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Abstract: 
 
 
A stable method of calculating the ECE electromagnetic field in the quasi-static purely 

magnetic approximation using the finite element approach for a two-dimensional flat 

conductive surface is presented.  In its present form, one component of the magnetic vec-

tor potential is specified over the entire surface of the conductor, then the scalar spin con-

nection and the second magnetic vector potential component are calculated.  The vector 

spin connection cannot be calculated in its entirety, but ω x A can.  This allows the calcu-

lation of the magnetic field.  There is a limitation in that the specified driving vector po-

tential component can never be zero since this presents a singularity in the dependent 

variables.  
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Introduction: 
The solution of partial differential equations where domain geometries are not simple 
straight lines has been numerically solved using a technique known as finite element 
analysis.  The mathematical technique is well developed and has numerous commercial 
software implementations available in the marketplace.  The analysis contained in this 
paper will focus on a package known as FlexPde from pdesolutions 
[www.pdesolutions.com].  It is extremely simple to use, quite powerful, and has a size 
limited version (one thousand nodes) available to students free of charge. 
 
This preliminary analysis will be limited to a two-dimensional thin flat sheet of conduc-
tive material.  This simplifies an introductory analysis, but unfortunately limits the im-
plementation of the ECE theory to an incomplete solution. 
 
The use of thin flat sheets in field analysis is not new.  A concept from mechanical engi-
neering known as plane stress analysis uses the elasticity equations simplified to a thin 
sheet where stresses are assumed zero or constant through its thickness.  This has been 
the basis of engineering design for more than a century, and has been quite successful in 
its implementation in computer and non-computer applications.  Commercial finite ele-
ment software packages that support elasticity analysis have two- dimensional “plane 
stress” analysis routines built in. 
 
The Finite Element Method: 
(Italicized text in quotations throughout this document are copied directly from [1]) 
 
FlexPde, the software tool chosen  for finding numerical solutions to systems of non-
linear partial differential equations of ECE electromagnetic theory, uses the methods of 
finite element analysis. “Rather than addressing the solution of specific equations related 
to a given area of application, FlexPde provides a framework for treating partial differ-
ential equation systems in general. It gives users a straightforward method of defining the 
equations, domains and boundary conditions appropriate to their application. From this 
description it creates a finite element solution process tailored to the problem.”  
  
It is not the intent here to provide an in depth discussion of finite element methods. The 
literature is rich with details on the method, and the interested person can find a wealth of 
material. 
 
“Many approaches have been devised for using computers to approximate the behavior 
of real systems. The finite element method is one of them. It has achieved considerable 
success in its few decades of existence, first in structural mechanics, and later in other 
fields. Part of its success lies in the fact that it approaches the analysis in the framework 
of integrals over small patches of the total domain, thus enforcing aggregate correctness 
even in the presence of microscopic error. The techniques applied are little dependent on 
shapes of objects, and are therefore applicable in real problems of complex configura-
tion…The fundamental assumption is that no matter what the shape of a solution might 
be over the entire domain of a problem, at some scale each local patch of the solution 
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can be well approximated by a low-order polynomial. This is closely related to the well-
known Taylor series expansion, which expresses the local behavior of a function in a few 
polynomial terms.“ 
 
In a two-dimensional problem, for example, we divide the domain up into a large number 
of triangular “elements”, then in each element the dependent variable(s) can be repre-
sented by a parabolic surface for example. Stitching the elements together we get a sur-
face that obeys the assumption of continuity for the solution value—but perhaps not for 
its derivatives. The patchwork of triangles is referred to as the computation “mesh”, and 
the sample points at vertices or elsewhere on the element are referred to as the “nodes” of 
the mesh.  
 
The solution proceeds (in simplistic terms) as follows:  
1. Assign a sample value to each vertex of the triangular or tetrahedral subdivision of the 

domain. Then each vertex value is shared by several triangles (tetrahedra).  
2. Substitute the approximating functions into the partial differential equation.  
3. Multiply the result by an importance-weighting function and integrate over the trian-

gles surrounding each vertex.  
4. Solve for the vertex values which minimize the error in each integral.  
 
“This process, known as a “weighted residual” method, effectively converts the continu-
ous PDE problem into a discrete minimization problem on the vertex values. This is usu-
ally known as a “weak form” of the equation, because it does not strictly enforce the 
PDE at all points of the domain, but is instead correct in an integral sense relative to the 
triangular subdivision of the domain. “ 
 
FlexPde  uses either quadratic interpolation (with sample values at vertices and midsides 
of the triangular cells), or cubic interpolation (with values at vertices and two points 
along each side).  
  
A fundamental component of any partial differential equation system is the set of bound-
ary conditions, which alone make the solution unique. In two or three dimensions, a value 
or derivative condition applied over the entire bounding curve or surface provides one 
condition at each end of any coordinate integration path (as for example, the side of an 
element). 
 
Tradition boundary conditions take on one of three forms: 

1. Dirichlet condition where a value for the dependent variable is specified at a geo-
metric boundary 

2. Neuman condition where a spatial derivative of the dependent variable is speci-
fied on a boundary or the 

3. Robin condition which is a combination of the other two.  
 
FlexPde uses a slightly different approach- namely  “integration by parts”, to treat the 
system of equations, which has the benefit of reducing the order of a derivative integrand, 
and also leads to a formulation of derivative boundary conditions for the PDE system.  
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 “Applied to the weighted residual method, this process dictates the flux conservation 
characteristics of the finite element approximation at boundaries between the triangular 
approximation cells, and also provides a method for defining the interaction of the system 
with the outside world, by specifying the value of the surface integrand.  
The values of the surface integrands are the “Natural” boundary conditions of the PDE 
system, a term which also arises in a similar context in variational calculus.  
FlexPde uses the term “Natural” boundary condition to specify the boundary flux terms 
arising from the integration by parts of all second-order terms in the PDE system. “ 
  
 
Summary of ECE Electromagnetic Theory: 
The ECE Theory of Electromagnetism has been developed at great length elsewhere 
[www.aias.us] and will not be reviewed here.  The equations of the theory will be pre-
sented here for the purposes of document completeness.  
 
