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ABSTRACT

The Coulomb and Amp\ere Maxwell laws are calculated exactly from Einstein
Cartan Evans (ECE) unified field theory. The result are given for several stationary and
dynamical line elements and metrics of the Einstein Hilbert field equation, and show that in
general there are relativistic corrections of the same order as those responsible for the
deflection of light by gravity and perihelion advance for example. In the special relativistic
limit the Coulomb and Amp\ere Maxwell laws of classical electrodynamics are recovered self
consistently. In the stationary Schwarzschild metric there is no charge density or current
density. These are finite in the dynamic Friedman Lemaitre Robertson Walker metric. The
laws of classical electrodynamics are investigated for the rigorously correct Crothers metric,

and other stationary metrics.

Keywords : Einstein Cartan Evans (ECE) unified field theory, exact calculation of the

generally covariant laws of electrodynamics, stationary and dynamical line elements.
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1. INTRODUCTION

In classical electrodynamics the Coulomb law and Amp;re Maxwell laws are well
known to be a precise laws of special relativity in Minkowski space-time {1}. However in a
generally covariant unified field theory all the laws of classical electrodynamics become
unified with those of gravitation and other fundamental fields {2-9}. In previous work {2-9}
these laws have been developed using the spin connection, revealing the presence of
resonance phenomena that can lead to new sources of energy. A dielectric formulation of the
laws of classical electrodynamics has also been given. This showed that light deflected by
gravity also changes polarization, as observed for example in light deflected by white dwarf
stars {10}. More generally, there are many optical and electro-dynamical changes predicted
by Einstein Cartan Evans (ECE) unified field theory {2-9}. In Section Two various well
known line elements are used to compute the Coulomb Law and Amp\ere Maxwell laws,
starting with the Bianchi identity of differential geometry. In Section Three a discussion is
given of the shortcomings of Big Bang and black hole theory, based on the rigorously correct
Crothers metric. The latter is also used in Section 3 to develop the laws of classical
electrodynamics into laws of general relativity. Appendices give sufficient mathematical

detail to follow the derivation step by step.

2. THE GENERALLY COVARIANT COULOMB AND AMPERE MAXWELL LAWS
The starting point of the derivation is the Bianchi identity {11} of Cartan

geometry:
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differential geometry, R v is the curvature form and q s the tetrad form. Using the




fundamental hypothesis {2-9}:
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Here A is the potential form, F is the field form, and cA is a primordial scalar in volts.
The hypothesis ( 1 ) has been tested experimentally in an extensive manner
(www.aias.us). The field equation ( ‘-\- ) is generally covariant because the Bianchi identity

is generally covariant. Under the general coordinate transformation the field equation
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It retains its form under the coordinate transform because it consists of tensorial quantities.
This is the essence of general relativity.
Applying the Hodge dual transform to both sides of Eq. ( \a\- ) (Appendix (1)) the

inhomogeneous ECE field equation is obtained:
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Here the tilde denotes Hodge transformation {2-9, 11}. It is seen that the same Hodge
transform is applied to two-forms on both sides of the equation. The generally covariant

\
Coulomb and Ampere Maxwell laws are part of the inhomogeneous field equation ( 7 ). As

shown in Appendix (2), the homogeneous and inhomogeneous field equations are the tensor
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respectively. These tensor equations are generally covariant. They look like the Maxwell

equations:

and

Heaviside field equations but contain more information. In the special case:
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the homogeneous field equation becomes:
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It has been shown {2-9} that the special case ( 10 ) is pure rotation. A solution of Eq. (1©0)
is: c (
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in which case the curvature is this well defined dual of the torsion and the spin connection is
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the well defined dual of the tetrad. These results are developed in all detail elsewhere {2-9}

When the connection is the Christoffel connection, however, the gravitational torsion
vanishes:
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and the curvature form becomes the Riemann tensor
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Eq. ( \Q ) is the generally covariant Coulomb Law, and Eq. ( \ﬂ ) is the generally covariant
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Amp\ere Maxwell law. As shown in Appendix (4) the index a for the Coulomb law must be
zero on both sides because it is the time-like index indicating scalar quantities on both sides,
and the a indices in egs. ( Q0 ) to (l&) are obtained in a well defined manner from Cartan
geometry.

The generally covariant Coulomb and Amp\ere Maxwell laws are given by
evaluating the Riemann elements on the right hand side of Eq. ( 1 ) for well known
stationary and dynamic line elements and metric elements and the rigorously correct Crothers
metric { I} }. The method is summarized in Appendix (5) and uses computer algebra. It
consists of choosing line elements {11}, evaluating the Christoffel symbols and Riemann
tensor elements, and finally raising indices with the relevant metric elements. The final
results are given as follows.

