) is

En = |Tg®*| = ecr |BY*|. (466)

Therefore the electromagnetic torque per unit length, taken to be the wavelength, A,

Role of B®

is directly proportional to B® , and is the new radiation constant hy
h, = ec|BO*|. (467)

The electromagnetic torque itself can be written as

Tq® = ecAB® = 1 1e9, (468)

and is directly proportional to B®, a result which was also obtained for the torque per
unit volume in Eq. (184) or (421). Comparison of Eqs. (468) and (184) or (421) gives

BO _ M, (469)
v

and if r® = A/2x, this is Eq. (192). Equations (184) and (468) both show that B®
is observable directly in the Beth effect [123], which measures the electromagnetic
torque experimentally through the action of circularly polarized radiation on a crystal
suspended from a torsion wire.

Therefore we conclude that B® is measurable directly in the Beth effect, and
conversely, is responsible for the Beth effect.
The Planck-Einstein hypothesis becomes

En = ho = |T¢®| = h,4, (470)

which shows that he can be thought of as an energy quantum which is also a quantum
of electromagnetic torque. The torque quantum h;A is conversely also an energy

quantum. Both quanta are mc? according to de Broglie’s rest frame hypothesis
developed in the preceding section. The de Broglie Guiding theorem therefore becomes

hwy = h Ay = mc?, 471)

where A, and £ are the rest wavelength and frequency respectively. The theorem gives

the photon mass directly in terms of B®

m=£1,|B?], (472)
c
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and we see B® appearing frequently in fundamental equations, a clear sign that B®
itself is of fundamental significance.

We therefore propose that the quantum of energy hw is also a torque quantum,
h A, where h, is Lorentz invariant and proportional to the modulus of B®. The

quantum of energy and the quantum of torque are equal to each other in Eq. (471), but
transform differently. The energy quantum transforms as frequency, the torque quantum
as wavelength. If they are equal to each other in the rest frame they are no longer so
in any other Lorentz frame. The equality of the torque and energy quanta of

electromagnetic radiation is a Lorentz invariant equality if and only if the mass m of
the photon is zero identically. The two trequency paradox therefore melts away for this
reason.

7.6 NEW FUNDAMENTAL EQUATIONS OF ELECTRODYNAMICS
We suggest the following hypotheses of electrodynamics.

1) In Euclidean, or three dimensional, space, the equations,

B® xB® = iBOB®* et cyclicum, (473)

are fundamental equations of motion of electrodynamics in vacuo or in matter.
Here,

B-B® . B® . pO (474)

is magnetic flux density.

2) In flat space-time (special relativity), these equations retain their structure,
but the B fields become four dimensional generators [1].

3) In Riemannian or curved space-time (general relativity), there is an
equivalent set of equations of motion for electromagnetism in the presence of
gravitation, equations which must be written with Riemann’s geometry.

4) These equations are also equations of quantum mechanics if the B fields
become angular momentum operators of quantum mechanics. They then become
Heisenberg commutator relations [1].

5) They are more general than Maxwell’s equation because of the fundamental

role of B®, which in quantum mechanics becomes the photomagneton [4].

Chapter 8. Primordiai B® in Relativistic Cosmology

The origin of cosmic magnetic fields has raised considerable interest among
astrophysicists over the past few decades. Cosmic magnetic fields may owe their
present strength to dynamo amplification, but to initiate the process a seed field is
required [124]. The latter may be primordial or else a consequence of a battery
mechanism in protogalaxies or in the first stars. In a recent review, Coles [125] has
discussed elaborately the role of primordial magnetic fields on the formation of large

scale structure. He found a limit B < 3 x 107!° tesla. He considered the constraints
imposed by nucleosynthesis, which could provide the extra fluctuation needed to
reconcile theories of galaxy formation with observations of large scale structure. He

deduced a more stringent limit of B < 2.4 x 107!! tesla if the time scale for dissipation
is short compared with the expansion limit. However, so far there are no satisfactory
physical mechanisms for the generation of B.

In this chapter, we shall consider the energy loss of the photon when it passes
through a Maxwell vacuum with non-zero torsion, which together with the spin density
of the background space-time gives rise to a non-zero conductivity coefficient and hence
to a non-zero photon mass on the cosmological scale. Again, a magnetic field can be
shown to be associated with non-zero torsion, a field which has been identified with

B® in vacuo. So B® should be considered as the primordial relict magnetic field in
relativistic cosmology.

8.1 TORSION, SPACE-TIME DEFECT AND GAUGE PRINCIPLE

While formulating the general theory of relativity Einstein was not aware of
intrinsic spin, and this was not initially incorporated into the structure of space-time.
Cartan [126] showed that the interaction of intrinsic spin with geometry must lead to
torsion, the antisymmetric part of the connection coefficient now being connected to
metric spin density. In 1929, Fock and Ivanenko |127] introduced the concept of local
frames to fit the Dirac electron into Einstein’s general relativity. The action of the
Lorentz or Poincaré group on the local frame becomes the real prototype of local gauge
symmetry. For convenience we discuss the Fock-Ivanenko coefficients [127].

The vierbein or 16 component tetrad fields ¢, (x) introduced by Weyl [128] bear to
the metric tensor the same relation as Dirac’s y - matrices bear to the unit matrix,
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i.e., choose t; (@ = 1, ..., 4) such that
(475a)

a P _
L, 8.5 = 8,

where

-1 _ (475b)

- . . o b . .
Also, t/t,8,, = g,4, t. being the inverse matrix of #;. If L is a space-time
dependent Lorentz matrix, then the transformation law for tetrads can be written as

t: _ Lﬂb Lba’ (476)
and

= det(t) = Vg (477)

Thus we can interpret the Lorentz group as the group of rotations of the tetrad. If y°
are the space-time dependent Dirac matrices, we have

Ya - t“Ya (478)
a >
where the y* are the usual constant Dirac matrices satisfying 1/2 (y°y? + yy®) = &%.
In contrast,
%<v“v“ + yPye) = g®h. 479)

Consider now a spinor ¥ (x) which has the transformation law § = S{ where S is the
space-time dependent spinor representations of the Lorentz matrix L, given
as S1y%S = Ly?, when the tetrad is rotated as ¢ = L’#F. While dealing with the
gravitational interaction of spinor fields, the fundamental field is no longer the metric
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tensor but the vierbein fields ¢; , the metric tensor being defined in terms of a quadratic

product 7, tpbﬁ a = 8yp Of these fields. In the quantum theory the expectation value of

this product represents the metric. The Dirac matrices have themselves become fields
and are no longer constant as in a flat space-time background. With this conceptual
structure we can identify the components

as the Fock-Ivanenko coefficients [127]. Here, o, g, is the generalized Christoffel-like
asymmetric connection,
This definition is unique up to the addition of a vector multiple of the unit matrix,

i.e., the I', are arbitrary up to a gauge,

T, -T, +Al, (481)

where I is the identity matrix. This arbitrariness enables the introduction of the
electromagnetic four-potential. Owing to gauge invariance, we can define a new
derivative,

Yor = Yo * [T v.00], (482)

where I‘/A =T, + B,. Under space-time transformations the fields y*(x) and T,
transform as standard contravariant and covariant quantities. The commutator of two
covariant derivatives of a spinor is defined as

Woo = ¥ =T 0 - QL (483)
Here
r, =8,7T, -38rT, +[T,T,] (484a)
and
Q, =T, -T, (484b)
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define the torsion tensor. The curvature spinor T, = transforms under tetrad rotations
as follows

- -1 485
r, =S8r,s7, (485)

the fields y* transforming as

Ya = SY“S_l. (486)

This gives rise to a relation between the curvature tensor and curvature spinor,

T, = _%RPPMY“YP- (487)

For a torsion free space we recover the usual expression for curvature. These concepts
give rise to a possible unified description of electroweak, strong, and gravitational
interactions in the framework of the curved space Dirac equation with background

torsion and with an energy dependent fundamental length L, scaling as G2 or E ™.

