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Abstract

The vacuum of Einstein Cartan Evans (ECE) theory is a curved and
twisted space-time �lled by electromagnetic potentials. The vacuum po-
tential can be computed by the condition that electromagnetic force �elds
vanish. In classical electrodynamics, this condition is not su�cient to
compute a distribution of potential from given boundary conditions. ECE
theory has a richer structure with spin connections of Cartan geometry
and additional constraints due to the antisymmetry of the connections in
general relativity. Expressions for describing the energy and momentum
density are given. It can be shown for the �rst time that the high vacuum
potentials known from quantum e�ects are consequences of the structure
of space-time itself.
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1 Introduction

The space free of masses and charges has been a subject of physical interpreta-
tion for hundreds of years. Sometimes it was assumed to be empty, sometimes to
be a medium called Ether, for example to explain electromagnetic wave propaga-
tion. The notion of vacuum often describes empty space, but quantum physicists
speak of a �quantum vacuum� that is not empty at all. In this paper we use
�vacuum� synonymously with space-time itself in the sense of general relativity.
We will see that space is �lled with a potential, called �background potential�.

In Einstein's theory the vacuum is empty, this result is in sharp contrast to
quantum physics, where the vacuum is a sea of virtual particles with a huge en-
ergy density. This quantum sea gives rise to the radiative corrections of physics
such as the Lamb shift or Casimir e�ect. In standard physics this is a huge and
irreconcilable discrepancy. In Einstein-Cartan-Evans (ECE) theory [1]- [2] both
worlds are reconciled, the background in ECE is �lled with a potential energy
de�ned directly by the tetrad of Cartan. The potential energy is physical and
cannot be arbitrarily changed as in gauge theory. The radiative corrections
come from �uctuations in this potential of the generally covariant uni�ed �eld.

∗e-mail: horsteck@aol.com
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Energy transfer in ECE can take place through resonant solutions of the �eld
equations. This energy from spacetime in ECE comes from the background
potential energy. There is a transfer of energy but the total energy is constant.
The conventional continuity equation can be generalized in such a way that
curvature and torsion of spacetime can even produce charge carriers. There are
experimental hints that such e�ects can actually happen.

In the past there have been some attempts to explain the background �elds
by solving Maxwell-Heaviside equations for electromagnetic �elds. However,
the �eld equations naturally result to a state where the energy is contained in
electric and magnetic �elds which are not observed in vacuo (with exception of a
2.7 K background radiation which may exist all over the universe or not). In the
current paper we avoid this di�culty by using the experimental fact that such
�elds are not existent. Therefore the background energy observed by quantum
processes must be contained in the potentials. We will show how these can be
calculated from the basic geometrical properties of space. These are de�ned
by Cartan geometry which is used exclusively in ECE theory. Since the force
�elds are assumed to be zero, the �eld equations identically vanish. Instead
we use the basic antisymmetry conditions of the Cartan spin connections and
the Maurer-Cartan structure equations. We neglect polarization e�ects and use
the vector form of the equations. In this way we are able to present a general
solution of the background potential. We calculate the energy and momentum
density by extending a suggestion found in the literature. A discussion section
concludes the paper. As a result, we �nd a plausible explanation why there are
huge energy densities in the vacuum. This theory is based on �rst principles,
leading to a new view on this subject without need for obscure quantum e�ects.

2 Antisymmetry conditions and equations of state

2.1 Direct setup of an equation set

The electric and magnetic �eld of ECE theory under omission of polarization
e�ects are

E = −∇Φ− ∂A
∂t
− ω0A + ωΦ, (1)

B =∇×A− ω ×A. (2)

The antisymmetry conditions for the potentials are the electric vector-valued
relation

∇Φ− ∂A
∂t
− ω0A− ωΦ = 0, (3)

and the three magnetic (scalar-valued) relations, writte in vector form:

C :=

 ∂A2
∂x3

+ ∂A3
∂x2

+ ω2A3 + ω3A2
∂A1
∂x3

+ ∂A3
∂x1

+ ω1A3 + ω3A1
∂A1
∂x2

+ ∂A2
∂x1

+ ω1A2 + ω2A1

 = 0. (4)