For the Minkowski line element of special relativity:
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there is no charge density and no current density, because the space-time has no curvature. So
all Christoffel and Riemann elements are zero in the Minkowski space-time. This shows that
Maxwell Heaviside field theory has to use charge and current densities phenomenologically,
and this is neither generally covariant (objective) nor rigorously correct nor self consistent. In

the stationary Schwarzschild metric as usually used:
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there is no charge density and no current density from Eq. ( |71 ) because there is no
canonical energy momentum density used in deriving this Schwarzschild line element. Here
M is mass, G the Newton constant, ¢ the speed of light (S.Lunits are used in Eq. (l.g)) and

the spherical polar coordinate system ( € , 9 , % ) is used. Therefore in both of

\
these line elements the Coulomb and Ampere Maxwell laws are:
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The Friedman Lemaitre Robertson Walker dynamical line element { \3 }is:
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where a is governed by the Friedman equations. This metric is the result of homogeneity and

[

isotropy, as is well known { \\—\- }, and the Einstein Hilbert field equations are used to
define the line element through the Friedman equations. Well known types of cosmologies
are defined by this line element { R }. The line element ( QA4 ) produces the Coulomb

law:

and the current density components:



These depend on the type of universe, or cosmology, being considered { |\ }. The Coulomb
law ( ) depends directly on the Newton constant G and the mass density , together

with:

in the rest frame, where m is mass and V is volume. In the laboratory, Eq. ( ) is the well
tested Coulomb law of electrodynamics, one of the most precise laws of physics { }.
Eq. ( ) is generally covariant and upon general coordinate transformation produces new
physical effects. The generally covariant Amp;re Maxwell law also produces new physical
effects which can be looked for experimentally. Some are already known, notably the change
in polarization of light deflected by gravitation { }. Here, the scalar potential has
the units of volts, G is the Newton constant with units of meters per kilogram, r is the radial
vector of the spherical polar coordinate system ( )s is the electric charge

density and is the vacuum permittivity in S.I. units.
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APPENDIX 1 : HODGE DUAL TRANSFORMATION

The general Hodge dual of a tensor is defined { 1} } as:
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is the totally anti-symmetric tensor, defined as the square root of the modulus of the

determinant of the metric multiplied by the Levi-Civita symbol:
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it is seen that: \
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because the determinant of the metric is made up of individual elements of the metric tensor.
The covariant derivative of leach element vanishes by Eq. ( {—\\-\—), so we obtain Eq. (AS).
tia

The pre-multiplier \ "a\ is a scalar, and we use the fact that the covariant derivative of a

scalar is the same as its four-derivative { [\ )
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The homogeneous field equation ( \.\_ ) in tensor notation is:
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The Hodge dual of a two-form in four-dimensional space-time is another two-form. For

example:
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The Bianchi identity:
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because F ,R ,and T are two-forms, antisymmetric in their last two indices. In
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other words if we write down the sum:
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as given in the text.



APPENDIX 2 : EQUIVALENCE OF INDICES IN THE FIELD EQUATIONS

The homogeneous and inhomogeneous field equations can be written in equivalent
ways, and the equivalence is proven in this Appendix. The first method of writing the
homogeneous field equation is the sum:
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where the charge current density three-forms are defined by:
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which is a special case of the general result:
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Similarly, the other two current terms
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give Eq.(EQ ) two more times. So the right hand side of Eq.(B\)for"’ =1is: &
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and so derive Eq. ( 8 ) from Eq. ( Bl ), Q.E.D. Note that the pre-multiplier \ 0}5 \
cancels out on either side of Eq. ( 8 ).
Similarly it can be shown that the following expression of the inhomogeneous

field equation: ~
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is equivalent to:

as used in the text.
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As a familiar example of Appendices 1 and 2 consider the Maxwell Heaviside

(MH) equations in free space. The homogeneous MH equation in differential form notation is
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in tensor notation. The inhomogeneous MH equation in differential form notation is:
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in tensor notation. The individual Hodge dual tensors are defined by:
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where g S is the Minkowski metric in this case. The equivalent ECE equations in free space
have the same properties exactly except of the addition of the index a to every tensor in the

equations. Finally the homogeneous ECE equation in form notation is:
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which is

in tensor notation. The inhomogeneous ECE equation in form notation is:
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and indices are lowered with the metric of the base manifold:
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APPENDIX 3 : REDUCTION TO VECTOR NOTATION
In this appendix the tensorial form of the inhomogeneous ECE equation is reduced to
A\
the vector form, giving the Coulomb and Ampere Maxwell laws in generally covariant

unified field theory. Begin with the inhomogeneous field equation:
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so the equation becomes: () S P < C._S
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The indices in the Riemann tensor elements are raised using the metric of the base manifold

as follows:

The Coulomb Law is obtained for:
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and is: o o o ° 0 e
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where summation over repeated /u indices has been carried out. The vector form of eq.