Torsion in space-time, from which we can define a fundamental length, can also
be constructed from another point of view. According to Sakharov [129], space-time
can be considered as a deformable medium with elastic properties. From the
geometrical description of crystalline dislocations or defects, it is known that torsion
plays the role of defect density in the limit of dislocation having a continuous
distribution. If we consider a small closed circuit and write

1% = fQ[;‘ydA ﬁY’ (488)

where dAPY = dx® x dx" is the area element enclosed by the loop and Qp, = [Ty

is the torsion associated with the connection T, ; I* representing the closure failure.
So torsion has intrinsic geometrical meaning, i.e., it represents the failure of the loop

to close in analogy with a crystal, [* having the dimensions of length.

In 1978, Hojman er al. [130] discussed in detail the generalized gauge principle,
minimal coupling, and torsion. Gauge invariance and minimal coupling have drawn
much attention in discussing the Einstein-Cartan theory with non-symmetric connection
coefficients. This theory has non-zero torsion tensor,
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r* -t - (489)

ve?

and the usual definition of the electromagnetic field tensor F, in general relativity is

F,,=4,,-4,,. (490)

Here, the semi-colon denotes covariant differentiation involving the connection

coefficients I‘:v . According to Hehl ez al. [131] this definition is incompatible with the
Einstein-Cartan theory if coupling of electromagnetic field to torsion is kept invariant

under the usual gauge transformation AJ - Au + A,p, where A is a scalar function.
The solution suggested by Hehl et al. is to dispense with minimal coupling by

defining F,, as

(491)

The bar symbol denotes a covariant derivative using the Christophel symbol of the
metric. By definition now, photons are decoupled from torsion. However, if we accept
the general principle that spinning particles both generate and react to torsion, it is quite
reasonable to expect that the photon should be coupled to torsion. Hehl er al. used Eq.
(490) to define the field tensor of the massive vector (Proca) field. Hojman et al. [130]
rightly pointed out that the definition can be used for the Proca field because the
massive vector field is not invariant under gauge transformation. Evans and Vigier [1]
clearly established that the Proca field will be invariant under the usual gauge transfor-
mation if we take

AA, -0, (492)

for Au =0, m, #* 0. They found condition (492) to be consistent with the Lorentz

gauge, but not with the Coulomb gauge with zero scalar potential. If Au be considered
as the complex solution of d’Alembert’s equation, then the Proca field has also been
shown [1] to be consistent with the Dirac condition [133].

Again, Hojman et al. have shown that Eq. (490) may be used in the pure
electromagnetic case in a theory involving torsion. They proposed a modified gauge
invariance with minimal coupling between electromagnetism and the torsion, which is
allowed to propagate and to be non-zero in vacuo. The usual form of gauge invariance
is recovered when the torsion vanishes. Within this framework a gauge transformation
of the electromagnetic field can be written as
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¥~ = exp(igh)y, A, *A;i = exp(d)A,p)Au s (493)

and the minimal electromagnetic coupling is defined by the prescription

/

- —ipp~® 494
\p’u e ‘l’,p iee Ap. (494)

The heplon field ¢ serves as a potential for torsion. In this way it is a_lso ppssible to
define a theory with propagating torsion, in contrast to the original Emstem-'Cardgn
theory. According to the prescription by Hojman et al. the torsion can be written in

terms of the scalar function ¢ as

« @ 495
FPV = 5:¢,v - ﬁud),\r‘ ( )

8.2 MASS OF PHOTON, SPACE-TIME DEFECT AND
NON-ZERO CONDUCTIVITY COEFFICIENT

If we endow the vacuum with non-zero conductivity, i.e., o # 0 in vacuo,
Maxwell’s equations should be written in the form

oE

V-E=0, V:-B=0, VxE-=cE+ey,—,
ot (496)

oH
VxH =~ ot ==
8 Hokm 55

where €, and p, are vacuum permittivity and permeability respectively, and where X,
and yx,, are the relative dielectric and permeability constants. Again,

VxVxE = -V’E, (497)
which, together with Maxwell’s equations, give
V2E - 1 3’E oE (498)

- il =,
62€OX¢me'O at2 ouoxm at
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This equation is not invariant under 7', the motion reversal operator. The second term
on the right hand side indicates that there will be dissipation of energy during the

propagation of the photon. If we consider plane waves in the Z direction,

172
E, = bexp (im(t - —Z-))HY < p| Ske | ging-zm) (499)
v l“"Oxm

After simple calculation [133] the group velocity v, and the phase velocity v, of the
photon can be written as

1 ) 12
vp = n[l _§_———( )02 2 2} , (500)
€ ) n @
and
2 2

V. =n 1+l—i——— , (501)

-4 (eoxe>2n4w2
for 6fw -~ 0.

For small refractive index, i.e., for n < 1, the group velocity will be less than the
speed of light ¢ in vacuo. Hence no superluminal transmission is permitted in this type
of vacuum. So, for 6 =0 and n =1, v, =V, =c. Now, taking the imaginary
refractive index, we can obtain the mass formula of photons as

o2

mf = W w?(l -n?) - ——. (502)
4n (eoxe)
Several authors [134] have calculated the effective photon mass from
. (503)

mY ,
Jn

where H is Hubble’s constant. For small @ (but @>0), Eq. (502) reduces to
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m, ~ b (504)
Y 2n(eyx,)

/hen the refractive index is complex. Comparing Eqs. (502) and (504) we get

o~ (505)

b

2

vhich is a direct relation between the conductivity coefficient and Hubble’s constant.
‘herefore by measuring the displacement current in vacuo in the laboratory, Hupble’s
arameter can be estimated, allowing a new test of cosmological theory in the

aboratory. .
Using plane wave solutions we get the following dispersion relation in a covariant

orm

2 _
(lklz—n2k§)A"<k>=xmuo(g"“+("Tzl-)n"nv)1v<x>, (506)

there J = (oE,0), A" = (A,id/c), K, = (k,ky). Here n" is the unit time-
ke vector, which is (0, 1) for a medium at rest. It is evident from Eq. (492) that

|A] *Obut ¢ =0 for 0 0, (507)

/hich is the usual Coulomb gauge. Again, the condition A A, - 0 is not consistent
rith the usual Coulomb gauge if the scalar potential is zero. So it seems that the gauge
rinciple has to be reinterpreted for m; 0, ¢ # 0 in vacuo.

