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Chapter 1
General Gauge Field Theory Applied to

Electrodynamics

In the first part of this fifth volume it is argued that electrodynamics
can be developed self consistently as an example of contemporary general
gauge field theory. The basic assumption in this development is that the left
and right circular polarization discovered by Arago in 1811 can be
supplemented by a longitudinal component, (3), forming a complex
circular basis ((1), (2), 3)) of O(3) symmetry - the symmetry of the rotation
group. The nature of the basis has been elaborated in Vols. 1 to 4 [1—4]
of this series so we take advantage of this groundwork in this volume to try
to establish the complete self consistency of O(3) electrodynamics on the
classical level. This means that the fields are described classically in terms
of physical potentials within general gauge field theory [5]. The latter
borrows concepts from general relativity, the most important of which is the
covariant derivative [1—5], used extensively in the first four volumes. In
O(3) symmetry, the field tensor in classical electrodynamics is made up of
terms both linear and non-linear in the potential, which is a vector in an
internal gauge space ((1), (2), (3)). This space is superimposed on space-
time in such a way that indices are matched self consistently, forming an
extended Lie algebra in which the spaces are not independent.

The rules of general gauge field theory, rules that have led to the
discovery of quarks, for example, are then applied to electrodynamics in this
O(3) group symmetry and several results obtained which are absent from, or
ill defined in, the received U(I) electrodynamics. Under certain well defined
conditions, non linear O(3) electrodynamics are well approximated by the
linear U(l) electrodynamics. For the free field, however, the O(3) gauge
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field symmetry leads to a novel, always non-zero, fundamental field B®
[1—4], and to novel concepts such as classical vacuum polarization and
magnetization which are missing from U(1) electrodynamics entirely. The
vector potential in O(3) symmetry is a classical object, and the rules of gauge
transformation are different from those in the older view. This conclusion
leads to many ramifications and concepts which are also missing from U(7).
These concepts are due to the non Abelian nature of the O(3) theory, for
example inherent non linearities such as the well observed conjugate
product 4 x 4@ of complex vector potentials discussed throughout Vols.
1—4 and elsewhere [5] in the literature.

In the presence of field matter interaction it is shown that the U(7)
theory can be recovered as an excellent approximation to the O(3) theory,
because when there is field matter interaction the non linear terms are very
small, empirically and theoretically. This correct recovery of the linear U(7)
field equations from those of the non-linear O(3) theory means that the latter
can do everything that the former can do plus a lot more. The Coulomb,
Ampere, Faraday and Gauss laws can be recovered from the O(3) theory
when the latter’s non linearities can be neglected.

For the free field, however, the non-linearities of the O(3) theory are
intrinsically important and cannot be approximated or gauged away. For
example, the B® field of the O(3) theory does not exist in the U(7) theory.
The inverse Faraday effect can be accounted for from first principles in the
O(3) theory, but it leads to a paradox in the U(7) theory. In the latter, the
potentials can be regarded as mathematical subsidiary variables [7—9], but
in the O(3) theory they are physically meaningful, for example, there is a
light like (c4©@, 4® ), a polar four-vector that quantizes directly to photon
momentum and which is missing entirely from the U(I) theory. Gauge
transformation in the O(3) theory is a geometrical process with physical
meaning, whereas in the U() theory it is essentially a mathematical process
using the gradient of an arbitrary variable. One consequence is that in the
O(3) theory the Lorentz transformation has a different meaning; if it applies
at all it is a special restriction on the physical vector potential. In the U(7)
theory it is a key choice of gauge that is ultimately a mathematical
sonvenience, leading as it does to the d'Alembert wave equation and to the
zauge fixing term used in U(I) quantization.

5

The empirical evidence for the need for an O(3) or SU(2) symmetry
for classical electrodynamics has been reviewed recently by Barrett [8,9],
who argues that the classical Maxwellian view of electrodynamics is a linear
theory in which the scalar and vector potentials are arbitrary, and defined
only through applied boundary conditions and a subjective choice of gauge
such as the Lorentz condition. Barrett [8,9] then exposes several flaws in the
received view by arguing that there exist several phenomena of nature that
require a physical potential four-vector on the classical as well as the
quantum levels. One of these is the Aharonov-Bohm effect, but there are
several others. The examples thus far identified include the following:
1) Aharonov-Bohm; 2) Altshuler-Aronov-Spivak; 3) topological phase;
4) Josephson; 5) quantized Hall; 6) Sagnac; 7) de Haas van Alphen;
8) Ehrenberg-Siday; 9) non-linear magneto optical. It is also significant that
quantum electrodynamics leads to vacuum polarization, or photon self
energy, which is missing from classical U(l) theory but is present in
classical O(3) theory as shown in this chapter. The O(3) theory also gives
classical vacuum magnetization, also missing from U(/) theory.

So to accept the suggestion of O(3) electrodynamics it is necessary
to consider the empirical data given by Barrett, and to accept the hypothesis
that gauge field theory can be developed with O(3) covariant derivatives
which can be classified with group theory and which can be applied to
classical electrodynamics [1—4]. Once this hypothesis is accepted and
tested for self-consistency, several advantages follow which are described
in the first part of this volume. Resistance to the hypothesis based on the
standard model is counter-argued in Refs.1 through 4 and on the key
empirical observations listed above, for example those by Barrett [8,9] and
the empirical observation [l—4] of the conjugate product A ¥ x 4@ . This
is rigorously zero in U(I) electrodynamics by definition [1—6], but is
non-zero in O(3) electrodynamics. There is no difficulty in principle in
extending quantum electrodynamics to a non-Abelian theory, which
becomes akin to quantum chromodynamics. The latter is well known to be
renormalizable at all orders. The mathematical structure of non Abelian ged
is that of gcd, but with an internal gauge space ((1), (2), (3)). As shown in
Chap. 2, the gauge space and space-time form an extended Lie algebra in
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electrodynamics, even in the U(I) theory. The two spaces are not
independent of each other, even in the standard model.

Therefore the first part of this volume develops the ideas of O(3)
electrodynamics, giving an unusual amount of technical detail because the
hypothesis and concomitant ideas may be new to the classical
electrodynamicist versed in the standard model, which allows only U(/)
theory for the electromagnetic sector. The contemporary gauge field theorist
will be unfamiliar with the fact that the internal gauge space and the space-
time of both the U(1) and the O(3) theory are not independent (Chap. 2), in
the sense that they form an extended Lie algebra as discussed elegantly by
Aldrovandi [10]. The concept of O(3) electrodynamics must not be
confused as an abstract analogy of the U(!) electrodynamics. The former
produces physical equations of classical electrodynamics which reduce to the
form of the Maxwell equations for polarizations (1) and (2), so in this sense
the O(3) (non-linear) theory, reduces to the U(1) theory when non linearities
are small. This occurs in field matter interaction. For example, the
non-linear inverse Faraday effect is in magnitude a very small effect of
magneto optics which was finally observed with considerable difficulty in
1965 [1—4]. The linear Maxwell equations describe the much more
accessible and more easily observable optical effects of nature that go back
to the discovery of circular polarization by Arago in 1811, and to the work
of Coulomb in the late eighteenth century. The Maxwell equations work
well because the optical non linearities in nature are so small in field matter
interaction.

At the risk of boring the initiated therefore, we provide throughout
the opening chapters of this volume copious details of the new theory, to try
to minimize confusion and obscurity, and to help the student. The first
section of this chapter deals with the fundamental vector algebra of the
complex circular basis ((1), (2), (3)), showing that it is, indeed, a basis that
can be used as a representation of O(3) space. As intimated, the use of this
basis is suggested by the empirical existence of right and left circular
polarization, which must be described in a complex representation by at least
two basis vectors,i and j in the Cartesian representation, ¢ and e® in
the complex circular representation. As argued elegantly by Barrett [8,9]
this basic fact about light leads to the need for an SU(2) electrodynamics.
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In our view, the B® field emerges once we accept an SU(2) or O(3)
electrodynamics for the vacuum as well as for field matter interaction. It
turns out that the hypothesis of O(3) electrodynamics is self consistent and
is as valid in this sense as U(!) electrodynamics. It is recognized however
that all Maxwellian type theories have serious flaws inherent in them, and
the extension from U(I) to O(3) does not cure all of these. The standard
model is rigidly cemented in U(1) theory and carries with it all these serious
flaws listed, for example by Bearden [11], and recently discussed by Fritzius'
translation [12] of Ritz [13]. These have each argued elegantly against the
U(1) electrodynamics for a number of years.

1.1 Elements of Vector Analysis in the Circular Basis ((1), (2), (3))

The ((1), (2), (3)) basis is hereinafter referred to as the complex
circular basis because it is formed from a complex combination of Cartesian
unit vectors as they appear in the description of circular polarization. The
basis vectors are therefore,

e®W=_(i-jj), i-—(eW+e®),

-
-

e® - (e(l)_e(Z))’ (1.1.1)

(i), J=

Wi

-

e =k,

Ifthe phase factor e ¢ of electromagnetic radiationis kept constant, then e ¥ = ¢ @*
is the vectorial part of the circular description of right and left circularly
polarized radiation. Note carefully however that in forming the complex

conjugate of a plane wave suchas B " the phase factor also changes from e ¢
to e’ . These matters are described at length in Ref. 14.
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The vectors e M, e @ and e ® form the O(3) type cyclic permutation
relations [1—4],

e(l)Xe(l):ieG)*, ixj=k,
ePxe® = jeM* = jxf=i, (1.1.2)
ePxeW =je@*  gxj=j.
A closely similar complex circular basis has been described for example by
Silver [15], and is well known in tensor analysis.
1.1.1 The Unit Vector Dot Product

In the complex circular basis,

eM.e® =@ .o - p3). 0

(1.1.3)
eM.oM - p@.,0 -
In the Cartesian basis,
ii=jj=k-k=1, i-j=i-k=j-k=0. (1.1.4)

1.1.2 Vectors

In the complex circular basis the vectors A and B can be defined as

A=AD + 4O L 4O = gD 4 4@p@ 4 4D @)
(1.1.5)

B:=BW .+ B® ,BO _ B , pDe® L Be®
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In these definitions, 4V, 4@ and 4 ® are scalars, linked to their Cartesian
counterparts as follows,

1 . *
AD = —(4,-id,) =AD", 4O =4, (1.1.6)

2

1.1.2.1 Unit Vector Premultipliers

In the logic of the complex circular basis scalar unity is expressed
as the product of two complex conjugates, referred to here as complex unity,

12:= 101® (1.1.7)

where,

- Ly, @=L (144, (1.1.8)

v V2

so the dot product of e® with e® or of vectors A® and 4@ is

eW.e® = 1M (@@ - 1] =121 (1.1.9)
A(l)'A(2) :A(l)e(l)-A(z)e(z) :A(I)A(Z) :A(O)Z ' .

Since the product 11® is always unity, it makes no difference to the dot
product of unit vectors or of conjugate vectors such as 4" and 4 @, but
the dot product of a vector 4 and a unit vector e @ is
D.,@ - 40)1@,0). @ _ 1 : -
AWD.o@ - 4( )1()8()'8()—5(AX—1AY)(1 +,>
(1.1.10)

A,.-id +id ,+4,) .
e y T Ay

2| —
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Similarly, as described in Appendix B of Vol. 3, the dot product of a

complex circular Pauli matrix 0" and a unit vector e is

0(1).e(2):%(ox—ioy+i0X+0},), (1.1.11)

as in that Appendix. This procedure leads to the result of that appendix,

((,(1) . e(z)) (o(z).e(z) ) —eW.p@1ig®. oMW x @ (1.1.12)

which is the equivalent of the Dirac result of the Cartesian basis.
The complex circular basis is a natural description of the observable

conjugate product A P x 4@ and thus of B®.

1.1.3 Dot Product of Two Vectors

The dot product of two vectors when neither is a unit vector is
defined as

AB=AVB@eM.o@  4OBWe@ .M, 4RG3 .03

(1.1.13)
- AWBD  4@BW) L 4BIBB)
and is the same as the Cartesian dot product,
AB=4,B,+4,B,+4,4,. (1.1.14)

1.1.4 The Del Operator

The del operator in the complex circular basis is a vector operator
which can be defined as
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9

1 1
VX: :—(V(l)+v(2)> R V(l):— -iv 5
X f /2 (V= 1%y)
d i
Vs = (VOv®) oo Ly iy 1.1.15
vz=i:v(3> v -v,.
oz ’ z
1.1.5 Divergence
The divergence in the complex circular basis is defined as
A=VVgD 1 y@ 40, gd)40) (1.1.16)
1.1.6 Gradient

The gradient of a scalar @ in the complex circular basis is,

VO = VDDe @ + VOB M + 7O P | (1.1.17)

1.1.7 Curl
The curl operator in the complex circular basis is defined as,

i j k e @ L0

VxAd=|V% Vy V | - Lily) v vO| . (1.1.18)
Ay, A, 4, AV 4@ 4O
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For example the & component is
(Vdy=Vy Ay )k = i (V4@ -4 D) e® (1.1.19)
The i and j components are

i(VYAZ—VzAY) —j(VXAZ_VZAX) = ’1—(9(1)+e(z))

7

[\

x( L(va)_v(z))A(3)_Lv(3)(A(1)_A(2))}
3 s (1.1.20)

__i_(e(l)_e(z))( _1_(v(l)+v(2))A(3)_z(i(A(l)JrA(Z)) )

K K 7z

- i (V@4 -vOy @ )e® 4 (V4O -V4 ®))e@)
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1.1.8 The Vector Cross Product

The vector cross product in the complex circular basis is by
definition,

AxB:= (ADe® i g0e@, 4Bp®)
x (B@e® +pe@ g3 @)

S AOBMeM x @, LG @M,
(1.1.21)

e @+ LB
—il4® 40 406
B® B BB

This result can be checked by working out the e¢® component of A4 x B,
ie®* (4®BM - 4OBD)  where,

1 . .
A(2>=—\/§(AX+1AY)=A“) :
(1.1.21a)
1 : .
B(1)=E(BX—1BY) -B®" .
So,
B B rild By Byl )
(1.1.22)

and (4,B,~A,By)k =ie® (4PBND-B@4M) .
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The conjugate product can be checked by direct evaluation to be
i j k

1
ADx 4@ - A/g,l) A}(,) 0

1.1.23)
AP 4P 0 (

(4P4P - APAP k=144

1.1.9 The Cyclic Relations
The cyclic relations in the ((1), (2), (3)) basis are
ADx 4@ =g O4®* et cyclicum (1.1.24)

and so on for any vector.

1.2 The Electromagnetic Field Tensor in O(3) Electrodynamics

The basic concepts of this section were first tried out in Vol. 2 but
here we offer a considerable clarification and simplification based on
intervening experience and discussion. The basic ideas of general field
theory are described for example in Ryder [5] in his Chap. 3, and were first
applied to electrodynamics in Vol. 2 in a didactic manner. In order to
understand these ideas at all, two concepts in particular are needed which do
not existin U(1) electrodynamics: that of the internal space and the covariant
derivative as defined in this space. These new and perhaps unfamiliar ideas
are best illustrated when it comes to gauge transformation in O(3), which is
developed in the next section. This section gives basic ideas and at each
stage is careful to spot the difference between U(1) and O(3). Inthis way the
interested student can gradually absorb the new material and realize its
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advantages. In so doing the need for an O(3) electrodynamics becomes ever
clearer, and several advantages over Ul) start to be defined.

1.2.1 The Internal Space in O(3) Electrodynamics

The internal space is defined through the expansion of the potential
in space-time to an object which has meaning additionally in a space defined
by a particular group structure [1—6]. It becomes necessary to think of the
familiar 4* of the received view as a scalar object in this internal space as
well as a four-vector in space-time. This idea appears to have been first
applied to field theory by Yang and Mills in 1955 [8,9], and has since been
developed in many very fruitful ways within the standard model. It was first
applied by Barrett [8,9] to classical electrodynamics in the late eighties, and
slightly later [1—4] it was shown to lead to the existence of the fundamental
field B®, an object that is missing from the received view. It is not so

much that the latter sets B® to zero, it is a concept that simply does not
appear within its horizon. So it is clear that O(3) or SU(2) electrodynamics
was inferred independently by Barrett [8,9] and by Evans [1—4].

Therefore if 4% is thought of as a scalar object in some internal
space, conceptually and empirically ((1), (2), (3)), it becomes possible to
write a potential that becomes a vector in the internal space, and whose
scalar components in this space are also objects in space-time. This is the
basic hypothesis of O(3) electrodynamics, and we can write in consequence
of this hypothesis,

AP = AR (M), 412)p @) | 41B), ) (1.1.25)

The unit vectors e, e¢®  and ¢® form acomplex basis for internal
space, and the objects A*V, 4@ and 43 are scalar coefficients in the

internal space of the complete vector 4 *. This boldface character therefore
denotes an object that is simultaneously a vector in the internal space (a
symmetry space [8,9] of gauge field theory) and a four-vector in space-time
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(Minkowski space). The indices of the scalar coefficients 4 D 4#® and 444
must therefore match self consistently.

1.2.1.1 Index Matching

If we consider the received view of ordinary plane waves in space-
time [1—4],

L A9
AW =@ =2 " (ji+j)e ™, (1.1.26)

it should be clear that the boldface character 4 @ represents a vector in the
ordinary space part of space-time. The electromagnetic phase is defined as
¢ := wt-xZ where w is the angular frequency at instant ¢ and x the

wave-vector at point Z.

These plane waves are transverse solutions of the received U() field
equations and the d'Alembert wave equation for the free field [1—9]. In
order to expand the horizon of the gauge structure of classical
electrodynamics from U(l) to O(3) an additional space-time index must
appear in the definition of the plane wave and the (1) and (2) indices must
become indices of the internal space. This is achieved by recognizing that:

©
Al(l):A)((l):iA e = 4107

2

AZ(”:A;}):A—(O)e"@:Az@*, (1.1.27)

/3
400 Z 430 = 400 = 43@ =0,
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These equations define two of the scalar coefficients of the complete four-
vector A* |

AP0 = (0,4M) }
(1.1.28)

AMD = (0,49) .
This process follows from the fact that AV = 4 @* are transverse

and so can have X and ¥ components only. The scalar coefficients A4 *1
and 4" are light-like invariants [16,17],

Ap(l)Aél) =AM @D _ 0 (1.1.29)
. , A,

of polar four-vectors in space-time. The third index (3) of the non Abelian
theory must therefore be along the direction of propagation of the radiation
and must also be a light-like invariant,

3)46G)
A7 =0, (1.1.30)

in the vacuum.. It must be light-like because the free field is assumed to
propagate, in this classical view, at ¢ in the vacuum..
One possible solution of Eq. (1.1.30) is

AH3) = (cA(O),A(3)), (1.1.31)
where

cA® = [49] (1.1.32)

Such a solution is proportional directly to the wave four-vector,

KO = (ck,ke® ) = eq " (1.1.33)

and to the photon energy-momentum,
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p“(3):=°ﬁk“(3) =ed"d (1.1.34)

where b is the Dirac constant and -e is the unit of charge, the charge on the
clectron accelerated to ¢. Therefore Eq. (1.1.31) quantizes directly to
Eq. (1.1.34), giving the Planck Law,

En =hw=hck . (1.1.35)

This is the same in O(3) and U(1) electrodynamics. However', the (;omplete
vector 4, in the internal ((1), (2), (3)) space of O(3) is the light-like polar

vector,

Ar= (0,4M)e®4 (0,4D)e@+ (c4©,4D)e®, (1.1.36)
and has time-like, longitudinal and transverse components .wh.ich are each
physical. These concepts do not exist in the U(1) hypotbesw, in yvhwh the
time-like and longitudinal components are combined to give what is asserted
conventionally to be a physical admixture [5]. '

To summarize, the differences between the U(1) and O(3) theories

are as follows:

1) In U(1), the physical object that we started with was a trapsverse
plane wave with no longitudinal or time-like components. The internal

space was a scalar space, and the physical entity was 4* = 4 we o

2) In O(3), the physical object has become transverse, longltudlpal
and time-like, and the internal gauge space has become a vector space with
O(3) rotation group symmetry. This leads dire.ctly. to the Plapck Law
through Eq. (1.31), a concept which does not exist in the cl'ass1cal U
hypothesis. We begin to see advantages in the O(3) hypothesis.
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1.2.2 Field Tensor from Field Potential

With these definitions, the rules of general gauge field theory can be
applied to electrodynamics. The groundwork for this was provided in Vol. 2
of this series, and the fundamental methods are given by Ryder [5]. Itis first
necessary to define the field tensor in O(3) through the field potential. The
field tensor is also a vector in the internal O(3) gauge space,

G"W =GB, 3 w2 @ 4 5 wv3), 3) , (1.1.37)

and the coefficients G"™@ , i = 1,2, 3, are scalar coefficients of the internal
space. They are also antisymmetric tensors in Minkowski space-time.
General gauge field theory for O(3) symmetry [1—9] then gives

G+ — grg v -84 rD* _ igA r2) » 4v0) ,
GM@* _ gryg V) -3%4 M2)+ - igA r@) . 4V , (1.1.38)
GO = grg vO)* _ gV 4 n@) -igA pd) x4 V@) ,

which is a relation between vectors in the internal space ((1), (2), (3)). The
cross product notation is also a vector notation, for example A4 *® x 4 v®

is a cross product of a vector 4*® with the vector 4@ in the internal
space. In forming this cross product, the Greek indices pand v are not
transmuted, and the complex basis ((1), (2), (3)) is used, so that the terms
quadratic in A become natural descriptions of the empirically observable
conjugate product. It will be shown that these terms give rise to vacuum
polarization and vacuum magnetization in O(3) but not in U(l)
electrodynamics. The definition (1.1.38) is for the free field in regions free
of matter and free of charge/current interaction. The scalar coefficient g
is a scalar both in the internal gauge space, a symmetry space, and also in
Minkowski space-time. In the vacuum it is given by [1—4],

K
A©

g=—===, (1.1.39)

> |
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and is the inverse of the quantum of magnetic flux, *h/e. Evidently,
Eq. (1.1.39) is a fundamental quantum relation for one photon. In field
matter interaction g changes in magnitude and is empirically determined
through the Verdet constant in the inverse Faraday effect, and the non linear
terms in Eq. (1.1.39 ) (those quadratic in 4 ) become negligible under most
conditions [18]. The O(3) theory then reduces to the same algebraic form
as the U(1) theory for G**V =G w@* je  reduces to the homogeneous
and inhomogeneous Maxwell equations for the complex conjugate field
tensors G*"( and G*'@ . This is the linear approximation which neglects
all non linear optical phenomena such as the inverse Faraday effect. The
latter is described through equations for G**®), which is always quadratic
in the potential and always non linear. This tensor, G"¥®, contains only
the B® field. Self consistently, therefore, the B @ field is undefined in
the linear approximation, which is Maxwell's theory. Note that g is never
zero in free space, however, and in this condition the O(3) electrodynamics
differs fundamentally from its U(1) counterpart because in free space the
magnitude of the non linear term is the same as those linear in 4.

The main difference between O(3) and U(1) in this section are
therefore as follows:

1) the field tensor in U(1) is well known to be the antisymmetric
four-curl:

Gpv___auAV_aVAu, (1140)

and there is a scalar internal gauge space, i.e., G** isa scalar in this space
and an antisymmetric tensor in Minkowski space-time. The field tensor is
linear in the field potential, and only transverse components are present in
Ua).

2) The field tensor in O(3) is a vector in the internal gauge space ((1),
(2), (3)) and is non linear in the field potential. It contains the longitudinal

and fundamental magnetic flux density component BO .
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1.2.2.1 Details of Equation (1.1.38 )

Equation (1.1.38) is a concise description which contains a

- considerable amount of information about the O(3) theory of

electrqmagnetism in free space. This information is obtainable without
assuming any form of field equation, and so, details are given in this section
of the' correct algebraic methods of reduction. Considering for example the
equatinn,

GMPD* = grg vD* _gv 4 m)* -igA r2) x 40 (1.1.41)

G2+ = gl g20x _ g2 41D+ _; 12) 420
912" - AN ~ige ) d D470 (1.1.42)

This equation consists of components such as, where €12)03) is the Levi
Civita symbol, defined by

] =

c el - _ _
MHE)G) € ~ foea T (1.1.43)

If we now take the vector potential as defined in Section (1.2.1.1), with

10
- il —
oM (cat’ V) . (1.1.44)
then,

G122+ Z gl 2 _ 5241~

—ig(A1(2)A2(3)—A1(3)A2(2)):0_ (1.1.45)

This is a self-consistent result because there is no Z component of G*¥(*

which is defined as transverse. Both the linear and non linear components
are zero.

We next consider the element,
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GBW® =gl 430 - P10 ~jge o A4
_ 91430 _ P40 - jg (410430 - 41043D)) (1.1.46)
= (83 +igd3®)4'® = - (& +ix)4'®D,

where we have used,

_ K 33) - 4O _ 40
- K 404040 ,
o b (1.1.47)
[t can be seen that there are two contributions to the field element G 3@,

a magnetic field component:

1) the linear contribution, -3*°4'® ;
2) the non-linear contribution, -ig43¥4'® .

In vector notation, Eq. (1.1.46 ) is a component of,

2BW:=VxAD-jgq4® x 4D

(T =icd ® )
=(V-igd®) x4 (1.1.48)
_yx4MW_-_L pegm
B©
Furthermore,
PA® = jxq'? (1.1.49)

and so it follows that

B(l)zva(l)z_ﬁB@)xB(”. (1.1.50)
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Similarly,

@ - @_-_ 1 p@yypo
B®=vVx4g B<°>B xB® (1.1.51)

Therefore the definition of the field tensor in O(3) electrodynamics gives the
first two components of the B Cyclic Theorem [1—4],

1.1.52
B@xB® - jgOp M= ( )

together with the definition of B®W and B®@ in terms of the curl of
vector potentials AP and 4@,

B®xBW _ ,-B(O)B(z)*}

BW=VxAq4W
(1.1.53)
B®=Vxq®,
It is convenient to write this important result as
1
H(vac.) =—B-M|(vac.), (1.1.54)

Ko

where  H(vac)is the vacuum magnetic field strength and p, the

permeability in vacuo. The object M (vac)does not exist in U(l)
electrodynamics and is the vacuum magnetization, for example,

1 3 1
——— B xB®D. (1.1.55)

MW (vac) = -
iUOB ©
The objects MM (vac.) and M@ (vac.) depend on the phase-less

vacuum magnetic field B® and so does not exist as a concept in U(l)
electrodynamics. The B® field itself is defined through
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GO = gig VO _ gy nO)* _jo g D) x 4 VD) (1.1.56)

with (3) aligned for convenience in the Z axis. So by definition, the only
non zero components are

G120 - _G120) _ 32(3) _ (1.1.57)
It follows that
Bf) i _ig(A1(1)Az(z)_A1(2)A2(1)), (1.1.58)
or
B®=B®* = _jgqgDx 4@ - —ﬁB‘” xB®, (1.1.59)

giving the third component of the B Cyclic Theorem,
B®Wx B®@ - jpOpB®* and the vacuum magnetization,

7 1
M® =-—_ - _BOxp® (1.1.60)

i B©

These results are all absent from U(1) electrodynamics, but we know from
Section (1.2.1.1) that they are consistent with the plane waves 4 ® =4 ®*,
We shall return to this point later, in the context of the O(3) field equations
and their linearization. Note that B® is always defined through
AD x 4®* and is not the curl of A®. The conjugate product is an

observable of magneto-optics and so B® is non-zero empirically in O(3)
electrodynamics. In U(l) electrodynamics it is rigorously zero, and
AD x 4@ in Uyl) electrodynamics is considered to be an operator with no
Z component. This is in clear conflict with vector algebra, in that
AM x 4@ js aligned in the (3) axis. For this reason we prefer to develop
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O(3) electrodynamics systematically, and reduce it to the Maxwell equations
using linearization approximations where applicable.

To summarize what we have found so far, in O(3) electrodynamics
(hereinafter frequently referred to just as "O(3)") the magnetic part of the
complete free field is defined as a sum of the curl of a vector potential and
a vacuum magnetization. The latter is inherent in the structure of the B

Cyclic Theorem [1—4]. In U(I) electrodynamics there isno B® field by

definition (or more accurately, by hypothesis) and in consequence there is
no vacuum magnetization in classical U(1) electrodynamics. In O(3) the

B® field is always proportional by hypothesis to the conjugate product
AD x 4@ whichin field matter interaction is an optical observable. The B ®
field is not the curl of a vector potential, and this is a clear departure from
the U(1) hypothesis of classical electrodynamics. The phase-less B® is
instead directly proportional in free space to the phase-less 4 ® through the
scalar relation B© =x4©@ [1—4]. These results are obtained self
consistently from the definition of the field from the potentials in the O(3)

gauge theory. We have calculated the field coefficients:
GY® - (a°+z'gA 0(3) )A 10 - G110
G020 = (80 +igd 0(3) )A 20 = G2
GB@ =0,

GBO = (P +igd3D) 410 = -G3O | (1.1.61)
G20 - _ (53 +igd 33) )A 20 - _GRO)
Grad -
Similarly ,
B EGHOR (P 1p " )4 'O, (1.1.62)
and so on, and,
G120)* = _G206)* = —ig(A 1) 420) _ 4 1@y 2(1)) . (1.1.63)
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The three field tensors are

0 - -g2b g

1(1) 2()
Gw) = GrD* - & 0 0 B , (1.1.64)
EXD 0 0 -cB'®

0 -cB* B 0

the transverse tensor; and the longitudinal

[0 0 0 0]
—~R33)

grergwo o [0 0 BT 0L (1.1.65)

0 cB® 0 0

K Blag! <l bagitdigg)

In classical O(3) electrodynamics there also exists a vacuum
polarization, because the complete electric field strength in the vacuum is

given by

2E® .= i igcA©4 @
or

=_( g;w“igcA(o))Am (1.1.66)

=2EW"

Using g =x/4©,

The Electromagnetic

4@
ot

E® - _ = —ickA® = —iwA® (1.1.67)

and it is convenient to express this result as

1 1
—D®(vac.) =EP+—_P®(vac.),
. (vac.) . (vac.) (1.1.68)

where D@ (vac.) is the electric displacement in vacuo and where the
vacuum polarization is P® (vac.) = -ie w4 @, where € is the vacuum
permittivity.

The vacuum polarization is well known to have an analogue in
quantum electrodynamics: the photon self energy [5 ]. This has no classical
analogue in U(l) electrodynamics, but is clearly defined in O(3)
electrodynamics. The classical O(3) vacuum polarization is transverse and
vanishes when o =0, so has no meaning in electrostatics. This is
consistent with the fact that it is the analogue of photon self energy in
quantum electrodynamics. Finally, it is pure transverse, because the
hypothetical E® field is zero in O(3) electrodynamics,

GBO* = 04303)% _ 534 00)*

(1.1.69)
—ig (4430 - g3@400) -0

and so
GOBW = GB® =GB =, (1.1.70)

in the vacuum. In the presence of field matter interaction this result is no
longer true because of the Coulomb field, indicating polarization of matter.
Polarization of the vacuum takes place through transverse components only.
Again this result is missing from U(!) theory.
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1.2.3 Field Matter Interaction

In the presence of field matter interaction the O(3) field tensor
equivalent to that in Eq. (1.1.38) of Section (1.2.2) becomes

Lgwor - puvor 1 yruvar (1.1.71)

€ €

where 7/ =1, 2, 3. Here,

FWO .- grgv0) _gv 4 1@ ,

(1.1.72)
M .- ieog’A w2 x 4 v
in cyclic permutation, with g’ « g empirically [1—4].
1.2.3.1 Example, the Inverse Faraday Effect
In the inverse Faraday effect we have,
Fro* =0, (1.1.75a)
MWE)* - ieog/A rl) x 4V (1.1.75b)

Equation (1.1.75a ) means that the free space B® is zero if we attempt to
define it as a conventional U(I) four-curl. Equation (1.1.75b) in vector
notation is

M®" = jelg /g0 x 4@ (1.1.76)
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which is the empirically observed phase free magnetization of the inverse
Faraday effect [1—4]. Thisisasmall effectandso g’« g empirically. The

factor g’ for field matter interaction is much smaller than g in free space.

In other words the covariant derivative changes its nature when there is field"
matter interaction, and loosely speaking, this is "bending of space-time" in
the presence of charge, akin to bending of space-time in the presence of
mass in general relativity. (Recall that the idea of covariant derivative is

borrowed from general relativity.) In general, g/ is relativistic, and an
example of its development is given in Vol.1 [1]. We see that the inverse

Faraday effect plays a central role in O(3) electrodynamics, which is able to

describe the phenomenon from the basic definition of the field tensor. It

follows that

/
MO = -¢ £ B (1.1.77)
g
for the inverse Faraday effect, which is therefore a direct observation of
B® | Recall that in U(1) electrodynamics,

AV xAD(yay) =0, (1.1.78)

and so U(1) gauge field theory as applied to electrodynamics does not
describe the inverse Faraday effect. The phenomenological invocation of
nonzerod xA " =AM x 4@ [1—4] to describe the inverse Faraday effect
in U(1) theory therefore leads to a paradox, in that the observable does not
exist in U(l) gauge field theory by definition. The lowest symmetry in
which A x 4 ®* exists is O(3) [6,8,9], as argued here. The development
of O3) = SU2) electrodynamics leads to several major advantages as
described by Barrett [8,9] and elsewhere [1—4].
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1.2.3.2 Some Conceptual Similarities to and Differences from Yang
Mills Theory in High Energy Physics

There are obvious points of similarity between the O(3) theory of
electrodynamics and conventional Yang-Mills theory in particle physics.
Both theories are based on an SU(2) = O(3) Lagrangian and the structure of
the field tensor and field equations is fundamentally the same. However,
there are some differences also. One of these is that in O(3) electrodynamics
the presence of the non-linearity preceded by g or g’ in the field tensor
definition does not mean that the particle concomitant with the gauge field
is a charged particle. In O(3) electrodynamics, the field does not act as its
own source because the nonlinearities in the definition of the field tensor are
interpretable as vacuum polarization and magnetization. The g constant in
0(3) electrodynamics is proportional to the charge e, (the charge on the
proton), but it is well known that the electron accelerated to the speed of
light takes on the attributes of a classical electromagnetic field as argued by
Jackson [19]. This does not mean that the field is charged. Itis also well
known that the vector potential is C negative, and is proportional to e in

the vacuum, but again, 4" is not charged.

As argued in Chap. 2, the internal (gauge) space, and space-time in
classical electrodynamics are not independent spaces, they form an extended
Lie algebra as defined by Aldrovandi [20] and discussed in detail in Chap. 2.
In particle theory the internal space is usually ascribed to an isospin which
is independent of space-time. Generally, however, the internal gauge space
is a symmetry space and the basis ((1), (2), (3)) has O(3) symmetry. Finally,
the constant g is defined by Eq. (1.1.47) in free space, but in field-matter
interaction is much smaller in magnitude, as determined empirically and
from phenomenological, or semi-classical, non-linear optical theory [1—4].
In elementary particle theory the parameter g is usually interpreted as a
constant. However, the structure of the gauge field theory is the same for
elementary particle theory and electrodynamics. If the latter is quantized, g
becomes a constant e/+ in free space [1—4], and in field-matter interaction
becomes a coefficient proportional to e/%. Evidently, the elementary charge

Gauge Transformation in O(3) Electrodynamics 31

e is the same scalar quantity in both U(7) and O(3), i.e., the charge on the
proton, the negative of the charge on the electron ( -e).

1.3 Gauge Transformation in O(3) Electrodynamics

There is a profound difference between U(l) and O(3)
electrodynamics in respect of gauge transformation, and so it is important to
give considerable calculational detail as in this section. In U(I) the potential
is subsidiary to the field, as argued by Heaviside and contemporaries in the
late nineteenth century. It was Heaviside's avowed intention to murder the
potential, but in O(3) it springs to life again, as we shall find. In U(1), the
gauge transformation process is in the last analysis a mathematical
convenience, because the gradient of an arbitrary variable is added to the
original A. This means that gauge transformation of the second kind
essentially adds a random quantity to the electromagnetic phase. In non-
Abelian gauge field theory applied to classical electrodynamics, the gauge
transformation becomes essentially a geometrical process, and there is a well
defined topological phase effect [8,9], related to the Aharonov-Bohm effect
[8,9]. This isan observed phase effect, and is not random. There are several
other features of O(3) which do not occur in U(I), and in respect of gauge
transformation, the two theories are very different in nature. The main
difference is that the potential in O(3) and higher symmetry electrodynamic
theories is always a physical object, never a mathematical subsidiary
variable. In O(3), gauge transformation is controlled by the rules of general
gauge field theory as described for example by Ryder [5]. Such ideas form
the basis for contemporary gauge field theories such as instanton theory in
high energy physics. They are being applied increasingly to low energy
physics and to electrodynamics [8,9]. The careful work by Barrett [8,9] in
favor of the physical nature of the classical electromagnetic potential, and
in favor of SU(2) = O(3) electrodynamics, appears to be irrefutable to the
state of the art, based as it is on several different effects of nature. Since
ADx 4@ js missing by definition [1—4] from U(l) gauge field theory
applied to classical electrodynamics (" U(1)" for short) the various non-linear
magneto-optical effects [18] may be added to the list given by Barrett. If so,
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it follows that O(3) = SU(2) symmetry is to be preferred over U(l) for a
more consistent view of optics, in a theoretical framework which envelops
both linear and non-linear phenomena. This is a powerful geometrical
argument in favor of O(3) because in U(l), the conjugate product
AW x 4@ must be an operator with no longitudinal component. This
makes no sense in three dimensional space, since by analogy with the
longitudinally directed Poynting vector, a cross product of transverse field
components; 4 ¥ x 4@ mustalso be longitudinally directed for elementary
consistency. Similarly, the angular momentum of a classical
electromagnetic beam is longitudinally directed, as argued by Jackson [19].
So the U(1) appellation in classical electrodynamics can refer at best only to
the Lagrangian. In other contexts it is self contradictory as evidenced in the
vacuum by the Poynting vector, or angular momentum vectors, both of
which are perpendicular to the plane of the O(2) = U(l) symmetry group,
and both of which are empirical observables in respectively the Lebedev and
Beth effects [4]. Similarly for B®, and O(3) is to be preferred to deal with
non linear phenomena within gauge field theory. Such phenomena present
an Achilles heel of the standard model as discussed here and elsewhere
[1—4]. General gauge field theory has been notably successful in
elementary particle theory [5], and may be as successful in classical
electrodynamics, but with conceptual differences as discussed already. An
important difference appears at present to be that the two spaces in O(3) are
not independent. The O(3) hypothesis has the major advantage of being able
to incorporate within one structure non-linear and linear phenomena of
optics, and also to logically accommodate such quantities as the Poynting
vector as just discussed. There is no doubt that this vector is longitudinally
directed and outside the plane of definition of O(2) = U(l). It is not
consistent to apply O(2) to an energy combination (the Lagrangian) and not
to the momentum of the same field, the Poynting vector. In O(3) the
Lagrangian and momentum have the symmetry of three dimensional space,
the internal gauge space.

In order to progress from U(l) to O(3) the concepts of gauge
transformation in general field theory are illustrated in detail in this section
to show that the gauge transform process is essentially geometrical. In U(1),
the gauge transform is essentially a matter of adding to the magnetic vector
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potential the gradient of a function which can have any value whatsoever
without affecting the original magnetic field So this is an arbitrary, or
random, process in the sense that a random mathematical quantity has no
physical meaning unless subjected to thermodynamic averaging. Yet the
incorporation of such a quantity is precisely the basis of U(l) gauge
transformation of the second kind [6,8,9]. In U(1), the electromagnetic
phase is random.

1.3.1 The Fundamental Gauge Transform Equations

In the condensed matrix notation used by Ryder [5], the basic
equations of gauge transformation in general field theory are as follows

l
Guvzg[Du’ Dv]’ (1.1.79a)
I -1
G,, =8G,, S, (1.1.79b)
A4, = (SAu—éauS) st (1.1.79c)

In this notation, S is a rotation matrix, Au is a matrix generated from the
vector potential, and Guv , the field matrix, is defined as the commutator of
covariant derivatives, Du. Gauge transformation as in Eq. (1.1.79¢c) is a

rotation using curvilinear coordinates, one which changes covariantly.
These equations represent physical rotation. If O(3), the rotation group, is
used as the background or internal gauge field symmetry of the field theory,
the rotation takes place in three dimensions. These ideas have been applied
to electromagnetism in previous volumes [1—4], to which the interested
reader is referred for more detail. In this section full details of the gauge
transform process are given for a rotation about the Z axis.
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1.3.2 Background Mathematical Detail

Some background details of the operation of rotation in three
dimensional space are given in this section in order to prepare the way for
the detailed development of Eqgs. (1.1.79a) to (1.1.79¢c). We consider the
Eulerangles o, B,and y and the quaternion coefficients ¢, q,, ¢, and

g;. Define,
B i
@ =gy +igy = COS = exp §(a+y)
(1.1.80)
B —i
b=q1—zq2—smaexp 7(oc—y)
with
q02+qlz+q22+q32 =1. (1.1.81)
Then the spinor rotation in SU(2) is
u' a b||u
- , (1.1.82)
v/ _b* a* v

with determinant +1and ad -bc = 1. This can be re-expressed directly in
terms of quaternions by

WL

In O(@3), whose covering group is SU(2), the rotation matrix, is

(1.1.83)

9*iq; 4, -iq, m
-q,-iq, q,-iq;| |v]
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X/ ix €1y Ciz|| X
Y'i=|ey &y e, Y], (1.1.84)
z! €3x €y €37 z

where e, e,,and e; are unit vectors whose components are defined by

2.2 2 2 . .

e, y=90 *4q; —93 —93 =cosca cosP cosy-sina sinf,

e;y=2(9,9,+9,4;) =sina cos cosy +cosa siny,
e ,;=2(9,9;-9,4,) = -sinf cosy,

e,y =2(9,9,-9,9;) = —cosa cosf siny-sina cosy,

ezy=q5‘—q12+q22—q32 = -sina cosP siny +cosa cosy, ¢ (1.1.85)

ezzzz(q2q3+qoq1) =sinf siny,

;5 =2(4,9,+9,9,) =cosasinf,

3y =2(9,9;-944,) = -sina sinf,

a2 22 2
e5,=4dg ~4q; —9> +q; =cosp.

Therefore rotation in three dimensions can be represented equivalently in
terms of vectors, spinors, quaternions, and Euler angles. Rotation about the
Z axis is represented by

cosp=cosy=1, sinf=siny=0, (1.1.86)

and so
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e,y =Cos 0, e,y =sina, e,,=0,

e, = —Sina, e,y=cosa, e,,=0, (1.1.87)

e3X=0, e,y =0, e;,=1.
A possible description of rotation about the Zaxisis p =0,y =0, ie,
o .o
qO:cosE, q3=s1n5, q,=0, 4¢,=0. (1.1.88)

The rotation matrices are therefore

cosa sina O S
™ 0
-sina, cosa O <—>[ }, (1.1.89)
0 0 1

or, in terms of quaternion components or coefficients

2 13
- 2 0
90~y <9043 4y +id, 0

0 9014,

<> (1.1.90)

8} .2
-2949; 90 -93 O
0 0 1

The self consistency of this process can be checked through the fact that it
gives the well known half angle formulae,
28 _gin2 & ?

2 7
COS(X=q0 —q3 = COS 2

(1.1.91)
! s AN
sino =2 =2¢0Ss — sin — .
93 X2
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Note that the O(3) rotation matrix is set up in terms of o« and the SU(2) in
terms of /2 . The O(3) rotation matrix is real, the SU(2) rotation matrix
is complex. The same quaternion coefficients appear in O(3) and SU(2).

1.3.3 Infinitesimal Rotation Generator in SU(2)

Our first example of the development of Egs. (1.1.79a) to (1.1.79¢)
uses infinitesimal rotation generators in SU(2). Let

eia/Z 0
R(Z) := —— (1.1.92)
be an SU(2) rotation matrix. Its infinitesimal rotation generator is then
defined to be
19R, 111 0 g,
T, =——(« =— =, 1.1.93
; ia()a:() 2[0—1 2 (1.1.93)

where 0, is the third Pauli matrix.
Now apply the Taylor series to the matrix exponential to obtain

2 3
faza/2 1+ (0] E_EE _ciz__(_xi+
Saodatiy 31 B
10 Lo 1 0| g2
4 ¥ LAe B, (1.1.94)
o1l eisk2r 21 b0 a4

and therefore
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io o/

R(Z) =e""? =g +ig,q,. (1.1.95)

In the small angle limit,

91, ¢ >, (1.1.96)

ig,al2 — ¢/
e oo 5% (1.1.97)

which are self consistently the first two terms of a Taylor series.

1.3.3.1 Field Rotation in SU(2)

The rotation of a field { is now definable by [5],
' =e" 7y = (g, +ig30, )¢, (1.1.98)

and with these components in hand the gauge transformation process in
SU(2) is based on the idea that the Euler angle ¢ is a function of x", the
space-time four-vector. This is a gauge transformation of the second kind,
which is underpinned by special relativity [1—5]. The quaternion
coefficients become functions of x*, and derivatives are replaced by
covariant derivatives in SU(2) [5 ]. Under gauge transformation of the
second kind, the potential four-vector becomes

4, =548 —éauSS‘l , (1.1.99)
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in which appears an inhomogeneous, purely topological, term, the second
term on the right hand side. In our example, this equation is developed as

a0” _  ZO S::eioza/Z. (11100)

In analogy with Eq. (1.1.1) of Sec. 1.2, the object Ap is a matrix in an

internal gauge space indicated by the superscript a. In this notation,
summation is implied over all repeated indices. Greek indices are covariant-
contravariant Minkowski space indices. Latin ones denote the internal
gauge space. The placement of the Latin indices as subscript or superscript
is not significant, because they are not contravariant-covariant indices. For
the rotation about the Z axis that we are considering here, a =Z. The
symbol § is a rotation matrix in SU(2) in exponential form. Therefore the
symbol 4 is interpreted as the matrix,

[ Z
A_“ 0
A 2 (1.1.101)
B AZ ?
0o -*
2 e

for this example of Z axis rotation in SU(2) of the field { . The SU(2)
gauge transformation of 4, is given by Eq. (1.1.99), with its characteristic

inhomogeneous or topological term. In a U(1) symmetry theory this term is
the well known gradient of an arbitrary function first introduced in the late
nineteenth century. In SU(2) however, it is not arbitrary, and is determined
by S,ie., by a particular Euler angle o , or quaternion component.
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1.3.3.2 The Inhomogeneous or Topological Term in SU(2)
We use Eq. (1.1.99 ) with
S=¢'%z2 g1 oo 102/ (1.1.102)

and
.OZ
0S=|i—=0alsS. (1.1.103)
[ 2 n

Therefore gauge transformation results in

4l =q -2 %25 1.1.104
e ”_E7 n® > (1.1.104)
or in matrix form,
£
o g
2
Z/
0 _f“_
2
g (1.1.105)
z
4
o) 1 aua 0
=, + — !
. _A_uz 2¢| 0 -0
2

where,

Gauge Transformation in O(3) Electrodynamics 41

o =cos’! (q02~q32) =sin™! (2q0q3) . (1.1.106)

Therefore ,

/
Af:Af+§Qp. (1.1.107)
This is clearly a geometrical result, rotation of the field §r about the Z axis
has this effect on the Z component of A, inthe SU(2) internal gauge space.
We are dealing with curvilinear coordinates because in a flat space-time,
d,x=0 because ¢ is nota functionof x*. Termssuchas (1/g) d
are the physical bases of effects such as that of Aharonov and Bohm. The
latter are usually given in terms of U(l) electrodynamics, in which o is
effectively an arbitrary function. InSU(2), « is clearly the Euler angle, and

a finite rotation must always take place through a finite Euler angle.
In the small angle limit,

o .
5 " sinc:=gs, (1.1.108)

and so,

zZ z
Ay = A +=0,4;. (1.1.109)

Note that gauge transformation in an SU(2) symmetry field theory is
a geometrical process. If Jda/dx* =0, A/Z goes to A, , there is no
topological term and no Aharonov-Bohm effect. The object AILl is a

physical four-potential in the classical field theory. It is not a mathematical
Subsidiary variable as in a U(l) gauge field theory of classical
electrodynamics. There is therefore a profound difference between O(3) and
U(1) electrodynamics.



