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The Evans wave equation [1-3] is developed in the weak-field limit to
give the Poisson equation and an electrogravitic equation expressing the
electric field strength E in terms of the acceleration g due to gravity
and a fundamental scalar potential φ(0) with the units of volts (joules
per coulomb). The electrogravitic equation shows that an electric field
strength can be obtained from the acceleration due to gravity, which
in general relativity is non-Euclidean spacetime. Therefore an electric
field strength can be obtained, in theory, from scalar curvature R. This
inference is supported by recent experimental data from the patented
motionless electromagnetic generator [5].
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1. INTRODUCTION

Recently, field and wave equations [1-3] for grand unified field theory
(GUFT) have been inferred on the basis that the electromagnetic sector
must be generally covariant and that the electromagnetic potential is
a tetrad. The tetrad is the one form that is the eigenfunction of the
generally covariant Evans wave equation [2], which describes all four
fields in GUFT. The gauge invariant electromagnetic field is the torsion
form, a wedge product of two tetrads, and is defined by the first Maurer-
Cartan structure relation [4]. The homogeneous and inhomogeneous
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field equations of generally covariant electrodynamics are identities of
differential geometry [3,4] that follow from the fact that the generally
covariant potential is a tetrad one form. These inferences follow from
the identification of the tangent space of general relativity with the
fiber bundle space of gauge theory.

In this Letter, the Evans wave equation is developed in the weak-
field limit (Sec. 2) to give the Poisson equations of Newtonian dynamics
and of electrostatics. The two Poisson equations are then compared to
derive a simple but fundamental electrogravitic equation which shows
that electric field strength E between two charged particles originates
in the acceleration due to gravity g generated by the masses of the
two particles. The field strength E is proportional to the accelera-
tion g through the fundamental scalar potential φ(0) with the units
of volts (joules per coulomb). Therefore, it may be inferred from the
electrogravitic equation that the electric field strength E originates in
non-Euclidean spacetime in the weak-field limit [1-4] and therefore from
scalar curvature R. This theoretical result is supported qualitatively by
reproducible and repeatable results from devices such as the motion-
less electromagnetic generator (MEG) [5]. Quantitative experimental
tests of the electrogravitic equation will require measurements of the
effect of changing mass on electric field strength, in the simplest case
the electric field strength generated between two charged particles.

2. DERIVATION OF THE ELECTROGRAVITIC
EQUATION

The derivation starts from the Evans wave equation for gravitation [2]

(� + kT )qa
µ = 0, (1)

where qa
µ is the tetrad one-form that describes the gravitational poten-

tial, k is Einstein’s constant, T is the contracted energy momentum
tensor [6] of Einstein, and � is the d’Alembertian operator for flat, or
Euclidean, spacetime. The Evans wave equation for electromagnetism
is then

(� + kT )Aa
µ = 0, (2)

where the electromagnetic potential is the tetrad one-form

Aa
µ = A(0)qa

µ =
φ(0)

c
qa
µ. (3)

Here φ(0) is a fundamental scalar potential and c is the speed of light
in vacuum. The gauge-invariant gravitational field is then the anti-
commutator of tetrad one-forms, the Riemann form

Rab = R
{
qa, qb

}
, (4)
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and the gauge-invariant electromagnetic field is the commutator of
tetrads, the torsion form

Gc = G(0)[qa, qb]. (5)

In the weak-field limit [2-4], Eq. (1) reduces to the Poisson equation
for Newtonian gravitation:

∇2Φ = 4πGρ, (6)

where Φ is the gravitational potential in units of (ms−1)2 and ρ is the
mass density in units of kgm−3. Here G is the Newton gravitational
constant. In the same weak-field limit, Eq. (2) becomes the Poisson
equation for electrostatics [3]:

∇2(φ(0)Φ) = 4πG(φ(0)ρ); (7)

so, in order to unify the theory of electrostatics with that of Newto-
nian gravitation, replace Φ in the equations of gravitation by φ(0)Φ to
generate the equations of electrostatics.

For example, the acceleration due to gravity is

g = −∇Φ, (8)

and thus the electric field strength is

E = − 1

c2
∇(Φ(0)Φ) (9)

in S. I. units. Comparison of Eqs. (8) and (9) gives the electrogravitic
equation

E =
φ(0)

c2
g, (10)

which shows that the electric field strength between two charged parti-
cles originates in the acceleration due to gravity between the two par-
ticles. The electric field strength and the acceleration due to gravity
therefore become two parts of one field, the electrogravitic field.

3. DISCUSSION

The motionless electromagnetic generator [5] (MEG) may provide qual-
itative evidence for the fact that electric field strength in a circuit can be
obtained from non-Euclidean spacetime, and the electrogravitic equa-
tion is a simple example of how this process occurs. The electric field in
a circuit is generated from the product of the fundamental potential φ(0)
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and the acceleration due to gravity, which in general relativity is non-
Euclidean spacetime. The fundamental potential in volts is the scaling
factor that links the electromagnetic potential to the scalar curvature
[3]. The MEG has been precisely replicated [5] and thus is an exam-
ple of how electric field strength and electromagnetic energy can be
obtained from spacetime. However, the MEG is a complicated device;
and, in order to test the electrogravitic equation quantitatively, exper-
iments are needed on the simplest level, the interaction of two charged
particles. For a given potential φ(0), the equation shows that chang-
ing the mass of one particle, keeping the other mass and two charges
constant, should result in a change in the electric field generated be-
tween the two particles. If the fundamental potential is known, this
effect can be predicted quantitatively. Similarly changing the charge
on one particle, keeping the other charge and both masses constant,
should result in a small change in the acceleration due to gravity be-
tween the two particles. Again, if we know the fundamental potential
precisely, this effect can be calculated quantitatively for comparison
with experimental data.

Therefore these are proposed experimental tests of the hypothe-
sis leading to the Evans equation [1-3]. A considerable amount of data
in optics and other effects are available which prove beyond reasonable
doubt the existence of the Evans-Vigier field B(3) [7], the fundamental
field of generally covariant electrodynamics.
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