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Introduction

It is now well-known that there are various paths available, provided by geometry alone,
to a unified description of physical phenomena. The different possibilities for the
interpretation of the underlying nature and fabric of the Universe in a purely geometric
fashion imply that there is a deep underlying structural reason for singular harmony that
lies in the depths of Nature’s unity. Even in the mental sense, it appears that the Universe
is a self-descriptive continuum which connects what seem to be purely intrinsic
mathematical objects to physical observables. It is the belief that analytical geometry
alone is able to provide the profoundest description of the complexity and harmony of our
structured Universe that has led generations of mathematicians and physicists to
undertake the task of geometrizing the apparently systematic laws of Nature. Indeed this
is, as Einstein once described, the effect of the sense of universal causation on the
inquisitive mind.

The above-mentioned wealth of the inherent mathematical possibility for the
geometrization of physics has resulted in the myriad forms of unified field theory which
have been proposed from time to time, roughly since 1918 when H. Weyl’s applied his
so-called purely infinitesimal geometry which was a relaxation of the geometry of
Riemann spaces to the task of geometrizing the electromagnetic field in the hope to unify
it with the already geometrized gravitational field of general relativity [6]. However,
often for want of simplicity, this fact which basically gives us a vision of a solid, reified
reality may also lead us to think that the Universe of phenomena must be ultimately
describable in the somewhat simplest and yet perhaps most elegant mathematical (i.e.,
geometric) formalism. Furthermore, when one is exposed to the different forms of unified
field theory, especially for the first time, I believe it is better for one to see a less
complicated version, otherwise one might get overloaded mentally and it follows that
there is a chance that such a thing will just prevent one from absorbing the essence of our
desired simplicity which is intuitively expected to be present in any objective task of
unification.

Given the freedom of choice, we do not attempt, in this work, to speak about which
version of unified field theory out of many is true, rather we shall present what I believe
should qualify among the logically simplest geometric descriptions of the classical fields
of gravity and electromagnetism. Indeed, for the reason that we may not still be fully
aware of the many hidden aspects of the Universe on the microscopic (quantum) scales,
at present we shall restrict our attention to the unification and geometrization of the
classical fields alone.



As we know, there are many types of differential geometry, from affine geometry to non-
affine geometry, from metric (i.e., metric-compatible) geometry to non-metric geometry.
However, the different systems of differential geometry that have been developed over
hundreds of years can be most elegantly cast in the language of Cartan geometry. The
geometric system [ will use throughout this physical part of our work is a metric-
compatible geometry endowed with a semi-symmetric Cartan connection. It therefore is a
variant of the so-called Riemann-Cartan geometry presented in Sections 1.1-1.6. As we
know, the standard form of general relativity adopts the symmetric, torsion-free, metric-
compatible Christoffel connection. We are also aware that the various extensions of
standard general relativity [7] tend to employ more general connections that are often
asymmetric (e.g., the Sciama-Kibble theory [8, 9]) and even non-metric in general (e.g.,
the Weyl theory [6]). However, in the present work, we shall insist on logical simplicity
and on having meaningful physical consequences. Once again, we are in no way
interested in pointing out which geometric system is most relevant to physics, rather we
are simply concerned with describing in detail what appears to be among the most
consistent and accurate views of the physical world. We only wish to construct a unified
field theory on the common foundation of beauty, simplicity, and observational accuracy
without having to deal with unnecessarily complex physical implications that might dull
our perspective on the workings of Nature. | myself have always been fond of employing
the most general type of connection for the purpose of unification. However, after years
of poring over the almost universally held and (supposedly) objectively existing physical
evidence, I have come to the conclusion that there is more reason to impose a simpler
geometric formulation than a more general type of geometry such as non-metric
geometry. In this work, it is my hope to dovetail the classical fields of gravity and
electromagnetism with the conventional Riemann-Cartan geometry in general and with a
newly constructed semi-symmetric Cartan connection in particular. Our resulting field
equations are then just the distillation of this motive, which will eventually give us a
penetrating and unified perspective on the nature of the classical fields of gravity and
electromagnetism as intrinsic geometric fields, as well as on the possible interaction
between the translational and rotational symmetries of the space-time manifold.

I believe that the semi-symmetric nature of the present theory (which keeps us as close as
possible to the profound, observable physical implications of standard general relativity)
is of great generality such that it can be applied to a large class of problems, especially
problems related to the more general laws of motion for objects with structure.

1. A Comprehensive Evaluation of the Differential Geometry of Cartan
Connections with Metric Structure

The splendid, profound, and highly intuitive interpretation of differential geometry by E.
Cartan, which was first applied to Riemann spaces, has resulted in a highly systematic
description of a vast range of geometric and topological properties of differentiable
manifolds. Although it possesses a somewhat abstract analytical foundation, to my
knowledge there is no instance where Riemann-Cartan geometry, cast in the language of
differential forms (i.e., exterior calculus), gives a description that is in conflict with the



classical tensor analysis as formalized, e.g., by T. Levi-Civita. Given all its successes,
one might expect that any physical theory, which relies on the concept of a field, can be
elegantly built on its rigorous foundation. Therefore, as long as the reality of metric
structure (i.e., metric compatibility) is assumed, it appears that a substantial modified
geometry is not needed to supersede Riemann-Cartan geometry.