The vacuum conditions are obtained by setting

E = 0, (5)

B = 0. (6)
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These are twelve equations for eight unknowns Φ,A, ω0,ω. Taking into account
the antisymmetry constraints (3)-(4), this would lead to an over-determined
system. Therefore we smplify the constraints by taking the divergence of Eqs.
(3) and (4):

∆Φ−∇ · ∂A
∂t
−∇ · (ω0A)−∇ · (ωΦ) = 0, (7)

∇ ·C = 0. (8)

The last equation leads to mixed second derivatives and can be tried to simplify
by using the Lindstrom constraint which is a simpli�cation of Eq. (4):

∇×A = −ω ×A. (9)

On the other hand, from Eqs. (2) and (6) we have

∇×A = ω ×A. (10)

which is not compatible with the Lindstrom constraint (9) (see section 5.2).
Therefore we have to use the full condition (4). In total we have to solve the
equation set

−∇Φ− ∂A
∂t
− ω0A + ωΦ = 0, (11)

∇×A− ω ×A = 0, (12)

∆Φ−∇ · ∂A
∂t
−∇ · (ω0A)−∇ · (ωΦ) = 0, (13)

∂

∂x1

(
∂A2

∂x3
+
∂A3

∂x2
+ ω2A3 + ω3A2

)
+

∂

∂x2

(
∂A1

∂x3
+
∂A3

∂x1
+ ω1A3 + ω3A1

)
+

∂

∂x3

(
∂A1

∂x2
+
∂A2

∂x1
+ ω1A2 + ω2A1

)
= 0.

(14)

2.2 Pre-evaluation of magnetic constraints

The direct equation set derived in the previous section is not very handable
to numerics and the structure of the equations and possible solutions is not
obvious. Therefore we follow a di�erent line of development. By adding Eqs.
(4) and (10) we obtain

∂A2

∂x3
+ ω2A3 = 0, (15)

∂A1

∂x3
+ ω1A3 = 0, (16)

∂A1

∂x2
+ ω1A2 = 0. (17)
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Subtracting (4) from (10) gives

∂A3

∂x2
+ ω3A2 = 0, (18)

∂A3

∂x1
+ ω3A1 = 0, (19)

∂A2

∂x1
+ ω2A1 = 0. (20)

Comparing (16) with (17) etc. leads to

ω1 = −∂A1

∂x2

1
A2

= −∂A1

∂x3

1
A3

, (21)

ω2 = −∂A2

∂x1

1
A1

= −∂A2

∂x3

1
A3

, (22)

ω3 = −∂A3

∂x1

1
A1

= −∂A3

∂x2

1
A2

(23)

which can be written as

Aj
∂Ai
∂xk

= Ak
∂Ai
∂xj

(24)

with (i, j, k) being permutations of (1, 2, 3). solving Eqs. (24) as a boundary
value problem and inserting the solution into (21)-(23) gives a full solution of
the magnetic constraint (4) in terms of the vector potential A.

So far we have handled Eqs. (4) and (6) from the given set (3)-(6). Next we
have to handle the electric conditions (3) and (5). The only variables remaining
to be determined are Φ and ω0. From inserting (3) into (1) we have [3]

E =−∇Φ + ωΦ

=− ∂A
∂t
− ω0A

(25)

which gives us two vector equations

∇Φ− ωΦ =0, (26)

∂A
∂t

+ ω0A =0. (27)

Restricting to the static case, from the latter equation follows

ω0 = 0. (28)

Since Eq. (26) is a vector eqation and we only need to determine one variable,
we take the divergence of (26):

∇2Φ−∇ · (ωΦ) = 0 (29)

or

∇2Φ− ω ·∇Φ− (∇ · ω)Φ = 0. (30)

This is identical with the Coulomb law for zero charge density. Solving this
di�erential equation for Φ (with ω(A) already given) completes the solution for
the static ECE vacuum equations.
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3 Solutions of the vacuum equations

