## APPENDIX 5, CHRISTOFFEL SYMBOLS AND RIEMANN ELEMENTS

In this appendix full details are given of the calculation of the non-vanishing

Christoffel symbols and Riemann elements of the line element { \ \ \ \ \ \}

which can be considered as the spherically symmetric line element in four dimensions. This is written in spherical polar coordinates and  $\Diamond$  and  $\beta$  are in general functions of r and t. The metric elements are:

$$g_m = -e^{2d}, g_n = e^{2\beta}, g_{22} = f^2, g_{33} = f^2 sin^{2\beta}$$

$$= (E2)$$

and the inverse metric elements are:

$$\int_{0}^{\infty} = -e^{-2d}, \quad \int_{0}^{\infty} = -e^{-3\beta}, \quad \int_{0}^{33} = \frac{1}{(-3)^{33}}$$

$$= -(E3)$$

in the spherical polar coordinate system (  $\boldsymbol{\zeta}$  ,  $\boldsymbol{\theta}$  ,  $\boldsymbol{\phi}$ ). The Christoffel symbol in Riemann geometry is:

$$\Gamma_{\mu\nu} = \frac{1}{2} g^{\mu} \left( \partial_{\mu} g_{\mu\nu} + \partial_{\nu} g_{\mu\nu} - \partial_{\mu} g_{\mu\nu} \right) - \left( E_{\mu} \right)$$

where summation is implied over repeated indices in the covariant - contravariant system.

The calculations are given in full here for ease of reference. The non-vanishing Christoffel symbols are as follows.

$$\Gamma_{n}^{(i)} = \frac{1}{2} g^{(i)} \left( \partial_{i} g_{m} + \partial_{j} g_{m} - \partial_{i} g_{m} \right)$$

$$= \frac{1}{2} g^{(i)} \partial_{i} g_{m}$$

where:

$$J. g. = -2. (e^{2d}) = -2 (J.d) e^{2d}$$

$$-(E6)$$

Thus:

2) 
$$\Gamma_{01}^{0} = \frac{1}{2} g^{0} (\partial_{0} g_{1} p + \partial_{1} g_{0} - \partial_{p} g_{01})$$
  
 $= \frac{1}{2} g^{0} \partial_{1} g_{m} = \partial_{1} \chi - (E8)$ 

3) 
$$\Gamma''_{n} = \frac{1}{2} \frac{3}{7} (3.30 + 3.30 - 30) = (E9)$$

$$= -\frac{1}{2} \frac{3}{7} (3.30 + 3.30 - 30) = (E9)$$

4) 
$$\Gamma_{11}^{0} = \frac{1}{2} g^{0} ( )_{1} g_{1} + j_{1} g_{1} - j_{0} g_{11} )$$

$$= -\frac{1}{2} g^{0} j_{0} g_{11} = e$$

$$= -\frac{1}{2} g^{0} j_{0} g_{11} = e$$

$$= -\frac{1}{2} g^{0} j_{0} g_{11} = e$$

5) 
$$\Gamma'_{01} = \frac{1}{2} \frac{1}{3} \Gamma(3.9 + 3.9. - 3.0)$$

$$= \frac{1}{2} \frac{1}{3} \Gamma(3.9 + 3.9. - 3.0)$$

7) 
$$\Gamma^{2}_{12} = \frac{1}{2} g^{2} (1 g^{2}_{12} + 1 g^{2}_{12} - 1 g^{2}_{12})$$

$$= \frac{1}{2} g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= \frac{1}{2} g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= \frac{1}{2} g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= \frac{1}{2} g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} + 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} - 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} - 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} - 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} - 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} - 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} - 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} - 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} - 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} - 1 g^{2}_{13} - 1 g^{2}_{13})$$

$$= -1 g^{2}_{13} (1 g^{2}_{13} - 1 g^{2}_{13} - 1 g^{2}_{1$$

The non-vanishing Riemann elements are calculated from the Christoffel symbols

using the definition of the Riemann tensor:

$$R_{\alpha}^{\lambda \nu} = \int_{\gamma} L_{\alpha}^{\nu \rho} - \int_{\gamma} L_{\alpha}^{\nu \rho} + L_{\alpha}^{\nu \rho} L_{\gamma}^{\nu \rho} - L_{\gamma}^{\nu \rho} L_{\gamma}^{\nu \rho}$$

$$- (E13)$$

where summation is again implied over repeated indices. The relevant elements for this paper are calculated as follows.