Within the framework -of the Einstein-de Broglie-Proca (EBP) theory, the
ondition A A, - 0 is consistent with gauge theory [135] if we write

J, = (oE,J,) with J, = BO. (508)

lere B® is the magnetic flux density related to the photon as mentioned in earlier

hapters. As no electrostatic field can be generated {1,2] out of B®, E must_be
roduced by magnetic induction. In the conventional framework of Maxwell’s equation
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J-oE K, (509)

where E is the field derivable from a potential and where E’ consists of all non-

electrostatic fields. In the EBP framework E = 0, J = 6E. This indicates that the
current and field distributions are entirely defined by the medium. The presence of this

type of non-conservative field as produced by B® is responsible for the loss of energy
of the photon when it propagates in this type of vacuum. In regard to gauge invariance,
the Lagrangian [50],

L= -2(F,F, +m4A), (510)

4 BY" pv

with m, * 0, and va = aA“/axv - aAv/axp will be invariant to

ApaAp +%§T‘t (511)
if and only if
miAA =0. (512)
If m, # 0 then
AA, -0, A =0, (513)

is the only alternative solution. Conventionally, it is asserted that the invariance of L
under Eq. (511) means that m, = 0, and EBP theory is not consistent with the massless
photon.

However, in our extended framework of EBP theory, with ¢ # 0 we can write the
four-current J, = (o E,Jo) as discussed above, the dispersion relation (506) clearly
indicating
(514)

A#0, A ~1,

for ¢ # 0. Roy and Evans [50] have recently suggested a novel gauge theory which
reconciles non-zero photon mass with
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> (515)
Ay papp 1Al
o that
. 51
AA, -0, (516)

Jere FAPP denotes for all practical purposes as mentioned in earlier chapters.. Equation
515) is a limiting form of and an excellent approximation to the condition introduced

y Dirac [132],4 A, = constant, Eq. (516). In extended EBP theory, with ¢ # 0, it
; evident from the dispersion relation (506) that

4, ~ |A| for |n?| - % (517)

2 - .-, .
'or |n?| =1/3, the metric tensor (g"* + n—zln”n") becomes positive definite
n
ince m, # 0 for complex refractive index.
If torsion is considered to be non-zero, the modified Maxwell equations can be

jritten as

F"F\*," = e bgn -F¥W¢,, (518)

there F},’ is covariant differentiation without torsion. This equation can be written as

vxn+l@:e-¢1~(nxv¢+ﬁéi). (519)
c ot c ot

£t us consider the plane wave in the Z direction as taken previously, the Maxwell
quation (498) takes the form

PE 1 B 120, 1 %xa0 1%%%) L1 @ (520

32 o 92 cot c2at at c ot ot\dt) o2 Yo

vith Vx (Vx E) = -V2E. Considering E, and Hy as in Eq. (499), and comparing
t with Eq. (498) we get
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o~ 100 0(3) (521)
0Z ¢ ot Ot\ ot

where 8%/t =0 is assumed, i.e., d¢/Jt = L, a constant. Again, as o is constant,

% _g , a constant , (522)

oZ

so that 6 = K+ L (constant). let K =L, ie.,

% _ 159 (523)
Z coa’
then the conductivity coefficient ¢ can be written as
o - 2 - constant, (524)
oz
ie.,
_ SoXe b (525)
" X, OZ
Taking the average over the surface,
@dx x dy
% - €X. Y OZ (526)
FoXm 3{ dx x dy

As a result, the vacuum conductivity concomitant with photon mass may arise from
space-time defect or from the torsion generated by defect in space-time. In the general
case it is given by
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oo Bl el

p'Oxm v
Ev § dx¥dx

or

av eoxe Z « *

- _ e (528)
BoXm T f dx¥dx”

8.3 NON-ZERO PHOTON MASS AND THE
PRIMORDIAL MAGNETIC FIELD

From the previous section it is clear that if we consider the propagation of a phgt_on
through a vacuum with non-zero torsion, we obtain a relation between the conductivity
coefficient and torsion

oc = Q = %GGSEO, (529)

where the torsion Q = aucb; ¢ being the torsion potential, and o is the background

spin density. G is the gravitational constant. De Sabbata and Gasparini [136] have
found a relation between the torsion vector Q and the magnetic field B which is
generated through the spin density o,

B - (Sl)(zac)lﬂ .. (530)
3c

Comparing the following relations

m, ~ ——, (531)
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4
o, - —Goy, (532)
c
we obtain
m - 1% (533)
Y 6'4

Therefore the spin density for the Hubble universe can be estimated [136] as
o, - 3 x10. (534)
Using this in Eq. (533) we find a limit on photon mass,
m, <8107 kegm. (535)
Data from the Pioneer 10 flyby of Jupiter gave a limit [138], in comparison, of
m, < 8 x 10 kgm. (536)
Using the value of o in Eq. (530) we obtain

B<29x10" T, (337)

This magnetic field can be identified with the relict B® field for the following reasons.
The photon loses its energy during its propagation through the vacuum with non-zero

conductivity coefficient of the form o, ~ d¢/dZ, the gradient of the torsion potential.
So, the magnetic field B, can be written as ~ d¢/0Z. For magnetic or electric fields,

it is known that E2 or B? is proportional to the energy density of the field. The
analogy between Q and B already established suggests that we can interpret Q as the
energy density of the torsion field. In the case of propagating torsion

Q=49,9, (538a)

and
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Q? = 3,60, (538b)

indicating that

29002, (92, 9 _ 1,00, (0bn,, 9o 539
|B| |ax‘ IaYi 18Z| C2|8t| |ax| IaYl, (539)

since ad/dZ = (1/c) (3] ).
As a result, we can write |B,| = B to be independent of phase and of time,

since 8¢/ot = constant. Here, the magnetic four-vector has been defined in terms of
a torsion four-vector. In the circular basis,

B, - (B®, B®, B®, iBO), (540)

and

E, = (E®, E® E®,iEO), (541)

are the magnetic and electric components of the plane wave in vacuo. It can be shown
that B® and E© are the time like components of B, and E, respectively [4]. In this

view, Eu Ep and Bp Bu are Lorentz invariants and contribute to the electromagnetic
energy density in vacuo. The energy density of the field can be written as

v-1LeeE +L1nn] (542)
2 (Bt M poB
0
Again,
E,E = EM + E®? + EO? - EO2, (543)
and
B B, = BV? + B®? + pO2 - BOZ, (544)

Using the relation
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B® x B® - jBOB®* (545)
we obtain in the Maxwellian limit,

B® _ 1(0) B® x B® - BOf (546)
iB

where k is a unit axial vector in the propagation axis of the plane wave in vacuo.
Similarly it can be shown that

iE® = iEOf. (547)

Using these expressions for B® and iE® we obtain [4]

(iE®)-(iE®) - E®? = 0 = B . BO* - O, (548)

Therefore,

BB, = B®*+B®?, EE =EV+E®, (349)

which is precisely the result indicated by the conventionally interpreted Planck law,
where there are only two transverse degrees of freedom. Finite photon mass, however,
implies three degrees of space polarization, two transverse and one longitudinal. In the
above four-vector representation the longitudinal contribution is cancelled precisely by

the time like-contribution. This occurs both for the real B® and for the imaginary
—iE® . The latter is unphysical at first order, but its square modulus is real. The
compatibility of the four-vector representation with the field four-tensor F,, has been
discussed in Chap. 11 of Vol. 1 [1].