42 Chap. | General Gauge Field Theory Applied to Electrodynamics
1.3.3.3 Self Consistency of Equation (1.1.107)

There are various ways of self checking Eq. (1.1.107), for example,
for small angle rotation in the O(3) group, homomorphic [5,8,9] to SU(2),
we should obtain the same result. It is convenient to develop the concise
description given by Ryder on his p. 119 [5], and to consider the small angle
rotation of a field ¢ with components described by ¢,, ¢,, and ¢,, in

general, a matter field. In the O(3) internal space,

P 1 A, 0] |9
Gyl =|-Ay 1 Of [d,], (1.1.110)
P! R T R T

for a rotation about the small angle A;. This process is

o) =9, + A,
¢£=¢2_A3¢1a (1.1.111)
b; = b,

and is a component of the small angle rotation given by -A x¢. When
A = Ak we obtain, self consistently,

i ok
“Ax=- 0508 Ay = A, i-Ad, ). (1.1.112)
¢ &, &

In O(3) vector notation,
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P eV Ap<>p =p-Axd, (1.1.113)

in the small angle limit.
Now apply the formula for gauge transformation,

/ I -
A, = (SAu—gauSJ S, (1.1.114)
with
SA, =exp(iJ-A)A ~A4 -AxA4,, (1.1.115a)

where A b is a vector in the internal O(3) group space, with

9,8 =(io,A)S, (1.1.115b)
to obtain
-2
A= Au—AXAu—’—auAS) s, (1.1.116)
g
where
S=e T A=1+iJ-A+...
, (1.1.117)
Stlze /Ao _jJ A+
SO
/ . 1
A, ~A -AxA +=3 A+ .., (1.1.118)

g
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which is the Yang-Mills approximation given by Ryder. The small angle
gauge transformation in the O(3) gauge group's internal space is a
geometrical process, not a random process as in the U(1) gauge group. Later
an example of this different role played by the potential is considered, the

gauge transformation of the conjugate product 4 x A4 @ In O(3) this
object is physical, in U(1) it is unphysical. However, it is an observable of
magneto-optics, and so empirical data prefer the O(3) hypothesis. In O(3),
rotation about the Z axis, a gauge transformation, leaves A x4 @
unchanged; in U(I), it becomes random, because 4V =4 @" becomes

random.. |
Returning to the development in this section, then for a Z axis

rotation,
A =A,=0, (1.1.119)
and
—AXAH=A3A“2i—A3Au1]', (1.1.120)

where i, j and k are Cartesian unit vectors in the internal space. So,

/
A, =4, +A3Au2 ,

A/

w2 = A A4 (1.1.121)

/ 1
A“3 :Au3 + Ea“A:; .

The third of these equations is Eq (1.1.107) in the small angle limit, QED.

Gauge Transformation in O(3) Electrodynamics 45

1.3.4 Gauge Transformation in an O(3) Gauge Field Theory

Considering a Z axis rotation in an internal O(3) space of a gauge
field theory governed by Eqs (1.1.79a) to (1.1.79¢) we obtain,

S=e”2 §lag M (1.1.122)

b

where J, is the infinitesimal rotation generator defined in Ref 5. Thus,

cosee sina O
L 202 3l B
S—1+1JZOL—JZ§—1J— +.. =|-sina cosa O], (1.1.123)

Z31
0 0 1

which is self-consistently the rotation matrix for a rotation about the Z axis
in an O(3) symmetry gauge field theory.
The inverse of S is formed by o — - «,

cosoe -sing O
S1=|sina cosa 0| =e ", (1.1.124)

0 0 1

and it is easily checked that SS ! is the unit 3 x 3 matrix as required.
The existence of the term auS depends on « being a function of

x¥, since « is the only independent variable in S. So,

cosee sino O
auS:au -sino cosa O, (1.1.125)
0 0 1
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Now use the calculus,

d_dd
& d (1.1.126)

soif y =cos (f(x)) for example, then,

% = o) sin (A1) . (1.1.127)

We obtain
ap(cos oc(x“)) =—8uoz sin ¢ ,
(1.1.128)
au(sin oa(x")) =d,acosa,
and
-sina coso O
GPS=apa -coso -sina 0. (1.1.129)

0 0 O

The existence of 4§ depends directly on that of J & and on the

postulate that o is a function of x* ; a postulate that springs directly from
special relativity via type two gauge transform theory [5], or gauge
transformation of the second kind.
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1.3.4.1 Definition of AJu

In O(3) symmetry gauge field theory the object 4, is expressed as

a matrix,

AuzJaAS, (1.1.130)

where J¢ are the three infinitesimal rotation generator matrices of O(3)
[1—9] and where the double indexed A: are scalar coefficients of the

internal space, a vector space. For Z axis rotation,

_7Z42
A —JA“.

. (1.1.131)

In this notation, the placing of Z as an upper or lower index has no algebraic
significance, as discussed already, whereas p is covariant-contravariant.

Thus, for Z axis rotation,

0 -i 0
. V4

A4,=1i 0 04r, (1.1.132)
000

The inhomogeneous term in Eq (1.1.114) is also directly dependent
on the existence of apoc,
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-sinet coso O||coso -sino O

auSS'1=8“oz —coso -sinee O||sino cosa O

0 o ol o 0 1
(1.1.133)
010
=auoc -1 00
0 00
So,
; J
198571 =290, (1.1.134)
g g

Note that this is the topological term responsible for the Aharonov-
Bohm effect and so forth [1—9]. The scalar g is a dimensionality
coefficient introduced as such in the definition of the covariant derivative
[5]. The operator J, is the infinitesimal rotation generator of O(3) about
Z. The existence of this term in the gauge transform of 4 is the direct

result of special relativity, of gauge transformation of the second kind. Ina
U(l) gauge field theory the equivalent of « is arbitrary, and has no
geometrical meaning as we have argued already. In the O@3) = SU(2)
versionitisan Euler angle whichisa function of x * fora givenrotation, o(x")
is clearly finite and well defined, being a physical Euler angle in curvilinear
coordinates necessitated by special relativity.

The above calculation can be checked for self consistency using the
operator formalism. If,

K= exp(iJZoc) , then §,5=iJ,0,aS, (1.1.135)

and, QED,
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0,SS™=iJQ . (1.1.136)

1.3.4.2 The Term SA S -1

This is also a matrix given by,

A

= ET—
SAuS = lAu

cosa sina O 0 1 0jjcosa -sinc O
x| -sine cosee 0||-1 O Of|sinac cosa O (1.1.137)
0 0 1 0 00 0 0 1

The overall result of the gauge transformation is therefore,

z 1
AHJZ—>( Af+§apa) s, (1.1.138)
ie.,
z z: 1
G A, +§apoc . (1.1.139)

Self consistently, this is Eq. (1.1.107) of Sec. 1.3.3.1. The O(3) and SU(2)
symmetry theories give the same result for the scalar AHZ of the internal

gauge space. If the space is such that o has no dependence on x*, the

2. :
4, is unchanged by rotation about Z. Self-consistently, this is Euclidean
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space, in which rotation about Z does not change the direction or magnitude
of a vector component aligned in Z.

1.3.5 Transformation of the Field Tensor

The rule for transformation of the field tensor in general gauge field
theory is,

G,y =SG,, S (1.1.140)

The inhomogeneous term does not appear and the transformation takes place
covariantly rather than invariantly as in U¢I) [5]. The B® field transforms
as follows, for a Z axis rotation and in matrix algebra,

0 -B,0
-B, 0 0
0 0 0
cosa sina 0T -B, cosa -sina 0

0
—>| -sin¢t cosa O B,

0
0 O0]|sine cosax O (1.1.141)
0 0 Ijlo o0 o

0o 0 1
[0 -B, 0
=B, 0 0],
0 0 0
ie.,
B, —> B,. (1.1.142)
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The B field is therefore self-consistently invariant under rotation
about the Z axis, and the O(3) gauge transform is a rotation which produces,

1
A, = 4,+-9,,0a,
‘ Y (1.1.143)

B, — B,.

In U(1) these concepts do not arise because both 4 zand B, are zero, and

the idea of gauge transformation being a rotation through a physical Euler
angle does not exist.

1.3.6 O(3) Gauge Transformation of the Optical Conjugate Product
AV x 4@

The optical conjugate product is a well accepted physical observable
of the semi classical, phenomenological, theory of non-linear optics [1-—4].
As argued in several ways [1-—4] already this observable is identically zero
by definition in U(l). In O@3) it is identically non-zero by definition and
proportional to B® by definition. To check the consistency of the result
(1.1.142) of the preceding section this section is devoted to the details of
gauge transformation of 4 x 4@ in O(3). Since B® is invariant under
O(3) gauge transformation defined as a rotation about Z, so should be
ADx 4D 1n order for this to be so, we shall see that the gauge
transformation in O(3) must generate an electromagnetic phase shift defined
in terms of the physical angle of rotation. This result is akin to the
topological phase [8,9] and the Aharonov-Bohm effect [8,9] as discussed
lucidly by Barrett. It'means that there exists an optical Aharonov-Bohm
effect which is measurable in principle by this phase shift. In Ufl), as
argued already, the electromagnetic phase is random because of the random
nature of gauge transformation of the second kind in U(l) [1—4]. To see
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this result in O(3), the gauge transformation rules must be applied carefully
to A® and to A @ as follows,

4D —> s4051 - L5 5571,
J (1.1.144)

4@ > 5405 +i(a ss).
g H

In vector notation, the A ¥ and 4 ® components are complex conjugates
such as,
© L ©) )
AO A7 G ver, 4@ A (jgj)e e,
V2 V2 (1.1.145)

. . 2). 2).
= ALY, = AP+ AT) .

Therefore in matrix form,

0 (0 0 i
AD=4Pl0 0 -i| +43°]0 0 0],
i 0] | -1
> (1.1.146)
Oq i
A@=4P10 0 -i| +4P|0
Fiege| +i

Rotation of these terms about the Z axis produces results such as the
following,
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s
-cosoc sinoe 0|0 O O {jcosa -sing O
=|-sino cosee 0|0 0 -i||sinae cosa O A;l)
0 0O 1([0 i O 0 0 1 (1.1.147)
0 0 -isin &
- 0 0 -—icosa Ai,l).
| isina icos o 0

Therefore the vector 4™ is changed by an O(3) gauge transformation
defined as a rotation about the Z axis. This is self consistent because 4 ¥

has X and ¥ components only.
Similarly,

0 0 icosq
5 4P 0 0 -isina|. (1.1.148)

-icos o isino 0

It can now be checked that the commutator [ SAS)S 154 ;1 'S,

IS a Z axis rotation as required,
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saPs1, 405" | = (5495 1545 5405 545 )

0 0 -isin o 0 0 icos o
=44 Mo 0 -icosa 0 0 -isina
isinot icoso 0 -icosa isino 0

0 0 icosa 0 0 ~isina
494000 0 -isina|l 0 0 -icosa
-icosa isino 0 isinee icosd 0
(1.1.149)
0 10
~APAM -1 0 0]=ia4P,.
0 00

The overall result is that a rotation about the Z axis changes the X and Y
components of the potentials 4™ and 4@, but leaves B® unchanged.
However, the polar longitudinal component 4 ,, (which has no existence in

U(l)), is changed by the same gauge transform process to A,+3 0.

Therefore, A ™ x A ® is self consistently proportional to B® in O(3). In
U(1), as we have seen, B® is zero and A M x 4@ is randomized by the
U(1) gauge transformation of the second kind because random quantities are
added to 4™ and 4@ (gradients of arbitrary scalars). It seems clear that
O(3) is the more consistent theory on these arguments alone, because
AM x4 s an optical observable. In U(l), the potential is never an

observable according to the Heaviside interpretation, it is strictly a
mathematical subsidiary. The latter conclusion has been shown to be false
by Barrett [8,9] using half a dozen phenomena of nature. The Heaviside
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view was criticized by Ritz as early as 1908 [13] on the grounds that the
classical potential denoted delayed action at a distance as advocated by
Schwarzschild in 1902 [12], and so must be physical.

As a further check on self consistency of Eq. (1.1.142) we can
calculate the commutator,

[SAMs 1, SA@s ]

(1.1.150)
=S40 1 4 Ds-1_54@g-1 g4Dg-1
where
000 0 0 i
AV =4P10 0 -i|+aPl0o 0 -0, (1.1.151)
0i:i 0 -i 00
and
SAMS =54 P51 + 5405
0 0 -sin & +coso
o ' (1.1.152)
=2 it 0 0 ~icosa-sina
‘/i isine -coso icosa +sind 0
Similarly,
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SADS 1 =S4 +84 5!

0 0 -sin o ~cosa (1.1.153)
A0 .
=2 i 0 0 ~icosa +sin o
ﬁ isin o +cos o icos o -sin o 0

Straightforward algebra then shows that,

[SA(I)S-I,SA(Z)S_I] :—A(O)ZJZ’ (11154)

or in vector notation, we obtain the self consistent result,

. K
B9 - _,ﬁAﬂ)xA(z), (1.1.155)

which again shows that the cross product of two polar vectors, 4 and
AP is the axial vector B®. (Recall that the cross product of two polar or

of two axial vectors both give rise to an axial vector, not to a polar vector
[1—4].) Therefore the longitudinal polar vector potential A4, can be a

component of the overall potential four-vector, but cannot be generated by
the cross product 4 x 4@ The latter always generates an axial vector

proportional to B®.
Now evaluate the commutator [4®, 4@ |, with,

00 1 o |00
(W] 0
A -A7 el g o 4@ A7l o —i|. (1.1.156)

V2 -1 i 0 V2 1 i 0

to obtain

Gauge Transformatic

[A<1),A<2)] =-402y (1.1.157)

and so,

(4D, 4@ ] = [S4D51, 54D 1] (1.1.158)

This result means that an O(3) gauge transformation defined as a Z axis
rotation changes A ¥ and 4 @ but leaves 4V x 4 @ ynchanged. Thisis an
obvious and simple geometrical result which is physically meaningful as a
geometric rotation in three dimensions, and which is self consistent with the
invariance of B® under such a gauge transformation. These concepts do
not exist in U(1).

1.3.7 The Topological or Inhomogeneous Term: The Optical
Aharonov-Bohm Effect and Topological Phase Effect in O(3)

The complete gauge transformation is,

AO — 540571 - L5 551)®
N ’
g
, (1.1.159)
4D > s4@571 L (5 5571)@
N >
g
and for a Z axis rotation,
(40, 4@] = [s4WsT, S4D51], (1.1.160)
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0 -i 0 J
L(ass)0=La.ai 0 0] =g, (1.1.161)
g i g * H
0 00O
0 i 0 7
1(a,857)®=25,a|~i 0 0|=-Zya, (1.1.162)
i i g
0 0O

From Eq. (1.1.160) we know that the sum generated by the commutator of
inhomogeneous terms and cross terms on the right hand side must be zero.
The commutator of inhomogeneous terms is indeed zero,

0o 10[[o0o 10
L@@ | [-100[[-100
4 0 00[/[0 00

(1.1.163)
0.10]10. 10
-{-100||-100 =0
0 00(|O0O OO
Therefore the sum of cross terms must be zero,
(s4Ws-1) (3,581 )® - (3,85 )" (s4Ps )
(1.1.164)

+ (SA @5 -1 ) (auss-l )(1) = (auss—l )(2) (SA Hg-1 ) =0
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After some elementary algebra the result reduces to

0 0 ie ™ 0 0 je™
e 0 0 e™|+e™® 0 0 -e=|=0, (1.1.165
-ie i _eﬂa 0 _lewL eia 0
ie.,
e!@ % = _g7H(@9), (1.1.165a)
or,
cos(dp-a) =0, (1.1.165b)
T
¢ — ax (2n+1)5, (1.1.165¢)

Therefore the O(3) gauge transformation produces a topologically induced
change in the electromagnetic phase. A rotation through the angle produces
achange a+(2n+1)m/2 inthe phase. This is also a polarization change

because for instance,

(i+ij)e'® — (i+ij)e@CrDmD (1.1.166)

and using the angle formulae,

cos (A£B) = cos A cos B sin4 sinB,} (1.1.167)

sin (A+B) =sin 4 cos B+cos4 sinB,

it follows that
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Re((i+ij)e™) =cos ¢pi-sindj

. . (1.1.168)
— £ (sm<b01+cosd>0]) ,

where ¢, = .

This result clearly shares the features of the topological phase effect,
for example, winding an optical fiber on a drum, and sending a linearly
polarized laser beam through it produces a rotation of the linear polarization
plane [8,9]. Thisis in O(3) an optical Aharonov Bohm effect as argued. In
U(1) the same effect is random, and unphysical. This seems to be further
clear empirical reason for preferring O(3) to U(1) and the observation of the
topological phase in this manner is also an observation of the optical
Aharonov-Bohm effect. For example, a rotation of 37/2 increases ¢ in
Eq. (1.1.165) by the same amount, 31/2 , and changes the polarization of

the light beam. For example, for n = 0,

: T L
sm(a+5) =cosec  ( #sine in general ) ,
(1.1.169)

T : :
cos(a+5) =-sina  ( #cosa in general) .

Since gauge transformation in O(3) is a physical (or geometrical) rotation,
the rotation of the direction of the light beam as it propagates through an
optical fiber wound about the Z axis as a helix [8,9] is a geometrical process
that is a gauge transformation, one which can be observed empirically to
change the polarization of that light beam, QED. The geometrical details are
different, because the helical rotation of a beam propagating within a fiber
is not the same as a straightforward rotation of that beam about its own
propagation axis Z when the latter is held constant, but the overall result is
the same, a change of polarization of the light beam. Such a phenomenon
has no existence in U(1).
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Definitions in Ref. 10.

Chapter 2
The Geometry of Gauge Fields

Contemporary bundle tangent theory is able to establish the basic
structure of any gauge theory from pure geometry. It can be shown [1] that
the internal space is a symmetry space. Vector fields, forms and tensors on
the basic manifold are related to their correspondents on the bundle. Vector
fields are lifted by a section to certain fields on the bundle and this is pure
geometry as is well known in contemporary mathematical physics. A frame
[e“] on the basic space will be taken by a section o into a set of basic

fields X , =0 (ell ) . Around any point of the bundle there exists a separated
basis, called a direct product basis, formed by the basic fields x, and the
fundamental fields X . In this (direct product) basis the commutation

relations are [1],

(X, X, ] = ChLX,, (12.1)
(X, X, ] =0, (1.22)
(X X, | =fa X, s (1.2.3)

As described in Ref. 1, Eq. (1.2.2) establishes the independence of the
algebra of the fundamental and basic fields.
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2.1 Application to Electromagnetic Theory with Internal Space ((1), (2),
3))

Usually, electromagnetism is described as a gauge theory with U(1)
internal symmetry [2—4]. However, in Chap. 1 we have developed a gauge
theory of electromagnetism with an internal space ((1), (2), (3)) which is a
physical space with O(3) symmetry. Does this gauge theory comply with
Egs. (1.2.1) to (1.2.3)? This question can be tested with a particular choice
of generators for the X fields. If, for example, we choose the X, tobe

rotation generators of the Lorentz group we obtain [5—38] for Eq. (1.2.1),

[ 1 2] =iy,
Sy | =iy, (1.2.4)
[Jy 1} =iJ,

so fp=i,a=X,b=Y, c=2Z. Similarly for Eq. (1.2.3),

[, J<2>] = -J®r (1.2.5)

et cyclicum, so /3, = -1, a = (1), b = (2), ¢ = (3). However, when we come

to test Eq. (1.2.2), we obtain results such as

[/, /@] - Lo, (12.6)

/2

and so forth. This simply means that the internal gauge space as used in
Chap. 1 is net independent of space-time, as in Egs. (1.2.1), (1.2.2), and
(1.2.3). How are we to justify the gauge theory of Chap. 1 therefore in the
general structure described for example by Aldrovandi [1]? It turns out that
the answer is to be found in the theory of extended Lie algebra.

Note firstly that the X* vector field symbols used by Aldrovandi [1]
can represent space-time translation generators, for example, or rotation
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generators. In a simple or direct product Lie algebra he proves that all gauge
theories must have the following structure (his Egs. (61) to (63)) [1],

[Xu/, Xv/] =ChX]-F., X, (12.7)
/

X/, x,] =0, (12.8)

(X X, | =fan Xes (1.2.9)

where Xp/ =X f —A:Xa. If XlLl is a translation generator proportional to Gu

[4], then X pf is a covariant derivative. The X generators can be matrix

generators for example.
In simple gauge theories such as these, Eq. (1.2.8) shows that the
internal (gauge) space and the external space are independent.  The

connection A ;’ modifies the translation generator X, = 9, and alters space-

time homogeneity [1]. This is a key point in all gauge theories applied to
electrodynamics. Essentially, the non-linearities in electrodynamics become
a property of space-time in the spirit of general relativity. The O(3)
symmetry electrodynamics is only one example of many possible self
consistent theories of non-linear optics, all of which reduce to the
Maxwellian formalism in the linear limit. In a simple gauge theory such as
the Yang-Mills theory the underlying group Jacobi identities completely
determine the structure of the theory, which is fixed by Egs. (1.2.7) to
(1.2.9). The Bianchi identity for example is formed from the Jacobi identity
through the use of covariant derivatives [1], and all of these results are
purely geometrical. They are of the type used in particle physics, where it
is usually assumed that the internal space is independent of Minkowski
space-time.
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2.1.1 Extended Lie Algebra

A rigorous geometrical basis for the theory used in Chap. 1 can be
given using a simple example of the Lie algebra extension theory given by
Aldrovandi [2.8] in his section 6.1. This is developed in this section using
the Lie algebra of rotation generators in the basis (X, Y, Z) and the basis
(1), ), (3)). The L algebra [1] is defined by

[Jydy), =i (1.2.10)
and the V algebra by:
[J(l) , J(z)]V S (O (1.2.11)

Given a Lie algebra L and a representation p of L on another algebra V' we
produce a joint algebra £ encompassing L and V, following the methods
given by Aldrovandi [1]. The algebra E is an extension of L by V' through
p. The extension of V' to E is an inclusion such that

3)* *
[0, J@], = [JO @], = £ JOr (1.2.12)
so, (13))(;) = - 1. The extension of L to E is a mapping such that,
o:L = F,
1.2.13
0:J, = JO;  (@=(1) @, B, R
and,
. (3 * *
10, I, =iC s 1219
where

[Jus ] =G, (1.2.15)

uvp -
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Therefore C(jyy = i and,

. ~(3)r _ ,(3)x
iChe =fme - (1.2.16)

The mapping (1.2.13) means that the Cartesian space of J, in L is extended

to a complex spherical space in E.

The Lie algebras L and 7 have been combined into a Lie algebra E
with an underlying vector space L @DV, the direct sum of those of L and V.
In general, L and ¥ can be combined [1] to give many different extended
algebras E. In this case E is an algebra that incorporates the Cartesian basis
(L) and the spherical basis ¥ where L describes a Cartesian basis and V' a
spherical basis only. For rotation generators, the extended Lie algebra E is

given by

3)* *
[J(l),J(Z)]E - [J(l)aJ(z)]V - (l))(z o, (1.2.17)
70, T® ] =p (4, )7 = iCiiy ™" (1.2.18)
sy ]y = Gy =BT (1.2.19)

where the constants [353 measure the departure from homomorphism [1].

2.1.2 Extended Lie Algebra with Connections

Equation (1.2.18 ) above measures that the coupling between the
internal space ((1), (2), (3)) and the extended space of the E Lie algebra.
This can be made clear by writing the commutator on the left hand side of
Eq. (1.2.18) as [5—38],
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1 (Jy-idy), J?

5 : (1.2.20)

1
(JO, s ], -

This means that the theory developed in Chap. 1 is an extended Lie algebra
with connections, which is described in general gauge theory by Aldrovandi
on his page 39 [1], his Eqs. (105) to (111). In this extended Lie algebra, the

connection is denoted [1] B, and
/ a
X=X -B°X,. (1.2.21)

The commutator relations become
/ I _ e/ fc
[XN’X" J B CMVXP —ﬁu c?
x/.x,] =clx., (12.22)

[Xa’ Xb ] :f:ch >

where [1],
I c c
ﬁpv = ﬁpv +K“V ’
c a a apb
Ky, =CB) -CyBl -BCP ~fy,BB, (1.2.23)
/e c a
Cllb = C}lb —'B,Jﬁb .
If C,ﬁ = ﬁ:fv = 0 there is no extension [1].
We are now in a position to check this extended gauge theoretical
structure against the O(3) gauge theory given by Ryder [4] in his Chap. 3.

This theory is in turn the basis of our development in Chap. 1. We shall first
show that even U(!) electrodynamics, seen as a gauge theory, is a special
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case of Eq. (1.2.22), but with CL/IZ not equal to zero. This means that the

Lie algebra underlying ordinary U(1) electrodynamics is an extended Lie
algebra, and so the spaces L and V are not independent, even in Maxwellian
electrodynamics seen as a gauge field theory. So application of gauge
theory, with affine algebra, to electrodynamics is different in principle from
its application to elementary particle physics, if- when the latter takes the
two spaces to be independent. The only idea in common is that space-time

is made inhomogeneous.
The special case of U(1) electromagnetism can be recovered from
Egs. (1.2.22) as follows. Firstly define the covariant derivatives by taking

XJ and Xv/ to be extended translation generators,

X, =0,-igd,, X, =0,-igd,, (1.2.24)

where g = e, the charge on the proton, and 4, and A4 are the U(l) four
potentials [4]. Then,

/ / . .
X/, x| = ~ie(8,4,-8,4,) = -ieF,,. (1.2.25)
where F . is the ordinary U(1) field tensor. From Aldrovandi's Eq. (99),
[Xu , X, ]E =ChX, =0, (1.2.26)

because Xp = au; X, =0, X - ap are translation generators within a

proportionality factor [4]. Therefore,

Co =0, (1.2.27)

and
Bisy = igF, (1.2.28)
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Since we are dealing with an affine algebra, we obtain in Aldrovandi's
Eq. (100),

B =0. (1.2.29)

Furthermore, in U(1),
X =X,=X=1, (1.2.30)

being interpreted as rotation generators of U(1) [4]. Therefore,

[ =0, (1.2.31)
and
lc c c a a
Bu =Ky =Cp By -Cy, B . (1.2.32)
We can identify:
Cpra =180, 5 C,, :=1igd,,
(1.2.33)
B]:=4,, B:=4,.

As described by Aldrovandi the C’s are interpreted as matrix operators
which in U(l) are 1 x 1 matrices, e.g.,

C:c = (XlLl )i’ =9, etc.. (1.2.34)

When we come to examine the commutator (1.2.22b) we find,

[X;,Xb] = [0, -igd, . 1] =Cp5 X, =0. (1.2.35)
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We have shown that f, = 0, so,

Cyp=Cpy =0, (1.2.36)

and

lc
Cuch = aul =0. (1.2.37)

So Eq. (1.2.35) becomes

0=C50, Cg#0, (1.2.38)

and since the spaces L and ¥ decouple if and only if C,, =0, the U(l)

theory of electrodynamics is a gauge theory in an extended Lie algebra. So
the fundamental and basic fields in U(1) electrodynamics occur in an £
space; E = L DV, the direct sum of L and V. The internal U(7) gauge space
is not independent of the space-time of the gauge theory. This is of course
a physical result, because the potential four-vector 4 of the U(1) theory is

well defined in both L and V.

These points appear not to have been realized hitherto, or not made
clear. The application as exemplified by Ryder, of gauge field theory to
classical electrodynamics implies an extended Lie algebra whose two spaces
are not independent. If elementary particle theory is to be defined as a gauge
field theory then it is usually assumed that the two spaces are independent.
This hypothesis is justified by its success in particle physics, but evidently,
the photon does not fit into a gauge field theory whose spaces are
independent, even in the U(l) linear approximation. This questions the
standard model again at a fundamental level, and questions the assertion that
the photon is a particle, or at least the same type of particle as for example
a quark or electron. This is a rigorous result of pure geometry applied as we
have just demonstrated to U(I) electrodynamics, the kind of electrodynamics
that is usually quantized to give the photon.
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On the classical level, the same geometrical methods of advanced
fiber bundle theory show [1] that there is no conceptual problem whatsoever
in replacing U(l) by O(3) in classical electrodynamics, we are simply
changing the symmetry of an internal space which by definition is a
symmetry space if we are to apply group theoretic restrictions to the
covariant derivative. (More generally we can lift these restrictions and make
the covariant derivative a Taylor series for example.) Extended gauge theory
[1] gives as rigorous a basis for O(3) as it does for U(1), or any other group
theoretic restriction on the covariant derivative. In the last analysis, such a
description is a guess about the vacuum, or in-homogeneity of space-time,
and shifts the description of what mediates interaction between two charges
from the field to the potential and to space-time itself, in the spirit of general
relativity. In this scenario, the classical electromagnetic field is the result of
a round trip with covariant derivatives [4]. If the round trip has a physical
effect, the field is not zero. The U(l) hypothesis makes the covariant
derivative linear in the potential four-vector. A round trip produces the
familiar four-curl, but from a theory akin to general relativity [4] in which
space-time itself is given a structure. This simple linear hypothesis results
in Maxwell's equations. The next simplest guess, or hypothesis, is O(3)
electrodynamics, in which the covariant derivative contains rotation
generators of O(3), and in which the field is non-linear in the potential as
developed in Chap 1. The O(3) guess results in a theory which is already
much richer than U(l), but is still a simple guess. Proceeding in this way
there emerges a set of classical electrodynamic theories, each member of
which is as rigorous as U(l). The differences between each member of this
set of theories show up most vividly in the vacuum. For example, as we
have seen in Chap. 1, O(3) gives vacuum polarization and magnetization
(the B cyclic theorem), which are all missing from U(1). Similarly, an SU(3)
group theoretic guess will bring out a far richer structure than O(3) and so
on. In this way we can begin to describe the various non linear optical
phenomena [ 5—=8] which have no existence at all in U(Z). The conventional
9] phenomenological approach simply inserts non-linear terms into U(1)
through the classical constitutive relations: a hybrid, self-contradictory,
approach. (Recall, for example, that A M x 4@ has no existence in U(l),
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but is thrown ad hoc into the theory in order to be able to describe the
inverse Faraday effect.)

The O(3) theory emerges from the general geometrical equations if
the internal space V' has this symmetry, so that X, X, and X become

rotation generators of O(3),
X,:=J, X;:=J, X:=J,
[Ja"]b] “faler S * 0.

The O(3) covariant derivatives are extended space-time translation
generators of the general theory given by Aldrovandi [1],

(1.2.39)

/ . a . .
Xu=8u—nguJa:=8u—ngu.—Du, (1240,
X, =0,-igdlJ =8, -igd, :=D,,

and g is proportional to the elementary charge e through different
coefficients in free space and in the presence of matter. This has no effect
on the O(3) symmetry of the internal gauge space. So [5—38],

X/ x]| --ig(0,4,-0,4,-ig[4,.4,]). (12.41)

and the commutator [A " A, ] is non-zero, making the theory non-linear.

Note that this is still a theory of electromagnetism, the elementary
charge e still appears in it, and the potentials are electromagnetic potentials.
The theory is, in the last analysis, a purely geometrical description of

classical electromagnetism.
As in U(1) theory,

Cf =0, (1.2.42)
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because unextended translation generators commute, e.g. [6“ , 0, ] -0 as

used for example by Ryder [4] in an SU(2) symmetry gauge field theory of
elementary particles. So,

uv=-e?

X/, x| = -x (1.2.43)

indicating the existence of an internal vector space as in the notation of
Egs. (1.1.38) of Chap. 1; and so, as in Eq. (3.169) of Ryder [4],

B, = ig(auAf -0,4, -igeca,,A;’Avb ) . (1.2.44)

If we assume no departure from homomorphism [1], i.e., that,

B, =0, (1.2.45)

we obtain,

(4 ¢ nd c na apb
Biw = Cpan - CvaBp _f:beBv s (1246)

and so,

CuB) :=igd A, C.Bl:=igdA;

pav

igd,:=B,, igd;:=B

v v

o= i€,

(1.2.47)

The spaces L and V are connected into an extended Lie algebra because
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XX, | =[8,-igd, . J,] = [3,.,] -ig[4,. ;]
=9,J,-ig4, [Ja,Jb] (1.2.48)

=3,J, ~igd 15,

This result, in Aldrovandi's notation, is identified as,

CoX,:=8,J, =0,

The O(3) theory of classical electromagnetism is therefore an example of a
gauge field theory in an affine space with E=L@ V. So all the
development by Aldrovandi in his pages 39 ff. can be taken over unchanged
as a description of O(3) electrodynamics. This means that all the insights on
pp. 39 ff. of Aldrovandi [1] can be implemented, including those in unified
field theory. The result is a powerful support for O(3) electrodynamics
based on pure geometry. No physics has yet entered the scene [1]. In other
words we have guessed that space-time can be made inhomogeneous by the
imposition of an internal O(3) symmetry in a gauge field theory.
Metaphorically, Maxwell guessed that this symmetry is U(Z). (Historically,
gauge field theories were not, of course, available to him.)

(1.2.49)

2.2 The Geometrical Meaning of O(3) Electrodynamics

The results of Sec. 2.1 mean that O(3) electrodynamics is
completely defined in contemporary geometrical theories, provided that
E=L®V,ie, that E is the direct sum of L and V. For example, O(3)
electrodynamics can be fully developed using exterior derivatives in an
anholonomic basis, extending the Maurer-Cartan equations as described in
Aldrovandi's Sec. 6.2. The O(3) electrodynamics can also be developed as
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a field algebra on manifolds, leading to a similarity with gravitational
theories as developed in Vol. 4 of this series [8]. The key empirical
difference between U(1) and O(3) electrodynamics is that the commutator
[Ap. , Av] is non zero in O(3), as observed in the inverse Faraday effect of

nonlinear magneto-optics [9].

2.3 The Field Equations of O(3) Electrodynamics

Physics enters the scene when we come to consider field equations
[1]. In this section, their complete self-consistency in classical O(3)
electrodynamics is demonstrated for the free field and in the presence of
field matter interaction.

2.3.1 The O(3) Field Equations in Free Space

It is argued in this section that the following O(3) free space field
equations are rigorously self-consistent,

DG" =0, (1.2.50)
v J (vac
D ,G" =L€—), (1.2.5D)

where G"' is the dual of the O(3) field tensor defined in Chap. 1,

SUV 1
G" 1= 26, (1.2.52)

and where J* (vac) isa vacuum Noether current, or helicity current, to be
defined. Eq. (1.2.50) is the Feynman-Jacobi identity for an O(3) symmetry
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gauge field theory [4], one in which the covariant derivative is defined in
terms of O(3) rotation generators. The O(3) field tensor G*’ is defined and
discussed in detail in Chap. 1. The equations (1.2.50) and (1.2.51) are
therefore,

8,G" +gd, xG" =0, (1.2.53)
v v_ J"(vac
3,G™ +gd xG" = ————(e ) : (1.2.54)

0

for the free classical field. Equations (1.2.53 ) and (1.2.54) use the same
notation as in Ryder's discussion of Yang-Mills theory [8], but as discussed,
form an extended Lie algebra. The coefficient g for the free field is,

_ K

e
0y (1.2.55)

and is proportional to the elementary charge e after quantization [5—38],

K

This concept of photon momentum %k occurs after quantization of the U(1)
theory, but usually, it is not clear that this quantum of momentum, the
photon momentum, is equal to e4® for the free field. The conceptual
problem posed by Eq. (1.2.55) is the presence of e in the free field, and as
argued already, its presence does not mean that the field is charged. It means
that the field is C negative. Therefore non-Abelian gauge field theory such
as O(3) classical electrodynamics allows charge quantization, the elementary
charge e being that on the proton, minus the charge on the electron.
Equation (1.2.56) is similar to Planck quantization, £n = hw, of the energy.
The self consistency of this result is illustrated through the fact that an
electron accelerated to ¢ becomes the electromagnetic field in free space as
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described by Jackson [2], and charge conservation means that e is present in
the free field. On an elementary physical level, the electromagnetic field
must be C negative for one charge to influence another through the field.
In action at a distance theories the same must apply, for example in
Schwarzschild's delayed action at a distance theory of 1902 [10] the
potential is C negative. On the classical level, the factor g in free space is

the wavevector magnitude divided by 4@, and so g is C negative as
required. In electrostatics, g goes to zero, and the O(3) theory takes on a
linear form, giving the Coulomb, Gauss and Ampere Laws of electrostatics
and magnetostatics. This is easy to see because g goes to zero gives a linear
theory which has the same structure as the familiar Maxwellian theory,
except for the presence of indices (1) and (2), indicating complex
conjugation. In the static limit however, we can use a real potential four-
vector, so that the indices (1) and (2) are equal. (Complex conjugation does
not affect a real valued variable.)

More subtly, we must consider whether the elementary magnetic flux
density on one photon, which is the elementary magnetic fluxon [8], divided
by a quantization volume, is localized or not after quantization. It is well
known that the photon, the quantum of energy, is not localized, and that the
photon can be created and destroyed with creation and annihilation operators
without affecting the principle of conservation of energy. These are features
of the quantized U(l) electromagnetic field. After quantization of O(3)
however, we find Eq. (1.2.56), and it seems that the fluxon h/e may share
these properties of being non localized with the quantized unit of energy, the
conventional photon, hw. It then seems appropriate to ask whether /e
divided by the quantization volume can also be created and destroyed
statistically within the quantized O(3) field without violating the principle
of conservation of charge. This is not a feature of the quantized U(1) field.
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2.3.2 Self Consistency of Eqs. (1.2.50) and (1.2.51)

Equations (1.2.50) and (1.2.51) are self consistent and consistent
with the definition of A4 " and G" usedin Chap. 1. The detailed proof of

this self consistency is given in this section. The solution of the two field
equations (1.2.50) and (1.2.51) must be consistent with the fact that the B
cyclic theorem is produced from the fundamental definition of the field
tensors appearing in the field equations. This can be so if and only if,

A, xGY =0, (1.2.57)
v Jlvac
A, xG* = —(E—) ; (1.2.58)

These conditions give the O(3) field equations in the form,

3,G" =0 (1.2.59)
9,G" =0, (1.2.60)
where
G" = G"WVe® 1+ GPPe® 4 GHDe® | (1.2.61)
G = G L GV @ 1 GrvB)eB) (1.2.62)

so we obtain the equations for indices (1) and (2),

0,G"W=5G6"? =0, (1.2.63)
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3,G"W =5, G =0, (1.2.64)

and the equations for the B® field,

3,G"Y =36 =0, (1.2.65)

Equations (1.2.63) and (1.2.64) are formally identical with the Maxwell
equations in free space for the complex field tensor components

G"WM = GW@D* and its dual. Equation (1.2.65) is not present in U(l)
electrodynamics and in vector notation gives the B® field equation in free
space,

&)
BY _,
o

VxB® =0, (1.2.66)

It will be shown that Eq. (1.2.57) produces the B cyclic equations self
consistently. Equation (1.2.58) produces the helicity current, which depends

on B®=+0; A4®=+0. These concepts are not available in Ufl)
electromagnetism. Equations (1.2.57) and (1.2.58) also produce the vacuum
Maxwell equations given, self-consistently, that the plane waves B® and
B are solutions of the Maxwell equations and that B® is a solution of
Egs. (1.2.65) and (1.2.66), being phase free. A third self-consistency check
isthat B®, B® and B® are linked by the B cyclic theorem which is given
by Eq. (1.2.57). A fourth check for self consistency is given by the fact that
the O(3) electrodynamical equations in free space give E® = 0. The B®
field is not accompanied by an E® field [S—8] as shown by Eq. (1.2.57)
to (1.2.66), and as shown empirically by Raja et al. [8] and Compton et
al. [8]. There is no Faraday induction due to B® and it is observed
experimentally through 4 ® x 4 @ in field-matter interaction, for example
the magnetization of the inverse Faraday effect is dueto A® x4 ® as
shown in Chap. 1. Note thatB® is therefore a fundamental field of O(3)
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electrodynamics, but does not occur in U(l) electrodynamics. As shown
earlier in this chapter, both theories are rigorous gauge field theories in an
extended Lie algebra £ = T® V. However, O(3) has several advantages
over U(1) and gives insights and concepts which U(l) does not. For
example, the commutator 4 x 4@ is zero by definition in U(l)
electrodynamics, yet 4V x 4@ is an empirical observable of the inverse
Faraday effect. This is a sure indicator of the need for an O(3) or other

non-linear electrodynamics.
There is no known electric analogue of the inverse Faraday effect,

suggesting that there is no E® field as indicated by O(3) electrodynamics.
The effect, as for its famous counterpart, the Faraday effect, is magnetic in
nature and is mediated by the same Verdet constant [9].

The Stokes Theorem applied to B® is clearly not to be found in the
U(1) electrodynamics, and is the integral form of the B® curl equation,
VxB® =0. This is simply a consequence of the fact that B® is
irrotational, and that the Stokes Theorem means that the curl of an
irrotational vector field vanishes for any contour [8]. Again, such a result
will not occur in Url) electrodynamics because B® is not defined there.

2.3.2.1 Self Consistency of Equations (1.2.57) and (1.2.50)

In order for the linearization scheme leading to Eqgs. (1.2.59) and
(1.2.60) to be applicable the solutions of Eq. (1.2.57) must be consistent
with Eq. (1.2.50). In order to show this we write the covariant derivative as
[5—38],

D, =0, -ighd, (1.2.67)
s its action on the general m component field {_ is,

Dy, =9V, -ig (M), A5, = 0,0, ~8€ 1, AV, - (1.2.68)
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Therefore the Feynman-Jacobi identity is

apé,;” -ge, A'G" =0. (1.2.69)

amn‘"j

We know that the B cyclic theorem is constructed from,

aué,;‘v =0, m=(),Q2),03), (1.2.70)

and that this implies Eq. (1.2.57), i.e.,

e A°G"=0. (1.2.71)

At this point it is necessary to verify that Eq. (1.2.70) is self consistent with
Eq. (1.2.71) . For m = (3), for example,

3,G*"V" ~ige Al G < 0, (12.72)
with,
GPV = G 40, (1.2.73)
and with all other components zero. Therefore,
5,6 "" - ig (4GP - 4PG") - 0. (1.2.74)

This equation is consistent with,

GO _ 5080 _ AO(I) =A0(2) =0, (1.2.75)

b
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ged. For m =1, Eq. (1.2.71) gives,

6(2)(1)(3)‘4;52)6(2; * 6(3)(1)(2)‘4:3)6(;; =0, (1.2.76)
ie.,
406Gy =406 (12.77)
For m = (2),
ANGE = 40GE (1.2.78)
In vector notation, Eq. (1.2.78) gives,
AD-BO =40 .M (1.2.79)
and
~ALPBO + ADXE® = - 4P cBO + 4O x ED (1.2.80)

Equation (1.2.79) is consistent with the fact that 4! is perpendicular to
B® and 4@ to BM. Equation (1.2.80) simplifies to

AOXED = 4 B~ (1.2.81)

which is consistent with the fact that the cross product of two polar vectors,
A® and ED gives an axial vector B®* = B® multiplied by c4.>, a
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scalar. To show that Eq. (1.2.81) is a component of the B cyclic theorem,
and consistent with the fundamental definitions given

in Chap. 1, use
A® = APk = 4e®, (1.2.82)
SO,

AOXE® - 4P (kxED) =ca4’BO, (1.2.83)

a result which is consistent with

cBW =fkxEW, (1.2.84)

which in turn is a plane wave relation consistent with the fact that the B
cyclic theorem is constructed from plane waves. This result is enough to
show that Eq. (1.2.57) is conmsistent with Eq. (1.2.50). To reduce
Eq. (1.2.83) to the B cyclic theorem use,

3)
E® > -jcB®, 40 > BT' (1.2.85)

The arrows are used in the above equations to denote that EW is
numerically the same as -icB® and that A® is numerically the same as

B®/x. Wedonotuse E® = -icB® because a polar vector cannot be

equal to an axial vector in O(3). Equations (1.2.85) are then examples of
duality transformations, rather than equations. Equation (1.2.85a) occurs
in the U(l) theory, i.e., for transverse plane waves, Eq. (1.2.85b) occurs
only in O(3) theory. Use of the transformations (1.2.85) in Eq. (1.2.83)
produces

B®xBW® - jpOB@~ (1.2.86)
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which is one component of the B cyclic theorem, ged. The overall result is
that the B cyclic theorem linearizes Eq. (1.2.50) to Eq. (1.2.59) in a
rigorously self consistent way.

2.3.2.2 Tensor to Vector Notation

Considering for example,

@F My _ (1) 5@y
A7GT = 4,76, (1.2.87)

and taking v =0,

AO(Z)G,(I)OO +A1(2)G~(1)10 +A2(2)G~(1)20 +A3(2)G(1)30

I i ) 3 (1.2.88)
o AéI)G(Z)OO +A1(1)G @10 . +A2(1)G (2)20 +A3(1)G (2)30 ,
ie.,
A . pH - 40. gD , (1.2.89)
in vector form..
Similarly, for v =1,
Ao(z)é(l)m +Al(z)é(l)n +A2(2)G(1)21 +A3(2)G(1)31
(1.2.90)

1) % (2)01 5 x x
:AO( )G @0 +A1(1)G(2)11+ +A2(1)G(2)21 +A3(1)G(2)31,

ie.,
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_AO(Z)B(l)l _Az(Z)E(1)3 +A3(2)E(1)2

_ _Aél)B(Z)l -AZ“)E(Z” +A3(1)E(2)2

(1.2.91)
—AéZ)B“) +AD < ED = _Aél)B(z) +AD X E®
ie, ADxED =4O x @
This result is consistent with the fact that
B®=VxA®, (1.2.92)

ged.
Similarly self consistent results are found for v =2 and for v =3,

demonstrating the rigorous self-consistency of O(3) electrodynamics in free
space for the special case of plane waves B = B®" and for longitudinal

phaseless B®.