The field equations are identical in form to Maxwell’s equations  
 
(1) 0=•∇ B  
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∂
∂

+×∇
t
BE  
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where E and B are the electric and magnetic fields respectively and c is the speed of light 
in the medium. ( In this analysis  ρeh’    , and  jeh’     are assumed to be zero, [3]). J is the 
current density, ρ is the charge density, and ε is the permittivity of the medium. 
 
 
In ECE theory however, the electric and magnetic field have new definitions from Max-
well’s theory that incorporates a scalar (ωo) and vector spin connection (ω), ie. 
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where A is the magnetic vector potential and the scalar potential is zero. 
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This analysis is limited to the purely magnetic case where the equations reduce to [2] 
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We will assume that the conductive material has a linear constitutive relationship, that is, 
Ohm’s Law is valid. 
 
(11)  EJ σ=  
 
 
where σ is the conductivity of the material and is homogeneous and isotropic.  
 
 
The Two-Dimensional Field Equations: 
Consider a thin flat conductive sheet of material that is very thin in comparison to its 
other two geometric dimensions.  It is spanned by a standard two-dimensional Cartesian 
frame of reference as illustrated in Figure 1.  The sheet can have arbitrary spatial dimen-
sions within this limitation, but for the purposes of this discussion, the geometry of the 
sheet is limited to that of a simple rectangle. 
 
 
 y 
 
 
       
       x 
        
 
    
    
Figure 1.  Flat sheet of conducting material  
 
 
The sheet is assumed to be thin enough that there is no spatial variation in any of the sys-
tem variables or parameters in the “z”, through the thickness, direction. 
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We will also specifically assume that 
 

1. The conductivity of the material is high enough that there is no charge accumula-
tion anywhere 

2. No external electric potentials are applied and that the electric potential can be 
taken as constant which we shall set to zero without loss of generality 

3. The permeability of the material is constant and is equal to μo, the permeability of 
free space  

4. The magnetic vector potential is two dimensional and is given as 
 
 
(12)  A=(Ax(x,y,t),Ay(x,y,t),0)T 
 
This two dimensional limitation requires that, according to equation 5 that E be two- di-
mensional and of the form 
 
(13)  E=(Ex(x,y,t), Ey(x,y,t),0)T 

 

The Curl of this expression can only have a “z” component. Then by 
Faraday’s Law in Induction (equation   2) that the magnetic field only has a “z” compo-
nent.  That is 
 
(14)  B=(0,0,Bz(x,y,t))T 
 
Given the Ampere Maxwell Law, equation 4, the form of the spin connection has to be 
 
(15)  ω=(ωx, ωy, 0)T 
 
With this limitation, the divergence equation 7 is trivially zero and contributes no infor-
mation.  
  
If we substitute equation 11 into the Ampere Maxwell Equation, equation 10, noting the 
comment above, we get the entire set of equations governing the two dimensional prob-
lem. 
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Simplification is possible if we assume for the purposes of discussion only that the elec-
tric field vector  E=-A’- ωo A is harmonic and of the form eiβt.  It is easy to show that the 
ratio of the wave-like term  
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equation 18 is given by   
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For frequencies in the lower rf range (hundreds of kilohertz), the wave-like component is 
insignificant in comparison to the dispersive component causing a simplification of equa-
tion 18 to  
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This is the typical quasi-static assumption for conductive materials [4] and has the effect 
of allowing the change of Maxwell’s equation from hyperbolic to elliptic.  As will be dis-
cussed later, this form of equation is solved numerically with much less difficulty.  The 
ECE equations are slightly different.  A wave-like term still remains within the dispersive 
term, causing the equation set to be hyperbolic.  In a subsequent section, the equations 
will be recast in an elliptic format to get around some of the numerical instability issues 
present when seeking solutions for the hyperbolic form. 
 
Equations 16,17, and  20  do not form a well posed problem- the number of unknowns 
exceed the number of equation, five to four.  This is not an unusual problem in the simpli-
fication of three-dimensional field theory to a two dimensional planar problem.  For ex-
ample, in elasticity theory, a set of equations known as the compatibility equations, which 
essentially guarantee that mechanical loads not create any voids in the material, are vio-
lated. 
 
One can arrive at a method of solution however. If one takes the Curl of equation 16 and 
the time derivative of equation 20, the term ω x A can be eliminated to give 
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Using the identity 
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 equation 21 simplifies to 
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Equation17 has been used to get rid of the divergence term so is in fact linear dependent 
on equations 22.  This shows up in FEM as a matrix with zero elements on the diagonal.  
 
We note immediately that given the definition of the electric field (equation 5), equations 
22 and 17 are simply 
 
 
(23)  02 =

∂
∂

−∇
to
EE σμ  

 
(24)  0=•∇ E  
 
which are familiar from standard electromagnetic theory.  
 
It is noted that even with this approach we are short one equation (two equations in un-
knowns Ax, Ay and ωo ). As an initial attempt to get around this problem, Ax will be speci-
fied over the entire surface.  This limits the solution to those cases where Ay is small and 
that any change in Ax due to ωo can be neglected. 
 
 
Calculating ω: 
In this formulation it is not possible to calculate ω explicitly.  We can however calculate 
ω x A directly from equation 16, ie. 
 
(25)   ( )dto∫ ×∇−=× AAω ω

 
This does not allow the solution of ω and A independently but can be used to calculate   
ω x A which in turn enables the calculation of the magnetic field. 
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Boundary Conditions: 
Equations 22, and 25 are the equations that specify the field for the two dimensional flat 
conductive sheet of arbitrary geometry.  Boundary conditions are required at the periph-
ery of the sheet to in essence specify the constants of integration generated in solving the 
system of equations. 
 
Consider the divergence equation 17. 
 