A common overriding theme in both mathematics and theoretical physics is that of
unification. And as long as physics can be thought of as geometry, the geometric objects
within Riemann-Cartan geometry (such as curvature for gravity and torsion for intrinsic
spin) certainly help us visualize and conceptualize the essence of unity in physics.
Because of its intrinsic unity and its breadth of numerous successful applications, it might
be possible for nearly all the laws governing physical phenomena to be combined and
written down in compact form via the structural equations. By the intrinsic unity of
Riemann-Cartan geometry, I simply refer to its tight interlock between algebra, analysis,
group representation theory, and geometry. At least in mathematics alone, this is just as
close as one can get to a “final” unified description of things. I believe that the unifying
power of this beautiful piece of mathematics extends further still.

I’'m afraid the title I have given to this first part of our work (which deals with the
essential mathematics) has a somewhat narrow meaning, unlike the way it sounds. In
writing this article, my primary goal has been to present Riemann-Cartan geometry in a
somewhat simpler, more concise, and therefore more efficient form than others dealing
with the same subject have done before [1-4]. I have therefore had to drop whatever
mathematical elements or representations that might seem somewhat highly
counterintuitive at first. After all, not everyone, unless perhaps he or she is a
mathematician, is familiar with abstract concepts from algebra, analysis, and topology,
just to name a few. Nor is he or she expected to understand these things. But one thing
remains essential, namely, one’s ability to catch at least a glimpse of the beauty of the
presented subject via deep, often simple, real understanding of its basics. As a non-
mathematician (or simply a “dabbler” in pure mathematics), I do think that pure
mathematics as a whole has grown extraordinarily “strange”, if not complex (the weight
of any complexity is really relative of course), with a myriad of seemingly separate
branches, each of which might only be understood at a certain level of depth by the pure
mathematicians specializing in that particular branch themselves. As such, a comparable
complexity may also have occurred in the case of theoretical physics itself as it
necessarily feeds on the latest formalism of the relevant mathematics each time.
Whatever may be the case, the real catch is in the essential understanding of the basics. I
believe simplicity alone will reveal it without necessarily having to diminish one’s
perspectives at the same time.

1.1 A brief elementary introduction to the Cartan(-Hausdorff) manifold C”

Let w, = Y E, = 0, X' E, (summation convention employed throughout this article)
x

be the covariant (frame) basis spanning the »n —dimensional base manifold C* with local



coordinates x“ = x”(X k ) The contravariant (cofiame) basis @’ is then given via the

orthogonal projection <6”’ ,a)a> =", where 5" are the components of the Kronecker

a

delta (whose value is unity if the indices coincide or null otherwise). Now the set of

~

linearly independent local directional derivatives E, = a;" =0, gives the coordinate

basis of the locally flat tangent space 7 (M) at a point xeC”. Here M denotes the

topological space of the so-called n— tuples h(x) = h(xl,...,x") such that relative to a
given chart (U,h(x)) on a neighbothood U of a local coordinate point x, our
C” —differentiable manifold itself is a topological space. The dual basis to E, spanning
the locally flat cotangent space 7. (M) will then be given by the differential elements
dX" via the relation <a’Xk ,8i> = 6. In fact and in general, the one-forms dX* indeed

act as a linear map 7 (M) — IR when applied to an arbitrary vector field FeT (M) of

~

0 - ; A
° = f“ ——. Then it is easy to see that /' = FF X' and
oX' ox“

f“ =F x“, from which we obtain the usual transformation laws for the contravariant

the explicit form F = F’

components of a vector field, ie, F'=0,X' f and f' =0,x" F', relating the
localized components of F to the general ones and vice versa. In addition, we also see
that <ka ,F> = FX' = F*,

The components of the metric tensor g =g, 0° ®0” of the base manifold C* are
readily given by

gab = <a)a’a)b>

The components of the metric tensor g(x,) =7, dX' ®dX" describing the locally flat

tangent space T, (M) ofrigid frames at a point x, = x,, (x") are given by
ny =(E,,E,) = diag(+1,+1,..,+1)

In four dimensions, the above may be taken to be the components of the Minkowski
metric tensor, i.e., 7, = <E,.,Ek> = diag (1,-1,-1,-1).

Then we have the expression
g =M 0, X 0, X"

satisfying



8. 8" =0,
where g = <t9" ,0b>.

The manifold C” is a metric space whose line-element in this formalism of a
differentiable manifold is directly given by the metric tensor itself; i.e.,

s> =g=g, (6ix“ akxb)dXi®ka

where the coframe basis is given by the one-forms 8 =9, x* dX'.

1.2 Exterior calculus in 7 dimensions

As we know, an arbitrary tensor field 7€ C” of rank (p,q) isthe object

T=T"" 0 ®v ®. .00 ®6"®6"®. 00"

Jirdp

—a

Given the existence of a local coordinate transformation via x' = x’ (x ) in C”, the
components of 7€ C” transform according to

ij.s _ qaf..A i J s —u =V =n
Ll =Ty 0,x 0yx" .0, x" 0, X" 0,x"...0,X

Taking a local coordinate basis &' = dx', a Pfaffian p — form @ is the completely anti-
symmetric tensor field

w=o, , d"N\dx" A Ndx™

l]lz vl
where

de' Ndx \..Ndx" = i' S e Qv ... dx’”
p.