2.3.3 Self Consistency of Equation (1.2.58)
Examination of the self consistency of Eq. (1.2.58) leads to the

definition of a vacuum current that has no existence in U(l) theory.
Linearization of Eq. (1.2.58) proceeds on the basis that in free space

3,G* =0, (1.2.93)

ie.,

3,G uv(l) _ 3,G wv2) _ 3,G wi -0, (1.2.94)
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which is consistent with transverse plane waves; a phaseless longitudinal
B®, and E® =0 in free space.
This result implies that

J" (vac)

€

gA, x G* = (1.2.95)

where J" (vac)is a conserved current caused by the B® field in free
space and which does not exist in U(1) theory. We refer to it as the vacuum
current, a polar vector in the O(3) symmetry internal gauge space whose
scalar components in this space are polar four-vectors:

D _ @Gwe) _ 4 Oame) ]
Jrx "geo(Av G””()—Av G”V()>

~

JHO* < jge. ( AOGHD_ 4 vﬂ)(;uv(a)) (1.2.96)

Ju®x - -ige, (AV(I)G LW(2)_AV(2)GHV(1)> .

Using Eqs. (1.1 .64) and (1.1.65 ) we can proceed to investigate the above
cyclic relations for each p.
For u =0 we obtain, for example,

ADGO® - 4 OGN g%ﬂ@)* =0, (1.2.97)
0

because all terms of

APGO® = 4 OGO | (1.2.98)

are zero on both sides.
For n=1,
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WA1vE) _ 4 ~tv) _ L p12)+
4,6 -4GM = — 1@ (1.2.99)
g€,

which reduces to

MpBG _ M ,40) 1,3 i 1
cAy'B; " = XAO( —cBy 4z +—J)((): (1.2.100)
g€,
Using
EPa = B4, (1.2.101)
we obtain
¢)]
Jy) = ~icgeyAy By = -ieje—o By (12.102)
A

which is a transverse current whose phase average is zero. It exists if and
onlyif B® isnon-zero, and can be interpreted as a type of helicity current

[8]-

For p =2 we obtain

AV - 4 OG0 - & e (1.2.103)
g€
which reduces to
cADB3® - g PEM 1 4 PRI - LA O (1.2.104)
g€

ie.,
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L0 gOFA < cq OB 4 cq OB (1.2.105)
g€, .
or
I ), O _ (HpB)
ajy +APE" = ~2c4BY (1.2.106)
and using
ED - B0, (1.2.107)
we obtain

Therefore Eq. (1.2.51) linearizes to Eq. (1.2.94) provided that there is a
vacuum current which phase averages to zero. This can be identified as a
helicity current due to 4P and B®. Equation (1.2.93) is a vector
equation in the O(3) internal space and produces three scalar equations in
this space, Egs. (1.2.94). Those for indices (1) and (2) are the
inhomogeneous Maxwell equations in free space and the third in vector form
is Eq. (1.2.66), a result which shows that B® is irrotational if B® and
B@ are plane waves orif B® and B ®have imaginary phases opposite in
sign. This is consistent with the B cyclic theorem, or vacuum magnetization.

To summarize, a theory of electrodynamics has been proposed based
on the structure of general gauge field theory as used in particle and high
energy physics. This theory linearizes self-consistently to the homogeneous
and inhomogeneous Maxwell equations giving in the process a phase
dependent vacuum current proportional directly to B®. This vacuum
current is therefore zero in the U(l) theory: a self inconsistency of
Maxwellian electrodynamics in the received view because if the
electromagnetic field is assumed to propagate in vacuo at ¢, it must carry a
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C negative influence at a finite velocity from one charge to another. This is
a current which is always non-zero, yet which is set to zero in "charge free
regions". In O(3) electrodynamics there is always a vacuum current which
depend on the non-zero B®) component of the field. Therefore there are
several ways in which the O(3) hypothesis is more self-consistent than the
U(l) hypothesis. In other words, linearization as in Maxwellian
electrodynamics removes a great deal of information and leads to self
inconsistencies. The simplest possible type of non linear theory, based on the
O(3) group symmetry, produces non-linear effects which are missing from
the U(1) theory, and which are reinstated in that theory by hand. One of
these is the vacuum current as demonstrated in this section; other examples
include vacuum polarization and magnetization.
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Chapter 3
Field-Matter Interaction

3.1 Introduction

In this chapter we demonstrate the fundamental B® to one fermion
interaction that leads to the phenomenon of radiatively induced electron spin
resonance (ESR) and nuclear magnetic resonance (NVMR). The Dirac
equation was first solved to show the existence of radiatively induced
fermion resonance (RFR) as reported in the third volume of this series [1].
The term responsible for the effect was isolated to be the novel interaction
energy, the real valued and physical expectation value,

2
En=i—0-AxA", (1.3.1)
2m

where e/m is the charge to mass ratio of a fermion (electron or proton) and

iAxA* the real valued conjugate product of complex vector potentials in a
circularly polarized electromagnetic field, considered to be classical in the
manner first proposed by Dirac [2]. InEq. (1.3.1), o is the Z component of
the Pauli matrix [3—6]. The interaction energy can be expressed in terms of
the B® field of the radiation as [1]

eh
En=-—"0-B®,
m (1.3.2)
and this is an ESR or NMR equation with the static magnetic field replaced

by B®. All known ESR and NMR effects can therefore be induced by
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radiation rather than by a static magnetic field. The technique produces
unprecedented resolving power because the resonance frequencies are
proportional to I/ w? where I is the beam power density (or intensity in
Wm?) and w beam angular frequency. With moderate microwave pumping,
fermion resonance can be induced in theory in the visible, and picked up
with an ordinary Fourier transform infra red-visible spectrometer acting as
probe. This produces in theory a resolving power about one¢ thousand to ten
thousand times that available with magnet based ESR or NMR of any kind
(including multi dimensional ESR and NMR) because the visible range is
that much higher in frequency than the microwave (or gigahertz) range in
which the current instruments operate.

This result indicates the existence and usefulness of the B® field
and is the fundamental spin-spin coupling between the photomagneton [7]
(the photon’s B field) and the fermion’s half integral spin B® proposed

by Pauli [8] and Dirac [9]. Indications of the existence of B ® open the road
to non-Abelian electrodynamics and non-local and superluminal
interpretations [10] unknown in the traditional view [11].

In this chapter the above result is reproduced with several equations
of motion, beginning with the Newton equation of a classical charged
particle in a classical electromagnetic field; and ending with the quantum
relativistic van der Waerden equation [12 ] for a two component spinor. The
complete hierarchy of known equations of motion in physics produces the
same RFR term, Eq. (1.3.1). Itis areal, non-zero and physical ground state
term in Rayleigh-Schrédinger perturbation theory [13]. The same type of
coupling appears to have been recognized in principle by Pershan ef al. [14]
in 1966, during their establishment of the inverse Faraday effect, but these
authors used higher order perturbation theory near optical resonance as did
Li et al. [15] and others [16—20] in recent papers confirming the original
proposal of RFR [21]. The key o-A xA" coupling in higher order
perturbation theory is clearly represented in Ref. [14] Eq. (8.6) and was
confirmed by them empirically in paramagnetic, rare earth doped glass
samples. These authors did not appear to realize however that the ground
state term (1.3.1) is non-zero. This is the fundamental B® term discussed
in this chapter and occurs independently of any optical resonance, as in
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ordinary magnet based ESR and NMR. The great beauty of the new theory
therefore is that one merely replaces B of the magnet by B® of the
electromagnetic field [1]. One can then proceed to understand the gallery of
consequences as in the highly developed theory of ESR and NMR, but with
a potential resolving power up to ten thousand times greater. In analogy,
successful development would be the metaphorical equivalent of replacing
the optical with the scanning tunneling electron microscope.

3.2 Classical Non-Relativistic Physics

In order to derive Eq. (1.3.1) in Newtonian physics, write the kinetic
energy in SU(2) topology through the use of the Pauli matrix ¢ [8] and
describe the field to particle interactions with the minimal prescription
applied to a complex valued A representing the magnetic vector potential
of the electromagnetic field [11]. Finally use ordinary complex algebra to
extract the real valued and physically meaningful interaction kinetic energy
corresponding to Eq. (1.3.1). The Newtonian kinetic energy of a classical
charged particle interacting with the classical electromagnetic field in SU(2)
topology is therefore the real part of

1 1
H =—o0-(p-eA)o-(p-eA")=—o0"pc-
.mzm(p)(p)zmpp
e
-—(c-Aop+o-po-A’
2m( p+o-p ) (1.3.3)
2
+2 0-d0-4".
2m
Using the results,

o-Ao-p=A-p+ioc-Axp,
(1.3.3a)

o-po-A"=p-A’+ic-pxA~,
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we can isolate the following terms from the right hand side of Eq. (1.3.3).

1) Magnetic Dipole Term

H=--p@A+a"
1= 75 P ( ) (1.3.3b)
= m,-ReB
=5 —my ReB, (1.3.3¢)

where m, is the magnetic dipole moment of the electron or proton and Re B
is the real magnetic component of the electromagnetic field.

2) Spin-Flip Term
H=-i-% 0-px"-4),
2= 7l 0°P ( ) (1.3.3d)

which for an electron or proton moving initially in the Z axis can be
>xpressed as

A© . ..
H,=-e—p,0-(jcosd +ising), (1.3.3¢)
V2
~vhere
B Z
b=wt-xkZ=w(t-=). (1.3.39)

c

finitially ¢ = O the spin ¢ points in the Y axis; when ¢ = 7 /2it points in
he X axis; when ¢ = 7 in the -Y axis; when¢ = 37/2 in the -X axis and
vhen ¢ =2 back in the Y axis. So this confirms that H, is the spin-flip
erm used in all Fourier transform ESR and NMR instruments.
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3) Polarizability Term
This is,
[-[:e_zA.A":e_zA(O)2 (1.3.3g)
> om om o8

and is the basis of susceptibility theory [13].
4) The RFR Term

The RFR term, finally, is,

e?
H =i—0"AxA"
2m
(1.3.3h)

2
Ll qong. g
2m

All four terms have been observed empirically. Terms 1) to 3) are well
known and term 4) was observed by Pershan et al. [14] in the paramagnetic
inverse Faraday effect.

Thus Eq. (1.3.3) contains the spin-flip and RFR term in addition to
the familiar and observable O(3) terms as found in a text such as that by Pike
and Sarkav [22]. These terms rely for their existence on topology rather
than quantum mechanics. It is well known [23] that SU(2) is homomorphic
with O(3), the usual rotation group of three dimensional space in Newtonian
physics. However, the Clifford algebra underlying SU(2) gives more
information, as advocated by Bearden et al. [24]. Our Newtonian result is
consistent with the fact that Eq. (1.3.1) was obtained in the non-relativistic
limit of the Dirac equation as a real expectation value [1].
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3.3 Classical Relativistic Physics

It is a straightforward matter to repeat this simple exercise for
classical relativistic physics because one can use the same minimal

prescription in the Einstein equation written in SU(2) topology. For a free
classical particle, the latter is

Y, ¥'p, =mic?, (1.3.4)

where y* is the Dirac matrix, P, the energy momentum four-vector, and ¢

the speed of light in vacuo. The interaction of the classical electromagnetic
field with the classical, relativistic, particle is described therefore by the
quation of motion,

Y (p, ~ed )¥"(p, -ed,) =m?c?, (1.3.5)

which in Feynman’s slash notation becomes [1]
(P-ed) (p-ed™) =m*c?. (1.3.6)
T'he RFR term is [1] the real valued interaction energy,
e? /.
En:=—44", (1.3.7)
m

wvhich includes term (1.3.1) of this chapter as part of a fully relativistic
reatment,

A =44, ~(0-A) 0 -A") =4 Ay -A A" ~ic-AXA". (1.3.8)

Non-Relativistic Qua
3.4 Non-Relativistic Quantum Physics
We can consider the Schrodinger Pauli equation [8],
By = Eny, (1.3.9)
in which the classical kinetic energy becomes an operator on a wavefunction

which is a two component spinor in SU(2) topology. The usual operator
replacements are used as follows:

ph-id*, p“ﬂ"hau,
En~z‘°ﬁ% , p- -V,

. —E—np s @ p (1.3.10)
. c b b u‘ c b b

10 10
ot:=f ——, -V, 0 :=| —,V|.
(cat ] g (cat )

It is interesting to note that for a real valued A (static magnetic field
problem of ordinary ESR and NMR [13]) the Schrodinger-Pauli equation
produces the famous real expectation value,

En--2"6-B, B-VxA, (1.3.11)

2m

where % is the Dirac constant. This is the fundamental ESR or NMR term
obtained in the non-relativistic quantum limit and has no classical equivalent
because it depends for its existence on the operator rules (1.3.10). The
Hamiltonian operator that produces result (1.3.11) is
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I{T:Z—I—o-(ﬁ—eA)o-(ﬁ—eA)+V, p=-inv, (1.3.12)
m
where V is a potential energy.

In order to obtain the new RFR term (1.3.1) this operator becomes

A 1 A A *
H=_—0-(p-ed)o-(p-ed")+V, (1.3.13)
2m
and leads to the classical real valued term,
H € o AxA”
=1—0" X ’ I
rer ¥ . Y (1.3.14)

which obviously has the same expectation value, Eq. (1.3.1). Therefore,
unlike ordinary ESR and NMR, RFR depends on a term which does have a
classical equivalent if we treat the field classically as did Dirac [2].

3.5 Relativistic Quantum Physics

The most straightforward route to relativistic quantum mechanics is
through the replacement of P, in the Einstein equation (1.3.4) by its

operator equivalent to give the van der Waerden equation of motion as
detailed by Sakurai [8 ] for example,

(iv*a,) (iv*3,)w = ( E) ’ v, (1.3.15)

Here (is a two component spinor and the equation is well known to be
equivalent to the much better known Dirac equation involving a four
component spinor. The RFR term emerges from the van der Waerden
equation in the form,

Rayleigh-Schrodinger Perturbation Theory 101

2
T (iau—eAu)y” (iau—eAu*)q: = (E) V. (1.3.16)

The real and classical e ZM * is a simple multiplicative operator on the two

component spinor, with the same, real, expectation value. This is also the
case for the Dirac equation as given in Ref. 1, and in general for all SU(2)
topology quantum mechanical equations.

3.6 Rayleigh-Schridinger Perturbation Theory

In perturbation theory [13] the RFR term is a non-zero ground state
term,

2
En = ize— <O]o "AxA *]O>+ second order terms. (1.3.17)
m

As shown recently by Li et al. [15] and by others [16—20] small second
order RFR shifts also occur in second order corrections in perturbation
theory, but term (1.3.17) is of far greater practical interest, because as shown
in Ref. 1, it produces fermion resonances in the visible. Second order
perturbation theory was also used by Pershan et al. [14] to produce the
paramagnetic inverse Faraday effect, which they confirmed experimentally.

3.7 Discussion

In free space, the novel B® field of O(3) symmetry electrodynamics
is defined for one photon by,

B® .= _,foA*, (1.3.18)
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where e is the elementary charge [1]. Substituting this definition into
Eq. (1.3.17) we find that the RFR term takes the same form precisely as the
spin Zeeman effect produced by a static magnetic field,

eh
Enger) = “5;<0|0'B‘3’|0>- (1.3.19)

We need only replace B by B® as defined in Eq. (1.3.18).
Equation (1.3.19) is the fundamental spin-spin interaction between one
photon and one fermion. For a free electron, the resonance frequency is
straightforwardly calculated [1] from Eq. (1.3.19) to be

res

elu.c
= ( Ho® | 1 _ 1.007 x 1023i , (1.3.20)
hm w2 w?

where 1 is the pump beam power density in watts m? (10,000 watts m2)
= 1.0 watt cm™®), p, the free space permeability in ST units. For the H atom,

the Hamiltonian operator is well known to be,
A %2

Hor wom = =577V (1.3.21)

where V' denotes the classical Coulomb interaction between electron and
proton and p is the reduced mass,

mm
_tr

m +m
€ p

W= ~m,, (13.22)

where m, and m,, are respectively the electron and proton masses. The

resonance frequency in atomic H from Eq. (1.3.20) is therefore slightly
shifted away from the free electron resonance frequency because the reduced
mass is slightly different from the electron mass. The Hamiltonian operator
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(1.3.22) for a monovalent alkali metal atom such as sodium (Na) must take
account of the fact that there are several protons, neutrons and electrons
arranged in orbitals according to the Pauli exclusion principle [13]. This
atomic structure gives rise to the possibility of spin orbit coupling, spin-spin
coupling between electrons, Fermi contact splitting, and hyperfine splitting
as in ESR or NMR [13]. However, as a rule of thumb estimate, the outer or
valence electron can be considered as superimposed on closed shells of inner
electrons and a nucleus made up of protons and neutrons of a given reduced
mass. To a first approximation, the Hamiltonian (1.3.22) can be used in
which the sodium atom’s reduced mass is slightly different from the free
electron mass. This means that the main RFR resonance frequency in
sodium is well estimated by Eq. (1.3.20) and so sodium vapor can be used
in the experiment to detect RFR.

In order to detect RFR experimentally adjust conditions in the first
instance so that,

W =W, (1.3.23)
which is the auto-resonance condition in which the pump beam is absorbed
at resonance because the pump frequency matches the resonance frequency
precisely. Equation (1.3.20) simplifies to

W, = 1.007 x 10% 1. (1.3.24)

Therefore we can either tune w_ for a given [ or vice versa. Since auto-

resonance must appear in the GHz if the pump frequency is in this range it
is convenient to slightly modify the set up used by Deschamps et al. [25] in
their detection of the inverse Faraday effect in plasma. They used a pulsed
microwave signal at 3.0 GHz from a klystron delivering megawatts of power
over 12 microseconds with a repetition rate of 10 Hz. The TE,; Mode was

circularly polarized with a polarizer placed inside a circular waveguide of
7.5¢cm diameter. The plasma sample was created by a very intense
microwave pulse and held in a pyrex tube inserted coaxially in the
waveguide of 6.5 c¢m diameter and length 20.0 cm. The section of the
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waveguide surrounding the tube was made of nylon internally coated with
a 20 micron layer of copper. The inverse Faraday effect was then picked up
with Faraday induction [25].

To detect RFR change the sample to sodium vapor, which is easily
prepared and held in the sample tube. Equation (1.3.24) predicts that
resonance occurs at 3.0 GHz if I is tuned to 0.0665watts cm™. For a
circular waveguide of 7.5 c¢m diameter this requires only 2.94 watts of CW
power from the klystron at 3.0 GHz. In deriving Eq. (1.3.20) it has been

assumed that [1,26]

_ € pon
I_u_oB 2. (13.25)

This is a simple theoretical estimate and it is strongly advisable that / can
be tuned over a considerable range around 2.94 watts to allow for

unforeseen discrepancies between Eq. (1.3.25) and the actual experimental
beam intensity generated by the apparatus. Once the main resonance is
detected however, further refinements can follow, making full use of
contemporary electronics. To repeat the experiment with atomic H or with
the free electron gas is likely to be more difficult purely because of sample
handling problems. The experiment should be repeated after auto-resonanc
is detected to demonstrate the major advantage of RFR by pulsing the pump
beam for increased power density at the same frequency and by using
Eq. (1.3.24) to estimate the resonance frequency. A sample of expected
results is given in Table 3.1. As can be seen it is possible in theory to
produce ESR (and NMR) in the visible range, with a four-order of magnitude
increase in resolving power over current magnet based techniques.
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Table 1. RFR Frequencies for a 3.0 GHz Pump for given /

Pump Intensity Resonance Frequency

I (watts cm™)

10.0 15.04 cm™ (Far infra red)
100.0 150.4 cm’! (Far infra red)
1,000.0 1,504 cm™ (Infra red)
10,000.0 15,040 cm™ (Visible)
100,000.0 150,040 cm™* (Ultra violet-X ray)

For a 3.0 GHz circularly polarized pump pulse of 10 kwatts cm™ the RFR
frequency is at 15,040 cm’' in the visible, and can be detected with a Fourier
transform infra red-visible spectrometer such as a fully computerized Bruker
IFS 113v. The detector of the spectrometer must be fast enough to record
an interferogram during the microsecond interval of the microwave pulse.
Therefore pulse repetition and computer based refinement is necessary for
good quality data. The pump should be kept as homogeneous and noise free
as possible, but because of the /w? dependence of RFR , simple Maxwell-
Boltzmann theory [1] shows that conditions can be adjusted to produce a
much larger population difference between up and down fermion spins than
in magnet based ESR or NMR. Therefore this alleviates the well known
problem of magnet homogeneity in magnet based ESR and NMR, a problem
which is due to a small (one part in a million) population difference. In RFR
the latter can easily exceed 20% [1] at a conservative estimate for moderate
pump power of ten watts order of magnitude. The complete ESR spectrum
of sodium vapor can therefore be taken, in theory, in the infra red or visible.
This is terra incognita in magnet based technology, which is reaching its
design limit. The whole process can then be repeated for NMR and MRI.
The characteristic and key /w? coefficient of our theory [1] appears
also in the second order perturbation theory of Harris and Tinoco [17], their
p. 9291, second column, premultiplied by a factor. These authors miss the
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first order or ground state term (1) and in consequence their theory falls short
of empirical indications by Warren et al. [27] by eight orders of magnitude.
Straightforward estimates [1] based on Eq. (1.3.1) applied to NMR fall in the
order of magnitude of the data obtained by Warren et al. [27] by visible
frequency irradiation of molecular liquids with various circularly polarized
lasers, including an argon ion laser at 528.7 nm, 488 nm, and 476.5 nm.
Accounting simply for the different g factors of the proton and electron,
Eq. (1.3.1) applied to NMR [1] produces very tiny shifts of 0.12, 0.10 and 0.098
Hz respectively for the three argon ion laser frequencies quoted above and
for an intensity of ten watts per square centimeter, approaching the highest
CW intensities used by Warren et al. [27] in important and pioneering
experiments at Princeton following our early theory [21,28] which also
missed the key term (1.3.1) introduced finally in Ref. 1. Equation (1.3.1)
now shows now why Warren ef al. [27] were not able to obtain more than
indications of RFR shifts, both in proton and '*C Fourier transform and two
dimensional NMR. In 3C NMR the mass of the '3C nucleus is an order

of magnitude heavier than in !H NMR and the shifts from Eq. (1.3.1), all
other factors being equal, are in consequence an order of magnitude smaller,
in the 0.01 Hz range — too small to be detected, as found experimentally
[27]. The remedy is also given by Eq. (1.3.1), which is to replace the lasers
with pulsed or C/ microwave generators for about the same /. Their effort
[27] nevertheless remains as a landmark in the field.

Finally, Li et al. [15] have shown that even in second order
perturbation theory of the type used by Harris and Tinoco [16,17], or
Buckingham et al. [18,19], large RFR shifts of up to 10 MHz are possible
using pump lasers tuned near to optical resonance. Systematic development
of RFR, first proposed by the present author in Ref. 21 and in several
consequent papers [28], is clearly going to be highly beneficial to chemical
physics and medicine unless all the equations of physics are misleading or
unless some unforeseen technical difficulty occurs. With contemporary
technology it is unlikely that such a difficulty, if it occurred, could not be
overcome. Philosophically the whole process can be thought of as stemming
from the B® (Evans-Vigier) field of O(3) electrodynamics [1], which for
sne photon, is the fundamental photomatic [29].
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Paper 1
Ultra Relativistic Inverse Faraday Effect

In the ultra relativistic limit of the inverse Faraday effect it is
shown that the magnetization of the sample by the circularly
polarized electromagnetic field becomes directly

proportional to the B® field of the radiation. Observation
of such an effect is direct observation of the B®) field.

Key words: Inverse Faraday effect; Ultra relativistic limit; B @ field.

1.1 Introduction

The simple geometrical hypothesis ofa B® field of electromagnetic
radiation is supported by the inverse Faraday effect, which to date has been
verified experimentally in the non-relativistic limit, defined by relatively low
intensity and relatively high frequency [1-5]. In such a limit the observable

magnetization is proportional to beam intensity through the factor B@B®,
where B® = BOk. The effect is conventionally interpreted through the

conjugate product of plane waves in the vacuum, within the traditional
framework of Maxwell-Lorentz theory. The U(1) constraint imposed on
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such a theory implies that there is no B® field in the vacuum [6—10].
However, if this group constraint is removed, the B cyclic theorem shows
that the conjugate product is proportional to the recently inferred B® field
by ordinary three dimensional geometry [11]. Such group constraints reduce
the generality even of the restricted, linear Maxwell-Lorentz-Cartan
electrodynamics, and are, in the last analysis, subjective [12—15]. There is
no reason therefore to reject the existence of the B® field on the basis of
the U(1) group restriction applied to a linear theory of electrodynamics. By
hypothesis, B® is a field of non-linear electrodynamics, and is not
hypothesized in Maxwell-Lorentz electrodynamics.

Furthermore, the B Cyclic theorem is by its very nature a non-
Maxwellian construct, which shows geometrically that the curl of the B®
field is zero in the vacuum. This prediction has recently been confirmed
experimentally [16 ]. The theorem has been shown to be rigorously Lorentz
covariant [17], and therefore quantizes to a CPT conserving field theory.
It therefore has merit in special relativity and quantum mechanics. On these
criteria, the B® field is as valid as any other field component in theories
that are Lorentz covariant. There is therefore no reason to assert that
B® = 0, and no reason to assert that it is a field of Maxwell-Lorentz
electrodynamics. If observed experimentally therefore, it signifies an
advance in the basic structure of electrodynamic theory. The B Cyclic
theorem is more fundamental in nature than the Maxwell-Lorentz-Cartan
theory, because the theorem is, tautologically, an angular momentum
operator relation, i.e., within %, a relation between rotation generators of
space itself [18]. It is therefore as fundamental as a geometrical hypothesis
such as the Pythagorean theorem. For the first time, it applies
relativistically correct, Lorentz covariant, geometry to three magnetic field
(or rotation generator) components in vacuo interlinked by the structure of
space-time. If we break this link, we automatically impose a subjective
constraint, and change the ordinary topology of space-time. There is no way
of arguing against the B® field using a model of electrodynamics,
especially a linear model, because the latter is inevitably constructed in the
same space-time. The B Cyclic theorem is as fundamental as the Noether
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theorem. Space-time geometry, and the concomitant relation between fields,
is valid irrespective of any model of electrodynamics, such as that of
Maxwell. The B Cyclic theorem is a geometrical relation between three
magnetic field components, all three of which are propagating at ¢ through
the vacuum. Such a concept obviously does not exist in Maxwell-Lorentz
electrodynamics, yet is Lorentz covariant [17] and CPT conserving. Any
criticism of B® based on Maxwell-Lorentz electrodynamics is therefore
misplaced from the beginning [19]. Such criticism applies an inadequate
linear model to a fundamental, topological, non-linear and very fundamental
new theorem.

In this paper it is shown that in the ultra relativistic limit of the
inverse Faraday effect, the magnetization observable in the sample is
proportional directly to B, to no other magnetic field component, and is
a direct demonstration of its existence. Due to the relation between B®
and the transverse plane waves [20] this result can be obtained from the
relativistic Hamilton-Jacobi equation [21] in a limit of very low frequency
and very high intensity. Furthermore, this limit is experimentally accessible
[22]. In Sec. 1.2, the reasoning leading to this result is reviewed in terms of
delayed action at a distance theory, which was shown by Schwarzschild [23]
to be fully equivalent to Maxwell-Lorentz theory. This picture is not
adequate for the interpretation of the inverse Faraday effect (/FE) however,
because as we have seen, B® is not defined in Maxwell-Lorentz theory,
but is a very useful way of thinking of the inverse Faraday effect reduced to
its essence. To properly define B®, a non-linear theory of electrodynamics
is the minimum requirement. In Sec. 1.3, the ultra-relativistic limit is
developed for one electron, and the equation given showing the direct
relation between B® and magnetization. The latter is longitudinally
directed and can be proportional only to a longitudinally directed magnetic
flux density propagating through a vacuum. This is the B® field of the

radiation.



116 Paper 1

1.2 Delayed Action at a Distance

As pointed out by Ritz [23], in an elegant criticism of Maxwell-
Lorentz electrodynamics, the latter is exactly equivalent to delayed
elementary action at a distance. The inverse Faraday effect can be
understood in terms of elementary actions without the use of intervening
fields. In the simplest case a circling electron in a transmitter radiates into
the vacuum and a time ¢ later an electron in a receiver is set into circular
motion. Magnetization in the transmitter becomes magnetization in the
receiver, both vectors being longitudinally directed in the Z axis. To
describe this process mathematically requires the use of the elementary
actions in a relativistic equation of motion, the most convenient one for this
purpose is the relativistic Hamilton-Jacobi equation, as pointed out by
Landau and Lifshitz [24]. The electronic motion set up in the receiver by the
field is circular motion, so the elementary actions must be introduced in such
a way as to reproduce this experimental fact, which can be inferred from the
observation of magnetization in the Z axis of the receiver due to the electron
circling about the Z axis.

When the calculation is carried out [25], the final result can be
expressed in terms of a magnetic field B®, but it can also be expressed as
an angular momentum due to delayed elementary action at a distance. In the
last analysis it is simply a transfer of angular momentum from the
transmitter to the receiver. The intervening agent is postulated to be a field,
whose mathematical structure is determined by the partial differential
equations known as Maxwell's equations. However, as shown by Ritz [23],
these equations are no more than model relations between space-time
components, whereas the B Cyclic theorem depends on no model.

The ultra relativistic limit being considered here is one in which the
observed magnetization is directly proportional to B® in the field theory.
This is a simple result obtained after a long and complicated calculation
based on the use of elementary action in the Hamilton-Jacobi equation. The
same calculation produces the well known non - relativistic limit, which has
been confirmed experimentally [1—5]. The elementary action is introduced
in such a way as to spin the electron in the receiver, and in such a way as to
reproduce the time it takes for the signal to reach the receiver from the
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transmitter. A combination of spinning and translating motions, combined
with a time delay, means that there is a phase present, which is the
electromagnetic phase. This appears only in the transverse components of
the elementary action, which when put into the Hamilton-Jacobi equation of
the electron in the receiver, produces the required circling motion. Because
of the B Cyclic Theorem, this is identical with spinning the electron witha B®

field, and this is exactly what the result gives us in the ultra relativistic
limit. The magnetization is directly proportional to B®. It is simply a
magnetic field strength in the receiver produced by the magnetic flux density
B® of the vacuum, produced in turn by a magnetic field strength in the
transmitter.

1.3 Calculation from the Hamilton-Jacobi Equation

The calculation given in Ref. 25 for the relativistic inverse Faraday
effect is modified here for the ultra-relativistic limit by correcting the
gyromagnetic ratio by the relativistic factor y . In Gaussian units, the

necessary expression is given by Talin ef a/. [26] in their Eq. (3),

el

M, = -
z 2mcy

L,. 2.1.1)

This corrects the usual gyromagnetic ratio [26 ], e/2mc in Gaussian units.
The origin of this correction is given by Talin ef al. [26] in their Eq. (12),

1 pdr, .
M, = ;fz—Z(rXJ(r,f))z, 2.1.2)

where M, is magnetization, V' the sample volume, r the relativistic radius

of gyration and j (r,t) is a symmetrized current density operator. From
this equation they develop their gauge invariant expression (38), which is
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proportional to the conjugate product of vector potentials, 4 x 4 ™. Thisis
the B Cyclic theorem in plasma,

MO = —ig/ AW x 4D (2.13)

where g’ is relativistic and depends on the plasma properties.

In Ref. 25, the relativistic Hamilton-Jacobi equation is used to
calculate the angular momentum set up in one electron by a circularly
polarized, classical, electromagnetic field. The result is the same as that of
Talin ef al. , except that S7 units are used in Ref. 25. However, in Ref. 25,
the non-relativistic gyromagnetic ratio was used to relate this angular
momentum to the magnetization. In S/ units this is -e/2m as given in
Eq. (9.3.1) of Atkins [27], and as used to define the usual Bohr magneton
eh/2m. From Eq. (1.3) of Talin ef al. [26] it can be seen that the
gyromagnetic ratio itself needs to be corrected relativistically under some
conditions. Therefore the Bohr magneton is not a constant, it depends on the
relativistic factor y as defined by Talin et al. [26].

When the necessary correction is made to the Bohr magneton, the SI
magnetization becomes

352
M® - __¢¢ ! BOB®

2m2w’V \ (63«))]2 (2.14)
+

mw

This is the magnetization in amps per meter (coulombs per second per
meter) caused in one electron by a circularly polarized electromagnetic field.

The magnitude of the magnetic flux density of the field is B, and its
angular frequency is . The charge to mass ratio of the electron is e/m.
The sample volume is ¥ in cubic meters. Finally B® := B©k where
k = ¢®. Equation (2.1.4) is valid over the whole range of existence of the
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inverse Faraday effect, from non-relativistic to ultra-relativistic. In the non-
relativistic limit we obtain the same result as Ref. 25,

M® BOB® (2.1.5)

._-> _———

eB O « mw 1 e3c?
V

2mie’

and the magnetization is proportional to intensity. This is the original
inverse Faraday effect, first observed in 1965 [1] and repeated several times
[4—5].

In the ultra-relativistic limit, eB©® » mw, Eq. (2.1.4) becomes,

0)

M<3>eB_3mw_T1/( g{)e@' (2.1.6)
2w

This seems to be independent of B® | but recall [27] that the magnetic

dipole moment of the field is,

602

v
m®] = == - E"IB“’I- 2.1.7)
0

Therefore in the ultra-relativistic limit,

v

2
v

11
2,

M® = B®, (2.1.8)

where 7, is the local volume element used to describe electromagnetic

energy in vacuo, and p, is the vacuum permeability.
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Equation (2.1.8) is clear proof that in the ultra-relativistic limit, the
magnetization is directly proportional tothe B®) field of the radiation. If B®
were zero there would be no magnetization, and this is inconceivable,
because the structure of Eq. (2.1.4) is valid over the entire range from non-
relativistic to ultra-relativistic. This means that there must be an ultra-
relativistic effect because there is an observable non-relativistic effect.
Equation (2.1.4), except for units, is identical with the second part of Eq. (3)
of Talin et al. [26].
Under all conditions,

VxM® =VxB® =0, (2.1.9)

Equation (2.1.6) or (2.1.8) is potentially very useful for applications as
discussed below.

1.4 Discussion

The ultra-relativistic limit (2.1.6) can be reached experimentally [22]
in the laboratory with standard apparatus. It is expected that the effect can
be observed in all materials with power line apparatus as standard in the
industry. From Eq. (2.1.6), which is more suitable for electrical engineering
applications than Eq. (2.1.8), it is clear that the expected effect is inversely
proportional to the angular frequency and the sample volume. Therefore in
order to maximize the effect it is necessary to maximize the power density
of the radiation field, minimize its frequency and minimize the sample
volume. Although the power density does not seem to be present in
Eq. (2.1.6), recall that it is the limit of Eq. (2.1.4). The power density
reveals itself through the product V©@B® in Eq. (2.1.8). It is easily
checked that both Eqgs. (2.1.6) and (2.1.8) have the required units of
coulombs per second per meter.

These are the SI units both of magnetization and of magnetic field
strength. So in the ultra relativistic limit the entire magnetic dipole moment
of the field is transferred to the electron. As shown by Eq. (2.1.6), there is
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no intensity dependence in this limit. Therefore a constant magnetization is
set up in a sample, such as a ferrite core of a power line design [22] and this
phenomenon is entirely new and unexplored, probably with many
applications. Although B® appears in Eq. (2.1.8), it is multiplied by V®,
and the product V©B® has no power density dependence. The latter
enters indirectly however because we are considering a extreme high power
density-low frequency limit of Eq. (2.1.4). Remarkably, this limit is easily
accessible in the laboratory and in applications [22].

The conclusion is that if B® were zero, there would be no
observable magnetization and this contradicts experience in the non-
relativistic limit of the main equation (2.1.4). Therefore there can be no
further doubt that B® is non-zero empirically. It is a non- Maxwellian
field.
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Paper 2
On the Use of a Complex Vector Potential in
the Minimal Prescription in the Dirac

Equation

It is argued that the use of a complex vector potential in the
minimal prescription maintains the basic Hermitian property
of the Hamiltonian operator in Dirac's equation for the
interaction of a fermion with the classical electromagnetic
field. This is demonstrated by setting up the Dirac equation
for a complex vector potential and for its complex conjugate,
then forming a pure real Hamiltonian.

Key words: Minimal prescription; Dirac equation; complex vector potential.

2.1 Introduction

In the standard theory [1] the minimal prescription is used in the
Dirac equation with a real vector potential. This method reproduces the
standard description of the Stern-Gerlach experiment but does not allow for
a coupling between the conjugate product [2—6] of the electromagnetic field
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and the Pauli matrix of the fermion. In this paper we show that the use of
a complex vector potential in the minimal prescription results in a pure real
Hamiltonian operator which maintains the Hermitian properties of the Dirac
equation intact and gives a direct coupling between the conjugate product
and the Pauli matrix o. In Sec. 2.2 we set up the equations necessary for
this demonstration and solve them in Sec. 2.3. A short discussion is given
of the consequences to nuclear magnetic resonance and electron spin
resonance of the existence of such a direct coupling.

2.2 The Dirac Equation with a Complex Vector Potential

The use of a complex vector potential to describe electromagnetic
radiation is a mathematical procedure in classical electrodynamics in which
it is understood that the physical part is the real part [7,8]. In quantum
mechanics the eigenvalues of Hermitian operators are real [1,9] and the
eigenstates corresponding to different eigenvalues of Hermitian operators are
orthogonal. Therefore it seems to be assumed implicitly that physical
eigenvalues generated by the Schrédinger or Dirac equation must be pure
real in order to be physical. This is a different rule from the one used in
classical electrodynamics. In this paper we consistently use the same rule
for both classical and quantum mechanics, and assume that the real part of
a complex eigenvalue is physical. Therefore we use a complex,
multiplicative, vector operator 4 multiplying the wavefunction
(eigenfunction) in the basic wave equation, in this case a Dirac equation.

Proceeding on the basis of this working hypothesis, two Dirac
equations are written for the interaction of the fermion with the classical
electromagnetic field, represented respectively with a complex A4 and its

conjugate A *. The real parts of A and 4 * are the same, so if we work on
the basis of the rule that the real part of the complex operator is physical, the
two Dirac equations become the same. Therefore the use of 4 and 4" in

this way is a working mathematical hypothesis, one which leads to a pure
real (and Hermitian) Hamiltonian operator. It is shown in Sec. 2.2 that this
method leads to a well known result first given by Volkov [10] but in

addition gives the interaction energy between the conjugate product 4 x A
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of the classical radiation field with the Pauli spinor ¢ . This interaction
energy is proportional to intensity I divided by the square of angular
frequency w .

The Dirac equation is

Hy = EY, 2.2.1)

where the Hamiltonian operator is

H - ca-(p —fA] +Brmc? + eV 222)
C

Here ¥ is the four-component Dirac spinor [1], and E the energy eigenvalue.
The physical energy eigenvalue is real, so it is assumed usually that 4 must
be real. In Eq. (2.2.2) we use Gaussian units [11]. Here c is the velocity of
light, p the assumed real momentum of the fermion, e its charge and m its
mass. The scalar potential V7 is also assumed to be pure real in the
conventional method [1,9]. The matrices o and [ are defined by

_(00 (10 203
*“lso) b= 01/’ (22.3)

where o is the Pauli matrix and 1 is the unit matrix. Following standard
methods this equation is modified for the rest energy to

(E+me?)y’ = (ca-m+Pme? +eV )y, (2.2.4)
where the modified spinor can be expressed as two two-component spinors, Y,

and Y. The minimal prescription is expressed through [11] the pure real,

n=p—§A, (2.2.5)
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ind the Dirac equation splits into two interlinked equations,

~ coO'T
Yy = Trame? o (2.2.6)
2 . 2
(E-eV)y, - —S19°™) 22.7)

E +2mc? -eV 4

Dne of these is an equation in Y, and the other links {, to ;. The second

san be expressed as the wave equation,

Hll’A = Ell’A > (2.2.8)
vhere H is the Hamiltonian,
c{o-m)
E+2mc?-eV

H = +el. (2.2.9)

[his standard textbook procedure evidently gives a satisfactorily Hermitian
:quation which gives real and physical energy eigenvalues, positive and
1iegative [1], but pure real.

If we let A be complex, we can write two Dirac equations,

(E-eV)y, = co-myy, (2.2.10)
(E+2mc? -eV)y, = co-ny,, (2.2.11)

(E-eV)y, =cao-n"y,, (2.2.12)
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(E+2mc?-eV)y, = co-n"y,, (2.2.13)

and we can evaluate the consequences of this working hypothesis. Using
Egs. (2.2.10) and (2.2.13); or using (2.2.11) and (2.2.12) we obtain in both
cases,

HYy, = EY,, (2.2.14)

c{o-n)o-n*)
E +2mc? - eV

H = +el. (2.2.15)

This equation is identical to Eq (26) of Ref. 10 except for a change of sign
in ¥ and a factor 2 multiplying mc? in the denominator. Using the standard
[1] non-relativistic approximation,

E-eV«2me?, (2.2.16)

Eq. (2.2.15) can be written as,

H=H +H+.., (2.2.17)
2
" — e . *
H, := 2mc2A 47, (2.2.18)
62 . *
H, := > Sio-AxA”. (2.2.19)
mc
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The term labeled H, was first derived [10] by Volkov in 1935 and is pure

real. It is the second order contribution of the electromagnetic field to the
kinetic energy of the particle in the non-relativistic limit. The dotproduct 4 - A4
is often referred to in classical electrodynamics as a time average over many
cycles. Therefore the working hypothesis that A can be complex in
Egs. (2.2.14) and (2.2.15) leads to a standard Volkov result [10] for the
theory of the Dirac fermion in the classical electromagnetic field.

The same hypothesis also leads to a novel term,

e2

H, := Sio-AxA”, (2.2.20)
2mce

which in S./. units [10] becomes

2
Hy = < ioc-AxA", (2.2.21)
2m

and is also pure real. Thus, Volkov's term H, is accompanied by the term

H ,, which was first proposed using different methods in Ref 10.

2.3 The H, Term And Its Physical Meaning

The H, term represents a coupling between the half integral spin
ho /2 of the fermion and the conjugate product of the classical field,
A x A . It can be shown straightforwardly [10] that this is proportional to
I/ w?,

2,20 0)2
H -8 ik, (2.2.22)

2
2mw?
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Therefore it allows the possibility of resonance between states of the spinor
induced not by a magnet but by the conjugate product A x 4 * [3—6]. The
resonance frequency is given in S./ units by,

2
fos = ( il ) L, (2.2.23)

2thm wz

where p, is the vacuum permeability, and for a given S./ increases as the

inverse square of w. As shown in Ref. 10 this property is potentially of
great usefulness if developed experimentally. The theory also reproduces
the order of magnitude of optical NMR shifts [12] introduced at visible
frequencies.

2.4 Discussion

The Volkov term [I | cannot be produced from the Dirac equation if

we use the standard approach, that A is real. Yet it is a term which has
made its way into a standard textbook such as that of Itzykson and Zuber
[13]. The standard theory produces a term proportional to A4 + A, which is
highly oscillatory for electromagnetic radiation, and which is zero at high
frequencies. Yet it is well known [14] that there exist non-linear optical
effects proportional to the square of potential and field quantities. One of
these is the inverse Faraday effect, which is static magnetization by a
circularly polarized electromagnetic field, and which is described
phenomenologically with 4 x A* [15]. There are therefore internal
inconsistencies in the standard fermion-field theory of the Dirac equation.
In the standard approach, in which A is pure real, the resonance
frequency described by Eq. (2.2.23) becomes proportional to I/ w,

4mc m2 (V)

fo = ( o e—z] L, (2224)
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and so it is easily possible in theory to test the working hypothesis on which
is based Egs. (2.2.10) to (2.2.13). If one is not allowed to use a complex A
then the resonance frequency is proportional to //w ; otherwise it is
proportional to I/ w?. A simple beam experiment ought to be able to
distinguish between these predictions experimentally, or to show that both
are correct. In any event, the experimental demonstration of radiation
induced fermion resonance would be of great practical value, and the theory
of this effect has been developed elsewhere [16].

Acknowledgments

The Alpha Foundation is thanked for the award of a praesidium
membership, honoris causa, and many colleagues for interesting discussions.

References

[1] L. H. Ryder, Quantum Field Theory (Cambridge University Press,
Cambridge, 1987).

[2] M. W. Evans and S. Kielich, eds., Modern Nonlinear Optics, in
Advances in Chemical Physic, | Prigogine and S. A. Rice, eds.
(Wiley Interscience, New York, 1997.)

[3] W. Happer, Rev. Mod. Phys. 171, 11 (1968).

[4] J. P. van der Ziel, P. S. Pershan and L. D. Malmstrom, Phys. Rev.
Lert. 15, 190 (1965); J. Deschamps, M. Fitaire and M. Lagoutte,
Phys. Rev. Lett. 25, 1330 (1970).

[5] G. H. Wagniére, Linear and Nonlinear Optical Properties of
Molecules (VCH, Basel, 1993).

[6]  P.S.Pershan, Phys. Rev. 130, 919 (1963).

[7] 1. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).

[8] W. K. H. Panofsky and M. Phillips, Classical Electricity and
Magnetism 2™, ed. (Addison-Wesley, Reading, Mass., 1962).

[9] P. W. Atkins, Molecular Quantum Mechanics (Oxford University
Press, Oxford, 1983).

Complex Vector Potential, the Minimal Prescription & Dirac 133

[10]

[11]

[12]

[13]

[14]
[15]

[16]

M. W. Evans, J.-P. Vigier, S. Roy and S. Jeffers, The Enigmatic
Photon, Volume 3: Theory and Practice of the B® Field. (Kluwer,
Dordrecht, 1996), Chaps. 1 and 2.

J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics
(McGraw-Hill, New York, 1964).

W. S. Warren, S. Mayr, D. Goswami and A. P. West, Jr., Science
255, 1683 (1992), 259, 836 (1993).

C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw Hill,
New York, 1980), which discusses the Volkov term described in
Ref. 10.