The magnetic components B® and B the longitudinal and time-like components
of B, [1], are time and phase independent, which means that

3) ©)
B= .o, BT .y, (550)

ot ot

The magnetic field associated with vacuum conductivity and generated by torsion has
similar properties to those of B® and B,
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ZNQZLQ, 9(9%) . (551)
oz c ot ot\ oZ
¢ _p (552)
at?

o B, and BY ~ (1/¢)(84/3r) do not contribute to the field energy density, because
_ 2 . . - . .
”? = 9,40"¢ ~ B”. This implies clearly that we can identify the field B, ~ o¢/0Z

ith B® and (1/¢)(0¢/dt) with B® . Therefore the relict magnetic field B® can be
nsidered as a candidate for the seed field in large scale structure formation.

onsidering the photon mass limit m, ~ 10™? kgm we have,

B® = B, ~ 107 Gauss = 10" T, (353)

hich agrees well with the observational limit ~107'° T on the primordial magnetic
2ld.

4 COSMOGONIC IMPLICATIONS OF THE SEED MAGNETIC FIELD

Cosmic magnetic fields are ubiquitous within our own and other galaxies. They
e essential for the process of synchrotron radiation and may be strong enough for
agnetic stresses to be dynamically important; even a very weak field can inhibit
ermal conductivity and associated diffusion processes. The issue of how magnetic
2Ids can originate and evolve is therefore of interest in many astrophysical aspects,
rticularly for cosmogony. A field, even if very weak, can be amplified by a dynamo
echanism in a medium with large scale internal motions. This can always happen
ithin galactic discs, inside individual stars, and in other contexts. All dynamo
echanisms rely, however, on a seed field: a non-zero field must initiate the process,
herwise the dynamo has nothing to feed on. Several alternative theories | 124] have
en proposed to explain the presence of the seed field. In 1970, Harrison [139]
oposed an interesting mechanism to create a weak field. A non-zero vorticity in the
imordial perturbation was considered in this framework. The photons of the
ckground thermal radiation (2.8 K) would be strongly coupled to the electrons via
1ompson scattering, but less strongly so to the ions. Angular momentum conservation
the photon-electron components implies that the angular velocity of a co-moving eddy

s off as R™" during the expansion, whereas the angular velocities in the jonic
mponent (where rest mass dominates and p « R™®) would go as R 2, having moved
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independently of the other components. This difference tends to build up a circuit in
each eddy. On galactic scales, the build up is so slow that the resultant fields would be

only about 1072* tesla. These might never be adequate seeds for a subsequent dynamo.

This idea of primordial voricity, or whirls has lost favor with most cosmologists,
largely because they decay during cosmic expansion, whereas irrotational density
perturbations (arising from initial curvature fluctuations) would grow. The initial
conditions required in order that rotational perturbations be still significant in the post-
recombination universe seem rather implausible. While Harrison [139] proposed a
mechanism for primordial magnetic fields in the pre-recombination plasma, Mishustin
and Ruzmaikin [ 140] investigated the possible occurrence of weak seed magnetic fields
during the period after the recombination of the residual plasma. However, the field
generated through their mechanism is too weak, and of the order 107 T. The physical
explanation for the generation of such a weak field is not at all clear in the framework
of the theory of Mishustin et al. Moreover, a still weaker field, that affected neither
the behavior of pregalactic gas nor the local physics at early epochs (i.e., nucleo-

synthesis) might nonetheless suffice to initiate a dynamo. A seed field of about 102 T
could grow to the presently observed galactic strength (of the order 107'° T) provided

that the e-folding time were no more than a few times 10® years, comparable with the
galactic rotation period. In a young disc galaxy, however, the magnetic fields would
not have had enough time to grow to a dynamically significant level.

In contrast, the magnetic field generated due to non-zero torsion can be shown to

be of the order 101! T and we have shown that this is the B field. Therefore a

primordial B® field can be envisaged in the relict microwave background radiation.
The forthcoming COBRA/SAMBA project of the European Space Mission [141] will

measure the B® field through the ratio of longitudinal and transverse components of
the microwave background radiation.



Chapter 9. B®  Experimental Status
and Prospects

Chapter 7 of Vol. 1 [1] discussed the experimental evidence for the existence of

the B® field, and a revised version of the experiment of Deschamps er al. [17¢] to
provide evidence for its existence through the expected square root intensity profile of
inverse Faraday induction. Currently, the strongest evidence for the existence of

the B® field remains the inverse Faraday effect (IFE), and this has already been

discussed in previous volumes [1,2]. Conclusive evidence for the existence of the B®
field at first order would follow from the predicted dependence of magnetization on the
square root of the power density of the incident circularly polarized radiation. In this
chapter we propose a related experiment which appears to be easier to carry out.

Chapter 2 shows that the effective magnetic flux density of the B® field when
interacting with one proton through the Dirac equation should range from nano to kilo

tesla. To date, most attempts to detect effects due to B® have been conducted in the
optical region, and have provided conclusive evidence for its existence through the

inverse Faraday effect. However, this is a second order effect in iBOB®*.

Conclusive evidence for B® acting at first order is still to be obtained. Optical NMR,
discussed in Chap. 2, shows that nuclear resonance lines can be shifted by circularly
polarized visible radiation, and that the direction of the shift is very probably reversed

with the sense of polarization. This phenomenon led to the discovery of the B® field
{71, and Chap. 2 describes how it reproduces the available ONMR data through its
interaction with the third Pauli spinor. At visible frequencies this is a small second
order effect as seen by Warren er al. [20] in an exhaustive and careful series of
measurements.

The phenomenon of magnetization by circularly polarized light in non-absorbing
media [17—21] was first demonstrated experimentally by van der Ziel er al. [17a] in
a classic paper, following a theoretical prediction by Pershan [17a]. In the received
view, the physical mechanism which gives rise to such magnetization is essentially
different from magnetization produced in media with optical absorption. The latter is
produced by polarized electrons in the medium by the transfer of angular momentum
of the electromagnetic radiation to electrons via spin-orbit coupling. In the case of a
non-absorbing media, this mechanism is absent. Some physical mechanisms which can
produce this tvpe of magnetization include the non-linear interaction of the light with
the medium or the possibility that electromagnetic radiation itself has a longitudinal
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agnetic field. The B® field is now recognized to be a phase free example of a novel
ass of longitudinal solutions in vacuo of the field equations of electrodynamics [2].
hese equations are in general non-Abelian, but when linearized become Maxwell’s
Juations. _

Some particular experimental problems arise in the study of optomagnetic effects,
hich for diamagnetics and paramagnetics are small in magnitude and difficult to detect
tperimentally [17—21].  The received view can lead, furthermore, to gross
derestimations such as that of Buckingham and Parlett [142], who claim, contrary to
cperimental evidence |20], that nuclei in a fluid irradiated by a circularly polarized
ght beam produces NMR shifts no less than nine orders of magnitude smaller than
ose actually observed. The reason for this discrepancy is clearly the failure of these

ithors to accept that the conjugate product A® x A@ interacts with the third Pauli
sinor as described in Chaps. 1 and 2. This is a dramatic illustration of the fact that

sceptance of B® leads to adequate agreement between data and theory as described
| Chap. 2, and that the received view does not. Surprisingly, Buckingham and Parlett
42] ignore the available data of Warren er al. [20] in an attempt to maintain a
ynservative point of view which in the last analysis is subjective assertion. '

Nonetheless, improvement in the sensitivity of measurement of very weak magnetic
elds is always to be sought, and the various available methods are reviewed by Lenz
43]. Currently, NMR quantum magnetometers are accurate typically to within
.002% with a sensitivity limit of about 10"°T in material with appropriate nuclear spin.
ptical pumping in quantum magnetometry [ 144] is sensitive to 10-°T/(Hz)"” but limited
scause it requires spectral absorption. The superconducting quantum interference
svice (SQUID) [145,146] is well known to be sensitive to about 10"“T/(Hz)"" at liquid
slium temperatures. The sensitivity can be improved by modulation using elliptically
olarized light, decreasing the temperature to about 10K, or using multiple SQUIDS
|47]. Another sensitive device is the flux superconducting differential transformer.