JiJ2-Jp

In the above, the 5;‘];22’2 are the components of the generalized Kronecker delta. They

are given by



iy iy ip
5y . 5

i i )
iliZ"'ip =c ei]»..ip — det 5/2 5]2 ey 5/2
d2--dp JrdzeJp
i i, i
S ot . ob
where €, ; = \,det(g) €, and €7 = —— """ are the covariant and
NJ2Jp Jidadp

w/detigi

contravariant components of the completely anti-symmetric Levi-Civita permutation
tensor, respectively, with the ordinary permutation symbols being given as usual by

llll"'lp

& and &

Jaedy
We can now write

Lo st o aeh Nk AN dx

w = A ..
J1J2Jp Ll ...ly
pl ); )

such that for a null p-form =0 its components satisfy the relation
iy )y _
5_/,_;'2..4_;'1, a)iliz...ip =0.

By meticulously moving the dx’' from one position to another, we see that

dx Ndx™ N\ Ndx"" Ndx” Ndx? Ndx” ... \dx”
= (=17 dx" Ndx™ \...Ndx"" Ndx? Ndx” N\...Ndx’ Ndx"”

and

dx Ndx® N Ndx Ndx® Ndx NN\ dx
= (=D)" dx” Ndx” N..N\dx’* Ndx" Ndx> N\...\dx"”

Let w and 7 be a p—form and a g—form, respectively. Then, in general, we have the
following relations:

oz =) 7h\w = Diioi T, ' Ndx N Ndx? Ndx? Ndx™ N...\dx"
d(w+7)=do+dr

d(whr)=doNr + (-1) oNdx

Note that the mapping d:o = dw is a (p+1)—form. Explicitly, we have



dor = LD

oty S, e N s
p+ . A 7 x”*l

For instance, given a (continuous) function f, the one-form df =0, fdx' satisfies

d’f =ddf =0,0, fdx* \dx' =0. Likewise, for the one-form A = 4, dx', we have
dA=0, 4, dx* Ndx'  and
51‘1{1

rst

therefore ~ d*A4=10,0, A, dx' Ndx" Ndx' =0, ie,

0,0, 4, =0 or 0,0, 4, +0,0, A4, +0,0, A, =0. Obviously, the last result holds

for arbitrary p —forms IT%° | ie.,

dZHij.“s — 0

kl..r

Let us now consider a simple two-dimensional case. From the transformation law

dx' =0,x"dx*, we have, upon employing a positive definite Jacobian, i.e.,
8(xi,x" )

35 57 > 0, the following:
x%,x

1 a(f‘i”ﬁj) dx” Ndx”

dc' Ndx’ =6 x'0,x) dx® Ndx? =
¢ ’ 2 G‘x“,xﬂ)

Itis easy to see that

1 2 a(xlaxz 1 2
dx Ndx™ = ———45 dx N\dx

X ,X

which gives the correct transformation law of a surface element.

We can now elaborate on the so-called Stokes theorem. Given an arbitrary function f,
the integration in a domain D in the manifold C” is such that

jjf(x")azx‘/\abc2 - jjf(xf (x“))% &5 dx>

Generalizing to n dimensions, for any y' =y’ (xk ) we have

1 2 n
dy' Ndy? N Ndy" = aﬁ(‘(”l"/’z ). >dx1 Ndx> NN dx”
X ,X

yerey X

Therefore (in a particular domain)



[[-]ray' nay® nondy” =[] r(x') ‘” "”’ "/’))dx Ndx® A\ dx"

HX

Obviously, the value of this integral is independent of the choice of the coordinate
system. Under the coordinate transformation given by x' = x ( ) the Jacobian can be
expressed as

If we consider a (n—m)—dimensional subspace (hypersurface) SeC” whose local

coordinates u” parametrize the coordinates x', we have

[[-[ray' nay> N .Ndy"

- [f ) b bl ey b)) g g e

1 2 —
é(u UL U ’”)

1.3 Geometric properties of a curved manifold

Let us recall a few concepts from conventional tensor analysis for a while. Introducing a
generally asymmetric connection I' via the covariant derivative

oy0,=1, @
1€,
Ly = <96 .0, a)a> = F(L;zh) + F[Zb]
where the round index brackets indicate symmetrization and the square ones indicate

anti-symmetrization, we have, by means of the local coordinate transformation given by
x“=x ( ) in C”

c

c af T s A
ab ea - rab - rﬂl €, €

where the tetrads of the moving frames are given by e, =0,x“ and e, =0, x". They
satisfy e, e, =&, and e; ey = & . In addition, it can also be verified that

a T4 a a b ¢
Ope, =T ¢e; — T, e, e

_ T4 a c
O,e,=e; T, e/ —T! e

o



From conventional tensor analysis, we know that I is a non-tensorial object, since its
components transform as

c _ _c a ¢ T a B A
Iy, =e, 0,e; +e, Fm €, €

However, it can be described as a kind of displacement field since it is what makes
possible a comparison of vectors from point to point in C”. In fact the relation
0,0, =T, o, defines the so-called metricity condition, i.e., the change (during a

displacement) in the basis can be measured by the basis itself. This immediately
translates into