(Ch)is:
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The only possible value of a (see also Appendix Four) for the Coulomb Law is:
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so we obtain the generally covariant Coulomb Law:
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Both sides are scalar valued quantities, so the time-like, or scalar, index a = 0 is used. Here %
is the scalar potential, having the units of volts. The units of E are volt / m and those of the R

elements are inverse meters squared, so units are consistent.
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The generally covariant Ampere Maxwell law is obtained with:
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The vector form of this equation is:
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Here, the 1 subscript denotes a component in a particular coordinate system. For example in
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or in the Cartesian system:
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the spherical polar system:
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So Eq. (CB) is the r or X component of the Ampere Maxwell Law. If we adopt the spherical
polar system for the Riemann elements (see Appendix 5) the value of a in Eq. (€ 3 ) must

also be 1. If the complex circular basis { & — A } is chosen then:
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However, if the complex circular basis is chosen, then the relevant Riemann elements are:
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in which one index is complex circular, and the other three are spherical polar. It is possible

to use either system, or any other system of coordinates for a. Therefore the ge R, € v A “\-}y
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covariant Ampere Maxwell Law is:
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where the charge current density is defined as:
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A particular metric may finally be used to calculate these Riemann components exactly, and
example is given in detail in Appendix 5.

The main result is that in the presence of space-time curvature, the electro-dynamical
properties of light are changed, in addition to the well known effects of Einstein Hilbert
theory there are polarization changes in light deflected by gravitation. These are due to the
charge current density _J__ , which does not exist in the free space limit of Maxwell Heaviside
theory. So these are predictions of ECE theory that are known already to be corroborated
qualitatively { Q -9}, because of observations of polarization changes in light deflected by a

white dwarf for example.



APPENDIX 4 : THE MEANING OF THE a INDEX

It is first noted that the ECE field equations originate in the Bianchi identity:
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where the a and b indices denote those of a tangent space-time at point P in a base manifold
in differential geometry. Thus: D >
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where the Greek indices of the base manifold have been restored. In generally covariant
unified field theory the electromagnetic field tensor is therefore a vector-valued two-form, i.e.
an anti-symmetric tensor for each a. The field two-form is defined as:
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where F  is a tensor in the base manifold with three indices. It is seen that:

g DNE™ = R¥vn A - (o)

using the tetrad postulate:
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In general relativity and unified field theory the base manifold is four dimensional space-time
in which curvature and torsion are both present in general. So the electromagnetic field in this

base manifold is a rank three tensor, not a rank two tensor as in special relativity and
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Minkowski space-time. In the latter type of space-time there is no curvature and no torsion, so

Minkowski space-time is flat space-time.

For example, consider the electric field components:
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and we recover the three vector components E %’ v and E . The first two
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denote complex conjugate plane waves: ) (c.,l— - \('Z.>
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So the meaning of 3¢ Superimposed on ~ ¢ Is that one coordinate system is superimposed
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on another. When one coordinate system is imposed on the same coordinate system the only
possibilities are:
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as used in Appendix 4.



APPENDIX 5, CHRISTOFFEL SYMBOLS AND RIEMANN ELEMENTS
The non-vanishing Christoffel symbols and Riemann elements of each line element
used in this paper were computed using a program written by Horst Eckardt based on Maxima

{ \S }, after first hand checking the program for correctness. For the spherically symmetric

line element: 2 -
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it was checked by hand calculation and by computer that the Christoffel symbols and
Riemann elements are as given by Carroll { || } as follows: )
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The inverse metric elements are related to the metric elements as follows:
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in the spherical polar coordinate system ( €
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, g , % ). The Christoffel symbol in Riemann
geometry is:
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where summation is implied over repeated indices in the covariant - contravariant system.

The non-vanishing Riemann elements are calculated from the Christoffel symbols

using the definition of the Riemann tensor:
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where summation is again implied over repeated indices.
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In order to calculate the Coulomb law and Ampere Maxwell laws, indices must be

raised with the metrics: W °
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and this procedure was adhered to for each line element.