According to Equation set (24) the vacuum solution for the A �eld is decou-
pled from the electric potential and the spin connections. We �rst consider the
solutions of this equation set. According to computer algebra (we used Mathe-
matica [8]) there are three solutions with a number of integration constants Ci,
ki and β:

A(1) = k
1
k3

(C5 + C6 tanh(k · x− βt)) (31)

A(2) = k
1
k3

(C5 + tanh(k · x− βt) (C6 + C7 tanh(k · x− βt))) (32)

A(3) = k 1
k3

(C5 + tanh(k · x− βt) (C6 + tanh(k · x− βt)
· (C7 + C8 tanh(k · x− βt)))) (33)

Details can be found in the appendices. In the form presented here some con-
stants Ci have been renamed to clarify their physical meaning. The �rst three
constants are written as the wave vector k and the fourth constant which is
a phase factor has been interpreted as time dependence βt so that we get a
proper argument of the tanh function. In principle all constants could be time
dependent as shown in the appendices.

Comparing the three solutions, it is obvious that these are parts of a more
general solution of type

A(m) = k
1
k3

m∑
n=0

Dn(t) (tanh(k · x− βt))n (34)

with (possibly time-dependent) canstants Dn. This is a basis set of the function
space spanning the solutions of Eq. (24). We will return to this point later.

Next we will derive the solutions of the other variables. The spin connection
ω follows directly from (21)-(23):

ω(1) = −k
C6 (sech(k · x− βt))2

C5 + C6 tanh(k · x− βt)
, (35)

the corresponding ω(2,3), can be found in Appendix A.
The scalar spin connection can be computed from the explicit time depen-

dence of A by using Eq. (27). In principle this equation - being a vector equa-
tion - is over-determined, but as shown in Appendix A all three components are
consistent, giving three solutions from which the �rst is

ω
(1)
0 = β

C6 (sech(k · x− βt))2

C5 + C6 tanh(k · x− βt)
(36)

which is similar to the components of the vector spin connection. We have
assumed that the coe�cients are independent of time. Finally the pontential
Φ can be derived similarly from Eq. (26). Again all three components of this
equation lead to the same result, achieving self-consistency. However, as an
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important �nding, a part of the solution (denoted by F (i)) is always the same,
regardless of the choice of A(1), A(2), or A(3), for example:

Φ(1,i) =
cosh(k · x− βt)

C5 cosh(k · x− βt) + C6 sinh(k · x− βt)
F (i) (37)

where F (i) is an arbitrary function depending on only one coordinate surface:

F (1) = F (y, z, t),
F (2) = F (x, z, t),
F (3) = F (x, y, t).

(38)

Choosing F = const. makes the solution unique. To obtain an impression
of the nature of vacuum solutions, some of them are graphed in Figs. 1-4.
The constants Ci were chosen 1 or -1 and the wave vector was positioned in z
direction: k = (0, 0, k3). Then there are only z components of A and ω. Fig.
1 shows that A3 varies the more the higher the degree of the solution is. A
similar result holds for the vector spin connection (Fig. 2), however the second
solution is a pole, indicating that there are discontinuities in the structure of the
vacuum. The same holds for the scalar spin connection (Fig. 3) which is similar
to ω3. Most interesting is the potential, see Fig. 4. It is pole-like or diverges
for z → ±∞. This may be quite unusual from the classical view, but we know
from experiments that the energy density of the vacuum is very high. Such a
structure may give rise e.g. to sponaneous creation of elementary particles; see
sect. 5.5 for further discussion.