Vc gab =0

where we have just applied the notion of a covariant derivative to an arbitrary tensor field
T:

ij..s __ ij..s i pj..s J ip...s N ij...p
Vil =0, T + Uy T + U Ty + .+ T T,

Im...r Im...r Im...r Im..r Im...r
_ P jo.s p jo.s _ P ij...s
1—‘lk Tpmmr 1—‘mk T}pmr e 1—‘rk T}m.“p

such that 0, 7)., =V, T,

Im..r*

The condition V_ g, = 0 can be solved to give

cd c

c l C e e
r, = 5 g (ab 84 — 048w 0, gbd)+ F[ab] - & ‘ ( ae r‘[db] t e F[da])

from which itis customary to define

AC = ng (617 gda - ad gab +aa gbd)

ab

N | —

as the Christoffel symbols (symmetric in their two lower indices) and
K;h = F[Zh] - ng ( ae F[L;ib] + gbe r[fla])

as the components of the so-called contorsion tensor (anti-symmetric in the first two
mixed indices).

Note that the components of the torsion tensor are given by



a 1 a a a Ta Ta
F[hclzzea (8ceb —0,e, +ef Fﬂc—ecﬂ b)

where we have set 1_“;2 = 1_“;; e/, such that for an arbitrary scalar field ® we have

c

(V,V,-V,V,)® =21}V, @

C

The components of the curvature tensor R of C” are then given via the relation

ab...s ab...s w ab...s w ab...s w
(V,V, =V, V,)T% =T% R® 4T R 4 4T R

wd...r cpq cw..r dpq cd..w pq
wh...s a aw...s b ab..w s
- Tcd..f R wpq - Tcd“.r R wpq e Tcd.“r R wpq
w ab...s
- 2 r[pq] Vw Tcd...r

where

d
R abc

=0,T =0Ty, + T, T - T, T,

ec

- B¢

abc (A) + ﬁb K:zic - 6c K:b + K:c K:; - K;b K:;
where V denotes covariant differentiation with respect to the Christoffel symbols alone,
and where

d
B abc

(A) = 8b Adac - ac Aa{lzb + Aeac Ai‘b - Aeab Aic

are the components of the Riemann-Christoffel curvature tensor of C”.

d
abc »

From the components of the curvature tensor, namely, R we have (using the metric

tensor to raise and lower indices)

R, =R°

a ach

=B, (A) + @c Ko — Ky chb -2 @b 1—‘[ZC] +2 K, r[id]
R=R,=B(A)-4g" V, Ty -2g" Ty Ty - Ky K

a

where B, (A)= B¢

ach

B(A)= B“ (A) is the Ricci scalar. Note that K, = g,, K and K** = g* g" K9 .

(A) are the components of the symmetric Ricci tensor and

Now since

I, =&, =&, =0, (Indet(g))
I, =0, (inydet(g))+ 2 17,

10



we see that for a continuous metric determinant, the so-called homothetic curvature
vanishes:

H,=R, =0T,-0,T=0

a”ch b~ ca

Introducing the traceless Weyl tensor C, we have the following decomposition theorem:

Ri{bc = Ci{hc + ni2 (5: Rac + gac Ra;: - 5{,d Rab - gab Rdc)
1

SR S -6 g )R
+(I’Z—l)(l’l—2)(c gab b ga()
which is valid for n > 2 . For n =2, we have

Rdabc =K (51:1 8 — 551 gab)

where
=—R

is the Gaussian curvature of the surface. Note that (in this case) the Weyl tensor vanishes.

Any n—dimensional manifold (for which n >1) with constant sectional curvature R and

vanishing torsion is called an Einstein space. It is described by the following simple
relations:

1
R, = 5 g.-6 g,)R
abc n(l’l—l) ( b gac c gab)
1
Rab:_gabR
n

In the above, we note especially that

Furthermore, after some elaborate (if not tedious) algebra, we obtain, in general, the
following generalized Bianchi identities:

11



Riyi + Rigy + Ry == 2 (ad [ + 0y Tieay + 0 Uiy + Tgy Ty + Tt T + T F[fm])
Ve R‘ch + Vc Ride + vd R =2 (F[fd] Ry, + F[zge] R‘Z)fc + F[efc] R‘Z)fd)

bec bfe

1 .
Va (Rab _ 5 gab R) — 2 gab F[Lda] Rai + r[czd] Rcdh

a

for any metric-compatible manifold endowed with both curvature and torsion.

In the last of the above set of equations, we have introduced the generalized Einstein
tensor, i.e.,

1
Gah ERah _Egab R

In particular, we also have the following specialized identities, i.e., the regular Bianchi
identities:

a a a
Bbcd +Bcdb +Bdbc

=0
ﬁeB‘;)cd +€cBi7de +ﬁdBiec :0
~ 1
Va(B“” -~ g® B] =0
2
In general, these hold in the case of a symmetric, metric-compatible connection. Non-
metric differential geometry is beyond the scope of our present consideration. We will

need the identities presented in this section in the development of our semi-symmetric,
metric-compatible unified field theory.

1.4 The structural equations

The results of the preceding section can be expressed in the language of exterior calculus
in a somewhat more compact form.