Induction magnetometers (IM) are based on Faraday induction. Various methods
1n be used to change the magnetic flux, for example modulating the polarization or the
itensity of the light and using a synchronized lock-in amplifier. The sensitivity of IM
“limited by thermal noise in the resistance of the coil, and the minimum detectible
1agnetic field is about 10'”T/(Hz)"* at room temperature. The superconducting
smtovolt preamplifier [148] can be used to minimize preamplifier noise. Noise is
irther minimized by using a superconducting preamplifier circuit [149], which is
apable of reducing ohmic noise by up to a factor of 10°. The use of resonance reduces
ie incidence of preamplifier noise. Using the optimal coil and modulating frequency
roduces a sensitivity of better than 107°T/(Hz)"* at liquid helium temperatures.

Braginsky [150] has shown that the sensitivity of measurement can be improved
rith a lightly damped mechanical oscillator such as a torque or mechanical pendulum,
ith a quality factor of greater than 10°. We are not aware of the use of such
scillators for the measurement of magnetic fields. Earlier torque balances were applied
) the measurement of magnetic anisotropy with great sensitivity [151].
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The torque resonance magnetometer (TRM) is a device wherein the sample forms
one part of a mechanical oscillator. The sample is placed in an intense external field
of for example 100 T so that the magnetic moment of the sample is perpendicular to the
external magnetic field. If circularly polarized light creates a magnetic moment in the
sample the latter will experience an alternating mechanical torque equal to the vector
product of magnetic moment and external magnetic field. This method has a sensitivity
of less than 107°T/(Hz)"” and can also be adapted for use with an electrical superconduc-
tor magnetometer (SCM). In analogy with SCM it is very useful to apply the
modulation principle of measurement in TRM. An optical interferometric method, for
example, can be used to overcome the problem of sensitivity in the torque oscillator
amplitude.

The Faraday effect is an indirect method of measuring the optomagnetic effect
(OME) in fiber-optic magnetometers [152]. The induced magnetic field in OME can
be detected through the rotation of the plane of polarization of a probe laser, and this
method has been applied successfully for the highly sensitive optical registration of an
EPR spectrum [153]. This method has been used for the detection of plane rotations
as small as 0.001 arc seconds, and has also been used for the study of the IFE by
reflection from a semiconductor [154]. A high intensity femtosecond laser used in this
work leads to a useful surface scanning technique. For the investigation of OME
however the method suffers from the drawback that the effective value of polarization-
plane rotation also involves third order nonlinearities in the form of a four-wave mixing
phenomenon. This effect has great value in the resonance condition when the probe and
pump frequencies and also their sum or difference are the same as the energy levels of
the sample [24].

For nonabsorbing media there is an unambiguous interrelation between magneto-
optical and optomagnetic effects, and the constants are equal [155] in microscopic
theory. The first example to be observed of such a relation is that between the Faraday

effect and the IFE: the T and P symmetries of the circularly polarized field and B®
are identical, and their effect on media is identical in the absence of absorption. In the
presence of absorption [42] the IFE can still be described in terms of the conjugate

product of vacuum electromagnetism, and therefore in terms of B®. However, an

ordinary magnetic field (as distinct from the radiated B®) is obviously not absorbed
by the sample at any frequency.

An ordinary magnetic field also produces magnetochiral birefringence (MB) [156],
or nonreciprocal magneto-optic linear birefringence. The corresponding optomagnetic
effect is inverse magnetochiral birefringence (IMB) [42], which is magnetization by a
laser in a chiral medium. IMB may occur theoretically with linearly polarized light and
its sign changes with the direction of light propagation [42]. It is further reviewed by

Stedman [5b] and by Evans [5b]. Using B® theory, it becomes the optically produced
equivalent of magnetic circular dichroism or optical rotatory dispersion, with the static
magnetic field replaced by circularly polarized electromagnetic radiation, and relies
essentially on the fact that in a chiral medium the parity difference between a magnetic
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and electric field becomes irrelevant [5b]. In chiral liquids the magnetization from IMB
does not depend on the light polarization, and its direction is parallel to that of beam
propagation, reversing sign for enantiomers. In crystals the effect depequ on space
group symmetry [157] and in general is about a hundred to a thousand times weaker
than the IFE.

These volumes have shown that electromagnetic radiation includes the B® field,
now known to be a phase free component of a class of longitudinal solutions [158,159]

in vacuo of the electromagnetic field equations. The B® component propagates in
vacuo and is a radiated field as described in earlier chapters. Its interaction with one

electron is governed by the conjugate product A® x A® | which can be used either in
the Dirac or Hamilton-Jacobi equations of motion, leading to expressions such as
Eq. (403) of Vol. 1 and in Appendix F of this volume. The I dependence at visible

frequencies gives way to an I 12 half dependence at radio frequencies under the right
conditions.

The IFE has been studied in plasmas [17¢c] and in the liquid and solid states
[17—21]. In the original experiment of Deschamps et al. [17c] microsecond, megawatt
pulses of microwave radiation at 3 GHz were used to ionize a low pressure gas. In the
received view [17a] the electrons so produced are driven into circular orbits by the
electric field of the circularly polarized radiation and in consequence produce an axial

magnetic field. In the new B® theory the effect is described in Appendix F. In both
cases the induced magnetic field is detected through induction in a pick-up coil
surrounding the ionized gas. The intensity of the induced field and its dependence on
the polarization of the incoming radiation were measured using two polarizers [17c].
Changing the angle between them produced a cosinal intensity variation. Over the range
of intensity investigated, the inverse Faraday induction was found to be linear in the
intensity I of the electromagnetic radiation.

The theoretically expected square root intensity dependence due to B® acting at
first order will start to dominate under the conditions discussed in Chap. 12 of Vol. 1,
and these can be achieved by reducing the frequency of the radiation to the MHz range,
for example 0.3 MHz, at which frequency the linear dependence curves off. In such
an experiment, care should be taken to eliminate any effects which could produce an
artifactual non-linear I profile. Chiang [100] has discussed the fact that ions would be
accelerated in the opposite direction in experiments of this type, and in consequence the
sample must be an electron beam. In plasma, artifactual ionic effects interfere to the
order of 10% for an incident field amplitude E of the order of 2.89 x 10° volts per
meter. This corresponds to an intensity of about 2.5 x 10* W/m?, of the order of that
needed to see the real, artifact free, square root intensity dependence. If an electron
beam is used these artifacts are eliminated and furthermore, for a given incident field
and induction coil, the induced voltage will be increased since many more electrons will
be contributing to it. For example, if an electron gun were used to deliver say one amp
cm?, and if the beam cross sectional area were 1 cm?, then the total number of electrons
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exposed in a given pulse would be of the order 10", a hundred times greater than the
electron density of the Deschamps experiment.