G. Wagniére, Phys. Rev. 4 40, 2437 (1989).

S. Wozniak, M. W. Evans and G. Wagniére, Mol. Phys. 75, 81, 99
(1992).

S. Esposito and M. W. Evans, Phys. Rev. A submitted for
publication.



Paper 3

Infinitesimal Field Generators

The concept of infinitesimal field generator is introduced,
using the principle that the underlying symmetry of special
relativity is described by the Poincaré group, or ten generator
inhomogeneous Lorentz group. This concept leads
straightforwardly to the vacuum Maxwell equations and six
cyclical relations between field components. Both the
Maxwell equations and the field relations are given by the
E(2) little group. The recently inferred field spin, the
vacuum magnetic flux density labeled B in the complex
basis ((1), (2), (3)), is rigorously non-zero from first
principles. The existence of B® is compatible with the
vacuum Maxwell equations, and the cyclic relations are
automatically covariant. The B cyclics are invariants of the
classical field.

Key words: Infinitesimal field generators; B® field; invariance of B cyclics.




136 Paper 3

3.1 Introduction

The concept is introduced at the classical level of infinitesimal
generators of the vacuum electromagnetic field, and it is shown that the
Maxwell equations can be deduced from this concept along with cyclical

field relations involving the recently inferred field spin labeled B @ in the

complex basis ((1), (2), (3)) [1—20]. It follows that the B® field is
rigorously non-zero if we accept our first principle, which asserts that the
infinitesimal field generators are generators of the inhomogeneous Lorentz
group. The antisymmetric matrix of field generators is interpreted in terms
of intrinsic spin. The theory is automatically Lorentz covariant (independent
of any frame of reference) and therefore compatible with the principle of
relativity, and puts the theory of the classical electromagnetic field into close
correspondence with Wigner's theory [21] of particles, a theory which
ascribes to each particle an intrinsic mass and spin.

Section 3.2 describes the relativistic theory of spin angular
momentum, and using this framework proposes an equivalence between the
infinitesimal generators used to define this theory and novel infinitesimal
zenerators of magnetic flux density and electric field strength in vacuo. The
nfinitesimal translation generator is made equivalent to the infinitesimal
zenerator of a fully covariant vector potential. The Pauli-Lubanski operator
>f the relativistic spin angular momentum theory [22] is equivalent to the
vector introduced by Afanasiev et al. [23] which is formed by multiplying
he matrix of infinitesimal field operators with the infinitesimal generator of
yotential.

Section 3.3 is a straightforward deduction of the Lie algebra of field
jenerators in the light-like condition. This algebra has the E(2) symmetry
— that of a well known little group of the Poincaré group [22]. The E(2)
symmetry is that of commutator relations between the novel infinitesimal
ield generators. Particular solutions of this Lie algebra are shown
straightforwardly to be consistent with the vacuum Maxwell equations,
vhich are thereby deduced from our first principle — that the underlying
symmetry group of special relativity is the Poincaré group. The same E(2)
-ie algebra gives six cyclical relations between eigenvalues of the field
senerators in the basis ((1), (2), (3)) [1—10]. Of these, three form the B
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Cyclic theorem [1—10] in the light-like condition. It is easily shown that
the B Cyclic theorem retains its form in the rest-frame (the hypothetical rest
frame corresponding to a massive photon), and so the theorem is a Lorentz
invariant. The algebra shows conclusively that B® is rigorously non-zero
from the first principle adopted for this development, i.e., that the Poincaré
group is the symmetry group of special relativity. If one accepts this first
principle, it follows that B®, the field spin, is rigorously non-zero. It is
difficult to see how the Poincaré group cannot be the symmetry group of
special relativity, and it is concluded that B ® is the fundamental spin of the
classical electromagnetic field in vacuo. It has been shown recently [1—20]
that B® is only one of several possible longitudinal solutions in vacuo of
the Maxwell equations, which as this work shows, are possible conservation
equations compatible with the E(2) Lie algebra of infinitesimal field
generators in the light-like condition. The antisymmetric matrix of
generators is an intrinsic spin of the classical electromagnetic field,
corresponding to the intrinsic spin angular momentum of the photon. The
latter is described by the well known antisymmetric matrix J , of

relativistic angular momentum theory [22], and by the Pauli-Lubanski
pseudo four- vector W* [22].

Finally we discuss this result in terms of a precise correspondence
between intrinsic field spin and intrinsic photon spin in quantum field
theory.

3.2 Relativistic Spin Angular Momentum Theory and Infinitesimal
Field Generators

The theory of relativistic spin angular momentum for particles is
developed for example by Barut [24] and Ryder [22] and relies on the Pauli-
Lubanski pseudo four-vector. The latter is dual in four dimensions to the
antisymmetric spin angular momentum tensor, and cannot be defined
without the introduction of the energy-momentum four-vector. The Pauli-
Lubanski four- vector is therefore,

1
wh = -Ee“‘ *Pilep 5 (2.3.1)
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where €**VP (with €°!23 = 1)is the antisymmetric unit four-tensor. The
antisymmetric natrix J, is given by,

0 K, K, K]
P i
vp _K2 J3 0 _Jl 5 ( o 8 )
K, ~J, J 0

where every element is an element of spin angular momentum in four
dimensions. The energy-momentum four-vector is defined as usual by,

p* = (p%p) = (%,p) - 2.3.3)

The Pauli-Lubanski pseudo four-vector is therefore a four dimensional cross
product of angular and linear momentum for a classical particle.

It is well known [23,24] that these considerations can be extended to
operators, infinitesimal generators of the Poincaré group (ten parameter
inhomogeneous Lorentz group). In the operator representation J, o

becomes a matrix of infinitesimal generators, of rotation generators J and
boost generators K. The p, vector becomes the infinitesimal generator of

translation in four dimensions [22,24]. The infinitesimal generators can be
represented as matrices or as differential operator combinations [22]. The

Pauli-Lubanski operator (#*) then becomes a product of the J, , and p,
operators. Barut [24] shows that the Lie algebra of the W* operators is,
(e, w*] = -iewep W, (2.3.4)

which is a four dimensional commutator relation. The theory is
automatically covariant and therefore compatible with the principle of
special relativity, that the laws of physics are frame independent. Equation
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(2.3.4) gives the Lie algebra of intrinsic spin angular momentum, because
rotation generators are angular momentum operators within a factor h [22].
Similarly, translation generators are energy momentum operators within a
factor %. This development leads to a straightforward particle interpretation
after quantization and to Wigner's famous result that every particle has
intrinsic spin, including the photon.

Our basic ansatz is to assume that this theory applies to the vacuum
electromagnetic field, considered as a physical entity of space-time in the
theory of special relativity. The intrinsic spin of the classical
electromagnetic field is the magnetic flux density B ® 11—20].
Infinitesimal generators of rotation correspond with those of intrinsic
magnetic flux density in vacuo; those of boost with intrinsic electric field
strength; those of translation with intrinsic, fully covariant, field potential.
Thus, the symbols are transmuted as follows,

J-B, K-E, P-4. (2.3.5)
In Cartesian notation, the Pauli-Lubanski vector of the particle theory

becomes a pseudo four-vector operator of the classical electromagnetic field
in the vacuum,

PR R
W= WA, (23.6)

The Lie algebra (2.3.4) becomes a Lie algebra of the field.

3.3 The E(2) Lie Algebra of The Field
If it is assumed that the electromagnetic field propagates at ¢ in

vacuo, then we must consider the Lie algebra (2.3.4) in a light-like
condition. The latter is satisfied by a choice of (Appendix 3A),

AP = (AO,AZ), A% =4, (2.3.7)
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corresponding in the particle interpretation to the light like translation
generator,

p* = (p%p;), P°-p;. 2.3.8)

The Pauli-Lubanski pseudo-vector of the field in this condition is,

W* = (4,B,, AzEy + A By, ~ A, By + 4By, 4, B, )

(2.3.9)
= AO(BZ’EY +By, ~Ey + ByaBz)’

and the Lie algebra (2.3.4) becomes
[BX+Ey,BY—EX] = i(B,-B,),
[By - Ey,B;| = i(By+Ey), (2.3.10)
[BZ,BX+ EY] = i(B,-Ey),

which has E(2) symmetry. In the particle interpretation Eqgs. (2.3.9) and
(2.3.10) correspond to,

wH = (pZJZ,pZKY + Pty P K +p0Jy,p0JZ) (2.3.11)

and
[JX+Ky,JY—KX] = i(J,-J,)
[Jy-Kpdy| = i(Jy+Kp) 1. (2.3.12)
[JZ’JX'KY] = i(Jy-Ky)
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In the hypothetical rest frame the field and particle Pauli-Lubanski vectors
are respectively

wH = (0,4,8, 4B, 4,B;), (2.3.13)

and

w¥ = (0, Py, Poly, Poly ), (2.3.14)

and the rest frame Lie algebra for field and particle is respectively
(normalized B = 1 units)

[ByBy| = iB, (et cyclicum) , (2.3.15)

and

[JX,JY] =iJ,, (et cyclicum). (2.3.16)

It is straightforward to show that the E(2) field Lie algebra (2.3.10)
is compatible with the vacuum Maxwell equations written for eigenvalues
of our novel infinitesimal field operators. This is demonstrated as follows.

A particular solution of the E(2), or little group, Lie algebra (2.3.10)
is given by equating infinitesimal field generators as follows,

B,=E, B,=-E,. (23.17)

It is assumed that the eigenfunction () operated upon by these infinitesimal
field generators is such that the same relation (2.3.17) holds between
eigenvalues of the field. In order for this to be true the eigenfunction must
be the de Broglie eigenfunction, i.e., the phase of the classical
electromagnetic field,
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Y o= el (9 ) (2.3.18)

where ® is the frequency at instant ¢ and x the wavevector at point Z.

This is demonstrated in Appendix 3B.

The relation (2.3.17) interpreted as one between eigenvalues is
compatible with the plane wave solution of Maxwell's vacuum equations
[1—10] for circular polarization, i.e.,

EW - EO - E_(O)(i_l--)ei(wt—xZ)
y ’ (2.3.19)
V2

BW® - p@* - B_(O)(l-i+ ')ei(wt—KZ)
> J ; (2.3.20)

and this conveniently introduces the complex basis ((1), (2), (3)) defined by
the unit vectors [1—10],

e® = e@* .= i(z—y)

Ny

(2.3.20)
e® = 0 .=

It is concluded that our basic ansatz is compatible with Maxwell's vacuum
equations, which are one possible way of ensuring that Eq. (2.3.17) holds.

It follows that the same analysis can be applied to the particle
interpretation, giving,

8, J" =9,J" =0, (2.3.21)

in the vacuum. This is a possible conservation equation (simple relation
between spins) which is compatible with the E(2) symmetry of the little
group. In the particle interpretation this little group symmetry is the one
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given by considering the most general Lorentz transform that leaves the
light-like vector (2.3.8) invariant.

It is concluded that the vacuum Maxwell equations for the field
correspond with Eq. (2.3.21) for the particle, an equation which asserts that
the spin angular momentum matrix is divergentless. In vector notation we
obtain from Egs. (2.3.17) to (2.3.21) the familiar S.I equations,

VB =0,

V><E+a—B =0,
ot

va_igg =0,
c? ot

V-E =0,

> (2.3.22)

and the less familiar relation between eigenvalues of spin angular
momentum in four dimensions,

v-J =0,
V x J+6—K =0,
ot
> (2.3.23)
V><K—§—‘{ =0,
ot
V-K=0.

Another particular solution of the E(2) Lie algebra (2.3.10) is given
by commutator relations, of which there are six in total. Three of these form

the recently inferred B cyclic theorem [1—10] (B© =1 units),
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By, B, ] = iBy, (2.3.24)
B> By| = iBy,
and the other three are

[Exs Ey] = -iB,,
[BZ,EX] = iE,, (2.3.25)
[Ey» B, ] = iEy.

In the particle interpretation these are parts of the Lie algebra [22,24] of
rotation and boost generators of the Poincaré group,

AR
[Jys Iz | = i, (2.3.26)
(V7 Ty ] = idys

|y Ky | = -idy,

V7, Ky ] = iKy, (2.3.27)
[KysJy | = iKy

Using the methods sketched in Appendix 3B, we obtain from the Lie
algebra of generators the following S./. unit cyclic relations between field
eigenvalues,
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BWx B® - jpOBG*
B@x B® - jpOpgm~ (2.3.28)
B®x B - jpOp@~

EOXx E® - jc2pOBE)*
BOXx E® = jcpOE®~ (2.3.29)

BO®x E® - _jcROEM-

where B® = B©@e®  Similarly in the particle interpretation, and
switching from rotation generator to spin angular momentum we obtain,

JO X JO = pgO-
JOx Jgo® = g0+ (2.3.30)

JO® x gO - iR @

In the latter set of relations, % is the quantum of spin angular momentum.

In the hypothetical rest frame, we obtain for field and particle
respectively, Egs. (2.3.28) and (2.3.30), i.e., there are no boost generators as
expected for a rest frame. The latter is hypothetical because an object
translating at ¢ identically does not have a rest frame by definition. We
must therefore imagine an object translating infinitesimally close to ¢ in
vacuo in order to be able to back transform into a rest frame. This object can
be thought of in our development as the electromagnetic field concomitant
to photon with mass. In our new analysis the field and photon become
topologically the same thing.

It is concluded that the B® component is identically non-zero,
otherwise all the field components vanish in the Lie algebra (2.3.24). If we
assume Eq. (2.3.17), and at the same time assume that B®) s zero, then the
Pauli-Lubanski pseudo four-vector (2.3.9) vanishes for all 4. Similarly in
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the particle interpretation if we assume the equivalent of Eq. (2.3.17) and
assume that J® is zero, the Pauli-Lubanski vector " vanishes. This is
contrary to the definition of the helicity of the photon [22]. Therefore for
finite field helicity we need a finite B®® . The latter result is also indicated
experimentally in magneto-optics [1—10], which can be used to observe the
product B® x B® _If B® were zero this product would be zero, contrary
to experience.

Therefore finite electromagnetic field helicity requires a finite B
field in the light like condition. In the hypothetical rest frame a zero B©®

would mean a zero BV = B®*

3.4 Discussion

The precise correspondence between field and photon interpretation
of vacuum electromagnetism developed here indicates that £(2) symmetry
does not imply that B® is zero, any more than it implies J® = 0. The
assertion B® = 0 is counter indicated by magneto-optical data, and the B
cyclics (2.3.28) are Lorentz covariant, being part of a Lorentz covariant Lie
algebra. Furthermore, if one assumes the particular solution (2.3.24) and
(2.3.25), and uses in it the particular solution (2.3.17), we obtain from the
three cyclics Eq. (2.3.25) the cyclics (2.3.24), i.e., we obtain,

By, -By| = iBy,
[B,.By| = -iB,, (2.3.31)
[B,,-By| = -iB,.

This is also the relation obtained in the hypothetical rest frame. Therefore
the B cyclic theorem is a Lorentz invariant in the sense that it is the same in
the rest frame and in the light-like condition.

This result can be checked by applying the Lorentz transformation
rules for magnetic fields term by term, i.e.,to B® , B® | B® and B®

by considering a Lorentz boost at ¢ in Z. The term B® x B® s
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transformed into itself multiplied by an indeterminate (0/0) which from the
Lie algebra considered above is unity. The term B® is unchanged, and
B©  must therefore be unchanged if we take the indeterminate to be unity.
In the quantum interpretation,

2 2

2 2
go - hw” _ (ho)o _ ( &] %, (2.3.32)
ec ec

where e is the quantum of charge and ¢ the speed of light in vacuo. If we
consider hw to transform as energy and w to transform as frequency [6]
then B isinvariant under a Lorentz boost in Z. Since hw is the quantum
of energy then it transforms as energy. Therefore it is concluded that the B
cyclic theorem is invariant under a boost at ¢ in Z. It appears unchanged
in the Lie algebra of the light-like condition and of the rest frame as
discussed already. (For intermediary boosts, taking place at v from the
hypothetical rest frame, the numerical value of B‘D x B® is unchanged,

but it becomes a function of v. The product iBPB®* is invariant again.)
It is concluded that the B cyclic theorem in the field interpretation is

a Lorentz invariant construct. The equivalent of this result in the particle

interpretation for spin angular momentum is that the J cyclic theorem,

JOx JO = @ (2.3.33)

is a Lorentz invariant. This is compatible with the fact that % is an invariant
and that J® is invariant to a boostin Z. Thus J® x J@ is invariant.
It is concluded overall that the ansatz adopted in this work is
compatible both with the vacuum Maxwell equations and with the recently
inferred cyclic relations between field components in vacuo [1—20]. Asa
result of this ansatz the B® component in the field interpretation is non-
zero in the light-like condition and in the rest frame, and is a solution of
Maxwell's equations in the vacuum. The B cyclic theorem is a Lorentz
invariant, and the product B® x B® s an experimental observable
[1—10]. In this representation, B® is a phaseless and fundamental field

spin, an intrinsic property of the field in the same way as J® is an intrinsic



148 Paper 3

property of the photon. The scalar B®) for the field plays the role of % for
the photon, and if hw transforms as energy and @ as frequency, is also a
Lorentz invariant. It is incorrect to infer from the Lie algebra (2.3.10 ) that B®
must be zero for plane waves. For the latter we have the particular choice
(2.3.17 ) and the algebra (2.3.10 ) reduces to,

i(B,-B,) =0, (2.3.34)

which does not indicate that B, is zero any more than the equivalent
particle interpretation indicates that J, is zero. That B, is zero is therefore

a wholly unwarranted assumption of the literature [22]. Vacuum
electromagnetism is not purely transverse in nature, and this result has
recently been shown in several different ways [1—20]. By using the
Poincaré group for vacuum electromagnetism it becomes easier to unify field
theory [1—20], this particular paper has introduced the notion of
infinitesimal field generators and has shown that this ansatz is compatible
both with the vacuum Maxwell equations and the B cyclic theorem. The
latter is a fundamental theorem of fields which shows that transverse
solutions are always accompanied by longitudinal solutions.

Acknowledgments

It is a pleasure to acknowledge numerous Internet discussions and to
thank the Alpha Foundation of the Institute of Physics, Budapest, Hungary,
for an honorary membership.

Infinitesimal Field Generators 149
References

[1] M. W. Evans, Physica B 182, 227, 237 (1992); Found. Phys. 24,
1671 (1994).

[2] M. W. Evans and S. Kielich eds., Modern Nonlinear Optics, Vols.
85(1—3) of Advances in Chemical Physics, 1. Prigogine and
S. A. Rice, eds. (Wiley Interscience, New York, 1997, third
printing, paperback); M. W. Evans, The Photon's Magnetic Field.
(World Scientific, Singapore, 1992); A. A. Hasanein and M. W.
Evans, The Photomagneton in Quantum Field Theory. (World
Scientific, Singapore, 1994).

[3] M. W. Evans and J.-P. Vigier, The Enigmatic Photon, Vol. 1: The
Field B® (Kluwer Academic, Dordrecht, 1994).

[4] M. W. Evans and J.-P. Vigier, The Enigmatic Photon, Vol. 2: Non-
Abelian Electrodynamics (Kluwer Academic, Dordrecht, 1995).

[5] M. W. Evans, J.-P. Vigier, S. Roy and S. Jeffers, The Enigmatic
Photon, Vol. 3:, Theory and Practice of the B® Field. (Kluwer,
Dordrecht, 1996).

[6] M. W. Evans, J.-P. Vigier, and S. Roy, eds., The Enigmatic Photon,
Vol. 4: New Directions. (Kluwer Academic, Dordrecht, 1998).

[7] M. W. Evans, Physica A 214, 605 (1995); L. D. Barron, Physica B
190,307 (1993); M. W. Evans, ibid., p. 310; A. D. Buckingham and
L. Parlett, Science 264, 1748 (1994); A. D. Buckingham, Science
266, 665 (1994); A. Lakhtakia, Physica B 191, 362 (1993); D. M.
Grimes, Physica B 191, 367 (1993); M. W. Evans, Found. Phys.
Lett. 8,563 (1995); A. Lakhtakia, Found. Phys. Lett. 8, 183 (1995);
M. W. Evans, Found. Phys. Lett. 8, 187 (1995); S. J. van Enk,
Found. Phys. Lett. 9,183 (1996); M. W. Evans, ibid., 191; G. L. J.
A. Rikken, Opt. Lett. 20, 846 (1995); M. W. Evans, Found. Phys.
Lett. 9,61 (1996); E. Comay, Chem. Phys. Lett. 261, 601 (1996); M.
W. Evans and S. Jeffers, Found. Phys. Lett. 9, 587 (1996).

[9] M. W. Evans, J. Phys. Chem. 95, 2256 (1991); W. S. Warren, S.
Mayr, D. Goswami and A. P. West, Jr., Science 255, 1683 (1992);
ibid., 259, 836 (1993); R. A. Harris and I. Tinoco, Jr., Science 259,
835 (1993); ibid., J. Chem. Phys. 101, 9289 (1994); M. W. Evans,
Chaps. 1—2 of Ref. 6.



150

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

Paper 3

C. R. Keyes, M. W. Evans and J.-P. Vigier, eds., Apeiron special
issue onthe B field, Spring 1997; M. W. Evans and J.-P. Vigier,
Poincaré Group Electrodynamics (World Scientific, 1998, in prep.).
V. V. Dvoeglazov, Int. J. Mod. Phys. 34, 2467 (1995); Rev. Mex.
Fis., 41, 159 (1995); Nuov. Cim. 4, 108, 1467 (1995); Helv. Phys.
Acta, in press; review in ref. (6);Majorana Like Models in the
Physics of Neutral Particles., ICTE 95, (1995).

H. A. Munera, D. Buritica, O. Guzman and J. I. Vallejo, Rev.
Colomb., Fis., 27, 215 (1995); H. A. Munera and O. Guzman,
Found. Phys. Lett. in press; ibid., part B, Magnetic Potentials,
Longitudinal Currents and Magnetic Properties of the Vacuum, All
Implicit in Maxwell's Equations.; ibid., Phys. Rev. Lett. submitted,
A Symmetric Formulation of Maxwell's Equations.

A. E. Chubykalo and R. Smirnov-Rueda, Phys. Rev. E 53, 5373
(1996); Int. J. Mod. Phys., in press; review in Ref. 6; monograph in
prep. for World Scientific on the convective displacement current;
A. E. Chubykalo, R. Smirnov-Rueda and M. W. Evans, Found.
Phys. Lett. in press.

B. Lehnert, Phys. Scripta 53, 204 (1996); Optik 99, 113 (1995);
Spec. Sci. Tech. 17, 259, 267 (1994); in Ref. 6, a review; and B.
Lehnert and S. Roy, monograph in preparation for World Scientific.
M. Meszaros, P. Molnar, T. Borbely and Z. G. Esztegar, in Ref. 6,
areview.

S. Jeffers, M. Novikov and G. Hathaway, in S. Jeffers, S. Roy, J.-P.
Vigier and G. Hunter, eds., The Present Status of the Quantum
Theory of Light. (Kluwer Academic, Dordrecht, 1997), pp. 127-139.
E. Recami and M. W. Evans, a review in Ref. 6, E. Gianetto, Let.
Nuovo Cim., 44, 140 (1985); E. Majorana, Nuovo Cim., 14, 171
(1937) and folios in the Domus Galilaeana, Pisa.

V. V. Dvoeglazov, M. W. Evans, J.-P. Vigier et al. , The Photon and
the Poincaré Group, volumes five to nine of Ref. (6), planned.

M. Israelit, Magnetic Monopoles and Massive Photons in a Weyl
Type Electrodynamics. LANL Preprint 9611060 (1996); Found.
Phys. submitted for publication.

D. Roscoe, e mail communications in 1996 and 1997, Dept. of
Applied Mathematics, University of Salford.

Infinitesimal Field Generators 151

[21]

[22]
[23]

[24]

E. P. Wigner, Ann. Math. 140, 149 (1939); Y. S. Kim, in N. M.
Atakishiyev, K. B. Wolf and T. H. Seligman, eds., Proceedings of
the Sixth Wigner Symposium (World Scientific, 1996), opening
address.

L. H. Ryder, Quantum Field Theory, 2™ edn. (Cambridge University
Press, Cambridge, 1987).

G. N. Afanasiev and Yu. P. Stepanovsky, Nuovo Cim. 109A, 271
(1996); G. N. Afanasiev, J. Phys. 426,731 (1993); 27,2143 (1994).
A. O. Barut, Electrodynamics and Classical Theory of Fields and
Particles (Macmillan, New York, 1964).



152 Paper 3

Appendix 3A. Basics of Poincaré Group Electrodynamics
The basic ansatz used in the text is that there exists a field vector

analogous to the Pauli-Lubanski vector of particle physics; a field vector
defined by,

~A
wh = 4, (2.3A.1)

sAn . . .
where F* is the dual of the antisymmetric field tensor. Without
assumptions of any kind, this vector has components,

0 _ 1
w® = -B'A, - B’4, - B*4,,
W' = B'A, + E’4, - E*4,,

23A2
W? = B*4,-E*4, +E'4,, ( )
W3 = B°4,+E?4, -E'4,.
If we assume: a) that for the transverse components,
B =VxA4 (2.3A3)
if, b) B and A are plane waves,
© 4
A=A (ii e,
2
(2.3A4)

0) ‘
B =L _(ii+je*,
/2

and: c) if the longitudinal E® is zero, then Egs. ( 2.3A.2) reduce to those
used in the text, i.e.,
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Wy = 4;B;,
Wy = ABy + 4Ey,
(2.3A.5)
Wy = ABy - AE,,
W, = AB,.
These assumptions mean that
AP = (4°,0,0,4%), 4° =43, (2.3A.6)

can be used as an ansatz. Conversely, use of this definition means that the
transverse components are plane waves and for the transverse components
B =VxA.

In the Coulomb gauge the vector W* vanishes, meaning that there
is no correspondence between particle and field theory for the Coulomb
gauge or traditional assumption of transversality. Our final result is,

wH = 4 O(BZ, 0,0, BZ), (2.3A.7)

which is compatible with the £(2) Lie algebra of the text and with the
vacuum Maxwell equations; together with B = Vx A for transverse

components and,

. . K
B®* - _ZWA(I)XA(Z)’ (2.3A.8)

for longitudinal ones. It is significant that the K (3)( =K,) generator does

not appear in the Lie algebra £(2). This does not mean that E® is zero

necessarily, but it does not play the same role as B ©) _ The latter is the most

fundamental field spin, i.e., intrinsic spin of the classical electromagnetic
field.
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Appendix 3B. Inference of The De Broglie Wavefunction From Eq
2.3.17)

Equation.(2.3.17) of the text equates differential operators, i.e., field
generators. The B operator is directly proportional to the J operator, the E

operator to the K operator. In the vacuum E©® = ¢B® in S./. units. These

operate on a function such that the eigenvalues are related in the same way
as the operators. Define the B and E differential operators by,

. 0 0
B := -iBO v L -z - ,
y (222 )

oY
(2.3B.1)
. 0 0
Eg := -iE9 +— + X= |y,
Y ( ax o )V
and it is clear that the wavefunction is
U= e (0t -xZ) , (2.3B.2)

where k = w/c. This is the well known phase of the vacuum
electromagnetic wave, known sometimes as the de Broglie wavefunction.
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Appendix 3C. Commutators to Cyclics

In order to translate a Cartesian commutator relation such as

[By:By| = iBOB,, (2.3C.1)

to a ((1), (2), (3)) basis vector equation such as,
BV x B® = jpOB3* (2.3C.2)
consider firstly the usual unit vector relation in the Cartesian frame,

ixj=k. (2.3C.3)

The unit vector i for example is defined by

i=ui, (2.3C.4)

X

where u_ is a rotation generator [22] in general a matrix component.

Therefore,
uy = i(Jy)yz - (2.3C.5)
The cross product x j therefore becomes a commutator of matrices,

[Ty | = iz (2.3C.6)

ie.,
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[Jody ] =

0 00 00 -1 00 -1{(0 0 O

Uo o 1{Hoo o-Hoo oo o 1

l l l
lo -1 0ll10 0] 10 0]0 -10 3¢9

0 10
=(-10 0}:=14iJ,.
0 00

This can be extended immediately to angular momentum operators and
infinitesimal magnetic field generators. Thus, a commutator such as (2.3C.1)

is equivalent to a vector cross product. If we write B©® as the scalar
magnitude of magnetic flux density, the commutator (2.3C.1) becomes the
vector cross product,

(BOi)x (B®)j = BO(BOg), (2.3C.8)

which can be written conveniently as,
(B,By)"ix (B,B,)") = iBOB,k . (2.3C.9)
However, the Cartesian basis can be extended to the circular basis using

relations between unit vectors [1-—10 ], so Eq. (2.3C.9) can be written in the
circular basis as,

(ByBy)'2e® x (ByBy)'%e® = iBOB,e®", (2.3C.10)

which is equivalent to,

BWx B® - jORO* (2.3C.11)
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where we define

. 12,0 _ p@+
BO ;= (B B,)2e® - O .
B®* .= B,e®. o

To complete the derivation we multiply both sides of Eq. (2.3C.11) by the
phase factor e “®e “® to obtain the B Cyclic theorem [ 1-10]. The latter is
equivalent therefore to a commutator relation between infinitesimal
magnetic field generators. Similarly,

[Ey. Ey| = ic®BOB,, (2.3C.13)

is equivalent to
EVxE® = jc2BOBO* (2.3C.14)

and so forth.
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Note on Radio Frequency Induced N.M.R.

The existence of radio frequency induced nuclear magnetic
resonance (RF-NMR) is indicated by the Dirac equation. The
recent theory of Harris and Tinoco [1] will not produce the
main proton resonance because it has missed the key term.

4.1 Note

Recently, Harris and Tinoco [1] have used a perturbation theory to
assert that the experimental data by Warren et al. [2,3] on optical NMR
(ONMR) are inconsistent with the received view. It is asserted that light
intensity produces negligible shifts in NMR spectra. This theory fails to
reproduce the data reported by Warren et al. [2,3]. However, the Harris and
Tinoco theory [1] is incomplete: the interaction Hamiltonian in their Eq. (4)
contains no first order interaction between the nuclear spin from the Dirac
equation and the radiation's conjugate product. For this reason the theory
falls short of the data by seven or eight orders of magnitude. Using the first
order spin term the eigenvalue of the interaction energy between the
electromagnetic field and fermion (e.g. a proton) becomes [4] in Dirac's
approximation [7],
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e2
W~ =—(A-A"vio-AxA*+..), 2.4.1)
2m

where e/m is the charge to mass ratio of the fermion. Here 4 x 4 * is the
conjugate product of complex vector potentials [4—6] observed empirically
in the inverse Faraday effect. The Pauli matrix ¢ forms an interaction
energy with 4 x 4™ from the Dirac equation [4] and this term is missed by
Harris and Tinoco [1]. Resonance occurs between the two topological states
of the spinor as in ordinary NMR. A simple calculation [4] shows that the
probe resonance angular frequency for a proton is

o_(H) = 1532 1025é, (2.42)

where o is the pump angular frequency and / its intensity (watts per unit
area). Superimposed on this main resonance (that of the bare proton
unshielded by electrons) is the most useful feature of RF-NMR, the chemical
shift spectrum [8]. The first term of our Eq. (2.4.1) is, within a factor 1/c2,
the first term of Eq. (4) of Ref. 1. The second, spinor, term of our
Eq. (2.4.1) is missing from Eq. (4) of Ref. 1 because Harris and Tinoco did
not consider the direct interaction between the conjugate product
[4—6] Ax A" and 0. The J/w?* coefficient of our Eq. (2.4.2) also appears
In the top line, second column, page 9291, of Ref. 1, premultipied by a
factor 2mcee”. Thus Harris and Tinoco confirm our result [4—6]

that 42 J/w?, the key to RF-NMR.

The Ar” laser frequencies reported by Goswami [3] are 528.7, 488
and 476.5 nm. Taking I to be 10 watts per square centimeter we find probe
'esonance frequencies from Eq. (2.4.2) of 0.12, 0.10 and 0.09(8) Hz
‘espectively. These are the main unshielded proton resonances and are of
he same order of magnitude as the experimental data [2,3], obtained at the
*xtreme edge of what is possible with contemporary laser technology. If the
>ump frequency is reduced however to the radio frequency range the main
drobe resonance frequency should appear from Eq. (2.4.2) in the infra red to
/isible region [4] for constant 7 of 10 watts per square centimeter. This is
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an indication of the Dirac equation itself. Harris and Tinoco [1] calculated
minute second order chemical shift changes using a perturbation theory
applied to the shielding constant, missing the main mechanism of resonance.
Clearly, Eq. (2.4.2) indicates a major advance in NMR technology if
implemented in the laboratory, removing the need for super-conducting
magnets and producing very high resolution NMR in the infra-red and visible
regions of the spectrum. If these features are not observed experimentally
the Dirac equation would have failed. This hypothetical (and improbable)
failure would have nothing to do with B® theory [4—6] however, because

Eq. (2.4.1) uses only 4 x A", a property which has been verified
empirically in the inverse Faraday effect [4—6], and which also used by
Harris and Tinoco to calculate light induced shifts in chemical shifts [1].

It is of the utmost practical importance to realize that even if we
accept uncritically the small, second order, light shift of 10”7 Hz estimated
in Ref. 1, this is increased to o less than 10 MHz if the light frequency is
reduced from visible (order of 10" Hz) to radio frequency (order of 10° Hz)
for the same intensity. This alone, if realized empirically, would change all
NMR and associated technology out of recognition: the resolution of the
chemical shift would be enhanced enormously. It cannot be gainsaid,
however, that Harris and Tinoco [1] have missed the main first order
mechanism, one which if realized empirically will allow nuclear magnetic
resonance spectra to be obtained routinely in the visible range of frequencies
without the use of magnets. This would be of immense potential benefit to
science and medicine.
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Paper 5

Fundamental Definitions for the Vacuum

B® Field

The fundamental definitions of the vacuum B® field are
developed in terms of the universal constants and radiation
properties. The vacuum B® field is the expectation value

of the photomagneton operator Em, an irremovable and
fundamental property of the vacuum electromagnetic field.

5.1 Introduction

In the received view of electromagnetism in vacuo [1—3], the fields
are transverse to the direction of propagation, and the photon is massless.
Recently, this view has been challenged at the fundamental level by the
proposal of the B® (longitudinal) component, generated by the conjugate
product of the transverse fields, a component which is phase free [4—10].
The existence of B® is shown by the class of inverse Faraday induction
phenomena [11—16], typified by the inverse Faraday effect, magnetization
by radiation. Further experimental support for its existence would become
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I 172

available from the induction profile expected from B® [17] at radio
2

frequencies. Here [ is the beam intensity in watts m ~*.

In this note, fundamental definitions of the vacuum B ® field are
developed in terms of the universal constants and of fundamental radiation
properties. The B® field is defined as the irremovable and phase free

expectation value of the photomagneton operator B? of one photon of
energy hw, where h is Dirac's constant and where  is the angular
frequency. This inference has recently been confirmed [18] by Muiiera and
Guzman, who have shown the existence of a new class of longitudinal
solutions in vacuo of the Maxwell equations. These authors isolated a
component of their novel solutions which is phase independent and
irremovable, thus confirming the earlier inference [4] that the
photomagneton is a novel fundamental property of the photon and
electromagnetic wave.

The monographs now available on B® theory develop didactically
the earliest theory [4—6], and clarify several aspects, linking up with work
such as that of Hunter and Wadlinger [19] and Moles and Vigier [20]. It
has been shown that the B® field is defined in the vacuum by a component

product of vector potentials A = 4@~
B - —i%A D x 4@ 2.5.1)

where e is the charge quantum [4—10]. The mode of interaction of B®
with a fermion is determined by this definition through the Dirac equation.
It is significant that 4D x 4@ emerges from the Dirac equation itself [7]

and is no longer phenomenological, as in the earliest papers [4—6]. The
Dirac-Pauli and Hamilton-Jacobi equations can therefore be used to show

the expected 7' dependence of inverse induction due to B®; providing
a route to empirical detection of B® at first order. In general, inverse

Faraday induction belongs to the class of non-linear optical phenomena
[11—16], and depends on a non-linear optical property [4—10],
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BOx B® = iBOB®* et cyclicum, (2.5.2)

where BM = B®* is the transverse magnetic component of, for example,
a plane wave, in the circular basis ((1), (2), (3)). In Eq. (2.5.2), B is the
scalar magnitude of B™W, and B® is longitudinal and phase free.
Experimental detection of B® can therefore be achieved by showing the
existence of the left hand side in Eq. (2.5.2). Effectively, this demonstration
has been carried out, with the wisdom of hindsight, several times [11—16].
In the pre-1992 view, however, the existence of B® through Eq. (2.5.2) was
unknown, and the left hand side was constructed phenomenologically and

known as the conjugate product.
Equation (2.5.1) has been developed recently within the framework

of general relativity, using the inference [19] that the vacuum plane wave has
a scalar curvature R, which in special relativity is not considered.
(Curvatures and affine connections in Galilean space-time are zero by
definition.) If the world-line of the charge quantum e is regarded as the
fiducial geodesic in general relativity (a geodesic whose spatial trajectory is
helical [19]) then Eq. (2.5.1) emerges from the Riemann tensor's
antisymmetric contraction [7], giving a new equivalence principle for
electromagnetism. If B® is not considered, then a rigorously non-zero part
of the Riemann curvature tensor disappears, the part that is quadratic in the
affine connection. This inference opens new doors in field unification.

5.2 Fundamental Definitions in S./. Units
In S.1. Units, the vacuum permeability is [21],
py = 4mx 107Js2C2m ™, (2.5.3)
and beam intensity, or power density, is measured as

I = IuiB(‘”2 = cU,, 2.5.4)
0



166 Paper 5

where B® = |B®| and U, is radiation energy per unit volume (Jm ).

The units of B are tesla () = Wbm™ = JsC 'm™2. For the

conventionally massless photon, ¢ is the speed of light in ms ~!. Therefore
the magnitude of the photomagneton is a magnetic flux (Wb) per unit area.
From Eq. (2.5.4),

12
BO — (%1) = (Hko)l/z’ (2.5.5)

and is a conserved quantity in vacuo, being directly proportional to the
square root of beam intensity. Under the right conditions [4—10], inverse
induction due to B® is also proportional to /2, revealing the existence of
B® = BO¢® Here, e® is a unit vector in the direction of propagation of
the beam.

From Eq. (2.5.1),

e
BO _ ;4 2 (2.5.6)

where A© = |4D| = (4D 4@V in JsC"'m . Therefore,

1/2
qo2 _ [ Fo| Ripn (2.5.7)
C e

Itis also known that 4@ and B© are related by the Maxwellian definition
[21]of A,i.e., B = Vx A;andif A4 is taken to be a plane wave solution of
the d'Alembert equation in vacuo, it follows [4—6] that
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BO® = x4©, (2.5.8)

where k is the wavevector. For the conventional massless photon;
Kk = w/c. From Egs. (2.5.6) and (2.5.8) emerges the minimal prescription
for the free photon [4—10].

ed® = ¥y, (2.5.9)

an equation which balances the classical momentum per photon e4 @, with
its quantum equivalent h k. In terms of the photon energy (the quantum of

energy),

ho = ecd©, (2.5.10)

For the sake of argument, we have accepted the idea of a massless photon in
deriving Eq. (2.5.10) from Eq. (2.5.9). In contravariant notation, Egs. (2.5.9)
and (2.5.10) imply that the momentum/energy of the free photon is,

(2.5.11)
= eA" := e(A(o),A) .

Note that the relativistically correct result in Eq. (2.5.11) is incompatible
with the transverse gauge [22], in which it is assumed that vacuum solutions
of the d'Alembert equation have no longitudinal or time-like components.
As shown by Mufiera and Guzmén [18], this assumption is incorrect, there
exists a class of longitudinal solutions under well-defined conditions more
general than that of the transverse gauge. Therefore, as shown
experimentally in the Aharonov-Bohm effects [23], A" is a physical
observable, not a mathematical convenience. Within a factor e, 4" is

simply the energy momentum p* of the free photon, a gauge invariant
physical observable. This in turn suggests that there is the need for a wave
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equation in the vacuum which restricts gauge freedom. An example is the
Proca equation [4], which uses a very small, but non-zero, photon mass on
which currently available experimental data put an upper bound [24]. Since
massless particles conventionally [25] have only transverse degrees of
polarization, the Proca equation is also implied by and compatible with B©
[4—10].

From Eq. (2.5.4), the energy per unit volume for one photon (the
guantum of electromagnetic energy, hw) is,

hw 1
— = —B®, 2.5.12
2 2.5.12)

where B© is the magnitude of the photomagneton, the quantum of magnetic
flux density, and ¥ is the average volume occupied by the photon. As
shown by Hunter and Wadlinger [19], this is in general the volume of an
ellipsoid, and in order to define this volume, the photon can be considered
to be a wavicle, and not a particle. We therefore have three equations

linking 4© and B@,

BO = %A 2, (2.5.13)
BO = %Aw’, 2.5.14)
BO? - ”°_;CA o), 2.5.15)

revealing the intricate inter-relations of basic vacuum electrodynamics.
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A number of fundamental relations can now be derived from these
three equations, in which h, p,, ¢ and e are universal constants and in

which 4@, B®  » and ¥V are electrodynamic quantities. From Eq.
(2.5.13)in (2.5.15),

3
ep,C
A© = V°2 : (2.5.16a)
W
- ep,c?
BO - A (2.5.16b)
W
From Eq. (2.5.15) in (2.5.16b)
2.2
el Cc“h
B3 = ”07 (2.5.17)
From Eq. (2.5.13) in (2.5.15),
he
AOBO - ”"V . (2.5.18)
From Eq. (2.5.14) in (2.5.18),
0)3 Mo’ |
A0 - — (2.5.19)
e

From Eq. (2.5.16a) in (2.5.19) and (2.5.16b) in (2.5.17),
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. (2.5.20)

Throughout these equations A®© appears as a physical quantity, not a

supplementary mathematical variable. For example, Eq. (2.5.19) shows that 4
is inversely proportional to the volume 7 occupied by the photon of energy
Y, and 4@ in consequence is as physical as V. An even more striking
illustration of the physical nature of 4©® emerges from combining Egs.
(2.5.19) and (2.5.20) to give Eq. (2.5.10), which shows that 4 © is directly
proportional to the observable .

Equation (2..5.20) shows that for any finite frequency, ¥ is non-zero,
meaning that the photon must always occupy a finite, frequency dependent,
volume. It is a point particle only when w is infinite, and at low enough
frequencies, the volume ¥ becomes macroscopic (e.g. order of km®). There
are obvious difficulties in continuing to accept the picture of a photon as an
elementary particle of nuclear dimensions, for example. These have been
carefully discussed by Hunter and Wadlinger [19], who also report
experimental data on the finite volume of the photon as wavicle rather than
particle. It is well known that de Broglie and Einstein attacked these
difficulties using the empty wave hypothesis [24] and by locating all of the
mass of the photon near its core, the rest being wave-like in nature. The
received view [22] prohibits photon mass, so that at low enough frequencies
we are asked to accept the existence of the photon as an elementary particle
with no mass, but with macroscopic dimensions. Experiments on the radius
and volume of the photon [19] should surely be used to test this counter-
intuitive view.

An insight to the physical meaning of the relations between B® and
A© Egs. (2.5.13) to (2.5.15), can be obtained from the fact that ec4 © has
the dimensions of J (energy), and that ec2B® has the dimensions of J s™
or W (power). The latter is dimensionally the product of energy (ec4 ©)
and frequency (w). Therefore 4© = ¢B©@/w follows from the fact that
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energy is power divided by frequency. Equations (2.5.17) and (2.5.20)
confirm that B is proportional to the quantum of power, hw?,

pO - Dot

ec2

K. (2.5.21)

[ *]
& | =

The intensity equivalent to Eq. (2.5.21) gives the radiation law for
one photon

h 4

I= 5@ (2.5.22)
Hoe “c

This equation for one photon of energy hw is reminiscent of Stefan's law

and Wien's law for black body radiation [21]; and it is deeply significant that
these well known radiation laws stem from the fundamental relation between
B©® and ¥ (Eq. (2.5.5)). In the last analysis the radiation laws emanate
from the existence of ¥, the volume occupied by a photon of energy hw.
The depth of insight provided by this relation is revealed by considering the
density of states of classical electromagnetic oscillators, as given by the
Rayleigh-Jeans law [21],

daN _ 8mv?
dav c3

, (2.5.23)

3

where N is the number of oscillators per m” and v is the frequency

(w = 2mv). The density of states is therefore,

dN 2 2 2e 0
=L - 2?2 = = BO ,
dav TCc Tch (2.5.24)
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where we have used Eq. (2.5.21). In terms of the scalar, or Gaussian,
curvature, R [10] of the vacuum plane wave, we obtain,

dN _ 2

o ER ) (2.5.25a)
h
BO = ~R. (2.5.25b)
AN

In the generally relativistic theory of vacuum electromagnetism [10], R is
the Gaussian curvature of the Riemann tensor (Sec. 5.1), showing that the
Rayleigh-Jeans density of states, and the photomagneton B® are both
manifestations of space-time curvature, R = x*. This inference allows
radiation theory, notably the Planck distribution, to be developed as a theory
of general relativity. At the most fundamental level, therefore, B® is a

property of curved space-time in general relativity, generated from the fact
that the world-line of the charge quantum e is the fiducial geodesic. The

trajectory of e in space is therefore a helix, and it becomes intuitively clear
that this generates B® along the axis of the helix (or solenoid).

The Planck distribution p ( v ) is an expression for the mean energy
<e>, of an electromagnetic oscillator of frequency v when it can possess
[21] only the discrete energies 0, Av, 2hv, ...., nhv,

p(v) = <e>div = lR<e> = ﬁB(o)<e>
dv TC Tch
(2.5.26)
-hVIKT
P B
TC 1 = ¢ VKT
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5.3 Effect of Mass Density on Radiation Laws

The electromagnetic scalar curvature R = x? appears therefore in
the Planck distribution as a premultiplier. This is a scalar (or Gaussian)
curvature in the theory of curvilinear coordinates [26], and Eq. (2.5.25b)
demonstrates an equivalence between R and the field component B®. The
scalar curvature R, from Einstein's equation [2] is, on the other hand,

8nG
R, = - e U, (2.5.27)

where p is the mass density in kgm m™. Equation (2.5.27), in analogy with
Eq. (2.5.25b), is an equivalence between R. and p, where G is the

gravitational constant [2],

G =6.67x10" m3kgm's 2. (2.5.28)

Both R and R, are geometrical scalar curvatures in the theory of curvilinear

coordinates, with the same units (m “2). It is therefore logical to assume that
electromagnetic and gravitational curvatures are additive, i.e., that R is
changedto R + R in the presence of mass density, p. Ifitis assumed that

such an effect does not exist, i.e., that electromagnetic and gravitational
fields do not mix in this way, then a major philosophical fault-line develops,
in that there exists an equivalence principle in gravitation, but none in
electromagnetism, and that in consequence, R = 0, there is no curvature in
the space-time of electromagnetism. However, R for a plane wave is 2,
and is not zero. The received view treats electromagnetism [2] in a Galilean
spacetime in which curvature is absent, but this clearly conflicts with
R = x?; and recent work [4—10] has shown that it also conflicts with the

existence of B® because (Eq. (2.5.25b))B® = ®Re®, where ® = /e
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is the elementary fluxon (with the units of magnetic flux, weber) and where e ®
is a unit vector in the propagation axis.