In general, we can construct arbitrary p — forms a)fjj through arbitrary (p —1) forms

ab...e

cd...f i'e'a
aaab...ev
b... b... d... I
o = dalt = —L \dx
d... axh

The covariant exterior derivative is then given by

ab..e __ ab...e h
Doy =V, 047 Ndx

12



1€,
ey = oy + (1) (@45 AT + @5 AT + o @l f AT
~ O NI = @ AT — - @l ATY)
where we have defined the connection one-forms by
Iry="I, 6°
with respect to the coframe basis 6°.
Now we write the torsion two-forms 7“ as
=D =dO" + T} NG

This gives the first structural equation. With respect to another local coordinate system
(with coordinates X“) in C” spanned by the basis ¢* = e 8“, we see that

tt=—e; Iy 67 Ne?

a

We shall again proceed to define the curvature tensor. For a triad of arbitrary vectors
u,v,w, we may define the following relations with respect to the frame basis @, :

V,V.w=u’ Vc(vb wa“)a)

a

V[u’v]ws Vv, w (u“ V. Vvo— e V. uh)

where V  and V  denote covariant differentiation in the direction of u and of v,
respectively.

Then we have
(vu Vv - vvvu) w = *R‘ch Wb uc vd wa
Note that

*Rabcd =0, rbad -0, Fbac + rbed rei - Fbec Fead +2 F[id] Fbae
=R, +2 r[id] Ly

are the components of the extended curvature tensor R.

13



Define the curvature two-forms by

*

R, == R}, 0°NO*

1
2
The second structural equation is then
‘RY =dI} + TNy
The third structural equation is given by
d’Ty =d'R; — "R NIy +T*\'R%, = D'R",
which is equivalent to the generalized Bianchi identities given in the preceding section.

In fact the second and third structural equations above can be directly verified using the
properties of exterior differentiation given in Section 1.2.

Now, as we have seen, the covariant exterior derivative of arbitrary one-forms ¢“ is
given by D¢* =dg* + I \@" . Then

DD¢" = d(Dg*)+T¢ ADg"
= dldp* + T2 Ng")+ T Adge +T5Ng)
= T Ng* — T AT? N\ g
= (dry + T AT )N g

where we have used the fact that the Dg@“ are two-forms. Therefore, from the second
structural equation, we have

DD¢* = "R N\g"
Finally, taking ¢“ = 6“, we give the fourth structural equation as
DDO* = Dt* ="R° \G"
or,

dr* = "R4ONO" — T Nt®

14



Remarkably, this is equivalent to the first generalized Bianchi identity given in the
preceding section.

1.5 The geometry of distant parallelism

Let us now consider a special situation in which our »— dimensional manifold C” is
embedded isometrically in a flat n— dimensional (pseudo-)Euclidean space E”" (with
coordinates v™) spanned by the constant basis e, whose dual is denoted by s”. This

embedding allows us to globally cover the manifold C” in the sense that its geometric
structure can be parametrized by the Euclidean basis e.. satisfying

o = (en.e;) = diag (+1,£1,...,%1)

mn

It is important to note that this situation is different from the one presented in Section 1.1,

in which case we may refer the structural equations of C” to the locally flat tangent
space T (M). The results of the latter situation (i.e., the localized structural equations)

should not always be regarded as globally valid since the tangent space 7. (M), though

ubiquitous in the sense that it can be defined everywhere (at any point) in C*, cannot

cover the whole structure of the curved manifold C” without changing orientation from
point to point.

One can construct geometries with special connections that will give rise to what we call
geometries with parallelism. Among others, the geometry of distant parallelism is a
famous case. Indeed, A. Einstein adopted this geometry in one of his attempts to
geometrize physics, and especially to unify gravity and electromagnetism [5]. In its
application to physical situations, the resulting field equations of a unified field theory
based on distant parallelism, for instance, are quite remarkable in that the so-called
energy-momentum tensor appears to be geometrized via the torsion tensor. We will
therefore dedicate this section to a brief presentation of the geometry of distant
parallelism in the language of Riemann-Cartan geometry.

In this geometry, it is possible to orient vectors such that their directions remain invariant
after being displaced from a point to some distant point in the manifold. This situation is
made possible by the vanishing of the curvature tensor, which is given by the
integrability condition

Rdabc = er% (ah ac - ac ab)eam = O

where the connection is now given by

c _ ¢ m
I, =e5 0,¢,

15



m m a _ a
where €' =0,&" and e =0, x“.

However, while the curvature tensor vanishes, one still has the torsion tensor given by

a 1 a m m
r[bc] = 5 €n (ac e, —0,e, )
with the e acting as the components of a spin “potential”. Thus the torsion can now be
considered as the primary geometric object in the manifold C,; endowed with distant

parallelism.