The divergence theorem in two dimensions requires that this be 
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⎠
⎞

⎜
⎝
⎛ −

∂
∂

−=⋅⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

−•∇ 0dl
t

ds
t oo nAAAA ωω  

 
where n is the unit normal vector at the boundary of the domain, ds is a surface element 
and dl is a line element 
 
The boundary conditions for the system of equations then take the form 
value (-A’-ωoA) specified or value of (-A’-ωoA).n specified. 
 
In FlexPde, the terminology for these conditions is 
 
 Value(-A’-ωoA) =0  and 
 Natural(-A’-ωoA) 0  
 
respectively, depending on whether the value of a variable or its flux needs specification. 
 
In a three dimensional problem, equation 7 is not trivial and provides for further bound-
ary condition specification.  Following the integration as above we would have the 
boundary specification 
 

1. value (ω x A) specified or  
2. value of (ω x A).n specified 

 
Of course in this two dimensional case, ω x A is trivial under all conditions. 
 
 
Initial Conditions: 
It will be generally assumed that ωo and ω are zero at the start of the analysis.  Initial val-
ues of A, E, and/or B must then be specified for the problem, which must be converted to 
the field variable being solved. 
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Load: 
To complete the description of a problem for a finite element solution, the “loads” to be 
put on the field equations need to be specified.  Traditionally this could be done by speci-
fying some form of A, E, and/or B or their derivatives.  Since we don’t know the form of 
ωo and ω at the boundaries, the only load type that can be specified is for the magnetic 
vector potential A.  This is done either at a periphery, or over some area (perhaps all) of 
the conductive sheet.  This analysis will be limited to the application of a load over the 
entire conductive sheet. 
 
 
Problem 1 Uniformly Loaded Rectangular Sheet 
The simple time dependent problem that will be analyzed is that of a rectangular sheet 
where one component of the vector potential is completely specified in space and time.  
This is similar in nature to the problem analyzed previously for a two-dimensional cylin-
drical geometry [3].  Coupling though ωo will be seen to generate a perpendicular com-
ponent to the specified vector potential, something not possible in traditional Maxwell 
electromagnetism. 
 
The geometry of the area to be modeled is given in Table 1. 
 
Table 1  Model Dimensions 
Parameter Value 
Length in “x” direction 2 
Length in “y” direction 2 
Number of nodes 1133 
Number of elements 536 
Number of unknowns 4532 
 
 
Following the lead of a previous publication [3] we assume that the driving or specified 
vector potential is given by 
 
(27)  Ax=sin6(βt)+δ 

 
where δ is a small numerical factor that prevents a numerical “divide by zero” situation. 
 
 
The flux of (-A’-ωo A) normal to the surface is taken to be zero at all boundaries or else 
specified.  All field variables are assumed to be zero at the start of the calculation.  For 
the purposes of this simple problem,  
 
μo σ =k=1  and   β =1 (For copper μo σ =75 and for nichrome μo σ =1.25 in SI units). 
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The Solution: 
Equations 22 were recast in three different forms to see the impact of the nature of the 
field equations on the solution.  This is illustrated in Table 2. 
 
Form 1 consists of equations 5  and 23.  
 
Form 2 is equations 22.   
 
Form 3 is the expansion of form 2 using the relation 
 
(28)  ( )AAAA ∇•∇+∇+∇=∇ oooo ωωωω 2222  
which is easily verified using a symbolic algebraic processor such as Mathematica. 
 
Using this identity on equation 22 gives for the Ax component 
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Table 2  Solution Time and Stability for Various Forms of Equations 
 Form Form of Equations CPU run 

time(hr:min.)* 
Comment 

 
 
1 
 
 
 

ex: Del2(ex)-k*Dt(ex)=0 
 
wo: ex=-Dt(Ax)-wo*Ax 
 
ey: Del2(ey)-k*Dt(ey)=0 
 
Ay: ey=-Dt(Ay)-wo*Ay 

 
 
27 

Stable, noise 
free calculation  

 
 
2 
 
 
 

wo: Del2(Apx+wo*Ax)-k*Dt(Apx+wo*Ax)=0 
 
Ay: Apy=Dt(Ay) 
 
Apy: Del2(Apy+wo*Ay)-k*Dt(Apy+wo*Ay)=0 
 
ey: ey=-Dt(Ay)-wo*Ay 

 
 
1:43 

 
Tended towards 
instability.  Col-
lapsed to zero 
after two cycles 

 
 
3 
 
 
 

wo: Del2(wo)-
k*(Axi*Dt(Apx)+wo*Axi*Apx+Dt(wo))=0 
 
Apy: Apy=Dt(Ay) 
 
Ay: Del2(Apy)+ wo*Del2(Ay) + 
Ay*Del2(wo) + 2*(Dx(wo)*Dx(Ay) + 
Dy(wo)*Dy(Ay))-
k*(Dt(Apy)+wo*Apy+Dt(wo)*Ay)=0 
 
ey: e ey=-Dt(Ay)-wo*Ay 

 
 
incomplete 

 
Unstable after 
two cycles. 

*all calculations were performed on a 1.75 GHz 64bit CPU with 2 GBytes of memory 
running a Windows XP64 operating system. 
Note that Axi=1/Ax 
 
The script for a typical analysis presented is included in Appendix I. 
 
Form 1 is on the surface, an elliptic system with non-linear dependent variable combina-
tions.  Forms 2 and 3 tend to be increasingly hyperbolic, that is, the hyperbolic nature of 
the equations is increasingly visible to the finite element solution algorithm. This shows 
up clearly in the ease at which a solution is found and the “noisiness” of the solution. 
 
These forms all generate a trivial solution for Ay unless one or both of the following is 
met 
 

- Ay  is given a non-trivial initial condition  
- Ey is given a slight non-zero off-set at one of the boundaries 
 

The values calculated for the dependent variables depend significantly on the values 
given to either the initial conditions or a non-zero boundary condition.  
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The solution for Form 1 is presented in Figures 2 where initially 
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Figure 2   Form 1 equations with non=zero initial conditions on Ay 
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A stable solution presents itself which is essentially a periodic function overlaid on a very 
slightly time dependent substrate.   The contours of Ay are uniform and symmetric indi-
cating a stable solution.  Unstable solutions are marked by solution “hot spots” which mi-
grate in spatial position on the domain.  The boundary conditions are that there is no flux 
of the electric field at the boundary. 
 