Besides this particular solution, we tried to �nd a more general solution. As
already shown in Eq. (34), a general series of tanh functions ful�ls this. We are
lead to the conjecture that a general series expansion of the form

A(m) = k
1
k3

m∑
n=0

Dn(t)fn(k · x− βt) (39)

for any complete function set fn with constants Dn is also a solution for A.
This has been shown in Appendix B by assuming this form of A and proving all
equations. The Computer Algebra tool was only able to prove this for a �nite
series, but the general result follows easily by induction. In particular we get:

ω(m) = −k
f ′
∑m
n=1 nDnf

n−1(k · x− βt)∑m
n=0Dnfn(k · x− βt)

, (40)

ω
(m)
0 = β

f ′
∑m
n=1 nDnf

n−1(k · x− βt)∑m
n=0Dnfn(k · x− βt)

, (41)

Φ(m) =
Φ0∑m

n=0Dnfn(k · x− βt)
. (42)

f ′ is the derivative of f according to its argument. As an example the general
solution for the tanh function is depicted in Fig. 5 for several maximum indices
m (all constants set to unity). It is seen that for largem the solution is a smooth
step function with growing height. The vector and scalar spin connection only
di�er in sign and a factor indicating the space-like and time-like character of
both connetcions. The potential contains the original function series in the
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Figure 1: Three solutions for vector potential component A3.
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Figure 2: Three solutions for vector spin connection component ω3.
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Figure 3: Three solutions for calalar spin connection component ω0.
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Figure 4: Three solutions for scalar vacuum potential Φ.
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Figure 5: Vector potential component A3 for several degrees m of series expan-
sion.

denominator. If the the series is oscillating (which normally is the case), the
potential has a high number of resonances.

Another important class of solutions is obtained by a Fourier series:

A(m) = k
1
k3

m∑
n=0

Dn exp (n · i(k · x− βt)) . (43)

This is a Fourier series in one dimension only because there is no variation in
the wave vector k. In other words, this is a plane wave with �xed direction. A
variation in direction, however, can occur if the set of �rst four constants (k, β)
or the Dn's is time-dependent which is possible for the general solution (see
Appendices). This is further discussed in sections 5.2 and 5.3.
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4 Energy and momentum density

4.1 Standard theory

The classical expression for the energy density of the electromagnetic �eld is

u(r, t) =
1
2
ε0E2 +

1
2µ0

B2, (44)

and the power �ux is described by the Pointing vector

S(r, t) =
1
µ0

E×B. (45)

Physical units of these quantities are

[u] =
J

m3
, (46)

[S] =
W

m2
. (47)

Both are based on the electromagnetic force �elds E and B and are therefore not
suitable in situations of potentials without �elds. The solution to this di�culty
is to formulate the energy density and power �ux in terms of the potentials.
This problem has been studied by Ribaric and Sustersic [4]. They found that
other expressions can be de�ned in terms of potentials which give the same total
energy taken as an integral over space as the original terms (44, 45). A practical
solution has been reported by Putho� [5]. For a given current density J, charge
density ρ, scalar potential Φ and vector potential A the energy density can be
written

u(r, t) = uA − uΦ + ρΦ (48)

with

uA(r, t) =
1

2µ0

∑
i

(
1
c2

(
∂Ai
∂t

)2

+ |∇Ai|2
)

(49)

and

uΦ(r, t) =
1
2
ε0

(
1
c2

(
∂Φ
∂t

)2

+ |∇Φ|2
)
. (50)

Correspondingly, the power �ux is de�ned by

S(r, t) = SA − SΦ + ΦJ, (51)

SA(r, t) = − 1
µ0

∑
i

(
∂Ai
∂t

)
∇Ai, (52)

SΦ(r, t) = −ε0
(
∂Φ
∂t

)
∇Φ. (53)

According to Jackson [6] the change in energy is de�ned by the divergence of
the �ux and the electric energy of the charges:

∂u

∂t
= −∇ · S− J ·E. (54)
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In vacuo we have ρ = J = E = 0. The Pointing �ux is connected with the
momentum density g of the electromagnetic �eld by Einstein's mass-energy
equivalent

gc2 = S (55)

and the equation of motion for the �eld is

∂g
∂t

= −∇ ·Θ (56)

(written with tensor divergence [7]) where Θ is the Maxwell stress tensor.