and summing over repeated  $\lambda$  gives:

$$\Gamma_{\lambda}^{\circ} \times \Gamma_{\lambda}^{\circ} = \Gamma_{\lambda}^{\circ} \Gamma_{\lambda}^{\circ} + \Gamma_{\lambda}^{\circ} \Gamma_{\lambda}^{\circ} + \Gamma_{\lambda}^{\circ} \Gamma_{\lambda}^{\circ} + \cdots$$

$$-(E31)$$

So:

$$R^{\circ}_{3\circ3} = \Gamma^{\circ}_{01}\Gamma^{\prime}_{33} = -re^{-2\beta}_{5i_{1}}^{20}\partial_{i}d$$

$$-(E33)$$

3) The element R 101 is calculated as follows:  $R^{\circ}(0) = \int_{0}^{\infty} \Gamma^{\circ}(1) - \frac{1}{2} \Gamma^{\circ}(1) + \Gamma^{\circ}(1) \Gamma^{\circ}(1) - \Gamma^{\circ}(1) \Gamma^{\circ}(1)$   $= \int_{0}^{\infty} \left( e^{2(\rho - \lambda)} \right) \cdot \beta - \int_{1}^{1} \left( \int_{0}^{\infty} - \Gamma^{\circ}(1) + \Gamma^{\circ}(1) \Gamma^{\circ}(1) - \Gamma^{\circ}(1) \right)$   $+ \Gamma^{\circ}(1) \left( \Gamma^{\circ}(1) - \Gamma^{\circ}(1) + \Gamma^{\circ}(1) \Gamma^{\circ}(1) - \Gamma^{\circ}(1) \right)$ 

$$= e^{2(\beta-d)}(J.(J.\beta) + J.\beta(J.d-J.\beta) + J.d(J.d) - (E24)$$

It is to be noted that there is a sign error in Carroll's calculation { \(\)\)}, where he gives

$$- \lambda \cdot \beta \left( \lambda \cdot \lambda - \lambda \cdot \beta \right) \cdot - \left( E \lambda 5 \right)$$

4) This element is:

This element is:
$$R \mid_{3/3} = \int_{1}^{1} \Gamma \mid_{32} + \Gamma \mid_{1}^{1} \Gamma \mid_{33} - \Gamma \mid_{32}^{1} \Gamma \mid_{12}^{3}$$

$$= (e^{-2\beta})_{1}\beta. \qquad (E36)$$

R'313 = D, 1 33 + 1 1, 1 33 - 1 33 13 5) This element is: = 15 - 36 215 Jb - (E2)

6) This element is:

This element is:  

$$\begin{pmatrix} 2 \\ 323 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} + \begin{pmatrix} 2 \\ 33 \end{pmatrix} + \begin{pmatrix} 2 \\$$

In the weak field, torsion free limit of this paper:

$$g_{00} = -\left(1 - \frac{3m6}{(c^{3})}, g_{11} = \left(1 - \frac{3m6}{(c^{3})}\right), g_{12} = \left(3 - \frac{3m6}{(c^{3})}\right) - (E29)$$

where the gravitational potential is:

$$\frac{\overline{\phi}}{\overline{\phi}} = -\underline{M}\underline{b} \qquad -\underline{(E30)}$$

and where G is Newton's constant, M is mass, c the speed of light, and r the radial coordinate.

In order to calculate the precise Coulomb law, indices must be raised with the metrics:

$$R^{\circ}_{1}^{\circ} = -R^{\circ}_{1}^{\circ}_{1}^{\circ} = -3^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^{\circ}_{3}^$$

The R velement is calculated firstly from Eq. ( E) with the simplifying

$$\partial_{0}\beta = -\partial_{0}d = 0, d = -\beta. - (E32)$$

So:

Working out the algebra it is found that:

the algebra it is found that:
$$\frac{1}{2} \left( \frac{36m}{6m} \right) \left( 1 - \frac{36m}{6m} \right)^{-1} - (E36)$$

The indices are raised as follows:

$$R^{\circ 1\circ} = R^{\circ 1\circ 1} - (E37)$$

and the final result is:

result is:
$$R^{\circ} = \frac{1}{12} \left( \frac{36m}{rc^{3}} \right) \left( 1 - \frac{36m}{rc^{3}} \right)^{-1} - \left( \frac{238}{1238} \right)$$

o 2º
The R 2 element is:

R 2 element is:  

$$R = \frac{1}{3} \cdot \frac{6m}{10^3} \cdot \frac{1}{10^3} \cdot \frac{6m}{10^3} \cdot \frac{1}{10^3} \cdot \frac{1}{10^3$$

Finally, the R 3 element is:

Rossinally, the R 3 element is:
$$R^{\circ}_{33} = \frac{1}{(2)^{\circ}} \frac{GM}{(2)^{\circ}} \left(1 - \frac{1}{2} \frac{GM}{(2)^{\circ}}\right)^{-1} - \left(E_{40}\right)^{\circ}$$

so:

Therefore the Coulomb law of ECE is:

$$\frac{\Delta \cdot E}{\Delta \cdot E} = -9 \frac{1}{4} \left( \frac{1}{36W} \right) \left( \frac{1}{1 - 36W} \right)^{-1}$$