As the equation set gets “more hyperbolic” going from Form 1 to Form 3, the stability of 
the solution degrades.  The smooth symmetric aspect of the diffusion process is lost in the 
hyperbolic formulation due to localized solution instabilities.  Form 1 was the only equa-
tion set that generated a “long term” solution. 
 
The following were immediately observed  

• The solution is stable for a non-zero initial condition on Ay consistent with the 
boundary conditions 

• The value of ωo is spatially independent and stationary periodic 
• Ay, ω x A, and B all decrease slightly with time.  Whether there is a convergence 

to a fixed zero or non-zero value is not known.  It is postulated but not verified 
that the clipping observed on Bz is due to not allowing Ax to become zero. 

• Even though this model contains spatially dependent variables, the similarity in 
form to that of a previous calculation [3] should be noted. 

• Ay follows Ax and is an “amplified version of the initial value of Ay. The peaks of  
ωo correspond to areas where  Ay  and hence Ax  is nearly zero. 

 
A quasi-analytic comparison for the solution given in Figure 2 is presented in     Appen-
dix III.  It is seen that even though the limit of Ay<<Ax required by the quasi-analytic 
analysis is not strictly adhered to, the solution agreement for the dependent variables are 
very good. This lends credibility to the method for loading conditions and geometries that 
cannot be modeled analytically. 
 
Also presented, in Appendix II, is an analytic solution for this problem with constant ini-
tial Ay along with an FEA solution for the same conditions.  Agreement is excellent. 
 
Figure 3 is the solution for equation form 1 with zero initial conditions on Ay but with a 
slight non-zero flux on the left-most vertical boundary.  It is noted that Ay increases as a 
flux of Ey continually enters from the left-most boundary.  The magnetic field component 
also increases with time. 
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Figure 3  Form 1 equations for zero initial condition on Ay and slight boundary flux of 
10-19 on left-most vertical boundary 
 
 
Stability for Variations in the Conditions on Ay 
To see the restrictions imposed on the size of the initial conditions, solutions were calcu-
lated when Ay was given an initial condition of 
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Some stability restrictions were discovered on the solution for some values chosen for ε 
and δ as shown in Table 3. 
 
Table 3  Stability for Variations in the Initial Conditions on Ay 
ε δ Boundary Condition Stability 
.00001 0 0 stable 
.00001 1 0 stable 
.0001 .0001 10-19 stable 
.001 0 0 marginally stable 
.001 .0001 10-19 marginally stable 
.01 0 0 unstable 
1 0 0 or 10-19 unstable 
1 .0001 0 or 10-19 unstable 
1 1 0 or 10-19 unstable 
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Only a small spatially variable initial condition or an off-set boundary flux lets the solu-
tion proceed.  Whether the instability is due to the equation structure or in a numerical 
artifact is not known.  The forms and values of the dependent variables are very similar to 
that presented earlier.   
 

 
Convergence: 
Stationary finite element solutions as a rule converge to a stable value. This is not neces-
sarily so for time dependent problems where the existence of a solution is not even guar-
anteed. 
 
Three parameters in the solution scheme implemented in FlexPde were varied to see their 
effect on the solution.  

Errlim – “FlexPde applies a consistency check to integrals of the PDE's over the mesh 
cells.  From this it estimates the relative uncertainty in the solution variables and com-
pares this to an accuracy tolerance.  If any mesh cell exceeds the tolerance, that cell is 
split, and the solution is recomputed. The default value of ERRLIM is 0.001, which means 
that FlexPde will refine the mesh until the estimated error in any variable (relative to the 
variable range) is less than 0.1% over every cell of the mesh.  This does not mean that 
FlexPde can guarantee that the solution is accurate to 0.1% over the domain.  Individual 
cell errors may cancel or accumulate in ways that are hard to predict.”  This does not 
modify the grid structure for the next time-step calculation. 

Fixdt – Fixing the time step disables the automatic time step adjustment provided by the 
software. 
 
Mesh_Density- The mesh density option allows user control over the density of elements 
in the solution domain.  Normally the software algorithms automatically determine this, 
but the effect of increasing density beyond that normally suggested was observed by forc-
ing a specified density of elements. 
 
To investigate the effects of the above solution parameters on solution stability, the time 
step was varied between 0.1 seconds and 0.001 seconds.  The error limit was varied from 
10-2 to 10-4 and the mesh density varied from a coarse mesh to a very fine mesh.   
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Table 4  Convergence of Solution   (536 elements,  1133 nodes) 
Errlim Dt bfield(max) ωo(min) Ay(max) ω x A (min) 
10-2 .01 17 x10-2 -17 8.4 x10-2 -9.4 x 10-3 
10-3 .01 17 x10-2 -17 8.4 x10-2 -9.4 x 10-3 
10-4 .01 17 x10-2 -17 8.4 x10-2 -9.4 x 10-3 
10-3 .05 32 x10-2 -17 25 x10-2 -17 x 10-3 
10-3 .1 17 x10-2 -17 8.4 x10-2 -9.4 x 10-3 
10-3 .001 17 x10-2 -17 8.3 x10-2 -9.2 x 10-3 
 

(Errlim=10-3; Dt=.01) 
Elements Nodes bfield(max) ωo(min) Ay(max) ω x A (min) 
536 1133 17 x10-2 -17 8.4 x10-2 -9.4 x 10-3 
764 1601 20 x10-2 -17 8.4 x10-2 -4.3 x 10-3 
944 1969 13 x10-2 -17 8.4 x10-2 -4.3 x 10-3 
1352 2801 20 x10-2 -17 8.4 x10-2 -3.8 x 10-3 
2104 4329 17 x10-2 -17 8.4 x10-2 -8.8 x 10-3 
3730 7621 15 x10-2 -17 8.4 x10-2 -26 x 10-3 
 