An alternative scheme would be to use continuous wave (cw) circularly polarized
microwave or radio frequency radiation with a pulsed electron beam. Such an
arrangement is commonly used in an undergraduate experiment to determine the charge
to mass ratio of the electron. Helmholtz coils surround a glass bulb containing an
electron gun and a low pressure gas. The electrons are accelerated perpendicular to the
field produced by the Helmholtz coils and under the right conditions move in circular
orbits of a few centimeters radius. Such apparatus can be used to detect and

measure B® by exposing it to circularly polarized cw radiation, pulsing the electron
gun and using the Helmholtz coils as pick up coils to measure the induced voltage. The
radio frequency radiation is circularly polarized using a log spiral or helical antenna.
In this experiment, constant beam power is maintained and the frequency varied using
a device such as that produced by Antenna Research. A vacuum system containing a
high current electron gun is used (a few amps per square centimeter). The electron gun

is pulsed and the pick up coil measures B® induced in the sample as given in
Appendix F. Theoretically, modest beam powers of the order of 40 W m” would be
sufficient to see an induced voltage provided the electron density N were adequate.

9.1 CONCLUSIONS

A survey has been given of a variety of techniques for investigating the magnetizing
effects of circularly polarized electromagnetic radiation, focussing on the experimental

prospects for detecting and measuring B® through its expected square root I profile.



Appendix A. Circular Basis for Pauli Spinors

In the text the vector potential, A® = A@* of the electromagnetic wave has been
set up in the circular basis defined by Eq. (32). In this appendix, the Pauli spinors are

defined in the same basis in order to introduce A® and A® consistently into the Dirac
equation consistently. In the basis ((1), (2), (3)) the Pauli spinors, by analogy with Eq.
(32), are

oD = g@ _

]. . 3 _ Al
—(og~ioy), 67 =0y (AD)
/2

In the usual Cartesian basis, the spinors are well known [1,2,22—25] to be

01 0 -i 10
T Tl O T

and Eqs. (Al) and (A2) lead directly to Eq. (39) in the text. It can be checked by
direct evaluation that the Pauli spinors in ((1), (2), (3)) have SU(2) symmetry, and are
therefore representations of three dimensional space. They are real, and therefore obey
the following rules for Hermitian transposition [2,22-—25],

00
oV = g+ - ( ], @ - g+ - [O ﬁ],

V2 0 0 0

6® = g®+ - (1 0 ]

(A3)

0 -1

The ¢® spinor is the same as the 6, spinor in the usual Cartesian representation,
which also has SU(2) symmetry [2,22—25]. The representations of the Pauli spinors
in the Cartesian and circular bases are therefore equivalent, but the latter basis is
convenient for the description of circular polarization [1,2].



Appendix B. Product Algebra of Spinors and
Unit Vectors in the Circular Basis

In order to evaluate products such as 6@ - A® appearing in the Dirac equation it
is necessary to define the product algebra of Pauli spinors and unit vectors in the
circular basis ((1), (2), (3)).

The dot product in this basis is equivalent to the Cartesian dot product, because the
two bases are equivalent representations of three dimensional space, and so,

Gie=oW. @ g®. W, g®.¢® g .;

(B1)
. X 1 1-i
+0,°'J+ O, = ’
r'JT % 1+i -1
giving the sum
o). o @, g. [ @ 17] (B2)
1+i O
The individual terms in this sum are
0 0
o‘l)~e(2)=i(ox—ioy)'i(i+ij)=( _ ], (B3)
V2 V2 1+i 0
and
o® .M 0 1=} (B4)
0 0

and are complex. The Hermitian transpose (the matrix transpose with simultaneous
complex conjugation of each element) is, for each term,
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(o - eD) = g . e) (@ .M} - o). @ (B5)

'he product of terms is

00
., 2\ @ ., M0\ _ ) (B6)
(ol -e®) (o -eM) [0 2)

Jsing these rules, it can be checked directly that the product is

(oW - eD) (0@ W) = ¢ .e@ 4 jg® . eM x @ (B7)
vhich is Eq. (25a) of the text, and is the correct spinor algebra in the basis ((1), (2),
3)). It is of key importance because it introduces the conjugate product e® x ¢®

nultiplied by the spinor 6. This term represents mathematically the interaction of the

onjugate product of a circularly polarized electromagnetic field with the spinor ¢®,
nd thus with the half integral spin of a fermion such as a proton or electron.
Finally in this appendix, it is shown that

M.,V =y gD . o) = yrg?) . o) (B8)
(o e@y) =y (g -eP) = yroP- eV,

| relation which must be used to construct the Hermitian transpose of Eq. (26a), i.e.,
o construct Eq. (26b). We write the two-spinor as the column vector,

(B9)

vhose components are in general complex. The Hermitian transpose of this column
yector is the row vector,

v =( * *) (B10)

iV )

“valuating directly, it follows that
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p* (o e @) - (v;v;)(o l—i) C(0(1-)% ), (B11)

and

0 o\(m)) o\ B
M. @)\ - - - iy v (B12)
(o™ - e@y) ((1 v 0][\’2]) = (v1(1+i)) = (0 (1-i)v ),

and so we arrive at Eq. (B8). Hermitian transposition algebra of this kind is important
in the Dirac equation [11,18] because it is used to show that the equation produces a
rigorously non-negative probability, unlike the Klein-Gordon equation.



Appendix C. Hermitian Transposition of the
Dirac Equation

We wish to prove that the Hermitian transpose of the Dirac equation,

(iy"ap —ey*A - m)lll =0, (C1)
is

W(iY"é_" ~ey*A; + m) = 0. (€2

In order to do so, it is necessary only to consider the term y*A4, when A, is complex
in general, because the Hermitian transposition of the other terms is entirely standard
[22—25]. The relevant term is

YHA, = YA, + YA, (C€3)

and its Hermitian transposition implies the algebraic transposition of matrices elements
with simultaneous complex conjugation of those elements. So Hermitian transposition
of term (C3) results in

YP+AJ = ,YoAD* _ ,YiAi“ , (C4)
where A; is the complex conjugate of A,. We have used [2,22—25],

i+ i (CS)

and multiplying by y°, using y’y® = -y°’, results in



192 Appendix C.
-Fey*A, := —ew*y"(y"A; + yiAi"), (C6)

as in the text. This means that the operator —ey"A; multiplies the spinor ¥ = 'y°
from the right, the operation in this case being matrix multiplication of the row vector

¥, with four elements. In the original Dirac equation (C1) the operator —eytA
multiplies the four-spinor ¥, a column vector, from the left. In the textbooks [22—25]
the use of a complex Apl in the Dirac equation is not standard, because the phenomenon
of the anomalous Zeeman effect is being described in a static magnetic field whose
vector potential is real. The standard treatment of the Dirac equation of a fermion in
a plane wave is almost always restricted to linear polarization, and the key resonance
term is missed.