This section is therefore an attempt to develop simple cosmological
tests for the hypothesis that R and R are additive. In direct logical

consequence of this very simple ansatz, it can be shown as follows that the
temperature and total photon density from a radiating black body are
affected by its own mass density fluctuations. It may be possible to detect
these small effects if the radiator is an object with a very large mass density
i, perhaps a neutron star, or the as yet unobserved black hole. In its
simplest form the calculation assumes that in the presence of mass density,
i, the curvature of electromagnetism is changed by an amount determined

from the Einstein equation,

8nGA
AR = (Ak P = T“ : (2.5.29)
so that the absolute change in electromagnetic frequency is proportional to

the square root of the change in mass density,

Aw = (8nG )2 (Ap)'? ~ 4x107° (Ap )2 . (2.5.30)

It is now assumed that this frequency correction due to mass density
fluctuation is the same for all electromagnetic frequencies in a radiating
black body. Mass density fluctuations in the radiator therefore affect its own
radiation properties such as radiated intensity and radiated photons per unit
volume at a detector. The change in radiated energy per unit volume and
photon density due to a change in p of the black body radiator (e.g. a dense
cosmic source) are, respectively, with,

Aw 12
Av, = —2 = ( E) (Ap )2, (2.5.31a)
27 T
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3 Av, 87Eh 3 e -hvikT ) 8TkT

AU = ./;) c3 v ( 1 _e—hv/kT av 36’3 (Av0)39 (2531b)
N Av, 8T 2 e -hv/kT ) kT

AN - f;) ?v (T—hv/k_T dv he? (Avo)z, (2.5.31¢)

where we have used the classical approximation Av/kT « 1 [21]. The
change in photon density for example is

4kG

e TAp ~ 10" TAp photons m 2, (2.5.32)
C

AN:

and is a small effect unless the product of 7" and mass density fluctuations
in the radiator are very large. In these calculations k is Boltzmann's
constant, and it is conjectured that there exists a physical upper bound on
Ay ; a physical mechanism which prevents the mass density of a radiating
object from becoming infinite. Otherwise the electromagnetic frequency in
Eq. (2.5.30) would also become infinite.

These small effects may be observable in solar physics with a very
sensitive spectrometer with a sub-Hertzian resolution at visible frequencies.
Although the solar mass is 1.989 x 10° kgm., the solar radius is 6.96 x 10°
m; and the mean mass density is of the order 1000 kgm —3: i.e about a gram
per c.c. This seems too small to see the effects proposed here, but in general
the mass density depends on the gravitational scalar potential and orbital
parameters [2]. Data from different cosmic objects with very large mass
densities must probably be used to test our ansatz that electromagnetic
curvature adds to gravitational curvature within unified field theory. The
existence of B® [4—10] is already an experimental indication that
electromagnetic and gravitational fields are both geometrical in origin
through a general principle of equivalence, and as we have seen, B® is
proportional directly to R.
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Paper 6
Unified Field Theory and B®

The recent discovery of the vacuum spin field B® of the
electromagnetic sector means that unified field theory is also
affected at the most fundamental level. It is shown that B®
changes the gauge symmetry of the electromagnetic sector
from U(l) = O(2) to O(3), the rotation group symmetry.
Accordingly, the massive bosons of GWS also acquire (3)
components, but the ability of GW#S to predict the correct
masses is not affected.

Key words: B ® Field, Unified Field Theory.

6.1 Introduction

Electromagnetism in unified field theory [1—4] is conventionally the
U(1) sector of theories such as GWS or SU(5). The term U(1) sector derives
from the U(1) = O(2) gauge group that defines plane waves in the vacuum,
the O(2) group being that of rotations in a plane, without reference to an
orthogonal axis. In this conventional view, the physical fields are defined
in the O(2) plane, and are transverse to the axis of propagation of the beam
in the vacuum. Thus, for example, B® = B®" is a plane wave of magnetic
flux density that propagates in free space. By a careful examination of the
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conjugate product, B x B@ the conventional view just described has
recently been changed fundamentally [S—12] because of the existence in the
circular basis (1), (2), (3) of the Lie algebra:

BWx B® - jpOBA*  B®x B - jpORM*
(2.6.1)
B®x BW - ;gOB®*

where B® is the spin field of vacuum electromagnetism, and B is the
scalar amplitude of the magnetic flux density of the beam. The conjugate
product B® x B @ is the basis of magneto-optical phenomena [7], of which
there are several well known examples [13], and so B® is an experimental
observable. It magnetizes material matter, for example a plasma of electrons
set up in helium by microwave pulses [14], and the magnetization, M®, set
up by B® is proportional to the square root of the beam power density (1),
or intensity, in W m?. The required experimental conditions for the
unequivocal isolation of the characteristic I, profile of B® have been
determined precisely [6] by solving the relativistic Hamilton-Jacobi equation
of one electron () in the classical electromagnetic field, represented by the
four-potential A .

The various consequences of B® have been worked into several
branches of contemporary electromagnetic field theory [5—12], but in this
Letter, its effect is explored on electroweak theory, which unifies
electromagnetism with the weak field [15]. It is shown in Sec. 6.2 that the
existence of the observable B in electromagnetism means that the gauge
group symmetry must be enlarged to O(3). In Sec. 6.3 it is shown that this
means that the massive bosons of GWS acquire an additional physical
dimension, the (3) dimension, and their concomitant fields are no longer
purely transverse. In other words, the observable B ® of the electromagnetic
sector is made up of conjugate products of intermediate vector boson field
components. The latter are therefore also experimental observables. In
Sec. 6.4, finally, it is shown that the observable B® in electromagnetism
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does not affect the ability of GWS to predict the correct intermediate vector
boson masses.

6.2 The O(3) Gauge Group of Vacuum Electromagnetism

The defining Lie algebra (1) is that of the non-Abelian group of
rotations, O(3), in three dimensional space [6,15]. Since B® is a physical
observable, the gauge group of vacuum electromagnetism is also 0(3), and
not the O(2) of the conventional view [15]. There is a physical magnetic
flux density, B®, orthogonal to the plane of definition of the plane waves
B® = B®*. The photon, therefore, can no longer be regarded as a particle
without mass, because special relativity [15] shows that such a particle can
have only two (transverse) degrees of polarization. The Wigner little group
[16] for the photon as particle also becomes O(3), and not the obscure £(2),
the group of rotations and translations in a plane. The inference of photon
mass leads in turn to the replacement [6] of the d'Alembert with the Proca
equation, which leads to the replacement of B in Egs. (2.6.1) by the very
slowly exponentially decaying B¥ exp (-£Z) where £ is the photon rest
wavenumber [6] and Z is distance along the direction of propagation of
radiation in vacuo. The range of electromagnetism is therefore not infinite,
as discussed by Vigier [17].

The inference of an O(3) gauge group leads, furthermore, to a
generalization of the vacuum Maxwell equations [6] to take into account the
existence of a physical third axis (3) in free space. The usual plane wave
relations are supplemented by an equation formally linking B® and the

imaginary and unphysical electric field strength iE® in free space

(©)
_BY

Vx (iE®)= 5

(2.6.2)

The defining Lie algebra for iE® links it to the ordinary plane wave
E® = E®* through the cyclically symmetric,
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EVxE®= -EO(EO), E®x(iE®)- -EOEO",
(2.63)
(iE®)x E® - _.EOE®"

In contrast to the Lie algebra of magnetic fields, Egs. (2.6.1), the conjugate
product of polar vectors E® x E® cannot form a real polar vector, only the

axial B® [5],
EVx E® = 2B x BD = jc2pOBG)* (2.6.4)

so iE® in Egs. (2.6.4) is mathematically an axial vector. It is therefore
unphysical because a physical electric field is a polar vector, and indeed
there are no known effects of the putative physical E®. In contrast, B®
is a real, axial vector, i.e., has the necessary symmetry for a physical
magnetic field. The latter is therefore an experimental observable, the first
classical vacuum field to be inferred since Maxwell. 1t is the spin field (i.e.,
phase free magnetic field) fundamentally responsible for a// magneto-optic
phenomena. For example, the well known inverse Faraday effect [13,14]
can be understood [18] at visible frequencies in terms of the conjugate
product, which is now understood to be the product iB @B ®* and this is
now recognized to be the second order component. There is also a first

order component of the inverse Faraday effect due to B® itself [6]. This

. . S 12
dominates at microwave frequencies with an

defined conditions [19].
Since unified field theory such as GWS is based conventionally on
the assumption that the electromagnetic gauge group is O(2) (= U(1)), it has

to be re-examined as follows in the light of B®.

dependence under well

6.3 The Effect of B® on GWS

The enlargement of the O(2) sector of GWS to O(3) must occur in
such a way that it maintains the ability of GWS to predict the correct
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intermediate boson masses of the well known CERN experiment [15].
Obviously, the observed masses cannot change with the belated realization

that B® exists in the vacuum, and so B® cannot affect the boson masses.
In GWS, the potential four-vector 4, is expressed in terms of the massive

bosons #,, and X, which are components of the electromagnetic field,
4,= W: sin@, + X, cosB, . (2.6.5)

Here 6 is the Weinberg angle, which is fixed experimentally. So the extent
to which Wu3 and X can contribute to 4 " is also fixed experimentally. In
an abstract isospin space [15], the physical part of W: is the 3 component
of this abstract space. X , on the other hand is an isospin scalar [15]. In the
four dimensional space-time of special relativity, however, both W s and X A
are four-vectors, and can therefore be written in Minkowski notation as

W, = (W23,im0), X = (X, ix©). (2.6.6)

The space parts can be expressed in the circular basis (1), (2), (3) giving

AW = p3Dgin 0, + X cos 8,
2.6.7)
A® = w*dsin + XPcosb, ,

for AW and its complex conjugate A ®. Therefore B® can be expressed

in terms of transverse components of the massive bosons W: and X, by

2
., K
B® = —’WA Mx 4@ (2.6.8)

B
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where x is the wavenumber of the electromagnetic beam; from this we infer
that the bosons WS and X f themselves have longitudinal components which

define Lie algebras akin to Egs. (2.6.1) and (2.6.3). Since W: and X, are
parts of Ap in GWS, they are plane waves, e.g.,

3(0)
w3 - _____VI:/— (ii +j)e™,

2
(2.6.9)

3(0)

Wi W\F (=i +j)e,
2
and so
w30 x 3@ _ jp3Op30)-

(2.6.10)

=-wO(iw3O) | et cyclicum
is a Lie algebra akin to (3), 3" and W3® being polar vectors, parts of
A® and 4@ respectively. Similarly,
XOx X® = -xO (ix®y (2.6.11)

is a Lie algebra. Thus, both Ws and Xu are described by O(3) gauge

geometry. We have therefore succeeded in enlarging the gauge geometry of
GWS to include B® self-consistently.
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6.4 Boson Masses and B®

With the advent of B® in the electromagnetic field, the W 5 and X,

bosons acquire three states of circular polarization, (1), (2) and (3). The
extra state of polarization does not affect the mass of the boson. For
example, we have

W:WS = 3. 3 W30 . g3
(2.6.12)
+ W3O . 30 _ W30n ,

which contains the additional term W3® - w3® - 302 5 part of the
additional term A43® - 43® - 4302 jy electromagnetism. However, this

term vanishes because |[A®|=A4©  The mass of Wj appears as a

premultiplier of W: Ws in the appropriate Lagrangian [15], and from this we
infer that the extra (3) polarization makes no difference to the mass of the
boson concomitant with Ws . The only way in which the mass could be

affected were if the premultiplier were for some reason different for
transverse and longitudinal terms. This does not seem very likely because

. . 3,3
mass is a scalar Lorentz invariant. Four-vector products suchas W, W, and
XX, are also Lorentz invariants.

In conventional GWS [15], the photon mass is modeled to zero, but
the concept of spontaneous symmetry breaking of the vacuum is used within
non-Abelian, abstract isospin space [15], to provide the intermediate vector
bosons with mass. The advent of B®®, however, means that the photon must
also be massive in GWS. This is a direct result of the experimental
observable B® which was related in Sec. 6.3 to the vector bosons. The
latter acquire in turn the polarization (3), which cannot exist in a massless
photon. This implies that GWS (and grand unified theory such as SU(5))
must accommodate finite photon mass, for example as in the work of Huang
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[1]. This illustrates how B® has highly non-trivial repercussions
throughout contemporary unified and grand unified field theory. In the
electromagnetic sector, the Higgs mechanism is well known to be
compatible with gauge invariance, and leads to finite photon mass through
spontaneous symmetry breaking of the vacuum. The acquired photon mass
is inevitably accompanied [15] by the acquisition of a third, physical
polarization, manifest in B®. This type of result is, however, modeled out
in GWS to force the result that photon mass is identically zero. With the
advent of B® such a procedure is invalidated and must be replaced by a
mechanism which self-consistently accounts for photon mass.
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Paper 7
The Physical Meaning of B ®

The physical meaning is discussed, using simple concepts, of
the novel longitudinal field B® (the Evans-Vigier field) of
vacuum electromagnetism. In words without equations, it is
explained why the physical B® is not accompanied by a
physical electric field. The source of B®; its mode of

propagation; and its symmetry and energy characteristics are
explained in physical terms rather than mathematical.

| Key words: B® field, physical meaning of.

7.1 Introduction

In recent months [1—10] it has become clear that the conventional
view of vacuum electromagnetism is incomplete, because there exists in the
vacuum the Evans-Vigier field, B®. This is a novel, classical, magnetic
field in free space, the first to be inferred since Maxwell. As such, it has its
i quantum mechanical counterpart, the photomagneton [2]. The purpose of
| this short note is to describe the physical meaning of B® without abstract
mathematics, because B® is a remarkable development, having been
hidden in Maxwell's equations for well over a hundred years. In Sec. 7.2, its
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origin is described in the plane waves of vacuum electromagnetism. In
Sec. 7.3, it is explained in physical terms why B ® propagates through the
vacuum, and finally, in Sec. 7.4, its symmetry and energy characteristics are
explained in physical terms as simply as words allow. A short discussion

section explains how B ® can be isolated from the ever-present plane waves
which are its source in the vacuum, and thereby observed experimentally.

7.2 The Origin of the Evans-Vigier Field

The magnetic component of the plane wave, B, from Maxwell's
equations is a complex quantity in general and so has a complex conjugate,
B®_ which is also a solution of Maxwell's equations. This can be thought
of in terms of a complex, circular, representation of three dimensional space,
arepresentation which is entirely equivalent to the usual real Cartesian. This
picture is analogous to, but not the same as, a complex spinor representation
used routinely for fermions such as the electron. The vectors B® and B®

are therefore components of the complete vector field in this circular
representation [11]. They are, however, only two components out of a
possible three, because we are dealing with three dimensional space. The

third component is the Evans-Vigier field, denoted as B® because (3) is the
third axis associated with (1) and (2). The component B ® is generated by
the vector product of B® and B® in analogy with i x j = k, et cyclicum,
of the Cartesian representation, where i, j, and k are the usual Cartesian unit
vectors along X, Y and Z respectively.

Very simply, therefore, the physical source of B® is the cross
product BM x B@ _ This inference is cyclically symmetric [6—10], the
physical source of BV is B® x B® and that of B® is B® x B®_ The
three components B, B® and B® are physical magnetic fields and all

three are axial vectors. The cross product of two axial vectors is another
axial vector, so that this view is self-consistent. The source of the Evans-

Vigier field is therefore the plane wave components B" and B®.
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It can be shown [10] that B® can be expressed consistently in a
variety of ways. The source of a magnetic field in classical electrodynamics
[12] is described by the Biot-Savart-Ampére (BSA) law, and, indeed, B®
can be written [10] in this form, i.e., as the vector cross product of a trans-
verse momentum, p Y, with an electric component, E @, of the plane wave.
Another inference of classical electrodynamics is that a magnetic field is the
curl of a vector potential, and, indeed, B® can be written as -V x 4@,
where V® is a well defined curl operator [10] and A® a plane wave
potential [10]. Furthermore, the BS4 and curl A forms of B® are
equivalent to the various double field forms typified by B! x B®_ This
analysis, developed elsewhere [10] shows that in the classical
sense, BM® x B® is indeed a source for a magnetic field. There are also

various other forms of B®, tabulated in the literature [10], and its existence
has been demonstrated from first principles using the Dirac equation [7] of
relativistic quantum field theory, and the Hamilton-Jacobi equation [6] of
relativistic classical field theory. Intuitively, the complicated language and
mathematical analysis behind these demonstrations can be reduced to a
consideration of the helical motion of the tip of a magnetic or electric field
propagating in free space. The field is C negative, like charge, and so this
motion is intuitively analogous to that of a current through a solenoid,
producing a magnetic field. It is well known [13] in the classical theory of
fields that a circularly polarized electromagnetic wave drives an electron in
a circle, so the field itself is in a sense, charged, (i.e., ¢ negative, where ¢
is the charge conjugation operator) otherwise there would be no effect on the
electron. The photon, on the other hand, is considered to be an uncharged
quantum of energy. Therefore the photon and field must always be
considered concomitantly.
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7.3 Propagation Through the Vacuum of the Evans-Vigier Field

The cross product B x B® removes the electromagnetic phase, ¢
[1—10], so that B® has been described as a static magnetic field. More
accurately, it is a phase free magnetic field, and propagates through the
vacuum with its source, the plane wave components B and B®.
Therefore, a pulse of light carries with it the source of a B® field through
the vacuum, and so does a continuous beam. The pulse is detectible
experimentally because it has travelling intensity, or power density (W m™),
and the cross product B® x B?@ s physically interpretable as being
proportional to the antisymmetric part of the light intensity tensor [3,14]
itself. This is always non-zero, and so is B®. Therefore B® propagates
because the intensity of light propagates. The intensity of light, even in the
vacuum, is a tensor [3,14,15], this being an early inference by Placzek in the
theory of non-linear optics [14]. (Intensity is quadratic in the electric field
of the plane wave.) If light intensity did not have an antisymmetric,
mathematically imaginary, tensor component, there would be no inverse
Faraday effect [16], in which light magnetizes material matter, a process
which is free of the electromagnetic phase as first inferred by Pershan [16]
using general arguments. The inverse Faraday effect has been observed
experimentally in glasses and liquids [17] and in an electron plasma [18]
using respectively visible and microwave radiation. Since B x B®@ is the
source of B® | the inverse Faraday effect is due to B®, and it is concluded
that B® is the fundamental field of magneto-optics [1—10]. Intuitively, it
is expected that magnetization be due to a magnetic field, and magnetization
by light is due to the magnetic field B®, a consistent physical result. We

conclude that the antisymmetric part of light intensity manifests itself
physically as a magnetic field, the Evans-Vigier field.
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7.4 Considerations of Symmetry and Energy Conservation

The cross product of two axial vectors is another axial vector [19],
and the cross product of two polar vectors is also an axial vector. Thus, both
B®x B® and the cross product of electric plane wave components,

E® x ED are proportional to B® [6]. It can also be shown that the cross
product of vector potentials, 4 ¥ x 4@ is similarly proportional to B®,
a result which leads to a self-consistent representation of B® using O(3)
gauge theory rather than the conventional O(2) = U(1) symmetry group [19]
for the electromagnetic sector in contemporary field theory. The various
technical ramifications of the O(3) gauge group are developed elsewhere [6].
These include the important inference that the photon as particle must have
mass, because it is three dimensional in nature, not two, as in the
conventional O(2) gauge group. Here we are concerned with a simpler
inference of symmetry, that B® cannot be accompanied by a real E®, an
inference which follows from the fact that a real polar vector cannot be
formed from the conjugate products BWx B® EWx E®  or
ADx 4@ 1t can be shown [6] that B® is accompanied, formally, by a
pure imaginary -iE®, which being imaginary and first order, is not a
physical field. Consistently, no first order experimental effect of a putative E @
has been reported. This is again an intuitively comfortable result because we
do not expect a solenoid to produce an electric field in its axis, only a
magnetic field. In this intuitive view, light is, loosely speaking, an optical
solenoid producing B®, an axial vector about its axis of propagation. We
have therefore referred to B® as the spin field [6—10] to distinguish it
from the wave field components B® and B®.

When considering the effect of B® on electromagnetic energy
density, however, it is necessary to consider vector magnitudes. In the
circular representation (1), (2), (3), this means that we must consider dot
products B® - B®* where * denotes complex conjugate and where i runs
from 1 to 3, not from 1 to 2 as in the conventional view [12]. (Recall that
in the conventional view there are only wave components, B® and B®,
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and these exist in a flat, two dimensional, world.) The quantum of light
energy, hw, the dictionary photon [19] must then be expressed in terms of
thesum BM - B®* + B@. p@* . B . pO*  This does not change the
Planck constant, however, because the same quantum of energy, hw, is
merely redistributed among (or thought of in terms of) three vector
components, the overall magnitude remaining the same [10]. (One photon
remains one photon, and can be detected experimentally as such. We infer
that it is concomitant with three field components rather than two as thought
conventionally.) Similarly, the quantum of light energy can be thought of
in terms of the sum of three electric field components
EV-EO L FO. E®* L ;EG). (iE (3)>*, where, now, -iE® is multiplied
by its own conjugate and becomes real and therefore physical. In the
vacuum, the sum of magnetic field components is proportional to the sum
of electric field components, both being proportional to hw. The quantum
of energy is again redistributed among three concomitant field components
rather than two, its magnitude, and that of Planck's constant h, being
unchanged. This energy analysis and others like it [6] illustrates the need for
-iE® as well as B®. Since hw is unchanged it is concluded that B®
does not affect the fundamentals of the old quantum theory, e.g. the Einstein
theory of absorption and spontaneous emission, and the light quantum
hypothesis itself. Thus spectra remain frequency dependent and discrete,
B® is a magnetizing field that is phase free, and frequency independent.
The theory of the inverse Faraday effect is the same in structure at
microwave or visible frequencies far from optical resonance. At or near
resonance, Wozniak ef al. [20] have shown that useful additional frequency
dependent features occur but the optical property fundamentally responsible
for magnetization by light remains the conjugate product, which is now
understood [1—10] to be iBPB®*, where B is the field amplitude. It
should be clearly understood that although the conjugate product is
imaginary, B® itself is real, and physical. This is, at the root, a
consequence of space geometry itself [6].
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7.5 Discussion

It has just been inferred that B is real and physical, so must
produce real and physical effects which are observable experimentally.
Conversely, -iE® is unphysical, and cannot produce observable effects at
first order. In order to separate out, or isolate, B® experimentally, and thus
to prove its existence, it is necessary to demonstrate its characteristic square
root power density (IO1 /2) dependence [6]. The classical, but relativistic,

theory of the orbital angular momentum of the electron in the

electromagnetic field is adequate [6] to show that the 101/2 dependence can

be expected to dominate experimentally using microwave pulses of
sufficient intensity, or power density. An increase in power density of about
two orders of magnitude over that used by Deschamps ef al. [18] should be

sufficient. The IO1 7 dependence of the magnetization can be due only to the

vacuum Evans-Vigier field, because first order magnetization effects due to
the plane waves B® and B disappear on average. In general, the
interaction of B® with one electron is relativistic in nature, at visible

frequencies the magnetizing effect of light is dominated [6] by /, acting at

first order, at microwave frequencies, with sufficient power density by IO1 &

This result explains why the measurements on the inverse Faraday effect to

date [17,18] have shown an 1, dependence of the magnetization. The IO1 2

dependence has also emerged from an interesting analysis by Chiang [21] of
the influence of ion motion in the inverse Faraday effect. His figure one
shows the expected linear dependence of magnetization on B @ but Chiang
did not make the key inference that B® is generated [6]
from B® x B®/(iB®) in free space. Chiang's analysis however agrees
qualitatively with that given in this discussion, as the power density
increases, the quadratic dependence of plasma magnetization on I, evolves
info an 101 7 dependence, which eventually saturates, because the maximum

orbital angular momentum that the photon can transfer to the electron in a
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perfectly elastic collision is h [10]. We have also reached this conclusion
independently [10], and physically, it means that the angular momentum of
the photon, %, has been completely transferred to the electron using
enormous beam power densities. An experimental investigation of these
effects is necessary, because data to date have been confined to the quadratic
region, (/, dependence of the magnetization).
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Paper §
Relativistic Magneto-Optics and the Evans-
Vigier Field

Relativistic effects in magneto-optics are discussed in order
to isolate experimentally the newly inferred Evans-Vigier
field of vacuum electromagnetism. The discussion is
reduced to its simplest form by considering the interaction of
I one photon with one electron over the complete range of
B photon energy and momenta transfer. It is shown that there
are three regions: a) quadratic, b) linear and c) region of
saturation; into which the characteristics of the interaction
process can be divided. Inregion b), the angular momentum
imparted to the electron by the photon is linearly dependent
on the Evans-Vigier field B®, and this region is accessible
experimentally with microwave pulses of sufficient power
density. In magneto-optics with visible lasers, only region a)
is accessible, and this is shown to be the non-relativistic
limit.

Key words: relativistic magneto-optics, Evans-Vigier field.
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8.1 Introduction

Magneto-optic effects received great impetus from the discovery of
the laser, but their existence was inferred earlier [1]. They have recently
been reviewed comprehensively by Zawodny [2], using the accepted semi-
classical approach [3]. It is shown in this Letter that this is the non-
relativistic limit, suitable for application in what we infer here to be the
quadratic region (a). This region is characterized by a relatively low beam
power density (1, in W m™) and high beam angular frequency (w in rad sec’

1, conditions which obtain in the visible for all but the most powerful
pulses. Under these conditions, the semi-classical approach (which is based
on the non-relativistic Schrédinger equation [4]) shows that magnetization
by light (the inverse Faraday effect [5,6]) is proportional to /,. This has

been verified experimentally in glasses and liquids [6] and in an electron
plasma [7]. For many years, therefore, the theory has been thought of as
complete, and magnetization by circularly polarized light has been ascribed
to the well known conjugate product [8], the antisymmetric component of
the light intensity tensor.

In this Letter it is shown that the above represents only the non-
relativistic limit of magneto-optics. It is shown by considering the collision
of a photon with an electron that as the beam power density is increased, and

the beam angular frequency decreased to the microwave range, the
1”2

magnetization of the inverse Faraday effect becomes proportional to I,
which means that it is proportional at first order to a magnetic field B®, the
newly inferred [9—14] Evans-Vigier field of vacuum electromagnetism.
This is labeled as region b) or linear region, and can be described only with
a correctly relativistic theory. As the beam power density is increased
further for a given angular frequency, the curve of magnetization versus I,

saturates, and we enter the region of saturation, region c). In this limit the
magnetization is constant for all ;. This is a purely relativistic

phenomenon, with no non-relativistic meaning, and can be understood
simply because the maximum angular momentum that the photon (at any
beam frequency) can transfer to the electron is %, the Dirac constant. In a
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perfectly elastic transfer of angular momentum, conservation demands that
the angular momentum, %, of the photon be annihilated and given up
completely to the electron. This process, although allowed theoretically,
requires enormous beam power densities.

In Sec. 8.2, the classical, but relativistic, Hamilton-Jacobi equation
of one electron (e) in the electromagnetic field, represented by the potential
four-vector 4 W is used to illustrate the existence of regions a) and b), and

to infer that region a) is the non-relativistic limit. Sec. 8.3 describes the
development of region c), by quantizing the field into energy quanta,
photons. Thereafter, Sec. 8.4 uses simple Compton effect theory to illustrate
the existence of regions a), b) and ¢) in energy and linear momentum transfer
from photon to electron.

8.2 Classical, Relativistic, Magneto-Optics

The correctly relativistic, but classical, theoretical basis for magneto-
optics can be developed in a relatively simple way by using the Hamilton-
Jacobi equation [15]. The trajectory of one electron in the electromagnetic
field can be shown [15] to be governed by a classical, orbital, angular
momentum,

5 - e2c? B©® BO 281
@ | (mia? +e202)" ®

Here e/m,, is the charge to mass ratio of the electron, and B © the magnetic

flux density amplitude of the beam. The magnetization induced by the beam
is therefore due entirely to the Evans-Vigier field B®

M® - __¢ jo (2.8.2)
2m,
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In the condition,

e
w = —BY,
mo (2.83)

this result becomes a sum of two terms [15],

1
M® = L (y/+BOB")B®, (2.8.4)

2y2

where

x - -2 8.5
o’ (2.8.5)

is the one electron susceptibility and where

B// - ec? 6
S 2.8.
2m02co3 ( )

is the one electron hyperpolarizability. The relativistic factor of the
Hamilton-Jacobi equation can be expressed in terms of the momentum
magnitude p = e4 @, where 4@ is the amplitude of the vector potential
of the beam,

12 1 12

v - (mozwz N ezB(O)z) , _(m02c4 s ep? | 2.8.7)

3]

c
()
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In the non-relativistic limit, the speed of light is much greater than the speed,
v, imparted to the electron (Sec. 8.4) by a collision with the photon. This
means that

me » p, (2.8.8)

a limit which corresponds to

e
®» —B®, (2.8.9)

mg

i.e., the angular frequency of the beam is much greater than eB (0)/m0. For

all but the most enormous laser power densities, this is always true in the
visible, whereupon the expression for the magnetization in the one electron
inverse Faraday effect becomes

M® - B—//B Op® (2.8.10)

cHV

which is quadratic in B©. Our quadratic region a) is therefore defined as
the non-relativistic region of the interaction of one electron with the classical
electromagnetic field. The result a) becomes recognizable in the conven-
tional semi-classical theory [8] when the one electron hyperpolarizability is
replaced by a semi-classical atomic or molecular hyperpolarizability, usually
calculated [8] from a perturbation theory, using a quantum approach for the
atom or molecule and a classical view of the field [4]. The only conceptual
difference is that the atomic or molecular property tensor contains resonance
features, and the free electron equivalent does not.

The classical version, B®, of the Evans-Vigier field therefore
governs the inverse Faraday effect in atoms and molecules as well as in an
electron plasma.
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In the usual, non-relativistic, theory [8], however, the term linear in B ©
is missing completely. This term becomes domirant, however, in the
condition,

e
w « —BO
) (2.8.11)

which obtains with microwave pulses [17,15] of sufficient power density.
Under condition (2.8.11) we expect M to be proportional to /,”*, and not
to [, as in the visible. This expectation has yet to be verified

experimentally, but it is nevertheless based on first principles. When M®

is linearly proportional to B®, we enter the linear region b). We cannot
enter this region if our theory is non-relativistic, i.e., based on perturbation
theory applied to the non-relativistic Schrédinger equation. The latter
represents the usual semi-classical theory of the inverse Faraday effect. A
more plausible semi-classical approach is one based on perturbation theory
applied to the relativistic Dirac equation for free electrons, atoms and
molecules. If done properly, this should correctly quantize our classical
result (2.8.1), and extend it to atoms and molecules as well as the single free
electron for which it is valid.

8.3 The Region of Saturation, ¢)

As the power density of the electromagnetic beam is increased in
region b), it might be expected that M'® will simply increase indefinitely
with B®. Special relativity shows that this is not the case, however, because
when the electromagnetic field is quantized, the angular momentum of the
photon is constant, % [15]. The law of conservation of angular momentum
asserts that in a photon electron collision, the angular momentum transferred
to the electron from the photon cannot exceed h. Similarly, the energy and
linear momentum transferred cannot exceed hw and hk respectively, where
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X = w/c. Anticipating the quantized field theory, the maximum J® from
Eq. (2.8.1) is he®, where ¢® is a unit vector [12],

JO . %e®) (2.8.12)

max

and the theory enters region c), the region of saturation. In region c), the
magnetization in the inverse Faraday effect no longer depends on I,. The
physical meaning of this is that in the photon-electron collision, the % of the
photon has been given up entirely to the electron in a perfectly elastic
transfer of angular momentum.

Equation (2.8.12) can be obtained from Eq. (2.8.1) by using the
charge quantization condition [15],

k= ed©, (2.8.13)

in Eq. (2.8.1). In Eq. (2.8.13), the classical momentum magnitude e4 @
imparted to the electron by the field is identified with the quantized photon
momentum, hx. Equation (2.8.1) becomes

hK eC'ZB(3) .

J® -
12 .2
(mozc2 + ’hzlcz) W

(2.8.14)

This result clearly identifies the Evans-Vigier field B® as solely
responsible for the inverse Faraday effect. In the limit hx » mc, which

corresponds with eB©@ » mw, Eq. (2.8.14) becomes

G, fpo
J ;B , (2.8.15)

and using B® = x4 ©@
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ed©
J® - Te(3) = %e® (2.8.16)

This identifies the transition from region b) (Eq. (2.8.15)) to region ¢) (Eq.
(2.8.16)). Note that this transition comes about through Eq. (2.8.13), which
means that the maximum magnitude of the linear momentum imparted to
the electron by the field is that of the photon. The law of conservation of
momentum shows that this occurs in a perfectly elastic transfer of linear
momentum hk from the photon to the electron. The physical meaning of

this is developed in the next section.

8.4 Regions A), B) and C) in Compton Theory

In this section, energy and linear momentum transfer in the photon-
electron collision is analyzed with the simplest type of Compton theory. The
key feature of the Compton effect is that the collision changes the frequency
of the photon from w, to w , providing early evidence for the light quantum

hypothesis. Accordingly, the conservation of energy demands that [16]

) = (p2e?+ mic)"” - myc?, 2.8.17)

AEnz’h(wi—w 0

7

where p is the linear momentum given to the electron (initially at rest) by
the photon. Quantities on the left hand side of Eq. (2.8.17) refer to the
photon, and those on the right hand side to the electron, whose rest energy
is mc 2. Similarly, conservation of linear momentum demands that

’h(Ki - Kf) =p. (2.8.18)

If we consider the limit how, » mocz, i.e., the collision of a very
energetic photon with an initially stationary electron; and if the photon gives
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up its energy entirely to the electron, then w ), = 0. The translational kinetic

energy acquired by the electron is such that pc » mc 2 and so

hw, ~ pc. (2.8.19)

The same result is obtained from Eq. (2.8.18) by assuming that K, = 0. i.e

that the linear momentum of the photon is zero after collision and has been
transferred elastically to the electron. (In an elastic collision, kinetic energy
and linear momentum are both conserved.) In this limit,

e, ~p, (2.8.20)

and using k = w/c for the photon, Eq. (2.8.19) emerges from Eq. (2.8.20).
These two equations show that in this limit, corresponding to the region of
saturation, c¢), the photon and electron have become kinematically
indistinguishable. This occurs when the linear momentum and energy
transfer is such that the electron is accelerated towards c¢. In this condition,
its momentum can no longer be related to its velocity through an equation
suchas p =? myc. If such arelation is tried in Eq. (2.8.19), there emerges

hw, =? mocz, which contradicts the initial assumption hw, » mocz. The
electron traveling at ¢ loses its mass, but retains the momentum #x, = p,

and so Newtonian concepts become inapplicable. This difficulty is inherent
in the axioms of special relativity themselves - the concept of mass loses
meaning in a particle traveling at ¢. The obvious conclusion is that neither
the photon nor the electron can be regarded as particles without mass, and
neither can travel at ¢, only infinitesimally near ¢. This conclusion is

reinforced rigorously by the emergence [15] of the Evans-Vigier field B®,
which implies that the photon has three degrees of space polarization. Its
Wigner little group [15] is therefore O(3) and it cannot be massless. An
electron traveling infinitesimally near ¢ is well known [17] to be
concomitant with electromagnetic plane waves which are indistinguishable
at these velocities from those concomitant with the photon. A plot of
electron kinetic energy verses its momentum is a constant in region c).



208 Paper 8

Region a), the quadratic region, refers in this context to very low
energy photons, so w, ~ W, in Eq. (2.8.17) and v « ¢ where v is the

electron's speed, acquired in a collision with the incoming photon. If
W, ~ W, Eq. (2.8.17) shows that

mec? ~ (p%e? + mict ), 2.8.21)

and so p « myc, i.e., v«c if p = myv. Therefore the electron's kinetic
energy in region a) is the non-relativistic 1/2 (mov 2 ), and the plot of kinetic

energy against linear momentum is quadratic.

An intermediate region b) develops in which the kinetic energy is
linearly proportional to its momentum. Therefore simple Compton theory
parallels the qualitative features of the relativistic inverse Faraday effect.
The existence of region b) can be inferred as follows. The relativistic kinetic
energy is [18]

~
I

En-mygc?, (2.8.22)

where

En? = c%p? + mic*, (2.8.23)

and where the relativistic momentumis p = y MoV If we assume that the

2

rest energy, m,c“, is small compared with cp, then

(2.8.24)

2\ -112
T ~c¢cp = Y\ move := ( 1- %J mgve,
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so that the kinetic energy is directly proportional to the relativistic
momentum, and approximately proportional to the classical momentum,
myv, if v/c is still fairly small. The latter condition holds in region b).

8.5 Discussion

The inverse Faraday effect and related magneto-optic effects, when
detected with visible frequency light, appear to be proportional to the light
intensity [, because we are in region a), the non-relativistic limit. The

nearest approach to region b) to date appears to have been the experiment of
Deschamps et al. [7], with microwave pulses. It has been shown [19] that
the conditions in this experiment correspond, for 3 GHz pulse, to

w~ 5580,

" (2.8.25)

and so (from Eq. (2.8.1) ) we are still in region a). The experimental
demonstration of the existence of region b), and of the characteristic IO1 7

profile of the Evans-Vigier field, requires an experiment of the type carried
out by Deschamps e al. [7], but with a peak microwave pulse power density
about two orders of magnitude greater. With contemporary technology this
is entirely feasible. Related magneto-optic phenomena should also enter
region b) under the right experimental conditions, i.e., high beam power
density and low beam frequency. Laser sources in the visible have the
opposite characteristics, i.e., high frequency compared with power density,
and so produce region a), the non-relativistic limit. So magneto-optic
phenomena of this kind [2] have always been seen to be proportional to /.

The approach to region c) appears with contemporary technology to
be very difficult, because it requires enormous pulse power density in
comparison to beam frequency.
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Paper 9
On the Irrotational Nature of the B® Field

Circularly polarized radiation produces phaseless magnetic
effects in matter, an observation which can be explained
through the fundamental B® field of the radiation. It is
shown that the irrotational nature of this field is compatible
with a multipole expansion of the radiation field.

Key words. Irrotational nature of B ; multipole representation of B®

9.1 Introduction

Several magneto-optic effects are known in nature, the earliest one
to be observed is the inverse Faraday effect [1—3], in which circularly
polarised radiation produces a phase free magnetization similar to that
produced by a static magnetic field aligned in one axis (Z). Magnetization
by electromagnetic radiation has recently been interpreted {4—8] using a
theorem which expresses the conjugate product of non-linear optics in terms
of a phaseless magnetic field B® which is the space component of a Pauli-

Lubanski four-vector (|B® |, B®). If it is assumed that B® is zero
there is no classical field helicity [5]. Therefore B® is a fundamental field
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akin to the particle helicity introduced by Wigner [10]. Vector analysis leads
to the conclusion that the empirically observed conjugate product [1—3] is
uniaxial if B® is aligned with Z. In this simple case the field is therefore
irrotational, its curl is zero because it is a simple axial vector in one axis: the
empirical observation of the conjugate product in magneto-optics leads
directly to this conclusion if we consider the conjugate product to be made
up of plane waves propagating in the axis, Z, in which B® is aligned by
definition. Therefore it can be expressed in terms of the gradient of a scalar
function because the curl of such a function is always identically zero. If the
plane waves are replaced by components of multipole radiation, then the
B® vector in vacuo is still irrotational for all multipole components. This
is shown as follows.

InSec. 9.2 the B® field is worked out for multipole components of
the radiated electromagnetic field. It is assumed for the sake of argument that
the magnetic monopole does not exist in nature, although there are data
which counter-indicate this assumption [1 1—13]. Therefore the scalar
function of which B® is a gradient obeys Laplace's equation, whose
solutions are well known in electrostatics. It is therefore strai ghtforward to
show that B® in general can be expressed in terms of multipole
components in the spherical harmonic expansion, involving, as usual, the
well known Legendre polynomials.

It is emphasized that every individual component in the multipole
expansion of B® is irrotational, because every component is a particular
solution of the Laplace equation for the scalar function of which B® is a
gradient both by empirical observation [1—3] and by definition. This is a
direct and clear consequence of two basic premises: that B® is phaseless
(produces observable phase free magnetic effects [1—3 ]) and that there
exist no observed magnetic monopoles in nature. If data show that magnetic
monopoles exist on the contrary, the Laplace equation is replaced by a
Poisson equation, with physical consequences which can be worked out with

the well known solutions of Poisson's equation.
This simple line of argument has been developed in this paper in

order to show that B® in multipole radiation is irrotational for all

On the Irrotational Nature of the B® Field 215

multipole components if there are no magnetic monopoles. Recent
arguments in the literature which claim that B® is somehow not irrotational
[14,15] are counter-indicated by the arguments developed here and discussed
in Sec. 9.3, in which the scalar function of which B® is a gradient is

identified as a Stratton scalar potential [16—18]. The Laplacian of this
scalar potential is zero if there are no magnetic monopoles in nature, and the
solution of the Laplace equation allows B® to be expanded in terms of
multipoles, in precisely the same way as angular momentum. The relation
between the longitudinal B® and the transverse B® = B®* in vacuo (the

B cyclic theorem) is a theorem of ¢ negative angular momentum
components. As pointed out by Atkins [19] this allows the development of
a large fraction of all quantum theory. The B cyclic theorem can therefore
be used straightforwardly to quantize the electromagnetic field in vacuo.

9.2 Laplace Equation for the Gradient Function of B®

Since B® is empirically phaseless (i.e., observed in nature to be

phaseless and independent of the electromagnetic frequency and wavevector)
and if it is assumed that there are no magnetic monopoles (magnetic charges
or sources present) then it can be expressed in terms of the gradient of a
scalar function:

B®=--vo,, (2.9.1)
which is determined by the well known Laplace equation [18,20],
Vi, =0. (2.9.2)

If B® depended on the electromagnetic phase, it would oscillate at high
frequencies and no phaseless magneto optic effects would have been
observed [1—3]. Therefore the time dependent part of B® is zero, leading
to Eq. (2.9.1). (Analogously a Coulomb field can be expressed as the
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gradient of a scalar potential which obeys the Laplace equation in a source
free region such as the vacuum in conventional electrostatics.)

To find the general form of B® in a multipole expansion, we
therefore solve the Laplace equation for @ , , and evaluate the gradient of

this solution, which is [19,20],

2,-22p©)0).

(2.9.3)

in spherical polar coordinates (7, 6, ¢). The general solution (2.9.3) can be
written as [19,20],

bp=(4rt+Br2)Y,(6,9), (2.9.4)

where ¥, (0, ¢ ) are the spherical harmonics and 4 and B are constants.

Here m and / are integers, with / running from -m to m. The solution of
Laplace's equation is therefore obtained [19,20] as a product of radial and
angular functions. The latter are orthonormal functions, the spherical or
tesseral harmonics, which form a complete set on the surface of the unit
sphere for the two indices / and m . Integer / defines the order of the
multipole component, / =1 isadipole; / =2 isaquadrupole; /=3 isan
octopole; /=4 is a hexadecapole and so forth. The properties of the
spherical harmonics are very well known.

The most general form of B® from Laplace's equation is therefore,

B®=-vd ,
(2.9.5)

® =(r'+Br?yr,0,0).

This is the phaseless magnetic field of multipole radiation. The solution
(2.9.5) reduces to the simple [4—38],

B® - B0 - pO}
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when/=1,m=0,r=2,0=0,4=-BY B=0andV = (8/62) k. More
generally, there exist other irrotational forms of B®,

a) The B®for dipolar radiation, / =1, m=-1,0, 1.

b) The B for quadrupole radiation, /=2, m=-2, -1, 0, 1, 2.

c) The B @ for octopole radiation, / =3, m = -3,-2,-1,0,1,2,3.

d) The B® for hexadecapole radiation, / =4, m = -4, -3, -2, -1,0, 1, 2, 3, 4.
¢) The B® for n pole radiation, / =n, m = -n, ... ,n.

The B® for n-pole fields are irrotational for all n and are all
solutions of Maxwell's equations and generalizations such as those due to
Majorana [21] and Weinberg [22], Ahluwalia ef al. [23] and Dvoeglazov et
al. [24]. They are all phaseless and all contribute to magneto optical effects.
In every case the longitudinal and transverse components are angular
momentum components expressible in the language of spherical harmonics.

9.3 Discussion

In Sec. 9.2, we have firstly used empirical evidence from magneto
optics to argue that the fundamental B® field is irrotational because for
plane waves it is a simple vector defined in one axis (Z). The possible forms
of B® for n pole radiation were then worked out using the Laplace
equation, i.e., by expressing B® as the negative of the gradient of a scalar

function. This procedure is equivalent to using the static part of a Stratton
potential for the magnetic field [25]. The complete form of the Stratton
potential is [26],

1 04,
B=-V$ -——nm

, 2.9.7
c ot ( )
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and as shown recently by Afanasiev and Stepanofsky [27], the Stratton
potential is needed for a complete description of the classical
electromagnetic helicity in terms of a conservation equation and Noether's
Theorem. This finding is consistent with the fact that the helicity is zero if
B® is zero, a basic inconsistency in conventional electrodynamics [20],
which uses a U(1) gauge and asserts that B® is zero.

It is also well known (for example problem 6.6 of Jackson's first
edition [20]) that any vector field (B) can be expressed as the sum of
irrotational and divergentless components under well defined conditions.
This is consistent with the fact that the transverse plane wave B® = B®"

is divergentless while the longitudinal B® is irrotational. Therefore we can

write:
B=BY +B®.+B® (2.9.8a)
V-BW=V-B®=V-BO® =0, (2.9.8b)
VxB® =0, (2.9.8¢)
BUxB® - iBOB®* et cyclicum, (2.9.8d)

and the B cyclic equation (2.9.8) is a condition under which B® = B @* s
divergentless and B® is both irrotational and divergentless. This is self-
consistent and consistent with empirical data from magneto optics [1—3].
This result will not be found in conventional electrodynamics because the
former introduces an O(3) gauge through Eq. (2.9.8). It is, however,
consistent with Laplace's equation as shown in Sec. 9.2.