(Automatic Mode: Fixed Dt=Off; Regrid= on) 
Errlim Elements Nodes bfield(max) ωo(min) Ay(max) ω x A (min) 
10-3 536 1133 17 x10-2 -17 8.2 x10-2 -9.1 x 10-3 
10-4 4132 n/a 16 x10-2 -17 8.2 x10-2 -4.3 x 10-3 
10-5 18808 9345 5.6 x10-2 -17 8.2 x10-2 -15 x 10-3 
 
Convergence is noted as long as the mesh density doesn’t get too high, the time step too 
small, or the error limit too small.  It is suspected that numerical errors compound when 
these values are too far from the default values chosen by FlexPde.  The default values 
for FlexPde are an error limit of 10-3 and automatic time step adjustment. If derivatives of 
functions are important, it has been suggested than an error limit of 10-4 be used.  It is 
seen that these default values generates a solution consistent with the converged values 
when parameters are not allowed to vary under software control.   Solution times in-
creased approximately linearly with both the error limit and the time-step for the range of 
variation explored. 
 
 
Methods of Improving Stability: 
Several methods avail themselves internal and external to the calculating engine in Flex-
Pde for improving the stability of non-linear time dependent systems of partial differen-
tial equations [5]. (Some of this section is quoted directly from [5] and is in quotations) 
 
Putting highest derivative on left hand side – It has been suggested that putting the 
highest time derivative as the only term on the left had side of a partial differential equa-
tion may help stability.  This was tried, but no noticeable difference in the solution or its 
execution time was observed. 
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Upwinding –“Standard Galerkin Finite Element techniques generate oscillatory solutions 
to hyperbolic systems.  One way of rectifying this problem is the use of “upwinding”, 
which takes its name from an analogous Finite Difference technique, forming a one-sided 
difference approximation to the first derivative.  FlexPde automatically implements up-
winding, but it also allows the user to select an arbitrary scaling multiplier on the stan-
dard form.”  The upwinding factor was varied from 1  to 1000, with only incidental im-
provement in the stability of the unstable system. 
 
Vanderberg method – “FlexPde implements an optional Conjugate-Gradient solver due 
to Van den Berg.  This technique uses the matrix product AtA to symmetrize the system, 
and is sometimes effective in solving hyperbolic systems.”  It has been used extensively 
in this analysis and provides the best stabilizing influence of any of the parameters avail-
able. 
 
Laplacian damping factor – Adding a small Laplacian term in the unstable variable has 
often been used to filter unwanted numerically induced oscillations.  This was tried with 
little success. 
 
Automatic regridding –FlexPde uses a method of “adaptive mesh refinement“ to im-
prove solution accuracy in areas of high solution gradients. “The problem domain pre-
sented by the user is divided into a triangular mesh dictated by the feature sizes of the 
domain and the input controls provided by the user. The problem is then constructed and 
solved, and the cell integrals of the weighted residual method are crosschecked to esti-
mate their accuracy. In locations where the integrals are deemed to be of questionable 
accuracy, the triangles are subdivided to give a new denser mesh, and the problem is 
solved again. This process continues until FlexPde is satisfied that the approximation is 
locally accurate to the tolerance assigned by the user.” Turning off the automatic regrid-
ding proved very effective in minimizing numerically induced instability. 
 
Automatic time stepping –“FlexPde uses a variable-order implicit backward difference 
method (BDM) as introduced by C.W. Gear. In most cases, second order gives the best 
tradeoff between stability, smoothness and speed, and this is the default configuration for 
FlexPde. This method fits a quadratic in time to each nodal value, using two known val-
ues and one future (unknown) value. It then solves the coupled equations for the array of 
nodal values at the new time. By looking backward one additional step, it is possible to 
infer the size of the cubic term in a four-point expansion of the time behaviour of each 
nodal value. If these cubic contributions are large, the time-step is reduced, and if ex-
treme, the current step repeated. “     
 
Effect of Reducing Zero Off-Set on Ax: 
Ax was off set by a specified amount that prevented Ax from being zero.  This offset di-
rectly affected the peak values that ωo, Ay and their time derivatives.  This is illustrated in 
Table 5   for several values of the off set. 
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Table  5  Effect of Reducing Off-set on Ax 
Off Set Ay Ay’ ωo ωo’ 
10-1 6.5x10-19 9.5x10-19 -3.4 -10 
10-2 2.9x10-18 4.5x10-18 -6.8 -28 
10-3 1.5x10-18 2.3x10-17 -11 -70 
10-4 8.4x10-17 1.6x10-16 -17 -160 
10-5 4.2x10-16 4.5x10-16 -26 -360 
10-6 2.8x10-15 4.5x10-15 -38 -800 
10-7 2.0x10-14 3.1x10-14 -56 -1800 
10-8 3.3x10-13 4.8x10-13 -85 -3900 
 
The solution degrades without further reduction of the error limit and time step for off-
sets smaller than 10-8.  There does not appear to be any form of stabilization of the de-
pendent variables to a stationery value as the off set is decreased.  In fact it appears that 
ωo may be singular.  This drives Ay to an increasingly higher value, likely also singular.  
For offsets greater than 10-1, the character of ωo, Ay  and their time derivatives changes 
dramatically. 
 
Limits on Complexity of Applied Vector Potential: 
To determine how stable equation form 1 is to changes in the complexity of the driving 
magnetic vector potential component, the applied potential Ax was allowed to vary in the 
two in-plane directions in a prescribed manner. A variety of forms for Ax were analyzed, 
all which satisfied the diffusion equation for Ax, as shown in Table 6.  Stability is chal-
lenged for several spatial variations in Ax; if at any point in the plane Ax becomes zero, the 
solution becomes unstable. 
 