4.2 ECE theory

In ECE theory there are additional terms contained in the �elds according to
the spin connections, see Eqs. (1-2). We apply some reasonable replacement
rules for genral relativity:

∂

∂t
→ ∂

∂t
+ ω0, (57)

∇→∇+ ω. (58)

Therefore we add such terms to the de�nitions (48-53) analogously:

uAECE
(r, t) =

1
2µ0

∑
i

(
1
c2
|ω0Ai|2 + |ωiAi|2

)
, (59)

uΦECE
(r, t) =

1
2
ε0

(
1
c2

(ω0Φ)2 +
∑
i

|ωiΦ|2
)
, (60)

u(r, t) = uA + uAECE
− uΦ − uΦECE

, (61)

and

SAECE
(r, t) = − 1

µ0

∑
i

(ω0Ai)ωAi, (62)

SΦECE
(r, t) = −ε0 (ω0Φ) ωΦ, (63)

S(r, t) = SA + SAECE
− SΦ − SΦECE

. (64)

This procedure should be considered as tentative. For example all cross-terms
in the products have been omitted. Note that there is a Pointing �ux even if A
and Φ are not time-dependent.

When inserting the general solutions (39-42) with abbreviations

g :=
∑
n=0

mDnf
n(k · x− βt), (65)

g′ := f ′
m∑
n=1

nDnf
n−1(k · x− βt) (66)
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into the above expressions of energy density and power �ux, we obtain:

uA(r, t) =
k2(k2 + (βc )2)2

2µ0k2
3

g′2 (67)

uΦ(r, t) = ε0
(k2 + (βc )2)Φ2

0

2g4
g′2 (68)

uAECE
(r, t) =

k4
1 + k4

2 + k4
3 + k2(βc )2

2µ0k2
3

g′2 (69)

uΦECE
(r, t) = ε0

(k2 + (βc )2)Φ2
0

2g4
g′2 (70)

SA(r, t) = k
βk2

µ0k2
3

g′2 (71)

SΦ(r, t) = ε0k
βΦ2

0

g4
g′2 (72)

SAECE
(r, t) = −k

βk2

µ0k2
3

g′2 (73)

SΦECE
(r, t) = −ε0k

βΦ2
0

g4
g′2 (74)

It can be seen that the energy densities of ECE and standard theory are equal
or very similar. uA and uΦ have been graphed in Figs. 6 and 7 for illustration.
The vector potential contributes smooth densities while the scalar potential
leads to in�nities due to its diverging character. Interestingly the power �ux
is exactly opposite in ECE and standard theory. Within the approximations
made, there is no energy transfer in vacuo.

5 Discussion

In the last section we want to discuss some further points found for the back-
ground or vacuum potential.

5.1 Lindstrom constraint

In section 2.1, Eqs. (9-10), it was pointed out that the Lindstrom constraint
normally being used to simplify the equations of electrodynamics is not suited
to describe the vacuum vector potential consistently. Alternatively, we can try
to retain the Lindstrom condition. Then we have to assume the validity of both
equations, it follows

ω ×A = 0, (75)

∇×A = 0. (76)

Eq. (75) could alternatively be used to compute ω but analysis shows that only
two components of ω can be determined, they depend on the third component
which remains unspeci�ed. Therefore the method of basing the solution on Eqs.
(21)-(23) is preferrable as it leads to unique results. It should be noted that the
Lindstrom constraint can even be derived from (21)-(23). Therefore it is not a
restriction on the solution in case of the background potential.
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5.2 Relations of time dependent constants

As shown in the appendices, all integration constants can be time-dependent.
In Appendix A the condition

k′1
k1

=
k′2
k2

=
k′3
k3

(77)

was derived. A time-dependent k would not guarantee energy conservation.
This had to be accounted for by an additional condition like

k(t)2 = k1(t)2 + k2(t)2 + k3(t)2 = const. (78)

If one component of k is time-independent, it follows from Eq. (77) that all
components are time-independent. Therefore we surmise that k cannot be time-
dependent in general. Then introducing additional conditions like (78) is not
required.