In conventional electrostatics, the Coulomb field is expressed as the
negative of the gradient of a scalar function in the presence of charges
(electric monopoles). The Poisson equation is then solved to show that the
scalar potential is proportional to the charge density in the universe. If there
is no charge density, the scalar potential is zero and there is no Coulomb
field. In the Coulomb gauge therefore there is no longitudinal, irrotational
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electric field present in the conventional treatment of electrostatics and
electrodynamics. The introduction of Maxwell's displacement current (a
vacuum current) allows in electrodynamics the existence of transverse waves
which are conventionally unaccompanied by the Coulomb field. Therefore
the development of conventional (Maxwellian) electrodynamics is based on
the existence without charges of a current, Maxwell's displacement current,
made up of the time derivative of a transverse electric field which exists in
the absence of sources (electric monopoles). This is self-inconsistent in
several ways, as discussed recently by Chubykalo ez al. /28] and by Lehnert
et al. [29]. The most fundamental inconsistency is that the charge (or
monopole) and the field take on a separate identity, the field, according to
Maxwell, can exist without the charge, because Maxwell's displacement
current can exist in the absence of sources. If so, it is equally valid,
following Lehnert [29] to assume that the divergence of the electric field is
non-zero in the absence of sources, or to introduce the vacuum convection
current, following Chubykalo et al. [28]. Both procedures lead directly to B ®

in the vacuum. Furthermore, the B cyclic theorem (2.9.8d) is a relation
bewteen field components in the absence of magnetic monopoles, i.e. in
vacuo, or in the vacuum.

A point of major importance, and a turning point in the development
of electrodynamics, is that magneto-optical data have now been identified
as giving direct and unequivocal empirical support for the existence of B
and an O(3) gauge. This is also logical support for Lehnert et al. [29] and for
Chubykalo et al. [28], who have developed recently a self-consistent form
of electrodynamics. Ultimately, it seems logical to develop electrodynamics
and unified field theory on the basis that the primordial field exists in the
vacuum, following Maxwell, and to assume that charge is a manifestation
of the field as originally supposed by Faraday [28]. It also seems possible
[28] to develop a fully covariant theory in electrodynamics which allows
velocities greater than ¢ and which allows the interrelation of field theory
with action at a distance theory [28]. Proceeding on this basis, the B cyclic
theorem becomes the archetypical theorem of the primordial vacuum field.
It is simply a relation between components of spin angular momentum

multiplied by a C negative coefficient. Thus, the electromagnetic field is a
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physical entity which has angular and linear momentum, as observed

empirically in nature.
Finally, if we assume that magnetic monopoles exist in the universe,

the fundamental magnetic field B® can be expressed as the negative of the
gradient of a scalar function which is the solution of a Poisson equation,

V/ B(r/ t) d3 /

(2.9.9)
lr-r’

@, (r) =P (0)+—f

Here @,(0) is a constant of integration, as discussed by Jackson [20] on

his page 8 of the first edition, and where the divergence of the complete
magnetic field B=B® +B®+B® is non-zero because magnetic
multipoles are assumed to be present in the universe. The B® field from
this solution is axial, conservative and irrotational, in precise analogy to the
central Coulomb field in the presence of electric monopoles in the universe.

It is concluded that the fundamental B® field responsible for
magneto optical effects is irrotational both in the absence and in the presence
of magnetic monopoles. As described on Jackson's page nine of the first
edition [20], the line integral of Stokes' Theorem f B®-dl iszero over

any closed path. This is a counter argument to Comay's recent assertion [14]
that B® is not irrotational. Clearly, if this were true, B® would not be
proportional to the empirically observable conjugate product appearing in
the B cyclic theorem (2.9.8d), and B® would not be a fundamental C
negative angular momentum of the electromagnetic field in vacuo: the
primordial and fundamental electromagnetic spin angular momentum. As
such, B® remains irrotational for n pole radiation and for plane waves in
the presence and absence of electric and magnetic monopoles.
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Paper 10
The Interaction of the Evans-Vigier Field

with Atoms

The theoretical study is initiated of the interaction of the
Evans-Vigier field, B®, with atomic matter, represented by
atoms such as H in which there is net electronic spin angular
momentum only, and by atoms in which there is both spin
| and orbital electronic angular momentum. In H it is inferred
from the Dirac equation that the net spin of the ground state
electron should interact directly with B®, so that the
Zeeman splitting due to such an interaction should be
proportional to the square root of the power density of the
beam, whatever its frequency. In atoms or molecules in
which there is also net orbital angular momentum, the effect
of B® at first and second order is treated approximately
using the classical Hamilton-Jacobi equation.

; Key words: Evans-Vigier field, atomic interaction with.
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0.1 Introduction

It has been shown recently [1,2] that the interaction of the classical
lectromagnetic field with one electron is governed entirely by the Evans-
/igier field, B® . Thus far, this has been shown in two ways, using the
lassical but relativistic Hamilton-Jacobi equation for the orbital electronic
ngular momentum, and the Dirac equation for the spin electronic angular
nomentum, which has no classical meaning [3]. Other methods of
lemonstration can be used, for example using the Dirac equation in its
Jamilton-Jacobi form. Ifthe newly inferred B ® were zero, there would be
10 observable interaction between the electron and the field, contrary to
xperience. It is well known experimentally [4] that intense microwave
ulses magnetize an electron plasma, a process which the classical
Jamilton-Jacobi equation ascribes entirely to B®, acting at first and second
rders in B, the scalar magnitude of the magnetic flux density of the
ircularly polarized microwave pulse. For sufficiently low frequencies and
ntense pulses, the magnetization is dominant at first order in B, and is

herefore proportional to 1”2, where I, is the power density of the pulse in
Vm?

If for simplicity we consider the interaction of one electron with the
lectromagnetic field in relativistic quantum field theory [3], the Dirac
quation shows [1] that the permanent magnetic dipole moment (m) set up
y the intrinsic electronic spin forms an interaction Hamiltonian
1 = -m- B®. The magnetization due to m is Nm if there are N electrons

n a plasma. It is a permanent magnetization whose average value is zero,
ot one induced by the electromagnetic field. In atoms such as H however,
nis type of interaction Hamiltonian leads to an optical Zeeman effect for all
eam frequencies, and Sec. 10.2 is an account of the fundamentals of this
ffect, which is detectible with electron spin resonance [5]. Section 10.3
xtends the discussion to atoms (and molecules) with net orbital as well as
pin electronic angular momentum. Finally, a discussion is given in the
Jorn-Oppenheimer approximation of fundamental magnetic dipole
-ansitions involving B®.
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10.2 Optical Zeeman Effect in H Due to B®

In atomic H, the single electron is bound to the nucleus in an orbital,
and its net orbital angular momentum is quenched to zero [6]. It therefore
has only a net spin angular momentum (.§) from the Dirac equation. Ina
conventional uniform magnetic field, the Zeeman effect occurs due to the
electronic spin angular momentum, and is essentially an observable splitting
of the atomic absorption spectrum of H[7]. In a free electron, on the other
hand, there are no atomic absorption lines, and the Zeeman effect in an
electron plasma is not observable in this way. In order to understand the
interaction of electromagnetic radiation with atomic or free electrons, the
Dirac equation is necessary, because without it, there is no spin quantum
number S. Therefore we begin our discussion with a summary of the Dirac
equation for one electron (e) in the electromagnetic field represented by the

four-potential A, and explain the emergence [1] of the Evans-Vigier field
from the first principles of relativistic quantum field theory. Thereafter the
discussion is extended to the Dirac equation of the electron of the H atom in
the electromagnetic field, with emphasis on B®. This should be regarded
as only the first step towards the rigorous understanding of the interaction
of B® with atomic matter. A fuller and more detailed understanding will
rely on numerical methods, because the Dirac equation becomes analytically

intractable.
The Dirac equation for the interaction of the free electron with the

electromagnetic field is [1]

Y, (P, ed, ) (p) = -mye¥ (p), (2.10.1)

where Y, is the Dirac matrix [3] and ¢ the Dirac four-spinor. In

Minkowski notation,
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(2.10.2)

and m, is the electron's mass. Using standard methods of solution [1]
Eq. (2.10.1) reduces to the energy eigenequation

Wu = Hu, (2.10.3)

where u is a Dirac four-spinor in the standard representation [1—3], and
where the Hamiltonian eigenvalue H is
(0-(pred)f-ed.

H = (2.10.4)

2m,
Here o is a Pauli spinor [1—3]. It can be shown [1] that the part of H that
describes the interaction of the electron's intrinsic spin with the
electromagnetic field is

eh

7 (pred)x(pred) - g BO

Hs = —
2m0 2m0

(2.10.5)
- -m-B®

where B® is the Evans-Vigier field [8—12] of vacuum electromagnetism.
Here § = (ho)/2 is the electronic spin angular momentum, and e/m, the
charge to mass ratio of the electron. Therefore B® is to the vacuum
slectromagnetic field as S is to the electron, an irremovable component. If B®
were zero, then S could not interact with the electromagnetic field, in
sontradiction with the structure of the Dirac equation itself.

.
|
[
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To extend this analysis to the H atom requires an extra term ¥ in the
Hamiltonian describing the fact that the electron is bound in an orbital to the
nucleus. In the Born-Oppenheimer approximation [13] the Hamiltonian is
split into a part dealing with the isolated atom (i.e., the way in which the
electron is bound to the nucleus) and an interaction term. The latter can be
expressed in terms of atomic property tensors, such as the magnetic dipole
moment of the one free electron,

m=--25§,
2m,

(2.10.6)
In this approximation, the interaction of the electron in the H atom with the
applied electromagnetic field is described in the same way as that for the free
electron of Eq. (2.10.4), i.e., through the dot product of m and the B® of
circularly polarized electromagnetic radiation in vacuo. In the H atom,
however, there are observable electronic spectra in the visible and ultra-
violet regions of the electromagnetic range of frequencies [14], spectra
which appear as discrete absorption or emission lines. These do not occur
in the electron plasma, because they are due essentially to atomic structure
[7]. These spectral features are now known with great precision, and can be
used to measure the effect of the B® field through its Zeeman effect [7].
The Zeeman effect of B® in atomic H occurs because the Dirac
equation is based on spinors, which imply that the eigenvalues of the H
atom's electronic spin angular momentum are ¥/2 and -%/2. In B® these
are no longer degenerate, and transitions between them are possible. These
were first measured in atomic H in an ordinary magnetic field by Beringer
and Heald [15] about forty years ago, and should be measurable for B®
with contemporary technology. If so, the B® Zeeman effect should depend

on I;” because B® depends on 1. In the same way as the ordinary

Zeeman effect, due to an ordinary magnetic field, depends on its flux
density, so does the Zeeman effect due to the Evans-Vigier field, which has
all the known properties [1,2] of a magnetic field. We refer to this predicted
phenomenon as the optical Zeeman effect. In atomic H it should be
measurable with the use of pulses of high intensity circularly polarized pump
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-adiation and contemporary synchronized detection. For example the ESR
signal of H should be shifted by B, and the shift should be proportional
o I!”. Similar optical Zeeman effects should be observable in other atoms
with net ground state electron spin, such as the alkali metal vapors. (The
yriginal Zeeman effect was observed in sodium vapor.) In order to observe
hem it is necessary to use circularly polarized pulses of very high intensity,
secause B is zero [1] in linearly or incoherently polarized radiation, and
yecause

I

BO - 0
3
€,C

, (2.10.7)

vhere €, is the vacuum permittivity and ¢ the speed of light in vacuo.

[herefore for a power density of 1.0 W em?, (10* W m™?), the magnitude of B”
s only about 10~ T, ten times smaller than the Earth's mean magnetic field,
yroducing a very small Zeeman shift.

Since B® emerges from the Dirac equation itself, it is non-zero, and
s an observable. If definitive experimental evidence to the contrary is
ybtained, then the Dirac equation will have failed at a basic level.

0.3 Atoms and Molecules with Orbital Electronic Angular Momentum

The equilibrium of one electron in the electromagnetic field can be
.onsidered classically with the relativistic Hamilton-Jacobi equation [1,2].
~onsider the condition,

e
w = -2BO
mo (2.10.8)

vhere e/m, is the charge to mass ratio of the electron and where B is the

calar magnitude of the magnetic flux density of the beam. Under condition
2.10.8), w is both the angular frequency of the beam and the orbital angular
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frequency of the electron in equilibrium with the beam. For the
electromagnetic beam, w is k¢ where x is the magnitude of the wave-

vector, and where c is the speed of light. For the electron, the de Broglie
matter-wave equation [1] gives

1
o = %(m(fc“ -2 )? (2.10.9)

Under condition (2.10.8), using Eq. (2.10.9), we obtain

2
myct + Wacie? = WE_BO?, (2.10.10)

m,

which is a cyclotron condition for equilibrium of the electron in the field.
In the limit,

mc
K » e (2.10.11)

(where k now refers to the matter wave of the electron) we obtain the result,

w ~ ke ~ , (2.10.12)

which, using the relation between 4 and B of the wave,

0 _ B©®
K b

A (2.10.13)
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is the charge quantization condition [1]. The electron and photon become
indistinguishable in the limit (2.10.11) in which the cyclotron frequency of
the electron is the angular frequency of the beam.

This simple illustration shows that the beam can be thought of as
driving the electron in an orbit, which can be described in terms of classical,
relativistic mechanics. This is quite different from the interaction process
of the intrinsic spin angular momentum with the field, a process which has
no classical interpretation. In an atom in which the electron has both orbital
and spin angular momentum, the Zeeman splitting pattern due to B® is
therefore affected by both types of angular momentum appearing in the
appropriate Hamiltonian operator of the Dirac equation. We expect
phenomena to order [;” and I, in the optical Zeeman spectrum in such

atoms, and in general, these can be understood only by solving the Dirac
squation numerically.

A qualitative understanding of the problem can be attained, however,
oy considering an atom with one electron, an electron which has orbital as
well as spin angular momentum, and by splitting off the interaction
Hamiltonian of the electron with the field from the Hamiltonian describing
‘he way in which the electron is bound to the nucleus. This type of
ipproximation is the basis of semi-classical radiation theory [13], in which
itomic property tensors are treated quantum mechanically, and the field
lassically.  In the non-relativistic approximation several predicted
>henomena of the Evans-Vigier field have been described [8—12]. In the
ully relativistic treatment, however, major new features emerge — at
nicrowave frequencies the interaction Hamiltonian (and therefore the B®

nduced Zeeman splitting) becomes proportional to B®, and therefore to 1.
At visible frequencies the process is dominated by the term in I, because
he classical Hamilton-Jacobi equation of the free electron in the field shows

hese properties. This result explains why shifts caused by visible lasers of
itomic frequencies appear experimentally to be dominated [16] by an I,

lependence. It is clear that the new theoretical understanding provided by B ®
mplies the need for a fundamental re-appraisal of the interpretation of
ipectra such as these.
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10.4 Discussion

The existence of B® in vacuo means that there must be a novel
magnetic dipole interaction, which is not considered in the usual Born-
Oppenheimer approximation. In the usual semi-classical approach to
radiation theory [13], the latter leads to interaction Hamiltonians which
include magnetic dipole terms such as

H, = -m-B(t). (2.10.14)

In this expression, however, B (1 ) is time dependent and originates in the
plane wave B® = B®* not in the B® field itself. The novel interaction
term H = -m-B®,, however, is fundamental in atomic and molecular

spectroscopy whenever a circularly polarized field is used, i.e., whenever the
Evans-Vigier field is non-zero in vacuo. Some effects of H_ have been

discussed in Secs. 10.2 and 10.3, and should be observable with
contemporary technology. = Magnetization by circularly polarized
electromagnetic radiation [1] also depends on an interaction term of this
type, and this can be understood classically for the free electron interacting
with the field through the relativistic Hamilton-Jacobi equation. The Dirac
equation in its Hamilton-Jacobi form [17], or an equivalent quantum
equation, must be used to extend this understanding to atoms, so that a fully
consistent theory emerges in relativistic quantum mechanics. It is already
clear, however, that if B® were zero, the Hamilton-Jacobi equation itself

would give a meaningless conclusion.
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Paper 11
The Derivation of the Majorana Form of
Maxwell's Equations from the B Cyclic

Theorem

It is demonstrated that the B Cyclic theorem (equivalence
principle) of the new electrodynamics gives Majorana's form
of Maxwell's equations in the vacuum. This demonstration
provides a link between the new and received views of
vacuum electrodynamics, showing that the equations of
motion can be derived from the equivalence principle,
assuming only the correspondence principle of quantum
mechanics. Therefore the B Cyclic theorem is quantized to
give the Maxwell equations in Majorana's form.

11.1 Introduction

In the past few years it has become clear that a major advance in
electrodynamics has occurred. The electromagnetic field is now thought to
have longitudinal components in the vacuum [1—7], one of which,
conveniently referred to as the B® field, being phase free and observable
empirically, for example in magneto-optics. This longitudinally directed
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magnetic field forms part of the structure of the B Cyclic theorem [1—3],
which inter-relates transverse and longitudinal components in the vacuum.
(There is also an equivalent theorem in the presence of sources and matter.)
The purpose of this Letter is to show that the Maxwell equations in the form
given by Majorana [8—10] can be derived from the B Cyclic theorem,
showing that Maxwell's equations themselves must give longitudinal
solutions which are inter-related to the usual transverse electromagnetic
waves through a novel principle of equivalence between space-time and the
electromagnetic field.

11.2 Derivation of the Maxwell Equations from the B Cyclic Theorem
The equivalence principle of the new electrodynamics, the B Cyclic

theorem, inter-relates the transverse and longitudinal components of the
vacuum electromagnetic field as follows,

BWx B® = jpOBO* et cyclicum, (2.11.1)

where B® = B®" is the transverse component (e.g. a plane wave) and
where

B® = BO®) (2.11.2)
is the longitudinal, phase free, component in the basis ((1), (2), (3)), a
complex basis of the rotation sub-group O(3) of the Poincaré group. For the

present purposes it proves convenient to reduce Eq. (2.11.1) to cyclics in the
vector potential A, defined in S./ units by

B =Vx(id), (2.11.3a)

E = Vx4, (2.11.3b)
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where B is magnetic flux density, E is electric field strength, and c the
speed of light in vacuo. Equation (2.11.3) uses the Hertz-Stratton
representation of E as the curl of an axial (i.e., rotational) A, for example

the plane wave,

am =AY e - wt - kZ
_ f(,,Jr,)e , b= or-xZ 2.11.4)

Here e® = (i-ij)/y2; A® is a scalar amplitude, and ¢ is the
electromagnetic phase, where  is the angular frequency at instant ¢,
and k the wavevector at Z. Using Eq. (2.11.3) and (2.11.4) gives the
standard result [1—7],

0 ,
E® = 26 jeis,

2

B_(o)(ii + ])e i¢

2

from which it is inferred that A is axial and iA is polar. Self consistently,
therefore, the complex polar vector E is the curl of the complex axial
vector A ; and the complex axial vector B is the curl of the complex polar
vector id. Since A is axial, it is described by the A cyclics:

(2.11.5)
B

AV x 4@ = j4 040 (2.11.6a)
ADOx A = j4O@4 D (2.11.6b)
AOx AW = j4 O 4@ (2.11.6¢)

where
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B@ =x4®, EO® = —icx4®,

B = xA®  E® = _jcxq®
2.11.7)

H

B® = xkA®, E® - _jcxq®,

B® - x4 (3), E® -ickA®.

1}

»w multiply both sides of Eq. (2.11.6a) by i and transform to Cartesian
ordinates to give

(14 )47 +i((idy)ay - (i,)4; ) = 0, 2.11.8)

d it is seen that this equation has the Cartesian structure,

POy, +i(py,-piy) = 0, (2.11.9)

iere p isa polar vector,  an axial vector,and p @ the scalar magnitude
p. Equation (2.11.9) is one of the Maxwell equations as derived by
ijorana [§—10]. In the vacuum, the axial vector potential is defined by

AD = 4@ - (O D), (2.11.10)

=l

1 the polar vector potential i4 is identified through the correspondence
nciple with the del operator,

A
L R 2.11.11)
e e

e i4@ function is identified with a time differential operator through the
ne correspondence principle, i.e.,
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A
Lo 0. ;20 (2.11.12)
e ec ot

Similarly the other two equations of the 4 cyclics reduce to the other two
Majorana-Maxwell equations as follows,

AD x 4B = j4O4 D+ p(0)¢x+i<pyll]z—pzl.|!y> = 0, (2.11.13)

and

AO X AD = 4O4O" ~ pOy +i(par -pliy) = 0, (211.14)

11.3 Discussion

The cyclic equations of the new electrodynamics reduce to the
Majorana form of the Maxwell equations using the correspondence principle
in the form (2.11.11) and (2.11.12), which is also a form of the minimal
prescription for the free field [1—7], i.e., the proportionality between linear
momentum and the vector potential, the latter having the dimensions of
linear momentum multiplied by charge. The novel cyclic field equations
represent an equivalence principle between rotation generators of O(3) and
the electromagnetic field. Using the correspondence principle, the
equivalence principle reduces to Maxwell's equations in the form given by
Majorana, in which complex field combinations take the role of
wavefunctions. The Maxwell equations have therefore been derived from
a more fundamental cyclical structure, and have therefore been derived ina
form which has O(3) symmetry. This is the Majorana form of Maxwell's
equations in vacuo.
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Paper 12
The Evans-Vigier Field B® Interpreted as a

De Broglie Pilot Field

A straightforward consideration of the antisymmetric part of
the tensor of free space light intensity leads to the result
B®/BO® = y® /% where B® is the Evans-Vigier field
[1—10], a phase free magnetic flux density of amplitude
B carried in free space by the electromagnetic wave
component, and where J® = %e®, with ¢® being a unit
axial vector in the propagation axis. The field B® therefore
pilots the photon angular momentum, J®.  The
consequences are discussed of the wave-particle duality
inherent in this result, using diffraction patterns due to B®
in a double slit interferometer.

Key words: B Field, de Broglie pilot field.

12.1 Introduction

It has been inferred recently [1—10] that the conventional view
of free space electromagnetism is incomplete, because the classical
wave interpretation produces a novel phase free magnetic flux density
in the vacuum, the Evans-Vigier field B®. The latter exists in free
space because there exists the electromagnetic torque
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density iBOB®* /[y, = BM x B@/p . Here y, is the vacuum permeability

in S.Z units [11] and B the scalar amplitude of the magnetic flux density
produced in free space by Maxwell's equations. In this notation, the usual
energy density in free space is the dot product of complex plane waves [12],

_ 1w, pa
v =—B"-B® 2.12.1)

Ho

in Jm>3, and we work in a complex representation [13] of three
dimensional space, a representation defined by the cyclically symmetric unit
vector algebra,

eWx e® = jgdr, (2.12.2)

Since scalar light intensity, 7, (W m 2),is, in S.Z units [14],

I, = cU, (2.12.3)

the imaginary axial vector quantity,

1, - SBOxB® = | SBOBO" (2.12.4)
uo HO

is the antisymmetric part of the free space light intensity tensor [5]. So the
imaginary I, is directly proportional to the real and physical Evans-Vigier
field B® in vacuo [6].

In this Letter, it is shown that the equation,

3 3
B® ~ J® ) e(3),

26 " 3 (2.12.5)
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is a straightforward consequence of the quantization of the electromagnetic
field. In Eq. (2.12.5), % is the Dirac constant, and the real and physical

JO = 1e®), (2.12.6)

is an angular momentum with magnitude % of the field as particle. In Sec.
12.2, the result (2.12.5) is derived straightforwardly from fundamentals. In
Sec. 12.3, diffraction patterns are discussed qualitatively, patterns due to
B® of a circularly polarized wave passing through a double slit
interferometer [15]. Finally, a discussion is pursued of the field-particle
duality inherent in Eq. (2.12.5), in that B® and J® are directly
proportional. Since B® is produced from a cross product of vector plane
wave functions BV and B?, it satisfies the criteria originally proposed
[16] by de Broglie for pilot waves. Since B® is phase free and is a
magnetic flux density, it is referred to henceforth as the pilot field for
J® = he® and the usual term wave-particle is replaced by fleld-particle.

12.2 Derivation of Equation (2.12.5) from Fundamentals

Torque has the same units as energy and is the time derivative of
angular momentum. Therefore, there exist in vacuum electromagnetism
forque densities (i.e., torques per unit volume),

0)
TO" .- _lgo.pgo - —iE—B(”', et cyclicum, (2.12.7)
uo HO
in which
BW
m® = 2" (2.12.8)
Ho
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and so on are oscillating magnetic dipole moments of the radiation itself.
Thus,

Tp*:_mmxgm, (2.12.9)

in formal analogy with the definition of magnetically generated torque in
electrostatics and electrodynamics [12]. However, the real (i. e. physical)

part of T ,(,3)' is identically zero because the real, physical, angular

momentum density, J ,(,3) , of the beam in vacuo is constant. Thus,

38
Re(T?") - 51,53) - 0. (2.12.10)

Now use in Eq. (2.12.10) one of the standard axioms of quantum mechanics,
one based on the de Broglie relation, the axiom

iz‘i@ 2.12.11
Py - (2.12.11)

where En is energy. Since J3 is real, Egs. (2.12.7), (2.12.10) and (2.12.1)

give an imaginary

* LEn 3 .En .
7O = ER O o BN o
4 5 Y oV (2.12.12)

where ¥ is the volume used to define J3*, and where the real J®* now

has the units of angular momentum itself rather than angular momentum
density. In vacuum electromagnetic radiation, the energy density En/V is

given by Eq. (2.12.1),

En _ B®?
V=5 =" (2.12.13)
0
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and so
3)* . B © * . B (0)2 *
TY" = —zu—Bm = —z—M JO (2.12.14)
0 0
from which
J®
BY - B(O’T, (2.12.15)

which is Eq. (2.12.5), with J@ = %e®. The result (2.12.15), or (2.12.5),
was first derived in Ref. 1, using another method, and re-derived

independently in Ref. 6.
Equation (2.12.5) can be derived in another way using a
straightforward adaptation of the standard expression for h® in quantum

field theory [5], the Planck-Einstein light quantum hypothesis,

hw = f udv. (2.12.16)

Instead of the usual U = BW- B®/p ,, we use

. 1BYxBO B2

; 2.12.17
" n ( )

and obtain

1
¥ = __f|Bﬂ>xB(2>|dV. (2.12.18)
Ho®

In the basis (2), Eq. (2.12.18) becomes
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iJO* = he®* = ’foz): f B av, (2.12.19)

and rearranging,
B® ;(‘:))VJ@) “”%3) (2.12.20)

which is again Eq. (2.12.5).
It has been shown that Eq. (2.12.5) is the direct, self-consistent result
of two fundamental axioms of quantum mechanics, Egs. (2.12.11) and

(2.12.16).

12.3 Diffraction Patterns Due to B®

In order to understand quantitatively the implications of Eq. (2.12.5)
in field-particle duality, it is necessary to consider a Young experiment for B ©®
carried out with a circularly polarized incident beam, which is diffracted
through the double aperture of the interferometer to form a diffraction
pattern. In classical electromagnetism, this requires an exact solution of the
Maxwell equations as described recently by Jeffers et al. [17] for linearly
polarized incident radiation. For linearly polarized radiation, however, B®
nets to zero, because it changes sign from right to left circular polarization
[6]. Tt would therefore be interesting to repeat the work of Jeffers et al.
[17] for circularly polarized incident radiation and to map the B®
diffraction patterns quantitatively and accurately. In the absence of such
data we draw a qualitative sketch of the patterns to be expected using the
relation between the magnitude of B® and beam intensity (/,, in W m™),

AN
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I 12
B® - p0,G) - [_03] e, (2.12.21)

€€

where €, is the S.I. vacuum permittivity. Equation (2.12.21) expresses B ©®)

in terms of [01 ? . and magnetization [11,18] due to B® therefore has an [01 ?

profile which is observable in principle using microwave pulses to
magnetize an electron plasma [18]. Fig. (9) of Jeffers et al. [17] shows lines
of constant /, forming a diffraction pattern indistinguishable from an

interferogram one which shows considerable structure [17] within a few
wavelengths of the slits. This structure is unobtainable [17] in the usual
scalar theory of diffraction [12], and the energy flow is calculated along
paths normally interpreted as an interference pattern. However, as pointed
out by Jeffers et al. [17], there is no such thing present as a classical
interference, i.e., no radiation actually crosses the axis of symmetry. In this
view, no radiation passing through the top aperture arrives at a point below
the axis of symmetry and vice-versa.

Qualitatively, we expect similar patterns for the diffracted B® to be
determined by Eq. (2.12.21) through the square root of the intensity. The
significance of Eq. (2.12.21), and of the expected B® diffraction pattern,
is discussed as follows.

12.4 Discussion

Although this exact, classical analysis [17] of diffraction appears to
be in need of extension to incident circular polarization, in which B® is
non-zero, we discuss here the inference that B® is the pilot field of %, the
photon's angular momentum. If so, B® and % are simultaneously
measurable in the de Broglie-Vigier-Bohm interpretation [19] of the
quantum theory. Lines of constant B® in a diffraction pattern would be
lines of constant he® in the basis (2). These ideas do not occur in
conventional electrodynamics [12] in which B® is undeveloped. The
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existence of B® in vacuo [6], however, has by now been demonstrated in
many ways, two of which are given for the first time in this Letter. The
magnetizing effect of B® can be demonstrated [6] using the classical
Hamilton-Jacobi equation of one electron (e) in the classical
electromagnetic field represented by the four-potential (4 " ), a demonstration

which shows that the trajectory of the electron in the beam is governed
entirely by B® and by no other vacuum field. In retrospect it has become
clear that this is due to the fact that B® x B®/p is a torque density of

radiation in the vacuum, and to the fact that B® is directly proportional to
the radiation's angular momentum density (Eq. (2.12.5)). Prior to this
however, B® x B@ was an almost unknown quantity labelled by some
nonlinear opticians as the conjugate product, although it is only one out of
several possible conjugate products of the vacuum electromagnetic field
[5—11]. The obscurity of this language precluded its clear interpretation,
but the magnetic conjugate product is the radiation torque density multiplied
by the vacuum permeability, a torque density which is simply iBOB®*/p, .
The torque per unit volume of radiation is therefore directly proportional to
the real and physical Evans-Vigier field B®* (= B®) of electromagnetism

in the vacuum.
The use of the classical Hamilton-Jacobi equation of e in All to

demonstrate the existence of B® from the principle of least action [6] is
significant in at least two ways. Firstly, in a historical context, Cushing [20]
has pointed out that de Broglie originally saw the classical Hamilton-Jacobi
equation as providing "...an embryonic theory of the union of waves and
particles, all in a manner consistent with a realist conception of matter".
Equation (2.12.5) now shows that if % is the angular momentum of a
particle, the photon, then % must be directly linked with B®, and in the
realist view, be simultaneously observable with it. Rewriting Eq. (2.12.5),

B®
B©O

J® =3 , (2.12.22)
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we obtain an expression which is directly analogous with the Planck-
Einstein and de Broglie relations, En = hw and p = hk respectively.

Secondly, as shown by Bohm [21], the Schrodinger equation can be
interpreted in the realist manner [22] by developing it into a quantized
Hamilton-Jacobi equation, provided that the quantum potential is
introduced, and provided that non-locality and concepts such as
superluminal action at a distance are accepted as valid hypothesis. (The
causal, realist point of view of Selleri e al. [23] does not accept action at a
distance.) These questions are addressed in the interesting volume [7]
recording the de Broglie centennial.

In the Copenhagen agreement [7] on the other hand, the quantum

equivalent of B® is interpreted as an angular momentum operator, B,
the photomagneton [1,4,6]. The latter is directly proportional to J® in the

vacuum, and J* is an angular momentum operator of quantum mechanics
in the Copenhagen view, and obeys the commutator relations of such
operators. Is it possible to use the Evans-Vigier field to distinguish between
the Copenhagen and realist interpretations of quantum mechanics? In order
to begin to scratch the surface of this question, we can adapt Bohm's original
discussion [2] as far as possible, in the context of diffraction patterns for
B® . The line of argument is that if B® is the de Broglie pilot wave of h,
it is simultaneously measurable with % in the realist view.

In the classical theory of electrodynamics [12], B® is expected to
be modified by diffraction as described accurately for the first time by
Jeffers et al. [17]. This is a purely classical phenomenon which can be
inferred by solving Maxwell's equations with the appropriate boundary
conditions. The diffraction patterns after passing through the double
apertures are those of B itself, so must be those of the angular momentum
of the radiation. The latter can be represented after quantization by he®,
whose magnitude is h. The particle (photon) concomitant with the
diffracted wave therefore has angular momentum magnitude h. If so,

however, where is the particle after diffraction [7]? If the incoming wave-
particle is equivalent to one photon, what happens to the photon on

\
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diffraction? This question is answered entirely differently in the realist and
Copenhagen views of quantum mechanics [7]. In the simpler case of light
passing through a beam divider, the duality of % and B® is described as
follows.

In the realist interpretation [7] the photon carries particulate
information, and at random goes to one of two detectors, A or B, after the
light has been split by the beam divider. However, the spin field B® goes
to both detectors simultaneously, detectors which measure split beam
intensity. Since single photon (and neutron) generators are now available
[7], these assumptions are experimentally explorable, and Aspect et al. [24]
appear to have shown that if a photon goes one way, there is no photon
present in the other arm, there is 100% anticorrelation. Therefore the photon
angular momentum, %, if detected by A, cannot be detected simultaneously
by B. (We can imagine A and B to be ultra-sensitive absorption
spectrometers that can detect the absorption of % through atomic or

molecular selection rules [14] on angular momentum.) Therefore, if B is
simultaneously measurable with h, then the presence of B® at B should be

simultaneously measurable with % arriving at A. Since B® is proportional
to the square root of intensity, then this experiment should be feasible and
would show that B® is the de Broglie pilot field [7] for . In this view, the
wave function is the classical, Maxwellian, wave itself, and can exist
simultaneously at A and B when there is one photon at A. In this
interpretation, however, it is necessary to assert that the relation between
electromagnetic energy density and intensity, the classical Eq. (2.12.3), holds
if the empty wave containing B® is to be observable as intensity, i.e.,
power per unit area. This has to be true in the absence of h.

In the Copenhagen interpretation, as described by Croca [25], the
light incident on the beam splitter is divided into two wave packets, and
when one of these hits a detector, A, for example, the photon has chosen that
particular path. The wave function is a wave of probability, and the detector
A is a measuring device which has the effect of bringing the photon into
observational reality. Thus, causality is lost and the wave of probability at
B vanishes and is lost to the physical, or measurable, world. Reality in the
Copenhagen view is something that follows measurement, and this is counter
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intuitive. (However intuition is by its very nature, subjective.) Therefore the
photon if detected at A has been brought into measurable existence at A, and
is not measurable at B simultaneously. Therefore, the wave function of the
photon, when detected at A, brings it into existence at A, but before that, the
photon exists only as a probability. In standard quantum optics, if a photon
exists at A, B® exists at A in terms of photon creation and annihilation
operators [3—®6]. If there is no photon at B, (i.e., if no photon is created at
B by the measuring device) there is no B® at B, and so nothing at all

should be detectible at B, while at A we detect B® through the square root
of intensity and % through our ultra-sensitive spectrometric device.

This experiment appears to be a clear way of distinguishing between
these two interpretations. Evidently, if B® is an empty field at B, as the
realists assert [7], then it must carry classical intensity, even though it is
supposed not to carry quantized energy. This point of view can be sustained
logically only if the intensity of an empty wave is not a function of hw, the
quantum of light energy known as the photon. The reason is that there is no
photon at B, while there is still intensity at B in the realist point of view.

Finally, we discuss briefly the idea of B® as a pilot field. As
discussed by Bohm [21] and Vigier [26], there is an entity, {, guiding the
particle in the wave-particle duality of de Broglie, an entity which is written
in terms of the real mechanical action S as

¥ = ReXP(ig), (2.12.23)

so that R? is the probability that a particle of mass m have a velocity
v = VS/m. Inhis paper of 1952 [21], Bohm showed that this is a plausible
idea if taken to its logical conclusion, and met the objections of Pauli to de
Broglie's initial proposal, published in 1930 [27]. A slight extension of the
pilot wave idea is to write

g = RMW /M _ ¢(2)*’ (2.12.24)

where S is the electromagnetic action [6,21],
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S = h(wf - x-r), (2.12.25)
and where RW and R ® are in the complex circular basis (2),
R =M R® = @ (2.12.26)
In this picture,
PO? = |y® x y@ |, (2.12.27)
is the probability of finding a particle with an angular momentum given by

as

% (2.12.28)

1_](3)' =

where [21], ¢ is the azimuthal angle. Therefore B®, which is directly
proportional [1,6] to J®, is a pilot field of the particulate angular
momentum, %, of the photon.
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Paper 13
The Charge Quantization Condition: Link

Between the O(3) Gauge Group and the Dirac

Equation

The charge quantization condition (CQC) equates the
quantized vacuum photon momentum to the classical product

eA© where e is the charge on the electron and where 4 ©

is the scalar magnitude of the potential four-vector of
electromagnetic radiation. It is shown that the CQC emerges

consistently from the expression for the Evans-Vigier field B ®

in the O(3) gauge group of vacuum electromagnetism and the
Dirac equation for the spinning trajectory of an electron in
the field.

Key words: charge quantization condition, B® field

13.1 Introduction

The magnetic components of the ordinary plane waves of vacuum
electromagnetism are now known [1-10] to act as the source of the
magnetizing field B ®, the Evans-Vigier field [6]. The real and physical
B® field propagates through the vacuum with the plane waves, and is an

axial vector directed in the propagation axis. It is an experimental
observable, and can be isolated [6,9] from the concomitant plane waves
through its magnetization of material matter, in the simplest instance one
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electron. The magnetization, M®, is, at microwave frequencies [11],

proportional to IO1 ” where I, is the power density of the beam in W m™.

Therefore B® is a physical magnetic flux density, and is now understood
in several different ways [9]. There is no reasonable doubt that it adds a
third dimension to the understanding of vacuum electromagnetism.

An immediate consequence is that the gauge group of vacuum
electromagnetism can no longer be considered to be the conventional O(2)
[12], the group of rotations in a plane. The natural generalization to O(3),
the group of rotations in three dimensional space, is considered in Sec. 13.2,
where it is shown that the field B® emerges from O(3) gauge geometry as
being proportional to the vector product of the plane wave vector potential 4
with its own complex conjugate 4@ This result leads to the charge
quantization condition (CQC), which equates the quantized vacuum photon
momentum hk to the classical e4®. Here e is both the charge on the
electron and the scaling constant of O(3) gauge geometry [12], and 4© is
the scalar magnitude of A®. In Sec. 13.3, the Dirac equation of one
electron in the electromagnetic field is used to produce an expression for
B® which becomes identical with that derived in Sec. 13.2 by using the

CQC. The latter therefore makes the O(3) gauge group theory of vacuum
electromagnetism consistent with the Dirac equation of one electron in the

electromagnetic field. Both theories consistently produce B® in the

vacuum, and a discussion is given of some of the wider implications of the
discovery of the Evans-Vigier field.

13.2 The O(3) Symmetry of Vacuum Electromagnetism

The need for an O(3) gauge group of vacuum electromagnetism is
revealed by the defining Lie algebra of the B® field [6],
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BUOx B® - ;pOBO*
B®x B® = jpOpW> (2.13.1)

B®x B — jpOBQ)*

where BO = B®* are the magnetic components of the ordinary plane
waves. This algebra is non-Abelian, compact and semi-simple, and has O(3)
symmetry [12], not O(2). Therefore the O(3) group must be used to describe
vacuum electromagnetism in the general theory of gauge geometries [12],
a theory which parallels general relativity in its conceptual development.
The O(3) theory of vacuum electromagnetism is non-Abelian in nature, and
therefore the field can act as its own source [6]. Thus, the conjugate product
B® x B® acts as the source of B, a new physical field which propagates
through the vacuum with the plane waves, and which is observed through its

IO1 7 profile [9]. This inference is reinforced conclusively [9] because the

source of B® can be described in terms both of a Biot-Savart-Ampére law
and as the curl of a vector potential [9]. Therefore B® has all the known

properties of a magnetic flux density, and acts experimentally as such [6].
In retrospect its existence has already been detected experimentally in
second order magneto-optic effects, because the well known conjugate

product [13] is iB@B®*, an experimental observable. Here B is the
scalar magnitude of B®. These phenomena include: 1) the inverse Faraday
effect [14]; 2) the optical Faraday effect [15]; 3) light shifts in atomic spectra
induced by a circularly polarized laser at visible frequencies [16]; 4)
magnetization at second order in B® of an electron plasma [17] with high

intensity microwave pulses.

In field-particle physics, the general theory of gauge geometries is
well developed [12], and there is a need only to adapt it for the emergence
of B® in vacuum electrodynamics. The theory is developed [12] in terms
of isospin indices in an abstract isospin space whose symmetry, however, is
O(3). By applying this theory to the physical space (1), (2) and (3) of
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sircular indices in which Egs. (2.13.1) are written, the O(3) electromagnetic
field tensors emerge [6],

(60 )y = (F®"), -2 (4P x4®),,
(6@ ),y = (F®"), - iZ(4®x ), 2.13.2)

(69"),, = (FO"),

v

_ _,%(A(I)XAG))W

[hese generalize the usual F uy tensor [12] to include cross products of

rector potentials. The cross product 4™ x 4@ for example, is not
sonsidered in the usual definition of F v in the O(2) (=U(1)) gauge group

or electromagnetism, but is nevertheless non-zero, even in that gauge group,
yecause [6]

O - ;K J0y 40
B ’A(O)A x AT, (2.13.3)

[his reveals a fundamental inconsistency in the O(2) gauge symmetry. In
he O(3) gauge group, on the other hand, we obtain, self-consistently from
9. (2.13.2),

. .e
BO®* - _I%A(I)XA(Z), (2.13.4)

“omparison of Egs. (2.13.3) and (2.13.4) gives the charge quantization
;ondition

ed©® = %y, (2.13.5)

vhose consistency within field theory is shown in the next section.

Charge Quantization Condition: the O(3) Gauge Group & Dirac 259

13.3 The Dirac Equation of One Electron in the Field

It is well known that the electron has intrinsic spin (.S'), which has no
classical meaning. This is a result of the Dirac equation recounted on
numberless occasions. It has been shown recently, however, that the
interaction Hamiltonian formed between S and the electromagnetic field is

[6]

ho
H,, = S B® = =2 B©, 2.13.6
. o, (2.13.6)

where e/(2m,) is the gyromagnetic ratio and ¢ is a Pauli spinor and is

governed exclusively by B®, and by no other field component. Therefore B ®
is to vacuum electromagnetism as S is to the electron, an intrinsic
component which is not only non-zero, but irremovable. In other words,
without B @ the ineluctably and characteristically quantum mechanical part

of the Dirac equation of the electron in the field would be entirely and
incorrectly missing. The Dirac Hamiltonian eigenvalue would become
identical with the classical Hamiltonian of the electron in the field.

Thus, if S be accepted, so must B®.
The specific expression for B® from the Dirac equation can be
written as a vector cross product [6,12],

BO®* - _%p(l)xA(z), (2.13.7)

or as a commutator of a transverse momentum operator p») with the field
vector potential 4@ . The magnetic flux density appearing in the spin part
of the Hamiltonian, H,,, , is independent of time, and is therefore B®,

because the plane waves B = B®* are time dependent and vanish on
averaging at order one in B(®. The electron's intrinsic spin must interact

directly with B® of the field. This is a fundamental result from the first
principles of relativistic quantum field theory, and cannot be discounted as
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a modeling procedure. Thus B® is the fundamental magnetizing field of

electromagnetic radiation at all frequencies. It is an experimental

observable, whose presence in vacuo can be detected through the 1'01/2

dependence mentioned in the introduction.

Equation (2.13.7), defining B® from the Dirac equation, can be
obtained from Eq. (2.13.4) defining B ® independently from considerations
of O(3) gauge geometry, through the charge quantization condition (2.13.5)
in the form p® = e4W. The theory is therefore consistent.

13.4 Discussion

Since H_ pin in Eq. (2.13.6) is a Hamiltonian, it is time independent,
showing that B® is a phase free, time-independent, and observable
component of vacuum electrodynamics. Equation (2.13.1) relates it to the
slane waves B® = B®* which are complex conjugates in the basis (1),
2), (3). It follows from the well known minimal prescription,

p,~p,ted,, (2.13.8)

the basis [18] of the Aharonov-Bohm effect) that the transverse momenta

>f the electron in equilibrium with the field can be represented in the same
»asis by the complex conjugate pairs,

pV = p® (2.13.9)
n so doing, it is understood that measurable quantities are real, physical
»bservables, as in electrodynamics in general. The electron transverse
nomentum is driven by the field transverse momentum in field-electron
:quilibrium. This requires

eA® = p® = 3x® - pyO (2.13.10)

.
{,
i

|
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and taking magnitudes on both sides leads to the charge quantization
condition. The electron property (orbital angular momentum) is created
from the electromagnetic field, and the charge quantization condition the
electron property and the field property are indistinguishable.

Therefore, although the photon is conventionally considered to be
uncharged, its quantized momentum %k is now understood to have the

classical value ed®, the product of two C negative quantities. At a
fundamental level, therefore, the charge on the electron e becomes the O(3)
gauge coupling parameter, the constant of proportionality between
momentum and the vector potential. This is a result of the O(3) symmetry
itself [6,12], and so in this view, the vector potential is physically
meaningful. This is confirmed in the Aharonov-Bohm effect [18] which has
deeply meaningful consequences, for example in vacuum topology [12].
These inferences all rest on the emergence of B®, and illustrate its central
importance in field-particle theory.
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Paper 14

The Evans-Vigier Field, B® , in Dirac's

Original Electron Theory: a New Theorem of

Field-Fermion Interaction

Dirac's original electron theory is used to show that a
classical electromagnetic field interacts with quantized
fermion half integral spin through the Evans-Vigier field,

B® = -i(e/h)A x A", where Ax A" is the conjugate
product of field vector potential, A, with its own complex
conjugate 4 *; and where e/% is the ratio of elementary
charge to Dirac constant. Dirac's theory of the electron is
recovered when 4 ™ isreplaced by 4. However, since A is
complex from d'Alembert's equation in vacuo, B @ is always
non-zero. It becomes very large at low frequencies for

moderate field intensity, and has several important practical
applications.

