APPENDIX 5, CHRISTOFFEL SYMBOLS AND RIEMANN ELEMENTS
In this appendix full details are given of the calculation of the non-vanishing

Christoffel symbols and Riemann elements of the line element { |\ }:
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which can be considered as the spherically symmetric line element in four dimensions. This is
written in spherical polar coordinates and d and P are in general functions of r and t. The

metric elements are;
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and the inverse metric elements are:
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in the spherical polar coordinate system ( { , g , %). The Christoffel symbol in Riemann

geometry is:r ~ L "f ) ~ ) _ (E\_‘_
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where summation is implied over repeated indices in the covariant - contravariant system.

The calculations are given in full here for ease of reference. The non-vanishing Christoffel

symbols are as follows.
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The non-vanishing Riemann elements are calculated from the Christoffel symbols



using the definition of the Riemann tensor: N
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where summation is again implied over repeated indices. The relevant elements for this paper

are calculated as follows.
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and summing over repeated >\ gives:
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3) The element R\ o\ is calculated as follows:
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It is to be noted that there is a sign error in Carroll’s calculation { 1\ }, where he gives
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4) This element is:
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5) This element is:
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6) This element is:
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In the weak field, torsion free limit of this paper:
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where the gravitational potential is:
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and where G is Newton’s constant, M is mass, ¢ the speed of light, and r the radial coordinate.

In order to calculate the precise Coulomb law, indices must be raised with the metrics:
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The R | element is calculated firstly from Eq. ( E)\.y) with the simplifying
properties { ||
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Working out the algebra it is found that:
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The indices are raised as follows:
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Finally, the R ¥ element is:

(Z° o A\ @__<\-D§_@§>“ —-(E(-FQ
b p)

TheR Q@  elementis: l ({M <\~ )(fm -\ - (E}ﬁ)