5.3 Character of solutions

From Eqs. (40)-(41) it can directly be seen that the ratio of the vector and
scalar spin connection is

ω

ω0
=

k
β

(79)

and similarly

Φ ∝ 1
Ai

(80)

for all components Ai. This shows some interconnection of the potentials and
spin connections. The scalar spin connection can be written as

ω0 = β
∂ log g
∂t

. (81)

The vector potential A is rotation free (see Eq. (76)) and therefore could be
written as a gradient of a scalar function but this would be a �potential of
a potential� and purely mathematical. In principle A can be de�ned as an
arbitrary function f multiplied by a directional vector k:

A = k f(k · x− βt). (82)

This is a representation for plane waves as is depicted in Figs. 8-9 for A and
ω. Since f can be arbitrarily nonlinear, these are anharmonic waves in general.
The propagation speed (phase velocity) v can be obtained from the relation
(restricted to one dimension)

∂A

∂x
=
∂A

∂t

dt

dx
=

1
v

∂A

∂t
. (83)

Inserting the form of (82) it follows

kf ′ = −1
v
βf ′ (84)
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or

|v| = β

k
(85)

which is identical to the classical dispersion relation for electromagnetic waves
in vacuo. However, the time dependence of constants in the solution (39) also
allows other forms of time dependence, for example a �product wave function�

A = k f(kx) · g(βt). (86)

The dispersion relation then becomes

|v| = β

k
· g
′

f ′
(87)

which allows arbitrary travelling velocities for waves depending on the forms of
f and g. The use of product wave functions is similar to quantum mechanics
where we have instantaneous interaction e�ects which appear plausible in the
light of the equation above. Since the vacuum solutions are not constrained
by the ECE (or Maxwell-Heaviside) �eld equations, there is more freedom for
wave forms. This subject may be promising for new types of superluminar
communication mechanisms and should be investigated further. Another type
of wave to be investigated is standing waves in vacuo.

A further natural interpretation would be a �uctuating background �eld.
It is known from observations [9] - although not widely recognized - that such
�uctuations do exist, resulting in a variance of vacuum speed of light. The origin
of these �uctuations is speculative at the current state of knowlegde, it may be
from global motion of galaxies or local distortions of background �elds due to
matter of massive stars. Further investigation of these e�ects would probably
require usage of �uid dynamics models.

5.4 Resonant Coulomb law

It was shown that the resonant Coulomb (Eq. (29)) follows from the vacuum
equations. This is remarkable for two reasons. First, one of the ECE �eld
equations, the Coulomb law, here appears although the �eld equations vanish
identically because of the condition E = B = 0. This shows that the Coulomb
law is deeply anchored in geometry and is a very fundamental law of nature.
Secondly there are resonances possible even in the vacuum. As was shown
elsewhere [10] the resonances of the Coulomb law arise from a variable spin con-
nection and do not necessarily need an oscillatory charge density as in classical
Euler-Bernoulli resonances. Charge density is not present in vacuo.

5.5 Topological charge density

In classical �eld theory the Coulomb or Newtonian gravitational law can be
written in the form of the Poisson equation:

∇2Φ = − ρ

ε0
(88)
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Figure 10: Topological charge density ρ for three solutions of tanh type.

(here for the electromagnetic case). In vacuo there is no charge density, therefore
we would expect

∇2Φ = 0. (89)

Comparing this with Eq. (29), the spin connection terms appear as a topological
charge density:

ρtop = −∇ · (ωΦ). (90)

As Φ has diverging regions so has the topological charge density. It has to be
stressed that this density is not made up of real charges. The topological charge
density consists of certain structures of space-time. However, it could be the
origin of real particle processes which are known from quantum electrodynamics:
pairs of particles can appear spontaneously.

An example of topological charge densities is shown in Fig. 10. The picture
is very similar to the corresponding potential (Fig. 4). The form looks similar
to atomic or molecular charge densities. This could give a hint to virtual parti-
cles, although ECE theory is completey con�ned to the wave or �eld model, in
contrast to the particle model of quantum mechanics.
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