Also, in general, the Riemann-Christoffel curvature tensor is non-vanishing as

Bd

v d v d e d e d
abe Vcl<ab - Vb Kac + Kab Kec - Kac Keb
Let us now consider some facts. Taking the covariant derivative of the tetrad e” with
respect to the Christoffel symbols alone, we have

A

m m moAd  _ m c
vb e, = ab e, —¢€ Aab =e, Kab
1e.,

K, =e.V,e' =—e'V, e,
In the above sense, the components of the contorsion tensor give the so-called Ricci
rotation coefficients. Then from

V.V, e =e (VK9 + K, K°)

it is elementary to show that

A

(ﬁ @b —@bvc)e’7 =e7 B’

c a abc

Likewise, we have

S wm o m W oprd _ m Ac
vbea _abea — € Kab_ec Aab
c g m o _ T c
AN,=e.V,e =—e V, e

a a m

where now V denotes covariant differentiation with respect to the Ricci rotation
coefficients alone. Then from

16



c

V,V, e =l (VAL + A, A)
we get

(ﬁc ﬁb - ﬁb Vc)e:l

== e:;_” (Bd -2 A‘ie F[Zc] - Ailb ch + Aeac Kei) - K;h A‘ic + K;c Aib )

abc

In this situation, one sees, with respect to the coframe basis 8“ = e~ s™  that
do* =-T/N@" =T*
Le.,

a _ 1a b c
T =T{, 6 N6

Thus the torsion two-forms of this geometry are now given by 7“ (instead of 7 of the
preceding section). We then realize that

DO =0
Next, we see that

d’0° =dT* =—dry NO" + T Ndo®

= — (ary + T ATE )N

=— R4 NG
But, as always, d’6“ = 0, and therefore we have

‘R4NG" =0
Note thatin this case, R% # 0 (in general) as
Ry =2T0, Ty

will not vanish in general. We therefore see immediately that

‘R¢ , + R, + R =0
giving the integrability condition

Uy Tpe + Ty Tie + T e =0
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Meanwhile, the condition

dT* =0
gives the integrability condition

8d F[ZC] + ab F[’jd] + 8c F[Zh] =0
Contracting, we find

8 F[Zb] =O

Itis a curious fact that the last two relations somehow remind us of the algebraic structure
of the components of the electromagnetic field tensor in physics.

of the Riemann-Christoffel
curvature tensor (the Ricci tensor), one defines the regular Einstein tensor by

Finally, from the contraction of the components B,

c

. 1
GabEBab_EgahBEkEah

where k is a physical coupling constant and £, are the components of the so-called
energy-momentum tensor. We therefore see that

1 c - c C c c
Eab = E (Kad Kjb - vc Kab +2 vb I_‘[olc] -2 Kab F[id])
1 cd G e ce d ya ced
~5g e (4 g V. Iy +28° Iy Iy + Ko K )

In addition, the following two conditions are satisfied:

E =0
V. E® =0

We have now seen that, in this approach, the energy-momentum tensor (matter field) is
fully geometrized. This way, gravity arises from torsional (spin) interaction (possibly on
the microscopic scales) and becomes an emergent phenomenon rather than a fundamental
one. This seems rather speculative. However, it may have profound consequences.

1.6 Spin frames

A spin frame is described by the anti-symmetric tensor product
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Q=L 06" -0"®6)=0" N0 _1 0',0"
2 2

In general, then, for arbitrary vector field fields 4 and B, we can form the commutator
[4,B]= A®B - B® 4
Introducing another vector field C, we have the so-called Jacobi identity
[4,[B,C] + [B.[C. 4] + [C.[4.B]| =0

With respect to the local coordinate basis elements E, = 0, of the tangent space 7, (M),

we see that, astonishingly enough, the anti-symmetric product [A,B] is what defines the
Lie (exterior) derivative of B with respectto 4:

0

k

L,B=[4,B]=(4"0,B* - B' 0,4") -

(Note that L, A =[4,4]=0.) The terms in the round brackets are just the components
of our Lie derivative which can be used to define a diffeomorphism invariant (i.e., by
taking A'=¢&' where & represents the displacement field in a neighborhood of
coordinate points).

Furthermore, for a vector field U and a tensor field 7, both arbitrary, we have (in
component notation) the following:

Ly TP =0, Ti U™ + T 8, U™ + TV 6,U" + ..+ Tl o, U"

kl...r ml...r km...r

-1y 0,U =T 8,U) —.. =Ty 0,U’

It is not immediately apparent whether these transform as components of a tensor field or
not. However, with the help of the torsion tensor and the relation

o,U =V, U ~T}, U" =V, U - ([}, —2 T}, ) U"
we can write

Ly T =V, Ty U + Ty VU + T VU + .+ Ty V,U"

ml...r km...r
- VU ST VU - T Y, U
+ 20, Td U + 2T ) T UP + o+ 200, Ty U?
— 2T T UP =20 T, U — =2 T T U
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Hence, noting that the components of the torsion tensor, namely, F[i,(l], indeed transform

as components of a tensor field, it is seen that the L, 7)~* do transform as components of

a tensor field. Apparently, the beautiful property of the Lie derivative (applied to an
arbitrary tensor field) is that it is connection-independent even in a curved manifold.

If we now apply the commutator to the frame basis of the base manifold C” itself, we
see that (for simplicity, we again refer to the coordinate basis of the tangent space

T (M))

0

ox*

[0,.0,]=(0,x" 6,0, x" —0,X" 8,0, X")

a
i

Again, writing the tetrads simplyas e/ =0, X', ¢/ =0, x“, we have

~

(¢

[ma’a)b]:(aael]j _abef)W

1e.,
[a)a ’wb] =-2 1—‘[Lab] wc

Therefore, in the present formalism, the components of the torsion tensor are by
themselves proportional to the so-called structure constants ¥, of our rotation group:

Wi, = - 2T, = ¢ (0, - 0,¢l)
As before, here the tetrad represents a spin potential.
Also note that
‘{’Z) Yo + ‘I—’b‘i Y, + ‘Pi Y, =0
We therefore observe that, as a consequence of the present formalism of differential

geometry, spin fields (objects of anholonomicity) in the manifold C* are generated
directly by the torsion tensor.