Table 6  Stability with Various forms for Ax 
Form of Ax Stable CPU  time (minutes) 
Sin(πx/Lx) Sin6(t) + δ*    yes 5.16 
Sin(2πx/Lx) Sin6(t) + δ no Unstable at t=0.25 sec 
Sin2(2πx/Lx) Sin6(t) + δ yes 7:40 
Sin(πy/Ly) Sin6(t) + δ yes 7:55 
Sin(2πy/Ly) Sin6(t) + δ no Unstable at t=0.25 sec 
Sin2(2πy/Ly) Sin6(t) + δ yes 8:28 
Sin(πy/Ly) Sin(2πx/Lx) Sin6(t) + δ no Unstable at t=0.25 sec 
Sin(2πx/Lx) Sin6(t) + ε** yes 3:05 
Sign(Sin(2πx/Lx))(Abs(Sin(2πx/Lx) + δ) Sin6(t) + δ no Unstable at t=.025 sec 
*     δ=0.0001 
**   ε=1.0001 

  

 
What is noted is that as long as Ax is positive, the calculation is stable.  An attempt was 
made to run 
 

Ax =Sign(Sin(2πx/Lx))(Abs(Sin(2πx/Lx) + δ) Sin6(t) + δ 
 
as a functional form for Ax that would be always non-zero. This also became unstable 
even though Ax was never actually allowed to become zero.  It is thought that the instabil-
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ity in this case is caused by the fact that Ax is discontinuous at its zero.  Instability of the 
“zero crossing” problem was “fixed” by the addition a large shifting term so that Ax was 
always greater than zero however, the solution may be of little practical value. 
 
Conclusions: 
A method of calculating the ECE electromagnetic field in the quasi-static purely mag-
netic approximation using the finite element approach for two-dimensional flat conduc-
tive surfaces has been presented.  In its present form, one component of the magnetic vec-
tor potential is specified and the scalar spin connection and the second magnetic vector 
potential component are calculated.  There is a limitation in that the specified driving vec-
tor potential component can never be zero as this causes a singularity in ωo which in turn 
drives Ay to incalculable values. 
 
It was found that it was not possible in principle to calculate the vector spin connection, 
however ω x A could be calculated.  This then allowed the calculation of the magnetic 
field. 
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APPENDIX  I 
 
TYPICAL SCRIPT 
 
TITLE         
 'Problem 1 k=1 beta=1 '   
  
SELECT         
  errlim= 1e-4    { Limit of relative error } 
              vandenberg=on 
 nonlinear=on 
 prefer_stability=on 
 smoothinit=on 
 fixdt=on 
COORDINATES cartesian2 
VARIABLES 
     Ay(threshold=100) 
     ey(threshold=.01) 
     wo(threshold=.1) 
     ex(threshold=.01) 
  enorm(threshold=.01) 
  
DEFINITIONS                                          { SI units throughout } 
    Lx= 2           Ly=1   { Domain size } 
 beta=1 
   Ax=(Sin(beta*t))^6 +.0001  { Input field} 
   k=1     {mu0*sigma} 
    a=Vector(ax,ay) 
 e=Vector(ex,ey) 
 am=Vector(ax,0) 
 Q=Dy(wo*ax)-Dx(wo*ay)   {Curl(wo*a)} 
   wcrossa=-TIME_INTEGRAL(-Q)  {Cross(wo,a)} 
    bfield=Curl(a)-wcrossa 
   
INITIAL VALUES 
  Ay=.00001*cos(pi*y/2*Ly)*Sin(pi*x/Lx) 
  
EQUATIONS 
ex:  Del2(ex)-k*Dt(ex)=0 
wo:  ex=-Dt(Ax)-wo*Ax 
ey:  Del2(ey)-k*Dt(ey)=0 
Ay:  ey=-Dt(Ay)-wo*Ay 
enorm:  enorm=Normal(e)    
  
  
BOUNDARIES  
  
  
region 1  'strip' 
 start (0,-Ly)      Natural(enorm)=0     

line to (0,Ly)     Natural(enorm)=0      
line to (Lx,Ly)       Natural(enorm)=0 
line to (Lx,-Ly)   Natural(enorm)=0 
line to close  
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TIME 0 TO 5*pi by .01 
  
MONITORS 
 for cycle=1 
  Contour(Ax) 
  Elevation(Ax) from (0,0) to (Lx,0) 
 Elevation(Ax) from (0,-Ly) to (0,Ly) 
 Elevation(Ax) from (.1*Lx,-Ly) to (.1*Lx,Ly)  
  
  
  
 Contour(Ay) 
  Elevation(Ay) from (0,0) to (Lx,0) 
 Elevation(Ay) from (0,-Ly) to (0,Ly) 
 Elevation(Ay) from (.1*Lx,-Ly) to (.1*Lx,Ly) 
  
  
  
HISTORIES 
   
 history(Ax) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(Ay) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(Dt(Ax)) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(Dt(Ay)) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(wo) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(wo*Ax) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(wo*Ay) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(Dt(wo)) at  (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(ex) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(ey) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
  history(wcrossa) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(Curl(a)) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(bfield) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
  
PLOTS 
    
END 
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Appendix II Analytic Solution- Justification for Use of Finite Element Method 
 
An analytic solution is available for the quasi-static magnetic solution of the ECE equa-
tions for a very simple geometry and constant loading condition. 
 
Consider a thin flat conductive sheet of material that is very thin in comparison to its 
other two geometric dimensions.  It is spanned by a standard two-dimensional Cartesian 
frame of reference as illustrated in Figure AII-1.  The sheet can have arbitrary spatial di-
mensions within this limitation, but for the purposes of this discussion, the geometry of 
the sheet is limited to that of a simple rectangle. 
 
 y 
 
 
       
       x 
        
 
    
    
Figure AII-1.  Flat sheet of conducting material  
 
 
The sheet is assumed to be thin enough that there is no spatial variation in any of the sys-
tem variables or parameters in the “z”, through the thickness, direction. 
 