14.1 Introduction

The original description by Dirac [1] of his famous theory of the

~ electron is used in this communication to show that the classical electromag-
netic field interacts with quantized fermion spin through the Evans-Vigier
field [2—10],
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B® - -,-%A xA*, (2.14.1)

where A x A * is the conjugate product of the field vector potential with its
own complex conjugate 4 *. Here e is elementary charge and % the Dirac
constant, and 4 x A * is pure imaginary, so that B® is real and physical.
Equation (2.14.1) represents a new fundamental theorem in field theory, and
can be generalized within quantum electrodynamics [11—14]. The
demonstration of Eq. (2.14.1) is given in Sec 14.2, and is based closely on
the original description by Dirac [1]. The latter's theory is recovered exactly
if A* in Eq. (2.14.1) and related equations is replaced by 4. In other
words, Dirac assumes [1] that A is pure real, so that 4 x 4" (and B®) is
zero in his theory. More generally however, the d'Alembert equation in
vacuo [11—14] shows that 4 is complex, with a real and imaginary part.
In consequence the cross product [2—10] A x A" is not zero. For a

transverse plane wave A the conjugate product A x A * is pure imaginary
and free of the electromagnetic phase. It is, furthermore, directly
proportional to beam power density / (W m™) and inversely proportional to
the square of beam angular frequency (). At low frequencies B®
becomes very large (megatesla) for moderate I (of the order ten watts per
square centimeter). This property is potentially of great practical utility, the
existence of B® being the result of Dirac's fundamental theory of the
electron. In Sec. 14.3 we indicate avenues of generalization of this result
within contemporary quantum electrodynamics.

14.2 The Conjugate Product in Dirac's Original Electron Theory

Dirac has given a clear description of his own theory of the electron
interacting with a classical electromagnetic field in chapter eleven of Ref. 1.
In this section Dirac's description is followed closely to show the existence
of the field B® of Eq. (2.14.1) for a complex electromagnetic potential
four-vector, 4 u the general solution of the vacuum d'Alembert equation
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[15]. The space part of 4 " is denoted A, and its complex conjugate by 4 *.
In his original development [1], Dirac assumed that A4 is classical and real,

sothat A x 4" is zero, because he was aiming at a theory of the anomalous

Zeeman effect in a static magnetic field. Empirical evidence is now
available [16—20], however, to show that for electromagnetic waves,

A x A" is experimentally observable in magneto-optical phenomena, and
is non-zero experimentally.

Dirac's development is based [1] on the quantum relativistic wave
equation,

(Po + edy - py(0- (p + ed)) - pyme)y = 0, (2.14.2)

for an electron (or more generally a fermion) in a classical electromagnetic

field. Equation (2.14.2) is written here in contemporary standard (S.1.)

Units, (whereas Dirac uses Gaussian units). The energy momentum four-
vector in S./ units in Dirac's notation is

P, = (py,P), (2.14.3)

and the potential four-vector is
A, = (4,,4). (2.14.4)

The matrices p,, and p, are [1]

(001 0] (10 0 0]
0001 010 0

Pio 1000 P oo -1 0 (2.14.5)
0 100] 00 0 -1
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and Y is a column four-vector, described in contemporary terms as the Dirac
four-spinor. (In his original account [1] Dirac does not use parity inversion
to interrelate spinor components, as is the contemporary practice [11—14].

The classical Hamiltonian for an electron in a classical
electromagnetic field is now used by Dirac [1] as a guideline to the
properties of Eq. (2.14.2). We proceed here by following this method
closely, but by indicating at each stage the modifications which enter into the
Dirac theory of the electron when A is complex rather than real. The wave
equation expected from analogy with the classical theory is Eq. (2.14.30) of
chapter eleven of Dirac [1],

((Po+er)2—(p+eA)2-m2c2)1|J =0, (2.14.6)
and is written for real A. For complex 4 . EQ. (2.14.6) becomes

((py + edy) (py + ey) -
(2.14.7)

(p+ed)- (p+ed™)-mic?)y = 0.

In order to make his theory of the electron resemble Eq. (2.14.2) as closely
as possible, Dirac multiplies Eq. (2.14.2) by the
factor p, + ed, + p, (0" (p + eA)) + pymc, which for a complex potential

four-vector becomes p, + ed, + P, (0- (p+ed” )) + pymc, giving the

product
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(P + eds ) (py +edy) ~(0+(p +ed*))

< (0" (p+ed)) ~mi?
(2.14.8)
- p(py+eds ) (0 (p + ed))

~ (0 (p+ed*))(p, +edy) ) )y = 0.

This replaces Eq. (2.14.31) of Dirac's original theory [1]. The
product (2.14.8) contains several terms which are developed as follows. The
conjugate product term leading to Eq. (2.14.1) originates
in e?(6-A*)(0-A) Y. Asshown by Dirac [1], if B and C are any two
three-dimensional vectors that commute with o, then

(6-B)(0-C)=B-C+i(c-BxC). (2.14.9)

In contemporary terms o is known as the Pauli matrix [11—14]. For a pure
real A, there is only one term on the right hand side of Eq. (2.14.9), but for
a complex A, there enters into the Dirac theory of the electron a new term,

which describes the interaction of the conjugate product 4 x A* of the
classical electromagnetic field with the non-classical matrix ¢. This appears
to be an exceedingly useful new result, because resonance can be induced
between the two spin states of the fermion, in direct analogy with NMR or
ESR, but instead of using a cumbersome permanent magnet (static magnetic
field) to do this we may now use an ordinary radio frequency
electromagnetic field generator.

Following the development by Dirac [1], but allowing now for
complex A, we set

p -~ -V, (2.14.10)
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and obtain the terms

Dpxp =0, (2.14.11a)
edxp =0, (2.14.11b)
3)epxA* = -MmeVx A" = ~iheB". (2.14.11c)

The last of these uses the quantum prescription Eq. (2.14.10) to describe the
interaction of the intrinsic spin of the fermion with the magnetic component

of the electromagnetic field,
B* =Vx A", (2.14.12)

and for a static magnetic field, leads to the famous result [1] that the intrinsic
spin angular momentum of a fermion is half integral in the non-relativistic,
non-classical limit. In our case, B * is an electromagnetic plane wave and
averages to zero over many cycles of the field. Term three is therefore of no
further interest in our analysis. Similarly, we follow Dirac in discarding
term one, the cross product p x p. The term eA x p is also discarded, as
usual, because it is a classical quantity multiplying a del operator,
p = -ihV [1], operating on zero. (In contrast, the term ep x 4 * becomes
-iehV x A", which is a del operator on 4 *, and this is non-zero.)

Continuing in this way we find that Dirac's original
equation (2.14.34) of chapter eleven of his classic text [1] is replaced for
complex A by

(@o + ed5)(py + edy) - (p+ ed™)-(p + ed)
(2.14.13)

-ie’0- A" x A-m*c? - eho- B* + iple?)o-E)lll =0,

in which there appears the conjugate product term, and in which products
involving real 4 are suitably modified using elementary complex algebra

|
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(i.e., real, physical, quantities are obtained by multiplying complex ones by
their complex conjugates). The term in o - e in our Eq. (2.14.13) can
contain a real part if E is a complex plane wave, but the symmetry of this
real partis 7’ negative, P negative [21], and this is not physical. (This is
the same kind of reasoning used to argue that there is no electric counterpart
of the Faraday effect, or inverse Faraday effect [16—20].) For this reason,
and also because E is oscillatory and averages to zero over many field

cycles, we take no further interest here in this term. In so doing it is
assumed that the term,

Real (454 -A4"4,) = 0. (2.14.14)

In the transverse gauge, A4y = 0, and in the Coulomb gauge, A, is a real

constant which may be zero, so Eq. (2.14.14) is satisfied in both gauges.
There may, conceivably, be a gauge in which 4© is complex, but the
physical results of Dirac’s electron theory must always be gauge
independent.

So the final result of our calculation is

((Po+ e4g ) (py + edy) - (p+ed™) - (p + ed) - m2e?
(2.14.15)

-ie?0 A xA)Y = 0,

in which there appears the gauge independent term -ie20- 4 * x 4 which
allows resonance to occur between the two energy states of the matrix o, the

conjugate product A4 * x 4 playing the role of a magnetic field defined by
Eq. (2.14.1) [2—10]. This is a result of Dirac's relativistic quantum theory
of the electron in a classical electromagnetic field. More rigorously, it can
also be obtained with contemporary quantum electrodynamics [11—14}, in
which there are small radiative corrections leading to phenomena such as the
Lamb shift and the anomalous magnetic moment of the electron [11—14].
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The non-relativistic limit of Eq. (2.14.15) can be obtained using the
standard approximations [1],

En ~ mc?, p -~ 0, (2.14.16)

in which case we obtain the interaction energy eigenvalue [1, 2, 14],

e2c?(c-A)(0-A")
2

W := En-mc? = ecd, . (2.14.17)

En+ me- + ecAO

In the radiation gauge, 4, = 0, and this result reduces to

2
W;=En—mc2:26—(A-A‘+z'o-A><A'). (2.14.18)
m

Using Eq. (2.14.1), the resonance term becomes the familiar equation for the
anomalous Zeeman effect,

_eh

— -0 B9, (2.14.19)

Wy, =

a result which shows that the Evans-Vigier field B® always exists in field-
fermion interaction. In other words, the classical electromagnetic field acts
on the fundamental half integral spin of a fermion as if it were a magnetic
field, B®. We shall see in Sec. 14.3 that this field has very useful

properties.
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14.3 Properties of B® in Classical and Quantum Electrodynamics

In terms of intensity (I) and angular frequency (w), B® is [22,23],

eu.c
B® - M L o) - 593 1016—%e‘3’, (2.14.20)

w* ®

where e¢® is a unit vector in the propagation axis (3) of the radiation,
and p, the permeability in vacuo in S.Z. units [24]. For a given intensity,

therefore, B® is inversely proportional to the square of field angular

frequency (radians s ' = 27 f where fis in hertz, or cycles per second).
Whenever the classical electromagnetic field interacts with a fermion of
quantum mechanics the B® field generates a resonance effect between the
two states of the non-classical spinor. The resonance occurs, as usual
[25—28], when a photon of probe radiation, hw ,_, is absorbed to induce a

change between the lower and upper energy states defined by the
mathematical properties of the spinor, in this case the third Pauli matrix [1,
2, 14],

©) (1 O] (2.14.21)
o, = 0 = . 14,
0 -1

In contemporary terms this is referred to as a spin flip between the half
integral spin (angular momentum) states of the fermion. In NMR the
fermion may be a proton, or a neutron, in ESR an electron. The factor two
which gives rise to the everyday term half integral fermion spin is a
consequence, however, of an approximation, (demonstrated in Sec. 14.2),
and the fundamental reason for the existence of NMR and ESR can be traced
to topology [11—14], in that the group space of a fermion is different from
that of a boson. Thus NMR and ESR are examples of absorption
spectroscopies [29] based on the Dirac equation, which is solved in a non-
relativistic limit. It is advantageous to bear in mind that Dirac derived the
equation purely from the general principles of quantum mechanics and
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special relativity [1]. These considerations (e.g. that the wave equation must
be linear in p, and p) force the use of anti-commuting 4 x 4 matrices, of

which the Pauli matrix are component 2 x 2 matrices. Therefore the fermion
intrinsic spin has a deeper meaning than angular momentum, and it is well
known that the fermion spin cannot be pictured classically (e.g. as a spinning
object in space).

There is no reason, therefore, to assume that VMR and /or ESR must
always be practiced with static magnetic fields, (or that a Pauli matrix must
always interact with a static magnetic field) and Sec. 14.2 has shown that the
conjugate product A x 4" isa result of the Dirac equation of a fermion in
a classical electromagnetic field, using only the standard minimal prescrip-
tion [11—14],

p, = p,*ed, (2.14.22)

This prescription of relativistic quantum field theory [11—14] is well known
to be the result of type two (local) gauge invariance, which is a fundamental
assumption in contemporary orthodoxy. It is also well established that the
conjugate product produces various observable magneto-optic effects,
prominent among which is the inverse Faraday effect [16—18]. Therefore
Sec. 14.2 shows (as far as we are aware, for the first time) that the Dirac
equation produces the inverse Faraday effect. This is a reassuring result both
for field theory and experimental magneto-optics.

For our purposes the Evans-Vigier field, B @ from Eq. (2.14.1) is
orders of magnitude more intense for a given I at radio frequencies (MHz)
rather than at visible frequencies (100 to 1000 THz). This is simply the
result of its inverse square dependence on field frequency. For I, for
example, of 10.0 watts per square centimeter, the B ® field reaches an order
of magnitude of nanotesla at 5,000 cm’! in the visible, (a bundred thousand
times weaker than the Earth's mean magnetic field), but for a 10.0 MHz radio
frequency field it becomes 1.45 megatesla, causing proton resonance in the
infra-red at about two thousand wavenumbers [22,23]. This proton
resonance frequency (a spectral absorption feature) is of course observable
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with infra red radiation in a contemporary spectrometer [29]. (Itis actually
much easier to observe in the infra red, because the need for the resonance
causing, rotating, radio frequency field [25—28] in ordinary NMR
spectrometers is removed.) These simple calculations therefore reveal an
enormous potential resolution advantage over contemporary NMR (of all
varieties) because the latter is practiced with a static magnetic field [25—28]
of the order 10 tesla maximum. Much of the effort in contemporary NMR
practice [25—28] revolves around the (expensive) technology of
superconducting magnets, whose fields reach, perhaps, 25 tesla [25—28],
with great effort and ingenuity. (World records for these fields are claimed
regularly.) This results in proton resonance at, say 0.5 GHz, around which
the chemical shift structure is observed as fine detail, in one, two, or three
correlation dimensions [25—28] with many more or less exotic variations
in pulse sequences. With the use of 4 x A *, and ordinary radio frequency
generators, it appears perfectly feasible to advance this 0.5 GHz resonance
frequency into the infra red (THz range) as just described, making
superconducting magnets unnecessary. The advantages of such a
technology, if realized, are bounded only by the imagination and art of the
spectroscopist.

The theory in Sec. 14.2 is based on a classical electromagnetic field,
whereas more rigorously, there are radiative corrections due to quantum
electrodynamics (QED) [11—14], in which there is an extensive late
twentieth century literature. In respect of electron resonance, QED leads,
as is well known [11—14], to a 1% correction to the factor 2 in
Eq. (2.14.19). Therefore in practical NMR and ESR, QED does not play a
central role. In the delicate interplay between electron and photon however,
QED is all-important, and future developments in B ® theory should aim to
quantize the electromagnetic field as it interacts with the already quantized
fermion. The anomalous Landé factor of the electron, first discussed by
Schwinger [30], should in theory become observable with A x A" rather
than with a static magnetic field, and the original experimental
measurements, ably described again by Dirac [1,31], should be repeatable
with an optically generated 4 x A . This line of reasoning can clearly be
extended to all magnetic effects, of which there are many now known. In
each case, the static magnetic field is replaced by the Evans-Vigier field,
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B® of the incoming electromagnetic beam, or photon beam. There should
probably be non-classical photon statistical effects akin to light squeezing
and a whole variety of new optical resonance phenomena should eventually
emerge now that the existence of 4 x 4 * is proven from the Dirac equation.
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Paper 15
The Microwave Optical Zeeman Effect Due to

B®

The optical conjugate product of a circularly polarized laser
is used in the Dirac equation to show the presence of a
microwave frequency optical Zeeman effect which is
proportional at a given angular frequency to the Evans-Vigier
field B® of the microwave radiation. An experimental

arrangement to detect this effect is proposed, using ESR
technique.

Key words: Microwave optical Zeeman effect, B® field.

15.1 Introduction

Recently, it has been demonstrated that the Dirac equation of one
electron in a circularly polarized electromagnetic field can be solved to show

the existence of the B® (Evans-Vigier) field, a magnetic flux density
whose classical source is the conjugate product B® x B® of plane wave

solutions of Maxwell's equations in the vacuum. In the appropriate circular
basis [1—5] there exist the cyclically symmetric relations between fields,

BMx B® = iBOB®* et cyclicum, (2.15.1)

so that B® is phase free. Here B is a scalar amplitude (tesla). Whenever
radiation magnetizes matter, the effect depends on B® at first and second
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order [6]. At visible frequencies, there is an inverse Faraday effect and
optical Zeeman effect which are linear [7] in the beam power density, /, (in
watts per square meter). These effects originate in iBOB®*. At
microwave frequencies and sufficient power densities, however, the inverse
Faraday effect becomes proportional directly [8—10] to the beam's B®
field, and thus to 72, Since B® travels at the speed of light in vacuo, and
cannot exist in isolation of its source, the conjugate product B® x B®,
there is no free Faraday induction, i.e., a modulated laser sent through an
induction coil without a sample will produce no signal in the coil. The
reason for this is that B® travels at ¢ in the vacuum and under these
conditions the only electric fields allowed by symmetry and relativity are the
ordinary, transverse, plane waves E® and E®, these being complex
conjugate pairs in the basis (1), (2), (3).

In this Letter, the Dirac equation is used to show that there exists a
microwave frequency optical Zeeman effect which for a given microwave
pump frequency ® is directly proportional to the B field of the radiation.
In Sec. 15.2, the Dirac equation is solved for the interaction of the beam
conjugate product with one electron. At visible frequencies this produces
the optical Zeeman effect, which is proportional to the beam power density
I. At microwave frequencies the Dirac equation produces an optically
induced Zeeman effect proportional to the square root of I. At these
frequencies the beam property producing the effect is B®. Section 15.3 is
a discussion of this result in terms of transfer of photon angular energy to the
electron, and it is shown that the result of the calculation in Sec. 15.2 is
consistent with conservation of angular energy in a photon-electron
collision.

15.2 The Optical Zeeman Effect from the Dirac Equation

Since B® cannot exist in isolation of its source, the electromagnetic
conjugate product (Eq.(2.15.1)), we calculate the optical Zeeman effect from
the pure electromagnetic term in the Dirac equation [6] of an electron in a
circularly polarized electromagnetic beam,
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s ie?
T e e A A (2152)
mo e 4

Here u is a Dirac four-spinor in the standard representation [6], # is an
energy eigenoperator whose eigenvalue is given within brackets on the right
hand side. In Eq. (2.15.2) e is the charge on the electron, ¢ a Pauli matrix, m,

the electron mass, and ¢ the speed of light in vacuo. The conjugate product
is expressed as A M x 4@ where A D is a vector potential plane wave [6]

and A? its complex conjugate. The scalar amplitude of A® is 4@ and

the minimal prescription [6] has been used to describe the momentum and

energy imparted relativistically to the electron by the field.
Equation(2.15.2) contains no reference to any field free electron

momentum, and uses the rest frame approximation [6] En ~ mc 2 for the

electron energy. Non-relativistically, therefore, there would be no electron
energy in the absence of the beam. The equation also assumes that the scalar
potential is 4®/c, and not zero as in the Coulomb gauge. This means
physically that the beam imparts energy to the electron as well as
momentum. Such a picture is compatible with the Lorentz gauge [6] and a
manifestly covariant 4 , four-vector.

From Eq.(2.15.2), the Hamiltonian expectation value (i.e., the energy
eigenvalue) is,
ie’c

<H> = - -
2m0c +e4d©®

0- AV x4, (2.15.3)

which is the relativistic expression of the optical Zeeman effect. Here o is
a Pauli matrix, so we are dealing with the relativistic half-integral spin of the
electron in a classically expressed field. The optical Zeeman effect at visible
and microwave frequencies emerges by a simple consideration of limits as
follows.
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(1) When the electron rest momentum is much greater than
that imparted by the beam to the electron,

2myc » e4©, (2.15.4)

the energy eigenvalue becomes,

e2

<H> - i270-A(1) xA®, (2.15.5)
0

which is to order I, i.e., proportional to the beam power density.
Using,

BO, (2.15.6)
the condition (4) becomes,

e
w» —BO
2m, (2.15.7)

which is satisfied at visible frequencies for all but enormous,
unattainable /. At visible frequencies the Zeeman shift is therefore
twice the energy in Eq.(2.15.5), which can be expressed as,

<H> - -¢¢ 5. pOg®
mo : (2.15.8)
0

The term,
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;o e 2 C 2

X = - >’ (2.15.8a)
2myw

is the one electron susceptibility [6].

(2) In the opposite limit, when the momentum imparted by
the beam to the electron is much greater than the electron rest
momentum,

ed© » 2myc, (2.15.9)

Eq.(2.15.3) reduces to,

<H> - | ec g AW x 4@,

1O (2.15.10)
The limit(2.15.9) can be rewritten as
w« -5 BO, (2.15.11)

2m,

which is attainable with microwave pulses of high power density
[11]. Using in Eq.(2.15.10) the relation [6],

ADx 4@ = j402,0) (2.15.12)
the energy becomes,
<H> -~  -eco-ADe® - _EO.B@)
my - 0 o ; (2.15.13)
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which for a given angular frequency, w, is proportional to B® of
the beam and therefore [11] to the square root of its power density.
Equation(2.15.13) shows that the optical Zeeman effect at
microwave frequencies is determined entirely by two beam

properties, w and B®.

15.3 Discussion

Equation(2.15.13) can be rewritten as

<H> mo"_’ 0 -ced Og - 8(3), (2.15.14)

which is seen to have the correct units of energy (because o - e® is unitless)
and because ed @ is electron momentum magnitude acquired from the

beam.
Using the charge quantization condition [6,12], which is implied by

the existence of B® [12],

ed® = ¥, (2.15.15)
Eq.(2.15.14) becomes,
<H> ”’o: o ~hwo e®, (2.15.16)

and this shows that the rotational energy, hw, of the photon has been
transferred completely to the electron. In this limit, the expected Zeeman
splitting is therefore 2hw. This limit can never be attained in practice
because the rest momentum of the electron is always non-zero in special
relativity, but under condition(2.15.11), it can be approximated.

The equation(2.15.2), which starts from the conjugate product of the
classical field, has therefore produced the result expected on the grounds of
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conservation of rotational energy in a perfectly elastic collision between a
photon and an electron. This result was attained through the
condition(2.15.11), and is consistent with the fact that the photon has lost
hw and the electron has gained hw in this limit. The electron has absorbed

the photon and acquired the photon spin. Since the electron has spin states
determined by the matrix o, the spin up state acquires energy hw, and the

spin down state acquires —hw for the same sense of circular polarization in
the beam (i.e., left or right).

It is to be noted that if B® =? 0 then this photon absorption process
cannot occur at microwave or at visible frequencies. Thus B® is a
fundamental property of the beam which cannot exist, however, in isolation
of its source, the beam conjugate product, which was the optical property
used as the starting point of our calculation in Eq.(2.15.2).

It should be possible to see the Zeeman splitting 2hw by tuning a
microwave probe beam to about the frequency 2w, using ESR technique

[13,14]. One configuration which can be suggested is to send an electron or
atomic beam in the Z axis, a microwave pump pulse at frequency w in Y

and a microwave probe pulse at about 2w synchronized with the pulse. The
probe should be tunable around 2w because this is an ideal condition as just
discussed.
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Paper 16
B® Echoes

It is shown that the B® field of vacuum electromagnetism
regenerates itself throughout spacetime from repeated gauge
transforms. These B® echoes are physical magnetic fields

which can be detected experimentally in principle through
optical analogues of the Aharonov-Bohm effect.

Key words. Optical Aharonov-Bohm effect, action at a distance, B® field

16.1 Introduction

The existence of the B® field is established [1—12] by that of

magneto-optic effects typified by the well-verified [13—21] inverse Faraday
effect. In this note it is argued that the field is echoed throughout space-time
by repeated gauge transformations into the vacuum of A4, where,

B(3) c= VXA = —i%A(l)xA(z)’ (2161)

defines the original B® in vacuo in a local region of space-time. Here
AW = 4®* js 3 plane wave potential, a solution of the d'Alembert wave
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equation, and complex [1—12]. Thus, the conjugate product 4® x 4@ is
pure imaginary. In the complex space basis ((1), (2), 3)), B ® is pure real
and observable [1—12]. Here /e is the elementary fluxon (weber) where
is Dirac's constant and e the charge quantum.

The B® echoes, in analogy with the Aharonov-Bohm effects
[22—25], are physical observables (magnetic flux densities) in regions of
space-time where the original B® is zero. They can therefore be observed
experimentally by carefully excluding the electromagnetic field from direct

contact with the sample (for example electrons). Non simply connected
vacuum topology [22—25] then supports the existence of non-local effects

which are measurable. It is speculated that B echoes might, if observed,
be evidence for action at a distance in electromagnetism.

16.2 The Gauge Transformation

Since B® is a physical magnetic field it can always be expressed in
Eq. (2.16.1) as the curl of a vector potential A. The gauge transformation
[26],

A - A+ Vo, (2.16.2)

where ¢ is a flux in weber, leaves B ® unaffected if defined as the curl of

A. Itis therefore invariant under gauge transformation. Since 4®x 4@
is an experimental observable [13—21] it is also invariant under gauge
transformation. It follows that,

v ;= —i—:—A @, (2.16.3)

must be regarded as an operator, and that A ® must be regarded as a vector

potential. Equation (2.16.3) is one of the quantum postulates [1—3], i.e.,
momentum in quantum mechanics is a del operator within a factor ih [22].
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The product 4D x 4@ is invariant for example under a gauge transform
such as,

A o 4@y v = 4O (2.16.4)

in which the del operator is not changed. The del operator is not changed,
of course, under the ordinary gauge transform (2.16.2).

In a local region of the vacuum where both A and B® are zero, the
potential function V¢ is non-zero in general and causes the Aharonov-
Bohm effects [22—25]. These are understood as being due to the fact that
the vacuum is structured [22]. Recently, optical equivalents of the
Aharonov-Bohm effect have been suggested [1—3] and worked out

theoretically. Since V¢ is complex and periodic, its conjugate (V)" is also
non-zero, and so there exists the B® echo,

BY® - —i%(Vcb)x (V)" , (2.16.5)

in regions of the vacuum where B® itself is zero experimentally. If B®

1(3), and the latter is real, physical, and

is a magnetic field, then so is B
therefore observable in principle. The process can be continued by gauge

transformation on the first echo Bl(s) ,

BY :=VxA, A ~A +V, (2.16.6)

thus defining the second echo in regions of the vacuum where both B
and Bl(s) are zero experimentally. This process, if continued, gives an

infinite number of echoes,

BY, ..BY, n-o, (2.16.7)
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which are supported by non-simply-connected vacuum topology [22—25],
and are all present in space-time irrespective of any consideration of signal

velocity c.

16.3 Non-locality; Action at a Distance

The concept of non-locality can therefore be explained by gauge
transforms of this nature, and such an explanation supports the interpretation

of quantum mechanics by Bohm and others [26,27]. Although the original B
is unchanged by the gauge transform, the B® echo is produced nevertheless
in a region of space-time where B® is zero (for example outside a fibre or

waveguide, Sec. 16.4). Similarly the Bl(s) echo produces the Bz(s) echo and

so forth for n - . Therefore the field B® is influential in regions
infinitely remote from its original locality. This appears to be the first
indication of non-locality in an electromagnetic field component rather than
in gauge transformed potentials, as in the original Aharonov-Bohm effect
[22—25]. Assuming that the field is non-local in this way, its influence is
felt in remote regions of space-time without transmittal by a signal velocity,
which for the hypothetically massless photon is ¢. This may therefore be
action at a distance, one of a class of superluminal phenomena [28] in
electromagnetism. Interestingly, Chubykalo and Smirnov-Rueda [29] have
demonstrated the existence of longitudinal solutions of the Maxwell
equations in vacuo which involve superluminal and subluminal exponents
from the wave equation. Mufiera and Guzman [30] have shown that the
reduction of the Maxwell equations to the d'Alembert equation produces a
class of longitudinal solutions in vacuo provided that the scalar potential is
phase dependent. The B® field is therefore an example of a physical
longitudinal solution in vacuo with zero phase, and for this reason has the
special property of being proportional to the physically observable conjugate
product. Gauge transformation of the latter must therefore take place in such
a way as to preserve the physical nature of B®, and as we have seen, this
leads to field non-locality (echoes), as opposed to potential non-locality.

B ® Echoes 289

16.4 Experimental Investigation

A clear experimental demonstration of non-locality in B® can be
achieved in principle by observing the inverse Faraday effect in regions
where the field is excluded. In order to estimate the magnitude of the effect
it is sufficient to use a simple classical demonstration based on the
relativistic Hamilton-Jacobi equation [1—3] to show the influence of B ®
on one electron. The quantum equivalent of the effect is based on the Dirac
equation.

The original inverse Faraday effect was shown by Talinef al. [31] to
be explicable in terms of the classical, relativistic Hamilton-Jacobi equation.
The theory has been developed in terms of B® [1] and shows that the
energy of interaction of an electron in a circularly polarized electromagnetic
field is,

ezczr B©®

3
w k(m2w2+e23(0)2)1/2 1B, (2.16.8)

AEn =

where B® = B©@©e®  Here w is the field angular frequency and m the
mass of the electron. The electronic properties in the interaction energy are e
and m; the field properties are @, ¢ and B, the magnitude of B® [1].
The plane wave A ? is a solution of the vacuum d'Alembert equation. In
this case, B@ = k4@ = ©w4@/c [1—3], where x = w/c is the
wavenumber in vacuo. Equation (2.16.8) becomes,

2402

AEn = (m2c2+ ezA(O)z)l/z ' (2.16.9)

In the limit e4 © » me, Eq. (2.16.9) becomes AEn - eA@c = hw; using
the free photon minimal prescription [1—3] x = e4©®. In this limit, the
photon hw is transferred to the electron, and annihilated. This is the high
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field limit [3]. In the opposite low field limit, ed© « mc, the inverse
Faraday effect is,

2 2
AEn - £.402 _ (ho ) :( ’h(x)),ﬁw- (2.16.10)

m me? me?

This limit is attained experimentally using visible frequencies, the opposite
high field limit using radio frequencies [1—3]. In Eq. (2.16.10), the inverse
Faraday effect is seen to be the square of the quantum of electromagnetic

energy (i.e., photon squared) divided by the electronic rest energy, mc?; and
is simply the energy transferred inelastically (hw/mc? < 1) in photon-
electron collisions. The existence of the effect was first inferred
thermodynamically and phenomenologically by Pershan [32], and it was first
demonstrated empirically using the induction due to B® [13]. If
BO = x4 andif B®* = B®e®* = Vx 4 inEq. (2.16.1), then 4©
is the magnitude of A4; and B® = ¢4 @2/}, Therefore,

BO - |B®| = |VxAd| = %4(0)2 = k4O - BA«»,

- 2.16.11)

and in regions where B® and A4 are non-zero they are related by

BO = |VxAd| = |[Vx(A+V) |. (2.16.12)
The flux density B© creates in addition an inverse Faraday effect in regions
where B®* and A4 are zero. This effect is due to
B = —j(e/h) (V) x (V)". The total flux density present in both regions
is however, still B In order to see this effect experimentally the standard

inverse Faraday experiment [13—21] is modified by excluding the
electromagnetic field from direct contact with the electrons. For example,
a laser beam in an optical fibre is directed through an electron beam and the
inverse induction measured with an induction coil. Observation of this

R
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effect would prove action at a distance in electromagnetism, and by
implication, gravitation [33].

The total magnetic flux density present is always given by the curl
of a sum of potential functions,

B® =Vx(A+A;+...) =Vx4. (2.16.13)

When 4 and B® are both zero, the balance of terms in Eq. (2.16.13) is
represented by

0=0+VxA4 +.. (2.16.14)

where,

(2.16.14a)

A =0, A xA #0.

1

Therefore V x A, is always zero, but —Al' X A, is non-zero; and V is not

equal to ied, /%. The net result of the gauge transform is therefore,

B® - BY - BY etc, (2.16.15)

i.e., to topologically transfer B® from one region of space-time to another.
In so doing, the total magnitude B® is conserved by Noether's theorem.
The magnitude of the expected inverse Faraday effect is therefore the same,
outside or inside the fibre.
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Paper 17
Maxwell's Vacuum Field — a Rotating

Charge

The rotating electric field of a propagating Maxwellian plane
wave in vacuo is shown to be a rotating dipole, with one tip
fixed at the origin. At the other there is located a rotating

charge, whose helical trajectory forms the Evans-Vigier field (B®)
in perfect analogy with a solenoid. The length of the
dipole is r, = (¥/(4ma))", where ¥ is the radiation
volume and ¢ the fine structure constant. The quantum of
electromagnetic radiation (the photon) is, consequently,
hw = (4naV)*?e?e, where €, is the vacuum

permittivity.

Key words: Maxwellian vacuum field, rotating charge, Evans-Vigier field.

17.1 Introduction

The recent emergence [1—12] of the classical Evans-Vigier field,
B® the spin field of vacuum electromagnetism, has led to the charge

quantization condition,
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= ed©, (2.17.1)

where the de Broglie photon momentum, hx, is expressed as eA © where
¢ is the charge on the electron and 4 © the scalar potential in vacuo. Here
is the Dirac constant as usual and k the magnitude of the classical
wavevector in vacuo. In this Letter it is shown that Eq. (2.17.1) is a
straightforward consequence of the existence of the rotating Maxwellian
electric field in the vacuum, and that Eq. (2.17.1), derived independently
[6,12], using generalized gauge theory, is a consistent outcome of standard
field theory. This proves beyond reasonable doubt that B ® js also
consistent in field theory, and is a novel fundamental property of electro-
magnetic radiation in the vacuum.

In Sec.17.2, it is shown that Eq. (2.17.1) emerges directly from the
link between an electric field strength (V m™') and a dipole moment. In S.L
units, this link is

n=¢€VE, (2.17.2)

where ¥ has the units of volume, and where €, is the vacuum permittivity.

[n the vacuum, there is no material polarization, and V is the volume
occupied by classical electromagnetic radiation in vacuo. In Sec. 17.3, it is
shown that the length of the dipole is

1 v
r,=— =|—— = —, 2.17.3
° x ( 41toc) 2n ( )

where « is the fine structure constant [13] and A is the wave length; the
quantum of electromagnetic radiation (the photon) is

o - (4mav)3%e?
€

% , (2.17.4)

0
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where e is the charge on the electron. The photon is therefore proportional
to the square of e, and this is the origin of the textbook assertion [14] that
the photon is uncharged. This assertion is seen through Eq. (2.17.4) to be
true only in the narrowest of senses: the photon only appears to be
uncharged because it is proportional to the square of the electronic charge.
Section 17.4 is a discussion of these findings.

17.2 Derivation of the Charge Quantization Condition

An electric dipole moment is a separation of opposite charge [15].
An electric field is generated by separated opposite charge, or by a single
charge, as in Coulomb's law. The elementary charge is that on the electron,
of magnitude e, and so

1 @
EW=_F__ &
(] b (2.17.5)

where E® is Maxwell's rotating electric field in electromagnetic radiation
propagating through the vacuum [15]. InEq. 2.17.5), r® := |r®] is the
length of the dipole formed by these separated charges in vacuo. If V is the
radiation volume, it is easily checked that Eq. (2.17.5) is dimensionally and
physically consistent in the theory of electrodynamics [15].  The
electromagnetic field propagates in the axis perpendicular to the plane , and
so the negative rotating charge draws out a helical path through the vacuum.
In perfect analogy with the solenoid, this movement produces a magnetic
flux density B® in the axis of propagation, and this is the Evans-Vigier
field [6]. The origin of B® becomes perfectly clear in classical
electrodynamics.

It has been shown elsewhere [6,12] that the existence of B means
that

bk = eA© (2.17.6)
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where hk is the magnitude of the de Broglie photon momentum. Equation
(2.17.6) appears at first to be unorthodox, in that it expresses hk in terms of
e, the charge on the electron. However, Eq. (2.17.6) is easily derived from
Eq. (2.17.5) as follows.

From Eq. (2.17.5), the scalar magnitude of the rotating Maxwellian

E® (Vm)is

EO = eero (IO/) . (2.17.7)
The classical electromagnetic energy in the volume V is [14]
En = ¢, EOV, (2.17.8)
where
Vo= fOVdV, (2.17.9)

and so the energy in volume ¥ is expressible in terms of the radius »©,

2..(0)2
En = eEOr© - fer—V (2.17.10)
0

Thus far, the development has been entirely classical. Using the
classical relation between 4 © and E© [6],

©)
40 - E7 2.17.11)

w
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it is found that

En = (eAOr©)e, (2.17.12)

i.e., electromagnetic energy is proportional to electromagnetic angular
frequency as radiation propagates in vacuo. Provided we make the identity

b= edOr© (2.17.13)

Eq. (2.17.12) is the Planck-Einstein relation of quantum theory, the light
quantum hypothesis. It has been shown that the Light Quantum hypothesis
has a purely classical origin.

Finally, the identification of r©@ as x™' results in the charge
quantization condition that we are seeking to derive. The length of the
rotating dipole, and therefore of the rotating Maxwellian electric field, is
therefore the inverse of the wavevector magnitude of the radiation. We have
identified the origin of the Planck constant itself.

17.3 The Dipole Radius and Photon

Using Eq. (2.17.6) with the equation

40 = e, 17.1
( o~ (2.17.14)

the quantum of electromagnetic energy, hw, is defined as

e2

hw =

, 2.17.15
€KV ( )
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and is proportional to e 2. This is why the particulate photon is uncharged.
This result can now be expressed in terms of the fine structure constant [13,

16],

eZ

o = .
P (2.17.16)

From Egs. (2.17.15) and (2.17.16), the fine structure constant becomes
expressible as

Vv

o = ; 2.17.17
4‘Jtr03 ( )

and so the radius of the rotating dipole is

_ (L)m - A (2.17.18)

ry =

1
; 4o 27

so that the photon defined in equation (2.17.15) becomes expressible as

2
ho = (4mal )P ee— . (2.17.19)
0

17.4 Discussion

The rotating dipole is consistent with special relativity and with
Maxwell's equations, because it is derived simply by re-expressing (Eq.
(2.17.2)) the usual rotating electric field in terms of separated charge. The
positive charge is located at the origin because the rotating electric field
rotates around the origin, as described for example by Jackson [15]. If the
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rotating electric charge is identified with the charge on the electron, e, and

the dipole radius is denoted @, Eq. (2.17.12) follows from classical
electrodynamics. However, Eq. (2.17.12) is the basis of quantum theory,
and is the light quantum hypothesis suggested originally by Planck in Nov.,
1900. Equation (2.17.12) shows that in classical electrodynamics, the
energy En of a plane wave in vacuo is proportional to its angular frequency,
w, through ed @@ The Planck-Einstein relation of the quantum theory
requires this to be h, and so

h=edOr©® = 22 (2.17.20)

which is the charge quantization condition [6] provided that the radius r

is the inverse of the magnitude of the wavevector. The quantity e4 ©/x is
therefore a constant angular momentum in classical electrodynamics for the
propagating plane wave in vacuo, and is identified as the angular
momentum, h, of one photon, the latter being the quantum of
electromagnetic radiation. The quantum theory is therefore classical in
origin, and we have shown that Planck's assertion that En must be
proportional to ® is, in fact, a logical outcome of classical electrodynamics.
The photon is a classical entity.

Furthermore, our innocent expression of E(® as an electric dipole

moment results immediately in the Evans-Vigier field B® [1—12], which
is shown to be an outcome of helical charge motion as in a solenoid. In this
respect the positive charge is fixed at the origin, and does not cancel out the
induction of B® because the positive charge is not rotating, and therefore

does not induce a B in the opposite direction.

The usual idea of a photon as being uncharged [14], and therefore its
own anti-particle, is shown by Eq. (2.17.19) to have the narrowest of
meanings. The photon is a classical amount of energy, which is proportional
to the square of the charge on the electron, and is not uncharged. The
charge quantization condition shows that the origin of the Dirac constant %,

(or of the Planck constant h) is the electronic charge e multiplied by 4©,
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which is, within a constant ¢, the scalar potential [15] of the classical
electromagnetic wave. Re-expressing 4 through Eq. (2.17.15) leads to

Eq. (2.17.17), which expresses the fine structure constant of quantum
electrodynamics as a simple ratio of volumes. The fine structure constant
is the ratio of the volume, V, used in Eq. (2.17.2) to the volume of the

sphere defined by the radius »©, the length of the dipole. This spherical
volume is
_ A o3
Vy = 3V (2.17.21)

and so the fine structure constant is the ratio

o =

=

1
37 (2.17.22)

Equation (2.17.18) shows that the magnitude of the classical Maxwellian
wavevector is defined by the volume ¥ through

173
K = (4LV°‘) , (2.17.23)

and because o is a universal constant [13], the de Broglie photon
momentum becomes

173

3 23,2\13

p =tk = ( AL I RS (2.17.24)
V €,V

and the Planck-Einstein photon becomes expressible as

173
e 2h2c?
(—:OV

En = %o = hkc = ( (2.17.25)
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These equations show that the quantum of energy, hw, and the
quantum of radiation momentum, hk, are both defined in terms only of ¥
and the universal fine structure constant «. This is consistent with the fact
that they are fundamental quanta of energy and momentum, and with the fact
that the magnitudes of these quanta vary only with the volume ¥ introduced
in Eq. (2.17.2). On the most fundamental level in this Maxwellian theory,
everything depends ultimately on e, the charge on the electron, and the
constant h is a consequence of the existence of e. In generalized gauge
theory [1—12], from which the charge quantization condition emerges
[10—12], e simultaneously plays the role of a gauge scaling factor, i.e., is
geometrical in nature, so that an angular momentum such as h becomes
understandable in terms of a geometrical entity, e. We know the latter much
more familiarly as the elementary unit of charge, an elementary geometrical
measure of the known universe.

Finally, the concept of photon mass as envisaged [17] by de Broglie,
Bohm, Vigier, and co-workers appears to be consistent with the rotating
Maxwellian dipole because if there is mass involved in this motion, it must
be concentrated at the origin, because the center of mass of the rotating
dipole must be there because it is rotating about that point. If the mass were
distributed, for example if the negative charge had some mass as well as the
positive charge, the center of mass would be somewhere between the two
charges, and the dipole could not rotate about one point. The particulate
photon can therefore be envisaged with a mass concentrated at the origin.
This is still a classical picture, because h has been identified as being
classical in nature. This picture becomes consistent with special relativity
if we use the de Broglie guidance theorem,

Qh(‘or chr _ ( e2°h2 ]1/3

(2.17.26)
e,c’V,

and so express the photon rest mass, m,, in terms of the rest volume V.

The introduction of mass is necessary because the Evans-Vigier field, B®,
is longitudinal, so that the Wigner little group for a massless particle, E(2),
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becomes untenable [6]. The existence of B® shows immediately that the
particulate photon is concomitant with three degrees of space polarization,
which, in the circular basis [6], are (1), (2) and (3). If the theory of special
relativity is accepted therefore, the photon cannot be massless because of the

existence of B®.
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Paper 18
Dipole Model for the Photon and the Evans-
Vigier Field

The fundamental magnetizing field of light, B®, is
expressed in terms of vector cross products of oscillating
electric and magnetic dipole moments of vacuum
electromagnetic radiation. The consequences are developed
with reference to a new dipole model of the photon recently
suggested by Mac Gregor [16]. The similarities and
differences in the two theories are analyzed briefly.

Key words: B® Field, Dipole Model.

18.1 Introduction

The photon as particle is usually considered to be without mass:
light, after all, is assumed to travel at the speed of light, which is ¢ in the
vacuum. The recent emergence [1—12] of the Evans-Vigier field B® has
shown, however, that this idea cannot be physically meaningful, essentially
because B indicates a third degree of polarization which is forbidden for
a massless particle [6]. The unphysical nature of a massless particle was




308 Paper 18

first inferred by Wigner [13] who showed that the little group in such a case
is E(2). This is the Euclidean group of rotations and translations
simultaneously taking place in a plane. Such a group has no physical
meaning [14]. Therefore the idea of a massless particle is physically obscure
in classical special relativity, but is paradoxically accepted by the
contemporary majority. Since B @ is observable directly in magneto-optical
phenomena, such as the inverse Faraday effect [15], Wigner's deduction
receives experimental verification through B®. The existence of this field
in the vacuum has now been inferred from the Hamiltonian principle of least
action and from the Dirac equation [6], and it is therefore a new,
fundamental, property of light. In consequence, the photon, as particle, is
concomitant with physically meaningful field components in three
polarizations, denoted by B®, B® and B® in a complex circular
representation, (1), (2) and (3), of three dimensional space [6]. Two of these
axes are transverse (perpendicular) to the direction of propagation and the
third, (3), is longitudinal, meaning that B® is an axial vector directed in the
(3) axis.

The traditional view recognizes the existence of the conjugate
product B® x B®@ in, for example, the inverse Faraday effect [15], but the

all important extra inference,

BUx B@ - ;pOpg®d+  B@x g® - ;pORWO*
(2.18.1)
B®x B0 = ;pOB®*

was achieved only recently [1]. Here B = B®* is the complex magnetic
plane wave in vacuo, B© the scalar amplitude of the magnetic flux density
carried by the wave, and where B® = B®" is areal, phase free, spin field.
In the traditional view, B ® is unconsidered, the vacuum Maxwell equations
are applied only to plane waves. Due to the Lie algebra [1], however,

essentially the algebra of the O(3) rotation group, the very existence of the
plane waves B® and B® means the existence of B, which is real and
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physical, and which magnetizes matter in the inverse Faraday effect [15].
The conjugate product B® x B® can also be interpreted in a meaningful,
physical, way because T, = -B™" x B®/p_ is the torque per unit volume
carried by electromagnetic radiation in vacuo. This is pure imaginary, i.e.,
has no real part because the real angular momentum density of the radiation
is constant (the angular momentum of one photon is h) and therefore its real
time derivative is zero. The quantity T /c is the antisymmetric part of the

tensor of light intensity [4] a tensor whose scalar part is, in this notation,

BOR

1
L= 1Ty - (2.18.2)

e

Therefore B® and T, can be expressed in terms of the S, Stokes

parameter [3].
Although T, is pure imaginary in the vacuum, it causes

magnetization in the inverse Faraday effect [15] through the imaginary part
of material hyperpolarizability, in the simplest case, one electron

hyperpolarizability [6]. Therefore both B® and T , play a role in the

correct, relativistic, treatment of the inverse Faraday effect, and this can be
demonstrated from the principle of least action by using the relativistic
Hamilton-Jacobi equation of one electron in the circularly polarized
electromagnetic field. Therefore B® is inferred both experimentally
(through the observation [15] of the inverse Faraday effect) and theoretically
(from the relativistic principle of least action).

In this Letter, the vacuum B @ field is expressed through conjugate
products of the complex magnetic and electric dipole moments of the
radiation in vacuo (Sec. 18.2). Section 18.3 compares this result with the
theory of Mac Gregor [16], who has developed an interesting dipole
formulation of the photon, both in terms of charge and mass.
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18.2 Double Dipole Expressions for B®

The field B® emerges from the free space electromagnetic torque
density as follows

il
B® =T, (2.18.3)

and although T, has no real part, B® is real and physical. Recently, Mac
Gregor has developed a model of the photon based on the concept of
symmetric particle-antiparticle excitation [16] of the vacuum state. The
electrodynamic part of this model reduces to a picture of the photon as a
rotating dipole with zero net charge. The Mac Gregor electric dipole rotates
in the plane orthogonal to the axis of propagation, e®. Antecedents of this
picture were traced [16] to Bateman [17], Bonnor [18], and J. J. Thomson
[19]. Bonnor [18] added masses to the charges, and developed the theory in
the context of special and general relativity, showing that the
electromagnetic energy density of an electric dipole traveling at the speed of
light is finite.