2. The New Semi-Symmetric Unified Field Theory of the Classical
Fields of Gravity and Electromagnetism

In this part, we develop our semi-symmetric unified field theory on the foundation of
Riemann-Cartan geometry presented in Sections 1.1-1.6. We shall concentrate on
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physical events in the four-dimensional space-time manifold S* with the usual
Lorentzian signature. As we will see, the choice of a semi-symmetric Cartan torsion will
lead to a set of physically meaningful field equations from which we will obtain not only
the generally covariant Lorentz equation of motion of a charged particle, but also its
generalizations.

We are mainly concerned with the dynamical equations governing a cluster of individual
particles and their multiple field interactions and also the possibility of defining
geometrically and phenomenologically conserved currents in the theory. We will
therefore not assume dimensional (i.e., structural) homogeneity with regard to the
particles. Classically, a point-like (i.e., structureless) particle which characterizes a
particular physical field is only a mere idealization which is not subject, e.g., to any
possible dilation when interacting with other particles or fields. Still within the classical
context, we relax this condition by assigning a structural configuration to each individual
particle. Therefore, the characteristic properties of the individual particles allow us to
describe a particle as a field in a physically meaningful sense. In this sense, the particle-
field duality is abolished on the phenomenological level as well. In particular, this
condition automatically takes into account both the rotational and reflectional symmetries
of individual particles which have been developed separately. As such, without having to
necessarily resort to particle isotropy, the symmetry group in our theory is a general one,
1.e., it includes all rotations about all possible axes and reflections in any plane in the

space-time manifold S*.

The presence of the semi-symmetric torsion causes any local (hyper)surface in the space-
time manifold S* to be non-orientable in general. As a result, the trajectories of

individual particles generally depend on the twisted path they trace in S*. It is important
to note that this torsion is the generator of the so-called microspin, e.g., in the simplest
case, a spinning particle is simply a point-rotation in the sense of the so-called Cosserat
continuum theory [10]. As usual, the semi-symmetric torsion tensor enters the curvature
tensor as an integral part via the general (semi-symmetric) connection. This way, all
classical physical fields, not just the gravitational field, are intrinsic to the space-time
geometry.

2.1 A semi-symmetric connection based on a semi-simple (transitive) rotation group

Let us now work in four space-time dimensions (since this number of dimensions is most
relevant to physics). For a semi-simple (transitive) rotation group, we can show that

[a)a ’a)b] == 7/ eabcd (/’C ed

where €, = ,/det (g) & 4ea are the components of the completely anti-symmetric four-
dimensional Levi-Civita permutation tensor and ¢ is a vector field normal to a three-

dimensional space (hypersurface) Z(t) defined as the time section ct = x° = const.
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(where ¢ denotes the speed of light in vacuum) of S* with local coordinates z*. It
satisfies ¢, @“ =y ==x1 and is given by

?, =g Y €abed EABC /1{)4 /1;3 ﬂfé

where
A=0,x" A =0,z
Xy A =6, —r 9,9
A A =6

More specifically,

_ a b c
€.i5c Pu = €wea Ay Ap Ac
from which we find
_ A4 2B AC
€uea =€ apc Ay M Ao Pyt Nopea
where

Aabcd = }/ (eebcd (pa + eaecd wb + Eabed %)(08

Noting that A, , @* =0, we can define a completely anti-symmetric, three-index, four-
dimensional “permutation” tensor by

(Dabc = Eabcd (od = 7/ eABC X’A ﬂ’f //i’C

a c

Obviously, the hypersurface Z(z) can be thought of as representing the position of a
material body at any time #. As such, it acts as a boundary of the so-called world-tube of
a family of world-lines covering an arbitrary four-dimensional region in S*.

Meanwhile, in the most general four-dimensional case, the torsion tensor can be
decomposed according to

C 1 C [ 1 c s T C
r[ab] = g (55 F[Zd] -0, r[Zd])"' g € wa edpqr g” g" r[ft] +g ¢ O v

Qabc + tha + Qcab = O
Qaab = Quba = 0
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In our special case, the torsion tensor becomes completely anti-symmetric (in its three
indices) as

c 1 ce
F[ab] == 5 }/ g eabed (Dd
from which we can write

a

1 abed
=——e" I
@ 3 bled]

where, as usual, I;,) = &, I}.s)- Therefore, at this point, the full connection is given by
(with the Christoffel symbols written explicitly)

c 1 Ci 1 c
Lo :Egd (abgda — 04 &u +aagbd)_57/eabd §0d

We shall call this special connection “semi-symmetric”. This gives the following simple
conditions:

F(fzb) =N, = g (ab 8 —048um 0, gbd)

N | =

c C l c

K., =r[ab] =- E V€ uba 9’
b _

Iy =0

=T, =0, (lnqldetig ))

Furthermore, we can extract a projective metric tensor @ from the torsion (via the
structure constants) as follows:

Ty =8y =V Pu Py =2 F[fzd] F[ib]
In three dimensions, the above relation gives the so-called Cartan metric.