We will also specifically assume that 
 

5. The conductivity of the material is high enough that there is no charge accumula-
tion anywhere 

6. No external electric potentials are applied and that the electric potential can be 
taken as constant which we shall set to zero without loss of generality 

7. The permeability of the material is constant and is equal to μo, the permeability of 
free space  

8. The magnetic vector potential is two dimensional and is given as 
 
 
(1)  A=(Ax(x,y,t),Ay(x,y,t),0)T 
 
This two dimensional limitation requires that, as before in this paper that E be two- di-
mensional and of the form 
 
(2)  E=(Ex(x,y,t), Ey(x,y,t),0)T 

 

The Curl of this expression can only have a “z” component. Then by 
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Faraday’s Law in Induction (equation   2) that the magnetic field only has a “z” compo-
nent.  That is 
 
(3)  B=(0,0,Bz(x,y,t))T 
 
Given the Ampere Maxwell Law, equation 4, the form of the spin connection has to be 
 
(4)  ω=(ωx, ωy, 0)T 
 
 
Earlier in this paper, the following equation was developed as a means of implementing 
this problem in a finite element scheme.  It was 
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Based on observations from FEA runs, it is postulated that a very simple analytic solution 
exists for which 
 

• Ax does not vary spatially 
• ωo does not vary spatially 
• ωxA does not vary spatially 
• Ay does not vary spatially if initially Ay is independent of position. 

 
 
Substituting these assumptions into the x component of equation (5), and noting that both    
Ax and ωo are zero at the start of the analysis, we have that 
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From Paper 1, we have the expression for ωxA given by 
 
(8)   ( )dto∫ ×∇−=× AAω ω

 
From the assumptions above, this is identically zero. 
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The geometry of the area modeled is given in Table AII-1. 
 
Table AII-1   
Parameter Value 
Length in “x” direction 2 
Length in “y” direction 2 
Number of nodes 1133 
Number of elements 536 
Number of unknowns 4532 
 
 
In accordance with this paper we assume that the driving or specified vector potential is 
given by 
 
(9)  Ax=sin6(βt)+δ 

 
where δ is a small numerical factor that prevents a numerical “divide by zero” situation.  
In this example  it was chosen to be  0.0001. 
 
 
The flux of (-A’-ωo A) normal to the surface is taken to be zero at all.  All field variables 
are assumed to be zero at the start of the calculation.  For the purposes of this simple 
problem,  
 
μo σ =k=1  and   β =1 (For copper μo σ =75 and for nichrome μo σ =1.25 in SI units). 
 
The Solution: 
The solution for Form 1 is presented in Figures AII- 1 where initially 
 

1=yA  
 
 
The script for the problem on Flexpde is presented at the end of this appendix 
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Figure AII-1 Flexpde Solution 
 
 
 
 
An analytical solution was developed using Mathematica 
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Figure AII-2a   Ay vs t 
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Figure AII-2b ωo vs t 
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Figure AII-2c  ωo Ay vs t 
 
For the calculation of  ωo,  Ay, and  ωo Ay  the finite element solution is in very good 
agreement with the analytical solution.  It should be noted that the y component of the 
electric field is not exactly zero in the finite element solution nor is Curl(A) nor the B 
field as would be expected from the analytic solution.  The values are very small; many 
orders of magnitude below that of the other calculated field variables, and appear to be 
due to the manner in which the field variables are calculated (ie. a numerical artifact). 
 
The magnification of Ay is very much governed by the size of δ.  No interpretation of the 
amplification is given here; it is just reported as part of the mathematical analysis. 
 
As a conclusion, it seems that FEA can be used to solve ECE electromagnetic problems 
with sufficient accuracy.
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Flexpde Script for Analytical Solution 
 
TITLE         
 'Quasi-Analytic Solution k=1 beta=1 '   
  
SELECT         
  errlim= 1e-4  { Limit of relative error } 
              vandenberg=on 
 nonlinear=on 
 prefer_stability=on 
 smoothinit=on 
 fixdt=on 
 regrid=off 
 font=1 
       textsize=25 
  
COORDINATES cartesian2 
VARIABLES 
     Ay(threshold=1) 
 enorm(threshold=1) 
  
DEFINITIONS                                          { SI units throughout } 
    Lx= 2           Ly=1   { Domain size } 
 beta=1     {frequency} 
 k=1     {mu0*sigma} 
  delta=.0001 
   Ax=(Sin(beta*t))^6 +delta   { Input field} 
 Apx=Dt(Ax) 
  
    
 wo=-apx/ax 
 ey=-Dt(Ay)-wo*Ay 
  ex=-Dt(Ax)-wo*Ax 
    a=Vector(ax,ay) 
 e=Vector(ex,ey) 
 {Q=Dy(wo*ax)-Dx(wo*ay)   {Curl(wo*a)}} 
 Q=Curl[a] 
   wcrossa=-TIME_INTEGRAL(-Q)   {Cross(wo,a)} 
    bfield=Curl(a)-wcrossa 
   
  
INITIAL VALUES 
  Ay=.00001 
  
EQUATIONS 
  
Ay: Dt[Ay]=-wo*Ay 
  
enorm: enorm=Normal(e) 
  
BOUNDARIES  
    region 1  'strip' 
 start (0,-Ly)     Natural(enorm)=0   line to (0,Ly) 
         Natural(enorm)=0   line to (Lx,Ly)       
      Natural(enorm)=0   line to (Lx,-Ly) 
    Natural(enorm)=0   line to close  
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TIME 0 TO 5*pi by .01 
  
MONITORS 
 for cycle=1 
  Contour(ey) 
 Vector(e) 
  Contour(Ay) 
 Contour(Ax) 
  Elevation(Ay) from (0,0) to (Lx,0) 
 Elevation(Ay) from (0,-Ly) to (0,Ly) 
 Elevation(Ay) from (.5*Lx,-Ly) to (.5*Lx,Ly) 
  
  
  
HISTORIES 
   
 history(Ax) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(Ay) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(Dt(Ax)) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(Dt(Ay)) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(wo) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(wo*Ax) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(wo*Ay) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(Dt(wo)) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(ex) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(ey) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(-Dt(Ay)-wo*ay) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
  history(wcrossa) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(Q) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(Curl(a)) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(bfield) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(ay/ax) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
    
PLOTS 
    
END 

 