In this section, we develop an analogous theory for B® in terms of
magnetic and electric dipole moments of the vacuum radiation. The cyclic
relations,

m®xm® = ip BOm®", (2.18.4)
emerge directly from the S.1 relation,

m=—, (2.18.5)

where m is a magnetic dipole moment. Therefore m®, m® and m® are
magnetic dipole moments of the radiation itself, and should not be confused
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with material dipole moments in matter. The reason is that Eq. (2.18.4) is
one for vacuum propagation of light.

A similar relation for electric dipole moments of the radiation can be
deduced from the S.1 relation,

n=€eVE, (2.18.6)

where V is the radiation volume and €, the vacuum permittivity. Equation

(2.18.6) follows directly from the relation between polarization and electric
dipole moment density,

P = (2.18.7)

<=

If E® = E@* is the electric field strength (V m™) of the vacuum plane
wave, and E© its amplitude, we have [6],

1
_1 poxgo (2.18.8)

icE©

BO®* =

and so

1 2
go _ ;S 1 p® p®

b BOV Y

, (2.18.9)

which expresses the Evans-Vigier field in terms of the cross product of
electric dipole moment densities of the vacuum radiation itself.

18.3 Discussion

Equation (2.18.9) is an expression of the B® field in terms of,
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EO©

p® = eo1/_2_(,'—1',‘)e"‘1’, (2.18.10)

which is itself a traveling plane wave in the vacuum. An electric dipole
moment can be analyzed in terms of positive and negative charges separated
by a distance r, and because the vector is rotating as the light beam
propagates in the e ® axis, the B field is formed from this motion. The
rotations of the positive and negative charges reinforce each other in the
creation of the vacuum B® by Eq. (2.18.9), and B @ itself is relativistically
invariant. This classical analysis, which is a direct result of the vacuum
Maxwell equations, is similar to that proposed by Mac Gregor [16], who
points out that the classical electromagnetic field is always the result of the
movement of charge by Ampére's hypothesis [20]. The simple analysis of
Sec. (18.2) shows that the field can be expressed in terms of either magnetic
or electric dipole moments, and therefore in terms of separated charges. The

field amplitudes £© and B are negative under charge conjugation, C,
[21], and in the quantized field the photon is also negative under C,

C(y) = -v. (2.18.11)

Therefore the particulate photon is always concomitant in vacuo with ¢
negative electric and magnetic fields and dipoles.

Equation (2.18.1) defines a novel magnetic field, B® [6], the
Evans-Vigier field, that has a physical existence in the vacuum orthogonal
to the plane defined by B® or E®; or by m® for p® in the circular basis
[1—12],

eWx @ = je@®* et cyclicum, (2.18.12)
for three dimensional space [6]. The gauge group [22] of vacuum
electrodynamics must in consequence [6,16] become O(3), and fundamental
gauge theory [6,22] leads directly to,
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BO* = L 40 4@
. (2.18.13)
where AW = 4@* is the vector potential defined by,
BM = yx 40 (2.18.14)

Equation (2.18.13) leads to the charge quantization condition [6],

e = ed O, (2.18.15)

where hk is the magnitude of the linear momentum in vacuo of the free

photon, and where 4 is the scalar magnitude of A . Equation (2.18.15)
[6] shows that the magnitude (¢ ) of the electronic charge is also the scaling

factor of the O(3) gauge group, and is defined by the ratio %x/4 . This is

a direct consequence of the existence of B® through Egs. such as (2.18.1)
or (2.18.9), equations which spring from the three dimensional nature of
space itself.

In Mac Gregor's terminology [16], e and 4© form a neutral pair,

and are both C negative quantities. Therefore the conventional view
[20—22] that the photon is uncharged is narrowly defined, both in Mac
Gregor's analysis, and in that given here.

The physical interpretation of Eq. (2.18.10) shows the clockwise
rotation of u® for a right circularly polarized electromagnetic field in
vacuo, propagating towards the observer [20] with negative helicity. One tip
of the rotating dipole describes a circle around the origin if we neglect the
forward motion of the wave. At the origin, the other tip of the dipole is
fixed. If the moving tip is thought of as negatively charged, that charge
moves on a helix as the electromagnetic wave propagates, and this is
precisely analogous with the current in a solenoid. It is clear that the Evans-
Vigier field is induced in the propagation axis (Z) as a result of this motion
of u®. If the motion is anticlockwise, B® reverses sign and the wave
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becomes left circularly polarized with positive helicity [20]. This is
represented mathematically by,

V2 (2.18.16)
n® = e VEO,

where w is the angular frequency of rotation at an instant ¢, and x is the
wave vector at position r. Equation (2.18.16) represents a rotating and
simultaneously translating electric dipole moment.

This is similar to the Mac Gregor theory [16] in so far as the dipole
-otates, but Mac Gregor places the positive and negative charges of the
lipole symmetrically about the origin. For this reason, the rotation of the
fipole cannot produce a B® field in Mac Gregor's theory, but can in our
heory. The conventional E™ field of classical vacuum electrodynamics
20] has simply been replaced by p‘l’/(eo V), which obviously has the same

mits of V.m™ in S/ This innocent replacement allows clarification of the
dhysical origin of the Evans-Vigier field, which becomes recognizable as
rrecisely analogous with the magnetic field produced by a solenoid. It also
ecomes clear that there is no longitudinal electric field, as deduced
slsewhere [1-12], because there is none in a solenoid.

Therefore u® rotates with one end fixed, the other tip traces out a
1elix as the electromagnetic wave propagates in vacuo. This is the precise
dhysical origin of the Evans-Vigier field, observable experimentally in
nagneto-optical effects such as the inverse Faraday effect [15]. The
nteresting concepts of Mac Gregor [16] can therefore be used for B®
yrovided that one tip of the rotating dipole is fixed at the origin, which lies
n the Z axis of propagation, while the other tip rotates. The mass
listribution [16] must be adjusted accordingly so that mass is concentrated
it or near the origin, and this is precisely the concept used by de Broglie,
/igier and Bohm [6] in the realist view of quantum mechanics, in which the
»hoton has mass.
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Paper 19

Electromagnetism in Curved Space-time

A suggestion is developed for a theory of electromagnetism
in curved space-time, a theory based on a novel
antisymmetric Ricci tensor which is postulated to be directly
proportional to the G, tensor of Evans and Vigier, and

which therefore deals self-consistently with the
experimentally observable B® field of magneto-optics.

Key words: Electromagnetism; general relativity; B® field.

In this note, a brief summary is given of the essentials of a novel
theory [1—3] of electromagnetism, a theory necessitated by the tiny
experimental magneto-optic effects [4—8] which need for their self-

consistent explanation the B® field [9—15] in curved space-time. The
essence of our argument here is that B® can be obtained straightforwardly
from the Riemann tensor [6—18] by using the contraction indicated by

RY = R, . (2.19.1)

This produces an antisymmetric Ricci tensor R;E/:) to which the
electromagnetic field tensor G, introduced by Evans and Vigier [9,10] is

directly proportional,
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“@ _ €
Ry = ZGy (2.19.2)

Jere e/% is a universal constant, the ratio of the quanta of charge and action
‘or angular momentum). The Ricci tensor le’:) is defined through affine
sarameters (Christoffel symbols) in the usual way [16—18],

RY =9I, -0y, +T5,Ih, ~T4T;

ov ~Lavlon s (2.19.3)

ind the B® field [9—15] is proportional directly to the part of the Ricci
ensor quadratic in the affine parameter. The latter is used to define the
rector potential in curved space-time,

e
Ty, = ¥M,\A: , (2.19.4)

vhere M, is a rotation generator [9,10] and where e4 +/% is an energy-

nomentum tensor of electromagnetism. If A = k we obtain,

A
A, = M A (2.19.5)
ind the Guv tensor becomes,
e
G, =04,-04,+ gA’- (MM, -MM,). (2.19.6)

Restricting attentionto 4 = 1, v = 2, the B® field in curved space-time
s obtained as,

B

s AP (MM, - M)M,),

(2.19.7)

*la

r in the complex basis ((1), (2), (3)) [9—15],
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. .e
BO* - _lgA(l)xA(z) i (2.19.8)

Maxwellian electrodynamics is recovered if and only if the rotation
generators commute, i.e., if the quadratic term is arbitrarily abandoned, so
that

G, F,:=04,-94, . (2.19.9)
This means that Maxwellian electrodynamics is a linear approximation in
which terms quadratic in 4 are missing. In the basis ((1), (2), (3)) the
Maxwellian approximation means that the right hand side in the equation,

BWx B?@ = ;pOB®~ (2.19.10)

is zero. This is geometrically incorrect, and contradicts the experimental
observation of BWx B@ in magneto-optics [4—8]. Maxwellian
electrodynamics is adequate therefore for low intensity light, but becomes
internally inconsistent when magneto-optics is understood in terms of a self-
consistent theory in curved space-time.

The B® allows an understanding of electrodynamics and gravitation
as being proportional to respectively the antisymmetric and symmetric
components of the same Riemann tensor, i.e., in terms of curvilinear space-
time geometry. If account is taken of B® one can no longer logically
adhere to a flat space-time for electromagnetism and a curved space-time for
gravitation, and in magneto-optics, one is actually observing the spinning of
space-time itself. Thus, as pointed out by Roy [11], B® becomes the relict
magnetic field in cosmology, responsible for circular polarization in the 2.7
K background radiation [19]. These are the essentials of electromagnetism
in curved space-time rather than in flat space-time, and these ideas are being
developed in detail elsewhere [20—22].
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The Cyclic Structure of Vacuum
Electromagnetism: Quantization and

Derivation of Maxwell's Equations

Starting from the classical A cyclic equivalence principle of
the new electrodynamics, the Faraday and Ampére laws are
derived in quantized form, these being two of the Maxwell
equations. The third A cyclic can be quantized self
consistently using the same operators and de Broglie
wavefunction. This method shows that: 1)if B® =? 0 the
Maxwell equations vanish; 2) there is no Faraday induction

law for B®,

Key words: A cyclics, self-consistent quantization,; Maxwell equations.

20.1 Introduction

The cyclic structure of the new electrodynamics based on the B®
field [1—7] gives an equivalence principle between the field and space-time,
because, generally speaking, the structure of the field becomes the same as
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hat of three dimensional space, described by the O(3) rotation group. In this
_etter the second and third equations of the A cyclics [8] are quantized to
sive two of the vacuum Maxwell equations, the Faraday law and Ampere
aw with Maxwell's displacement current. The same method self-
sonsistently quantizes the first equation of the A cyclics and shows that there
s no Faraday induction law for B®. Consistently, no Faraday induction
1as been observed in a circularly polarized laser beam modulated inside an
svacuated induction coil [1—4]. In this method, A® quantizes to
he 1h9/0Z operator and is not zero. If set to zero, all three A cyclics vanish,
ind with them the Maxwell equations. The Maxwell equations
or B® = B®* imply the existence of B, and if the latter is set to zero
irbitrarily, the Maxwell equations vanish. Finally the method allows direct
juantization of the A cyclics to the Maxwell equations, which become
:quations of the quantum field theory. The method is therefore direct,
simple, and easy to interpret.

20.2 Quantization of the Second and Third Equations
The A cyclic equivalence principle relies on the existence in the

/acuum of a fully covariant four-vector whose four components are
nterrelated by [8]:

AV x 4@ = j4O40) (2.20.1)
AP x 40 = j4O4O" (2.20.2)
AV x 4D = jfO4@* (2.20.3)

n the complex space basis ((1), (2), (3)) [1—4]. In this section, Egs.
2.20.2) and (2.20.3) are quantized self-consistently to give two of the
/acuum Maxwell equations, the Faraday Law and the Ampére law with
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Maxwell's displacement current. Write Eq. (2.20.2) as the classical
eigenvalue equation,

AP x 4@ = j4O4@ (2.20.4)
Use the minimal prescription in the form [8],
p® = ied @ pO = jeg O (2.20.5)

and identify 4@ with the classical eigenfunction ¥@. Here e is the
elementary charge. This procedure results in the classical equation,

p®x PO - jHOPD) (2.20.6)

and the vector potential has taken on the dual role of operator and function
in a classical eigenequation. Its ability to do this springs from the duality
transform A - i4 [9—12] in the complex three space ((1), (2), (3)).
Therefore if iA4 is a polar vector multiplied by i, then A isan axial vector.
The same duality transform takes the axial vector B to iE/c, a polar vector
multiplied by i. The fact that A is both polar and axial signifies that
electromagnetism is chiral, with two enantiomeric forms — right and left
circularly polarized [13]. Chirality in Dirac algebra becomes the eigenvalues
of the y; operator, playing the role of i in Pauli algebra [14]. This dual
polar-axial nature of A allows it to be both an operator (polar vector) and

function (axial vector).
The classical eigenvalue equation (2.20.6) is now quantized with the

correspondence principle, whose operators p® - Mooz
and p©@ - -(ih/c)(0/0t)act on a wavefunction in our complex three
space. Let this wavefunction be [15],

Y@ = cBD - jED, (2.20.7)
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as used by Majorana. Here c is the speed of light in vacuo, B is magnetic
flux density and F is electric field strength. The function (2.20.7) includes
the electromagnetic phase in the form of the scalar de Broglie wavefunction
[16], and it is understood that the operators introduced by the

correspondence principle operate on this. Therefore the operators p®
and p© are phase free, the function P is phase dependent. The quantum
field equation derived in this way from the classical equation (2.20.6) is

v (cB® - E®) - g(cB(z) ~E®). (2.20.8)

i
c
Compare real parts to give an equation of quantized field theory in the form
of Ampére's law modified by Maxwell's vacuum displacement current,

1 GE®
c2 o

VxB® = (2.20.9)

Compare imaginary parts to give an equation of quantized field theory in the
form of Faraday's law of induction,

(2)
Vx E® - —QI;T . (2.20.10)

Equations (2.20.9) and (2.20.10) are two of the four vacuum Maxwell
equations, but have been derived through the correspondence principle and
are therefore also equations of the quantum field theory. These take the
same form as the classical Ampére-Maxwell and Faraday laws but are also
equations of a novel, fully relativistic, quantum field theory.

Similarly, Eq. (2.20.3) quantizes to

1 GE®
VxB® = —— |
o (2.20.11)

SRS
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B
Vx ED = _—aat : (2.20.12)

20.3 The d'Alembert Equation, Lorentz Condition and Acausal Energy
Condition

The dual nature of the vector potential, once recognized, leads
immediately to the d'Alembert equation, because 4, is light-like.

Therefore,
AuA*l = 0, (2.20.13)

and taking the operator definition this becomes the d'Alembertian operating
on a wavefunction in space-time, i.€.,

9,0, = Oy, = 0. (2.20.14)

This is the quantized d'Alembert equation written for the four-vector .

The latter in general has a space-like and time-like component. In this
view A}1 must be a polar four-vector proportional to the generator of

spacetime translations, and so the d'Alembert Eq. (2.20.14) is the first (mass)
Casimir invariant of the Poincaré group [17]. The invariant is zero because
we have assumed that ¢ is the speed of light, and have taken photon mass

to be zero.

If, in the condition A4 pA k= 0, we take the first 4 , asan operator
through the correspondence principle, and interpret the second 4" as a
wavefunction ", we obtain the quantized Lorentz condition for a massless
particle,

auq:“ =0. (2.20.15)
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This is the orthogonality condition of the Poincaré group, which states
that 4, in operator form is orthogonal to A" in function form. The latter

becomes the Pauli-Lubanski axial four-vector of the Poincaré group [18].
The condition 4 IuA H = 0 interpreted as a condition on the

wavefunction gives the acausal energy condition,

U = 0,

which is the second (spin) invariant of the Poincaré group. Therefore we are
dealing with a quantized particle with spin described by the three A cyclics
(2.20.1—2.20.3). Evidently, this is the photon of the new relativistic
quantum field theory developed here. The empirical evidence for the
existence of this photon can be traced to the magneto-optical evidence

for B® in the inverse Faraday effect [1—4] and other effects.

Without B®, this photon is undefined.

Finally, the energy condition (2.20.16) is the acausal solution
suggested by Majorana [19]; Oppenheimer [20]; Dirac [21]; Wigner [22];
Gianetto [23] Ahluwalia and Ernst [24] and Chubykalo, Evans and Smirnov-
Rueda [25]. It is longitudinal because the Pauli-Lubanski four-vector v,

(2.20.16)

can be expressed in terms of the purely longitudinal [18,26],
y* = cB* +iE¥, (2.20.17)

in the vacuum.

20.4 Self-Consistent Quantization of Equation (2.20.1)

The quantization of Eq. (2.20.1) occurs in a self-consistent way using
the same operator interpretation of i4® and i4® = -i4®*. This gives
the relativistic Schrodinger equation,

e
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19( 9 e, o)
e | 4@
. at( 7z lIJO) ( N ) U, , (2.20.18)
where 1 is the scalar de Broglie wavefunction [17],
¥, = exp(id), (2.20.19)

where ¢ = wf - kZ is the electromagnetic phase. Here w is the angular
frequency at an instant f and k the wavevector at point Z as usual. Using
the vacuum minimal prescription [1—4],

ed©® = %, (2.20.20)

it is seen that Eq. (2.20.18) is self-consistent and consistent with the
correspondence principle in the form (2.20.5). The method used to
transform the second and third A cyclics into the Maxwell equations gives
a fully consistent Schrédinger equation for the third cyclic. In this
method i4® is clearly not zero, and since B® = k4® [8], neither
is B®. If we try to set i4® to zero the del operator vanishes along with
all three A cyclic equations. The Maxwell equations themselves vanish if
we try B® =2 0. There is no vacuum Faraday induction law
involving B, because of the structure of Eq. (2.20.1), and this is again

consistent with the experimental finding that there is no Faraday induction
in a coil wound around a modulated monochromatic laser beam propagating

in a vacuum [1—4]. The fundamental reason for this is that B® is an
unchanging property of one photon, i.e., /e divided by the photon area.

20.5 Discussion

The duality transform 4 -~ iA in the vacuum shows that A can act
as an operator and as a function. This transforms two of the A cyclic
equations into two of the Maxwell equations in fully quantized form,
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producing a new quantum field theory for the photon, which acquires in the
process three degrees of polarization. The first equation (2.20.1) of the A
cyclics is quantized self-consistently. The structure of these equations
shows that there is no Faraday induction law for B®, as observed
experimentally. The explanation of magneto-optical phenomena [1—7]
requires the use of the conjugate product B x B®; a product which
demonstrates the existence of iB@B®" in the vacuum, and therefore
of B®. Since B® is kA®, then an attempt to set 4 to zero removes
the three equations of the A cyclics, and so removes the Maxwell equations
themselves. Therefore the A and B cyclics become fundamental classical
structures from which the Maxwell equations can be derived in quantized
form using the correspondence principle.

There are clear differences between this new theory of
electrodynamics and the received theory.

(1) The Maxwell equations are no longer the fundamental classical
equations, they can be simultaneously derived and quantized from a more
fundamental classical structure in which B and the rotational A4 are
infinitesimal rotation generators of O(3).

(2) The potential four-vector 4, is fully covariant and has four non-

zero components inter-related as in Egs. (2.20.1) to (2.20.3). The older view
allows a non-covariant 4, such as the Coulomb gauge.

(3) The quantized d'Alembert equation becomes the first Casimir
invariant of the Poincaré group; the quantized Lorentz condition becomes an
orthogonality condition; and the quantized acausal energy condition
becomes the second Casimir invariant. These results can be derived from

the fact that 4, plays the dual role of operator and function. Since A4 O s

directly proportional to B® it is gauge invariant; a property which is
consistent with the fact that the cross product 4 ® x 4@ is gauge invariant
[17] in the Poincaré group, but not in the U(1) group of the received view.

The most important and fundamental result of this analysis is that the
Maxwell equations become derivative equations of a cyclical structure for
electromagnetism in the vacuum. A similar result can be derived for the
equations in the presence of sources (charges and currents).

Cyclic Structure of Vacuum Electromagnetism: & Maxwell's Equations 331

Acknowledgments

Professor Erasmo Recami is thanked for sending several reprints
describing the derivation by Majorana of the Maxwell equations in the form
of a Dirac equation, producing in the process longitudinal solutions in the
vacuum. The Majorana wavefunction is essential for the derivation of the
Maxwell equations from the A (or B) cyclics.

References

[1] M. W. Evans and J.-P. Vigier, The Enigmatic Photon, Vol. 1: The
Field B® (Kluwer Academic, Dordrecht, 1994).

[2] M. W. Evans and J.-P. Vigier, The Enigmatic Photon, Vol. 2: Non-
Abelian Electrodynamics (Kluwer Academic, Dordrecht, 1995).

[3] M. W. Evans, J.-P. Vigier, S. Roy, and S. Jeffers, The Enigmatic
Photon, Vol. 3: Theory and Practice of the B® Field (Kluwer
Academic, Dordrecht, 1996).

[4] M. W.Evans,J.-P. Vigier, and, S. Roy, eds., The Enigmatic Photon,
Vol. 4: New Developments (Kluwer Academic, Dordrecht, 1998), a
collection of contributed papers.

[5] M. W. Evans and S. Kielich, eds., Modern Nonlinear Optics, Vol.
85(2) of Advances in Chemical Physics, 1. Prigogine and S. A. Rice,
eds. (Wiley Interscience, New York, 1993).

[6] A. A. Hasanein and M. W. Evans, The Photomagneton in Quantum
Field Theory (World Scientific, Singapore, 1994).

[71 M. W. Evans, The Photon's Magnetic Field (World Scientific,
Singapore, 1992).

[8] M. W.Evans, Found. Phys. Lett. 8, 63, 83, 187, 363, 385 (1995).

[9] R. Mignani, E. Recami and M. Baldo, Lett. Nuovo Cim. 11, 568
(1974).

[10] E. Giannetto, Lett. Nuovo Cim. 44, 140, 145 (1985).

[11] R.Mignani and E. Recami, Nuovo Cim. 30A, 533 (1975).

[12] R.Mignani and E. Recami, Phys. Lett. 62B, 41 (1976).



332
13]
14]
15]
16]
17]
18]

19]
20]

21]
22]
23]
24]
25]

26]

Paper 20

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th
edn. (Pergamon, Oxford, 1975).

M. A. Defaria-Rosa, E. Recami, and W. A. Rodrigues Jr., Phys. Lett.
173B, 233 (1986).

E. Majorana, Quaderno 2, Folio 101/1 of Scientific Manuscripts,
circa 1928 to 1932, Domus Galilaeana, Pisa, reproduced in Ref. 9.

L. de Broglie, C. R. Acad. Sci. 177, 507 (1923); Phil. Mag. 47, 446
(1924); Ann. Phys. (Paris) 3,22 (1925).

L. H. Ryder, Quantum Field Theory, 2nd edn. (Cambridge
University Press, Cambridge, 1987).

M. W. Evans, Physica A 214, 605 (1995); see also Chap. 11 of Ref.
1.

E. Majorana, Nuovo Cim. 9, 335 (1932).

J.R. Oppenheimer, Phys. Rev. 38,725 (1931); ibid., in B. S. de Witt,
ed., Lectures on Electrodynamics (New York, 1970).

P. A. M. Dirac, Phys. Rev. 74, 817 (1948).

E. P. Wigner, Ann. Math. 40, 149 (1939).

E. Giannetto, Lett. Nuov. Cim. 44, 140 (1985).

D. V. Ahluwalia and D. J. Ernst, Mod. Phys. Lett. TA, 1967 (1992).
A. E. Chubykalo, M. W. Evans, and R. Smirnov-Rueda, Found.
Phys. Lett. 10,93 (1997).

V. V. Dvoeglazov, Phys. Rev. D in press (1996); To the Claimed
Longitudity of the Antisymmetric Tensor Field after Quantization

Index
A cyclics 323 Christoffel symbols 318
A | definition 47 circular basis, complex 7
" . classical field 130
acausal energy condition 327 complex circular representation 308
action at a distance 285, 288 Compton theory 206
delayed _ 116 conjugate product 165, 264
Aharonov-Bohm, optical effect 285 Copenhagen
angular momentum quantum mechanics 249
rela't1v1stlc ) 137 correspondence principle 239
o_rbltal electror}lc . 230 cyclic equations
atomic spectra & l'1g.ht shifts 257 & Majorana 239
atoms & Evans-Vigier field 225 & Maxwell 239
auto-resonance 103 A cyclics 323
structure 323
cyclotron condition 231
B cyclic theorem 23,143,239 ‘
& Majorana 235
& Maxwell's equations 235 d'Alembert 327
B® de Broglie
& diffraction patterns 246 gu idance theorem 303
& magnetization 255, 307 el_genfunctlon 141
echoes 285 pilot field . 241
Evans-Vigier 295,307 wavefunction 326
gradient function 215 diffraction & B 246
physical meaning 189, 190 dipole
Biot-Savart-Ampére (BSA) 191, 257 Mac Gregor 310
Born-Oppenheimer approximation 229 double 310
bundle tangent theory 63 Evans-Vigier 307
photon 307
radius & photon 299
complex unity 9 Dirac equation 125,259,277
conjugate product 4,126,130
gauge transformation 51
conservation E(2) Lie algebra 136, 139
equation 142 Einstein equation 98
charge electric displacement in vacuo 27
conjugate operator 191 '
quantization 255, 297

333



34
lectrodynamics
classical 31
gauge transformation 31
Maxwell 319
o@3) 3,14,15,31,76
quantum 5
U 3
lectromagnetic
field, classical 136
field tensor 14
free space 310
internal space 64
radiation in vacuo 309
torque density 241,310
lectromagnetism
& O(3) symmetry 256
cyclic structure of 323
radiation 244
spin field 180, 295
vacuum 180, 181, 243,244
lectron spin resonance 126
quations
fundamental 33
gauge transformation 33
uler angles 34
vans-Vigier
& atoms 225

field 199,225,241, 255, 295, 307

araday
induction
inverse effect

278

6

6,28, 113, 131, 192, 257, 269, 278

inverse, paramagnetic effect

optical effect
srmion

half integral spin

radiatively induced resonance
eld

complete free

equations, O(3)

101
257
130
94
93

25
76

Index
fermion interaction 263,264
fundamental 63
gauge 63
generators, infinitesimal 135
matter, interaction 28
potential 19
spin 135, 147
field tensor 19
electromagnetic 14
003) 20
U 20
field theory
gauge 19, 31, 45
unified 179
fine structure constant 302
four-vector, physical potential 5
free space, O(3) 76
fundamental definitions 163
gauge
electrodynamics 31
field 63
field theory 3,19,31,45
internal space 6,30
0@3) 193
theory 312
transformation 31, 33,45, 51
transformation 4,33
Uy 33,71
general relativity 165,317
gravitation 319
H atom 102
half angle formulae 36
half integral spin 130
Hamilton-Jacobi
equation 117,225
relativistic equation 289, 309
Hermitian operators 126

Index
induction, Faraday 278

infinitesimal field generator
135, 136, 157

instanton theory 31
internal space 15
electromagnetic 64
gauge 6,18, 30
indices of 16

inverse Faraday effect
6,28, 113, 131, 192, 257, 269, 278

paramagnetic 101
Laplace equation 215
Lie algebra 3

EQ2) 136, 139

extended 66, 67

of the field 139

Ua) 71

with connections 67
light-like invariants 17
longitudinal solutions 167
Lorentz condition 327
Mac Gregor

electric dipole 310

theory 314
magnetization

& B® 255

by radiation 163

light 200

vacuum 19
magnetizing

B® 307

field of light 307
magneto-optics

classical 201

effects 213

relativistic 199,201
Majorana

& B cyclic theorem 239

& Maxwell's equations
mass density

& radiation
massless particle
Maxwell

& B cyclic theorem

& Majorana
electrodynamics
vacuum equations
vacuum field

minimal prescription
& free photon

NMR, very high resolution
non-simply connect
connvacuum topology

non-Abelian

field theory

rotations
non-locality
nuclear magnetic resonance

o3

335
235,239

173
307

235,239

235,239
319
147
295
125
167

161
286

31
181

288
126

& vacuum electromagnetism 256

Aharonov-Bohm effect 57
electrodynamics 3,15,31,76
field equations 76
field tensor 20
field theory 45
free space 76
gauge 193
gauge group 181
gauge theory 193
gauge transformation 31
symmetry 19,256
topological effect 57
one electron in the field 259
optical
Aharonov-Bohm 57,285
conjugate product 51



136
Faraday effect 257
NMR shifts 131
Zeeman effect 227,277
‘auli matrix 10, 126, 279
‘auli-Lubanski
four-vector 137
pseudo-vector of the field 140
‘erturbation Theory
Rayleigh-Schrodinger 101
hotomagneton 94
hoton
& dipole radius 299
& minimal prescription 167
& radiation law 171
dipole model 307
Evans-Vigier 307
self energy 27
hoton-electron collision 278
'lanck-Einstein equation 301
‘'oincaré group 135
‘'oisson equation 220
seudo four-vector
Pauli-Lubanski 137
uadratic region 200
uantum
electrodynamics 5
mechanics, interpretations of 249
naternions 34
FR 93
\diation
& magnetization 163
& mass density 173
& one photon 171
electromagnetism 244, 309
fundamental properties 164
theory, semi-classical 232

Index

vacuum 244
radiatively induced fermion

resonance 93
radio frequency induced

N.MR(RF-NMR) 159
Rayleigh-Schradinger,

perturbation theory 101
realist interpretations

& quantum mechanics 249
relativistic

angular momentum 137

limit 113

Hamilton-Jacobi equation 289

magneto-optics 199,201

ultra effect 113
relativity, general 165, 317
rotation

field 38

generator 37

matrix 34

non-Abelian 181

spinor 34

SU2) 37,38
Ricci tensor 317
Schrédinger-Pauli equation 99
space-time, curved 172,317,318
spherical harmonic expansion 214
spin field

electromagnetism 295

vacuum electromagnetism 180
Stratton potential 217
SU2)

spinor rotation 34

topology 40, 95
symmetry, O(3) 19
symmetric particle-antiparticle

excitation 310

Index

torque per unit volume
Ucl)

electrodynamics

field tensor

gauge

Lie algebra
unified field theory

vacuum
electromagnetism
magnetization
Maxwell equations
polarization
state

243,309

3,71
20
33,71
71
179

243,323
19, 23
147,295
19, 26,27
310

topology, non simply connected286

van der Waerden equation

vector potential
complex
in curved space-time

wave-particle duality

Yang Mills
approximation
theory

Zeeman
optical effect
spin effect
splitting

94, 100
125
318

251

44
30

227,277
102
282



Contents, Volume 1

Preface

1. Wave and Particle

1.1

1.2

1.3

The Enigma of Wave and Particle: Planck, Einstein, De
Broglie

Symmetry in Classical Electrodynamics, Wavenumber and
Linear Momentum

The Effect of B® on the Fundamentals of the Old Quan-
tum Theory

2. Fundamental Symmetries

2.1

22
23
24
25

2.6
2.7

2.8
29

The Seven Discrete Symmetries of Nature
The CPT Theorem
The Concept of Photon and Anti-Photon

Parity of the Photon and Anti-Photon
Motion Reversal Symmetry of Photon and Anti-Photon

The Photon's Charge Conjugation Symmetry, ¢
Scheme for the Photon's Fundamental Symmetries, C, P

and T

Symmetry of the Pure Imaginary Field -~iE®/c
Experimental Demonstration of the Existence of the Anti-
Photon

3. The Origins of Wave Mechanics

3.1
32
33
34

The Phase as Wave Function

The Wave Mechanics of a Single Photon in Free Space
Stationary States of One Photon in Free Space
Heisenberg Uncertainty and the Single Photon

4. Inter-Relation of Field Equations

4.1

4.2
4.3

Relation Between the Dirac and D' Alembert Wave Equa-

tions
Equations of the Quantum Field Theory of Light
D'Alembert and Proca Equations

ix

17

21
21
24

26
28
29

30

30
33

35

37
39
40
42
46

55
55

59
65



3140 Contents, Volume 1

5. Transverse and Longitudinal Photons and Fields

5.1 Axial Unit Vectors, Rotation Generators, and Magnetic
Fields

5.2 Polar Unit Vectors, Boost Generators, and Electric Fields

5.3 Lie Algebra of Electric and Magnetic Fields in the Lorentz
Group, Isomorphisim

5.4 Eigenvalues of the Massless and Massive Photons: Vector
Spherical Harmonics and Irreducible Representations of
Longitudinal Fields

». Creation and Annihilation of Photons
6.1 The Meaning of Photon Creation and Annihilation
6.2 Quantum Classical Equivalence
6.3 Longitudinal and Time-Like Photon Operators; Bilinear
(Photon Number) Operators

6.4 Light Squeezing and the Photomagneton B @

. Experimental Evidence for B
7.1 The Inverse Faraday Effect, Magnetization by Light
7.2 Optical NMR, First Order Effect of B®
7.3 The Optical Faraday Effect (OFE)
7.4 Survey of Data

. The Concept of Photon Mass
8.1 The Problem
8.2 Brief Review of Experimental Evidence Compatible with
my#0and B® =0

8.3 The Proca Equation
8.4 Analogy between Photon Mass and Effective Current
8.5 General Solutions of the Proca Equation

71

72
77

80

82

89
89
91

93
98

103
105
108

111
115

117
117

120

123
126
129

Contents, Volume 1 341

9.

10.

11.

12.

Aharonov-Bohm Effects 133
9.1 The Original Theory of Aharonov and Bohm 134
9.2 The Effect of the Cyclic Algebra (25) 136
9.3 The Optical Aharonov-Bohm Effect 136
9.4 The Physical 4, and Finite Photon Mass 137
9.5 If the OAB Is Not Observed 139
9.6 Non-Linearity of Photon Spin in Free Space 142
Modifications of Lagrangian Field Theory 147
10.1 Novel Gauge Fixing Term 150
10.2 Quantization of the Electromagnetic Field 152
10.3 A Potential Model for B® 158
Pseudo Four-Vector Representations of Electric and Magnetic
Fields 161
11.1 Relation between the Minkowski and Lorentz Forces 163
11.2 Dual Pseudo Four-Vector of F - in Free Space 165
11.3 Link between Vu, Bu and EILl 166
11.4 Some Properties of E, and B in Free Space 167
11.5 Consequences for the Fundamental Theory of Free

Space Electromagnetism 169
11.6 Consequences for the Theory of Finite Photon Mass 169
Derivation of B® from the Relativistic Hamilton-Jacobi Equa-
tion of ¢ in A,l 171
12.1 Action and the Hamilton-Jacobi Equation of Motion 171
12.2 Solution of the Relativistic Hamilton-Jacobi Equation

(369) 174
12.3 The Orbital Angular Momentum of the Electron in the

Field 178
12.4 Limiting Forms of Equation (405) 179

12.5 Discussion 180



142 Contents, Volume 1
\ppendices
\. Invariance and Duality in the Circular Basis 185
3. Angular Momentum in Special Relativity 189
S Standard Expressions for the Electromagnetic Field in Free Space,
with Longitudinal Components 193
). The Lorentz Force Due to F, ﬁ); and T;fi) 199
References 205
ndex 213

Contents, Volume 2

Preface X

B® and the Dirac Equation

1.1 Origins of the Dirac Equation of Motion

1.2 Geometrical Basis [16] of the Dirac Equation

1.3 The Free Particle Dirac Equation 1
14 The Dirac Equation of e in 4,: Proof of B® from First

O O N —

Principles 28
1.5 Comparison with Classical Equation of Motion of e ind, 37

B® and the Higgs Phenomenon 41
2.1 Cyeclically Symmetric Equations for Finite Photon Mass 44
2.2 Link with the Higgs Phenomenon 47
B and Non-Abelian Gauge Geometry 65
31 General Geometrical Theory of Gauge Fields 68
The O(3) Maxwell Equations in the Vacuum 79
4.1 The O(3) Inhomogeneous Maxwell Equations in the Vacuum

79

4.2 The O(3) Homogeneous Maxwell Equations in the Vacuum 82
43 The Duality Transformation and the O(3) Maxwell Equations

84

4.4 Renormalization of O(3) QED 89
4.5 Isospin and Gauge Symmetry 92
B® in Unified Field Theory 95
5.1 Summary of the Non-abelian Features of w and X 98

5.2 Specific Effects of B® in GWS Theory 103



344 Contents, Volume 2

5.3 SSB and Photon Mass in GWS 107
6. B® in Quantum Electrodynamics 113
6.1 Canonical Quantization and B® 113
6.2 The Effect of B® on Renormalizability in QED 116
6.3 B® and the Electron's Magnetic Moment 118

7. Summary of Arguments and Suggestions for Experimental

Verification 123
Appendices
A. The O(3) Electromagnetic Field Tensor, Gp,v , in the Circular Basis

(1), (2, 3) 135

B. The O(3) Covariant Derivative (D,) in the Basis (1), (2), 3) 139
The Structural Analogy between NAE and General Relativity 143
D. Structure of the Field Tensor Glf? of Non-Abelian Electrodynamics

£

147

E. Some Details of the Non-Abelian Maxwell Equations in the
Vacuum 159
References 163
[ndex 167

Contents, Volume 3
Preface

1. The Conjugate Product in Dirac's Electron Theory
1.1  B® from the Original Electron Theory of Dirac
1.2 Contemporary Development

2. Limits and Resonance Conditions
2.1 Limits from the Dirac Equation
2.2 The Pauli Equation and Other Limits of the Dirac Equation
2.3 Resonance Equations in Novel NMR and ESR Spectroscopies

3. Optical Aharonov-Bohm Effects of A x A~
3.1 Vacuum Topology Needed for an OAB Effect
3.2 The Origin of the OAB
3.3 Gauge Transformation and the OAB
3.4 Experimental Investigations of the OAB

3.5 Observational Conditions for B in General

4. Properties of B® in the Strong Field Limit
4.1 Fermion Accelerated Infinitesimally Close to ¢ Produc-
es B®
4.2 Photon Radius and Quantum of Light Energy
43 Derivation of the Planck-Einstein Condition from the
Relativistic Hamilton-Jacobi Equation
4.4 The Derivation of B® from a Rotating Charge e in Vacuo

4.5 Origin of the Rotating Vacuum Charge in Simple Radiation
Theory

4.6 Biot-Savart Law for B® in the Vacuum

4.7 Equivalent Forms of B® in Vacuo

4.8 Conservation of Energy-Momentum in Vacuo

X

21
21
29

34

41
42
51
53
56

58

61

62
65

68

71

74
77
79
82



346 Contents, Volume 3
4.9 Conservation of Charge 86
5. The Classical Radiation Theory of B® 89
5.1 Radiation of B® from a Circling Electron 89
5.2 Radiation from the Rotating Elementary Charge e 91
5.3 Conservation of Angular Momentum and Energy 95
5.4 Maxwell's Concept of the Electromagnetic Field 100
5.5 Radiation from a Circling Charge Held in a Static Magnetic
Fieldat R = 0 101
5.6 The Liénard-Wiechert Potentials for B® 106
5.7 The Vacuum Poynting Theorem for B® 112
5.8 Q.E.D., Boson Ensembles, and B® in Vacuo 114
6. Mass of the Photon if Particulate 119
6.1 Some Differences between the Orthodox and B® Theories
of Light 119
6.2 The Connection between Photon Mass and B® in the
Poincaré Group 122
6.3 Consequences within the Poincaré Group 124
6.4 Compatibility of B® with Noether's Theorem 125
6.5 B® in the Search for Unification of Electromagnetism and
Gravitation 127
6.6 The Gauge Invariant Lagrangian Mass Term Associated
with B® 129
6.7 Summary of Inconsistencies in the U(1) Theory 132
7. Photon Mass in Electromagnetic Theory 135
7.1 Einstein Equation for 4 " 135
7.2 The de Broglie Postulates and Finite Photon Mass 142
7.3  B® asaPilot Field 146
7.4 A New Approach to the Two Frequency Paradox 154
7.5 Role of BY 158

Contents, Volume 3 347

7.6 New Fundamental Equations of Electrodynamics 160
8. Primordial B® in Relativistic Cosmology 161
8.1 Torsion, Space-Time Defect and Gauge Principle 161
8.2 Mass of Photon, Space-Time Defect and Non-Zero Conduc-
tivity Coefficient 166
8.3 Non-Zero Photon Mass and the Primordial Magnetic Field 172
8.4 Cosmogonic Implications of the Seed Magnetic Field 176
9. B®, Experimental Status and Prospects 179
9.1 Conclusions 183
Appendices
A. Circular Basis for Pauli Spinors 185
B. Product Algebra of Spinors and Unit Vectors in the Circular Basis
187
C. Hermitian Transposition of the Dirac Equation 191
D. Theory of Electrodynamics 193
E. Dynamical Analogies of the Maxwell Equations 197
F. B® in an Electron Gas 207
References 209



Contents, Volume 4

Preface

1. Electromagnetism and General Relativity
M. W. Evans
1.1 Introductory Essay
1.2 The Origin of the B Cyclics in the Invariant Relations of
the Poincaré Group
1.3 The B® Field in Riemannian Space-time
1.4 The Geodesic Equations for the Electrodynamic Sector in
Riemannian Space-time

2. Field Equations of the Electromagnetic Sector
M. W. Evans
2.1 Geometry
2.2 B® the Catalyst for Change
2.3 Geometrical Equations of Electromagnetism and the
Unified Field

3. The Fundamental Spin Field B®

M W. Evans
3.1 Theorems
3.2 The Relativistic Helicity of the Classical Field

ix

14
18

22

33

33
35

37

51

54
57

3.3 The Quantum of Charge as the Invariant Gyromagnetic Ratio 62

3.4 The Fundamental Quanta in Electromagnetic Radiation
3.5 Atomic Absorption

74
80

3.6 Lorentz Transformation of the B Cyclics and the Fundamental

Displacement Current J©

88



350 Contents, Volume 4

4. The A Cyclics Derivation and Reduction
M. W. Evans
4.1 Definition of the Complex Vector Field, and Gauging

97

98

4.2 Gauge Transformation and Measurable Effects of Topology 102

4.3 The Cyclic Structure of Vacuum Electromagnetism:
Quantization and Derivation of Maxwell's Equations

107

4.4 The Cyclic Structure of Vacuum Electromagnetism: the Lorentz

Equation

112

5. Practical Advantages of B® in Atomic and  Molecular

Spectroscopy

M W. Evans

5.1 Origin of the Conjugate Product in the Dirac Equation
5.2 Extension to Atoms and Molecules

5.3 Summary of Electromagnetically Induced ESR Effects

6. Physical Meaning of the Photon's Wavefunction According
to Ettore Majorana
Erasmo Recami and M. W. Evans
6.1 Introduction
6.2 A Dirac-like Equation for the Photon [1]
6.3 Comments

7. The Adiabatic Changes of State of a Photon Gas
Mildn Mészdros
7.1 Introduction
7.2 Changes of State of the Ideal Gas
7.3 The Photon Gas as an Ideal Gas
7.4 Thermodynamics of a Photon Gas: Self-Inconsistency
7.5 Summary and Conclusions

117

120
123
132

137

137
138
142

147

147
148
153
155
158

Contents, Volume 4

8.

10.

The Conservation of Helicity
M W. Evans
8.1 The Dual Pseudo-Tensor

8.2 The Dual Pseudo-Vector B* and Dual Vector E*

8.3 The Dual Four-Vectors of the Vacuum
Electromagnetic Field

8.4 The Fundamental Equation of Electrodynamics

8.5 Vacuum Limits

8.6 Stokes' Theorem

8.7 Stress-Energy-Momentum Tensor

8.8 Lie Algebra of the Relativistic Field Helicity Vectors

On the Pressure of Electromagnetic Radiation
Pal R Molndr, Tamas Borbély, and Bulcsu Fajszi
9.1 Introduction

9.2 The Pressure of Electromagnetic Fields

9.3 The Pressure in a Cavity Resonator

9.4 The Pressure in the Cavity with B®

9.5 Summary

Electromagnetic Space-Charge Waves in Vacuo

B. Lehnert

10.1 Introduction

10.2 Basis of Present Approach

10.3 New Features Introduced by the Present Approach
10.4 Nontransverse Plane Wave Types

10.5 General Conditions on Total Reflection

10.6 The Electric and Magnetic Fields of Plane Waves
10.7 Total Reflection of Homogeneous Incident Wave
10.8 Total Reflection of Inhomogeneous Incident Wave
10.9 Conclusions and Discussion on Total Reflection
10.10 Axisymmetric Wave Modes

10.11 Summary

351

163

165
171

178
185
191
193
195
197

205

205
207
213
215
217

219

219
221
225
227
231
236
239
243
245
247
257



352

Contents, Volume 4

11. Action at a Distance and Self-Consistency of Classical

Electrodynamics
A.E. Chubykalo and R. Smirnov-Rueda

11.1
11.2

11.3

11.4

11.5

11.6
11.7

Historical Background

261

261

Inadequacy of the Faraday-Maxwell Concept of Field in the

Conventional Electromagnetic Theory

Mathematical Inconsistencies in the Formulation of
Maxwell-Lorentz Equations for a One Charge System
And their Alternative Form

Reconsidered Maxwell-Hertz Theory and Relativistically
Invariant Formulation of the Alternative

Maxwell Equations

Analysis of Classical Difficulties and the Hamiltonian
Form of the Complete Maxwell Equations
Non-radiation Condition for Free Electromagnetic Field
Conclusions

265

272

281

292
299
302

12. The Weinberg Formalism and New Looks at Electromagnetic
Theory
Valeri V. Dvoeglazov

12.1 Historical Notes
12.2 The Weinberg formalism
12.3  The Weinberg Formalism in New Development
12.4 Discussion
Appendices
M. W. Evans
A. Reduction of Equation (1.29) to Equation (1.32)
B. Four Dimensional Cyclics
C. Complete Lie Algebra of the Poincaré Group
D. Standard Expressions for Generator Matrices
E. Poincaré Group, Maxwell Equations and Cyclics
F. The Lehnert Current
G. Some Useful Relations in Spherical Polar Coordinates

305

305
317
322

355
357
363
375
379
383
385

Contents, Volume 4 353

H. Selected Papers 389
4 Invariance of the B Cyclics 391
¢ The B Cyclic Theorem for Multipole Radiation 399
¢ Zero Field Helicity of the U(1) Gauge 405
¢ Link Between Yang Mills Theory of Electrodynamics
and Relativistic Helicity 413
¢ Description of the Inverse Faraday Effect in Terms of

Index

Rotational Energy Transferred in a Photon-Electron

Collision 419

Molecular Dynamics Computer Simulation of the Inverse

Faraday and Beth Effects in Liquid Water 425
443