Appendix D. Theory of Electrodynamics

Fundamental Standard Theory New Theory
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Structure of linear, Abelian non-linear, Non-Abelian
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cyclicum
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O(3), physical space rotation
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C
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Photon
Helicities

Translation-
al Poynting
Theorem

Rotational
Poynting
Theorem

Magnetic
Fields

Electric
Fields

Vector
Potentials

Planck-
Einstein
Relation

de Broglie
Relation

F,,, Abelian in space

(M, 2, BN

-land 1

not considered

BW - gD+

E® - gO~

AD - 4@

En =1

pP=%hk

B®* - €AW, 4O
h

G'“, Non-Abelian in space

(M, @, 3

-1,0, 1

same

BW =B(2)', B®
E(1)=E(2)' iEO)

M) _ 4 :403
AD =A@ A® 4

En=%w =hA, h =ec|B®]
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Fundamental Standard Theory New Theory
Concept
18 Quantum of e if(B(l) .p®* he» = if(B(l) .M+
Energy Ko Ko
+B® .gA*\qy +B® B . BO . BO¥qy,
19 Quantum of ¥ . h A
Angular lw
Momentum
20 Quantum of he he = h,A
Torque
21 Momentum not considered cyclic relations imply in
Equivalence vacuo eA? =%, the quan-
Condition tum of linear momentum
22 Mass of identically zero ey ] BO|
Photon G
23  Gauge not considered vl Me? 2
Invariant En = —(—c ) B®-B®*
) Ho\ hw
Lagrangian
Mass Term in O(3) gauge group
24 Gauge 1) transverse 1) not allowed
Conditions 2) Coulomb 2) scalar, non-zero
on Four-

Potential

3)AA4,-0
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Fundamental Standard Theory New Theory
Concept
25 Field canonical, beset with direct quantization of cyclic
Quantization difficulties because A, field relations
is not covariant
26 de Broglie not considered hwg = h Ay = me?
Theorem
27 Interaction via AD ZA®* same as Standard Theory but
With minimal prescription, finite Scalar potential AO = ¢ #0
Fermion
4= =0
28 Magneto- I dependence from I'2 dependence observable
optics A,=0 under the right conditions,
A, *0
29 Q.E.D. no mass term finite mass term
30 Observation not considered routinely observable
of B® Field through iBOB®* in
magneto-optics
lotes:
N := Poynting vector; U = energy density;

J® = radiation angular momentum;

A := wavelength;

V = volume of radiation;
¢ = A, = scalar potential.

v - 1lpe.go-.
Ko
Ay = rest wavelength;

M = mass of radiation;

Appendix E. Dynamical Analogies of the
Maxwell Equations

The existence of the cyclical field equations,

BY x B® = iBOB®* et cyclicum, (ED)

implies that there is a precise dynamical analogy to the Maxwell equations in free space.
Equations (E1) can be used to derive the Maxwell equations because the former are
fundamental relations between fields in free space, relations to which there is a precise
dynamical analogy,

JO x JD = jJOF®* et cyclicum, (E2)

where J denotes angular momentum. The close similarity between Eqs. (E1) and (E2)
stems from the fact that both equations describe O(3) rotation generators, suggesting a
profound analogy between the structure of space-time and electromagnetism. This can
be extended to general relativity. In particular, the rotation generators obey a cyclically
symmetric, compact, group algebra, that of O(3), whereas linear momentum generators

do not. In consequence, there is a B® field, corresponding to J®, but no E®,

because the polar p® cannot be generated from the axial product p® x p@ of
transverse momentum generators. This is true in any system of coordinates, both in
special and in general relativity. At the most fundamental level, electromagnetism in
free space, like gravity, is a consequence of the structure of space-time itself, be this
Euclidean or Riemannian. Furthermore, the existence of cyclic relations between space

rotation generators implies that B® and J® must be complex in nature, and since they
are rotation generators, time dependent in some way. The Maxwell equations are
invariant under the duality transformation [1,2] (Minkowski notation),

A, M) (04 ot &)
ox, Ox, Petlox,  ox

a

where €, is the four-dimensional Levi-Civita symbol, and from the analogy between
Egs. (E1) and (E2), it is expected that there is a direct dynamical analogy to this result,
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P, P\ _, %_%, (E4)
ox, ax, kveo ax, Ox,

where P, is the energy-momentum four-vector. If va is the four-tensor of electric and

magnetic fields {1,2], and J  that of rotation and boost generators, then the above-
mentioned analogy between electromagnetism and dynamics can be summarized through
the statement that F is proportional to Jyy- Thus [1,2], magnetic fields are rotation
generators, electric fields are boost generators, and the free space Maxwell equations
become those of classical dynamics.

In free space, the Maxwell equations in S.I. are,

vxE--98 v.B-o, (ESa)
o

vxB-L1% v.g-o. (ESb)
ctot

B -0, —e 2 F =0, (E6)

where F:f, = e“vpoF oo is the dual tensor [1,2] of va . The duality transform (E3) can

therefore be expressed through the fact that Maxwell’s free space equations are invariant
under

F._ — F?. (ET)

pv pv

The duality transform offers considerable insight to the nature of electromagnetism and
space-time at the most fundamental level. It can be expressed in terms of space-time
as

Vx —» —i_‘a_, 9, icVx, (E8)
cot ot

and in terms of electromagnetism as
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. E©
BY — i——, E©® — -icB9. (E9)
[

It is easily checked that both (E8) and (E9) leave the Maxwell equations (E5)
unchanged. Therefore Eqs. (E5) can be written as

B—iE  E > _iB. (E10)
[

On the most fundamental level, therefore, Maxwell’s equations indicate that the duality
transform

/B — J1E, (E11)
Cc

is equivalent to the duality transform

(VX)B — (_ig)ﬁ _ (E12)
[ [

This can be seen clearly through the vector potential A, because

B-VxA — 10, :E, (E13)
cot c

thus combining Eqgs. (E8) and (E9). Ultimately, therefore, the generation of an electric
from a magnetic field is a matter of replacing the operator Vx by the operator L gt’
c

both acting on A, and this is a consequence of the structure of space-time itself. In the
minimal prescription, the vector potential A is p/e, where p is linear momentum, and

from the Lorentz force equation, F is expressible dimensionally as eE. Relations such
as these provide an opportunity, therefore, of writing the Maxwell equations as

equations of pure dynamics. Using E = -1/e(dp/dt) = —F/e, it is easily checked that
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VxE = VxF = o
b VI X at

(E14)

where J, is angular momentum per unit area. So in classical dynamics, the curl of
force is the negative of torque per unit area, -AJ,/dt. This is a precise analogy to the
free space Maxwell equation on the left hand side of Eq. (E14), F being analogous to
E, J, to B. Similarly,

1 OE 1 oF
= -2 VxJ, = — 2
Vx B 2 N xJ, S
(E15)
It follows, also, that
V-B=0 vJ, =0
V-E=0 ~> V-F=0
(E16)

showing that if the rotational motion is taking place around the Z axis, there is no phase
dependence of the type exp (i(wt -xZ))in the Z components of J, and F.

In order to demonstrate more clearly that electric fields are boost generators and
magnetic fields rotation generators [1,2] it is necessary to introduce linear momentum,

P, into the above relations, rather than force F, whereupon

2
VXE=—% Yuxp--H

(E17)
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with, as in classical dynamics,

v=exr, J=rxp. (E18)

Here @ and J denote angular velocity and momentum respectively, and r is the radius
vector of the angular motion [1,2]. The free space Maxwell equation in analogy (E17)
is therefore equivalent to the fundamental relation between linear and angular
momentum in classical dynamics.