Mathematica Script for Analytical Solution 

Simplest Analytical Solution for Problem 1 
Specify Fields 
Note that wo is only a function of time.  w x A  is also only time dependent. 
<< VectorAnalysis` 
SetCoordinates[Cartesian[x, y, z]]; 
a = {ax[t], ay[t], 0}; 
ax[t] = Sin[t]^6 + .0001; 
wo[t] = -(1/ax[t])*D[ax[t], t]; 
eqn1 = D[ay[t], t] + ay[t]*wo[t] == 0 
s = DSolve[eqn1, ay, t] 
Plot[Evaluate[ay[t] /. s /. C[1] -> .00001], {t, 0, 5*Pi}] 
Plot[Evaluate[wo[t]], {t, 0, 5*Pi}] 
Plot[Evaluate[wo[t]*ay[t] /. s /. C[1] -> .00001], {t, 0, 5*Pi}] 

 36



Appendix III  Quasi-Analytic Solution for Non-Uniform Ay 
 
A quasi-analytical solution is developed to verify the FEA solution presented in this pa-
per. 
 
Consider a thin flat conductive sheet of material that is very thin in comparison to its 
other two geometric dimensions.  It is spanned by a standard two-dimensional Cartesian 
frame of reference as illustrated in Figure AIII-1.  The sheet can have arbitrary spatial 
dimensions within this limitation, but for the purposes of this discussion, the geometry of 
the sheet is limited to that of a simple rectangle. 
 
 y 
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Figure AIII-1.  Flat sheet of conducting material  
 
 
As in the body of this paper, the sheet is assumed to be thin enough that there is no spatial 
variation in any of the system variables or parameters in the “z”, through the thickness, 
direction. 
 
From the body of this paper, equation (22), the relevant equations requiring solution are 
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We will assume for this quasi-analytic problem that Ax does not vary spatially and is 
specified over the entirety of the sheet.  We will assume that Ay is so small that it does not 
influence the value of ωo.  Although not specifically necessary from equation (5), we will 
assume that ωo is also spatially invariant.   
 
Substituting these assumptions into the x component of equation (A-1), and assuming that 
both  Ax and ωo are zero at the start of the analysis, we have that 
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The geometry of the area to be modeled is given in Table AIII-1. 
 
Table AIII-1  Model Geometry 
Parameter Value 
Length in “x” direction 2 
Length in “y” direction 2 
Number of nodes 1133 
Number of elements 536 
Number of unknowns 4532 
 
 
In accordance with the body of this paper we assume that the driving or specified vector 
potential is given by 
 
(27)  Ax=sin6(βt)+δ 

 
where δ is a small numerical factor that prevents a numerical “divide by zero” situation. 
 
 
The flux of (-A’-ωo A) normal to the surface is taken to be zero.  All field variables are 
assumed to be zero at the start of the calculation.  For the purposes of this simple prob-
lem,  
 
μo σ =k=1  and   β =1 (For copper μo σ =75 and for nichrome μo σ =1.25 in SI units). 
 
The Solution: 
The solution is presented in Figures AIII-2 where initially 
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Agreement with the solution presented in the body of the paper is very good indicating 
that the method of solution is acceptable. 
 
The script for the problem on Flexpde is presented at the end of this appendix.   
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Figure AIII-2 Quasi-analytic solution  
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Script 
 
 
TITLE         
 'Quasi-Analytic Solution k=1 beta=1 '   
  
SELECT         
  errlim= 1e-4    { Limit of relative error } 
              vandenberg=on 
 nonlinear=on 
 prefer_stability=on 
 smoothinit=on 
 fixdt=on 
 regrid=off 
  
COORDINATES cartesian2 
VARIABLES 
     Ay(threshold=1) 
 apy(threshold=1) 
     {ey(threshold=1)} 
 enorm(threshold=1) 
  
DEFINITIONS                                           { SI units throughout } 
    Lx= 2           Ly=1   { Domain size } 
 beta=1     {frequency} 
 k=1     {mu0*sigma} 
    Ax=(Sin(beta*t))^6 +.0001   { Input field} 
 Apx=Dt(Ax) 
   wo=-apx/ax 
 ey=-Apy-wo*Ay 
  ex=-apx-wo*Ax 
    a=Vector(ax,ay) 
 e=Vector(ex,ey) 
 Q=Dy(wo*ax)-Dx(wo*ay)   {Curl(wo*a)} 
   wcrossa=-TIME_INTEGRAL(-Q)  {Cross(wo,a)} 
    bfield=Curl(a)-wcrossa 
   
  
INITIAL VALUES 
  Ay=(.00001)*cos(pi*y/2*Ly)*Sin(pi*x/Lx) 
  
EQUATIONS 
Apy: Apy=Dt(Ay) 
Ay: Del2(-Apy-wo*Ay)-k*Dt(-Apy-wo*Ay)=0 
enorm: enorm=Normal(e) 
  
BOUNDARIES  
    region 1  'strip' 
 start (0,-Ly)     Natural(enorm)=0    line to (0,Ly) 
         Natural(enorm)=0    line to (Lx,Ly)       
      Natural(enorm)=0    line to (Lx,-Ly) 
    Natural(enorm)=0    line to close  
  
TIME 0 TO pi by .01 
  
MONITORS 
 for cycle=1 
  Contour(ey) 
 Vector(e) 
  Contour(Ay) 
  Elevation(Ay) from (0,0) to (Lx,0) 
 Elevation(Ay) from (0,-Ly) to (0,Ly) 
 Elevation(Ay) from (.5*Lx,-Ly) to (.5*Lx,Ly) 
  
  
HISTORIES 
 history(Ax) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(Ay) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(Dt(Ax)) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
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 history(Dt(Ay)) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(wo) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(wo*Ax) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(wo*Ay) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(Dt(wo)) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(ex) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(ey) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(-apy-wo*ay) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
  history(wcrossa) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(Curl(a)) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(bfield) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
 history(ay/ax) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
  history(ay/(1e-8)*cos(pi*y/2*Ly)*Sin(pi*x/Lx)) at (0,0)(.05*Lx,0)(.10*Lx,0),(.20*Lx,0)(.30*Lx,0) 
  
PLOTS 
    
END 
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