From Eq. (E14),

VxF - L (E19)
nr? ot
where, in general, and in analogy with the general relation between E and A,
E--2A vy F--%2 vy
ot <~ dt
(E20)

where U is potential energy. The curl of F is independent of U, and the curl of E
is independent of ¢. Continuing the analogy,

B=VxA J=11:r2pr

(E21)

showing that J is independent of U just as B is independent of ¢. Comparing Eqs.

(E18) and (E21) shows that rx = nr?Vx. The right hand side of Eq. (E21) can be
obtained by direct integration of Eq. (E19),

J= —nrszdet = —anfoth = mr’Vxp, (E22)

using Eq. (E20). Therefore, the fundamentally analogous quantities are
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2
B<>J, A<«—>mr’p, E -+« Yp (E23)
6]

showing that B, E, and A in electrodynamics are as fundamental as J, F and p in
dynamics. The dynamical analogy shows clearly that both fields and potentials are
physically meaningful.

The duality transformation in dynamics can be developed in its clearest form by
accepting the validity of the de Broglie guiding theorem,

En = mc? = ho,. (E24)

If v is identified with ¢ in Eq. (E17), then,

C2

LN (E25)
o M
so that in the photon rest frame,
Vexp=-2H (E26)
h Ot
where m is the mass of the photon. The duality transform therefore becomes
/B — J1E /T — 10
c > m
(E27)
which, with v =p/m, is equivalent to
y— - Ly (E28)
h h

Equation (E28) means that J/% plays the role of B in the duality transform, and v that

of E[c. Thus, the magnetic field is a rotation generator and the electric field a boost
generator [1,2], which is the momentum-energy within a factor. If there is photon
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mass, B® and the J® are missing, or at best, ill-defined.

Equations of motion can be constructed directly from relations with group
symmetry O(3) because this is the group of infinitesimal rotation generators and angular
momentum operators [1]. Space itself is described by a set of relations between

complex unit vectors [1,2], e®, ¢@ and ¢® in the basis ((1), (2), (3)),

e® xe? =ije®* et cyclicum. (E29)

In order to convert this into an equation of motion, it is written as

(e®e) x (e@e ) = je®* et cyclicum, (E30)

where e, ¢ = ot - x ', is the de Broglie wave function. This is a generator of wave
motion with relativistically invariant phase. Equations (E29) represent the framework
of space, while Eqs. (E30) represent wave propagation with simultaneous rotational

motion. [f the propagation velocity of the wave is v, then ¢® also propagates at this
velocity, because at instant ¢ , the frame ((1), (2), (3)) is centered on an origin at point
R. The complete frame must move forward to point R’ at instant ¢’ because if e®

and e® propagate, so does ¢® | being always defined by e® xe@ .

Equation (E30) is therefore an equation which describes the characteristics of wave
motion superimposed on the structure of space. It is a frame of reference spiralling
forward at the propagation velocity of the wave. Equations (E30) become Egs. (E1)
provided

BW - iB(O)e(l)ew, B® - _jp®e@,-i¢
’ (E31)
B® - B(O)e(S)’

showing that B® propagates at the same speed as B® and B? . Since Eq. (El) is
analogous with Eq. (E2), cyclically symmetric relations between angular momenta, and
since angular and linear momentum and angular momentum and force are related
fundamentally through equations identical in structure to the free space Maxwell
equations, the cyclic equations (E1) imply the existence of the Maxwell equations

themselves. Additionally, they imply the existence of B® in vacuo and in matter, and
are therefore field equations, relations between fields, which are more fundamental than
the Maxwell equations. Equations (E1) show that all types of angular momentum theory
can be applied directly to field theory, both in classical and quantum mechanics, in
special and in general relativity.

It is possible to modify the Maxwell equations to account for B® from equations
(E1), but this procedure is self-consistent only in the O(3) gauge group, which is non-
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Abelian [2]. Equations (E1) show that Maxwell’s equations must be generalized, and
are therefore more fundamental as we have argued. In the O(3) gauge group, covariant
derivatives are used, borrowing techniques of gauge theory taken from general relativity

[2,23]. This leads to the possibility of developing B® in Riemannian geometry, with
an eye to proving that space-time becomes curved in the presence of electromagnetism
as well as gravitation. This would be a step towards a unified description of
electroweak and gravitational fields. A glance at equations (E1) shows them to be non-
Abelian and non-linear. The much older Maxwellian point of view is linear and
Abelian, making unification with gravitational theory difficult.

The dynamical operation,

eV — eWexp (im (t - 1)) , (E32)
¢

is a boost of e® [1], and is alone sufficient to produce a generalized version of the

Maxwell equations in free space. It is an operation on e® with the well known
exponent [21-25] exp (iS/h)where § is the electromagnetic action h(wt -x-r). We
have introduced % into the analysis, which has therefore become quantum mechanical
in nature. In space-time the action in Minkowski notation is § = hx x, . Therefore the
generalized Maxwell equations are produced by the boost,

e® — exp(ihxuxu)e“) =exp(ieAuxp)e“) (E33)

which is a rotation in space-time in special relativity. Defining the operator by the

symbol Q = ™" transition to fields is achieved, finally, through

@ 2
B _Aw,o B _ Do BY o 39
B(O) B(o) ) B(O) N

and the duality transformation,

©
VB0 — TE (E35)

C b
takes Eqgs. (E1) to their equivalents for electric fields

E® x E® = -EO(E®)" et cyclicum, (E36)
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where iE® is pure imaginary and unphysical [1,2]. The electric field equations (E36)
are as fundamental as the magnetic field equations (E1), being transformed into (E1) by
fundamental tensorial duality.



Appendix F. B® in an Electron Gas

For purposes of experimental investigation, we list in this Appendix equations

relating B® in free space to its value in a sample made up of N electrons in a volume

V. In general, using the text’s notation,

2
B _ N B’ B©® 3o
B Y amo? | (mie? + e2gO0R)R | T B

In the low field (visible frequency) limit, mo > eB® , Eq. (F1) reduces to

N

in sample %

3.2

Boe’c’BO) g
free space ?

2m?e? P

and in the high field (radio frequency) limit, mw <« eB©® | Eq. (F1) becomes

N

in sample ? _V

2.2
Bo€ C 1@
2mw2 free space *

The free space value of B® is [1,2],
12 12
B, space = sl go - (L) o,
c €,C°

In terms of beam intensity, the low field limit is

(F1)

(F2)

(F3)

(F4)
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N

in sample 7

2.3
R I (F5)
wm? )

and under the conditions used by Rikken [74], i.e., =55 x 102 Wm 2,
o =177 x10'® 1ad s !, we obtain from Eq. (F5),

® )06 x 10-”%&’) ~ 10° tesla,

in sample

(F6)

or ~107° gauss,

which, for N/V = 10%m ™3, is about the same order of magnitude as reported
=xperimentally by van der Ziel et al. [17] in the first inverse Faraday effect experiment.
This magnitude is about four or five orders below the limit of sensitivity reported by

Rikken [74]. It is important to note that the interaction of B® with matter is relativis-
ic, because B® propagates, F.A.P.P., at ¢ in vacuo. It is important not to confuse
he free space magnitude of B® , i.e., Eq. (F4), with its magnitude within a sample.

Finally, it is important to test B® under conditions appropriate to the theory, i.e.,
deally, in a free electron gas or electron beam. Liquid benzene, used by Rikken, has
10 free fermion spin, and is inappropriate for comparison with Eq. (F1), for N elec-
rons in a sample V.
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