Finally, we are especially interested in how the existence of torsion affects a coordinate
frame spanned by the basis @, and its dual #° in a geometry endowed with distant

parallelism. Taking the four-dimensional curl of the coframe basis ", we see that

v,6°]=2a6° =21
=— yeW (ﬁmef)q)- e-

n)Tp g
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1

1/detig )

the tetrad (with respect to the basis of £"), namely, V, e” =0, we have

where V=0’ V, =s" 0. and € = £ . From the metricity condition of

c m
_rah €.

0,e
nom _ . np _b m o m c
0"e, =n" e 0, =¢; I, e

nb

m
a
m
a

It is also worthwhile to note that from an equivalent metricity condition, namely,
V, ek =0, one finds

Oy ep =—Ty er e
Thus we find
[v’ga]: —y €“ Ty 0, @,

In other words,
a _ a 1 bede a
T =do —_576 Ly 94 @,

For the frame basis, we have
[V’a)a] == 7/ edee Fa[bc] (Dd @

e

At this point it becomes clear that the presence of torsion in S* rotates the frame and
coframe bases themselves. The basics presented here constitute the reality of the so-
called spinning frames.

2.2 Construction of the semi-symmetric field equations

In the preceding section, we have introduced the semi-symmetric connection

cd

o 1 1 ¢
Lo :Eg (abgdu -0, 8w +aagbd)_57€abd §0d

based on the semi-simple rotation group

[a)a ’a)b] ==7 eabcd ¢C ed
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Now we are in a position to construct a classical unified field theory of gravity and
electromagnetism based on this connection. We shall then call the resulting field
equations semi-symmetric, hence the name semi-symmetric unified field theory. (Often
the terms “symmetric” and “asymmetric” refer to the metric rather than the connection.)

Using the results we have given in Section 1.3, we see that the curvature tensor built from
our semi-symmetric connection is given by

e — % ylel. V0t -l V.p°) + % 7 (g, 6 - g, 5% )p,

As before, the generalized Ricci tensor is then given by the contraction R, = R, , ie.,

ach >

A

1 1 .
R, =8B, _E(gab -7, @b)_§7eabd V.o,

Then we see that its symmetric and anti-symmetric parts are given by

1
R(ab) =B, - 5 (gab -7 ¢, %)
1 cd
Ry =- 5 V€w Fu

where

1
Fabza(aa(pb_abq)a)

are the components of the intrinsic spin tensor of the first kind in our unified field theory.
Note that we have used the fact that V, ¢, -V, 0, =0, 0, — 0,0, .

Note that if
@' =y 9,

then the torsion tensor becomes covariantly constant throughout the space-time manifold,
ie.,

V, T =V, T =0

[ab] [ab]

This special case may indeed be anticipated as in the present theory, the two fundamental
geometric objects are the metric and torsion tensors.
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Otherwise, in general let us define a vector-valued gravoelectromagnetic potential 4 via
¢ﬂ — Z Aa

where

Letting € = A* 7, we then have

1 1 =
Rab =Bab _E (gab - € Aa Ab)_a yea;d (ﬂ’ F;d +Hcrd)

where

a

thé(aaAb_abAa)

Hab :_%(Aaabﬂ’_Ab aa/’{’)

We may call F, the components of the intrinsic spin tensor of the second kind. The
components of the anti-symmetric field equation then take the form

Using the fact that
aanc +acha +60Fab =0
we obtain

V, R =0

a

The dual of the anti-symmetric part of the generalized Ricci tensor is then given by

~ 1 ) 1
R[ab] = E eabcd R[ d] == 5 (aa wb - ab wa)

ie.,
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We therefore see that
aa R[bc] + 8b R[Ca] + 8c R[ab] =0
At this point, the components of the intrinsic spin tensor take the following form:

Fab == % (Eabcd Rl 42 Hab)

The generalized Einstein field equation is then given by

1
Gab:Rah_EgabR:kTah

. . 3 . . o
where k is a coupling constant, R =R’ = B — 5 (in our geometrized units) is the

generalized Ricci scalar, and 7, are the components of the energy-momentum tensor of
the coupled matter and spin fields. Taking the covariant divergence of the generalized
Einstein tensor with the help of the relations

VaRab — %a Rab _ F[l;c] R[ae]
V,R=0,R=0,B

Fuo'=—~¢' V,0,
2
we obtain
V640,64 -y FL g
On the other hand, using the integrability condition
eV, V. p, =€ 0,0,p, =0
we have
V,R® =V B® —% y@a((o“ (o”)

Therefore
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A A 1 A A
V Gab:VaGab +57/(¢b Va(0a+¢a Va¢b)_7Fba (Da

a

where, as before, Gab =B, - % g., B.Butas @a G =0, we are left with

A A

1
v,G” ZEy(fp” V.0 0"V, 0") -y F' o

We may notice that in general the above divergence does not vanish.

We shall now seek a possible formal correspondence between our present theory and
both general relativistic gravitomagnetism and Maxwellian electrodynamics. We shall
first assume that particles do not necessarily have point-like structure. Now let the rest
(inertial) mass of a particle and the speed of light in vacuum (again) be denoted by m
and c, respectively. Also, let ¢ represent the scalar gravoelectromagnetic potential and
let g, and B, denote the components of the gravitational spin potential and the

electromagnetic four-potential, respectively. We now make the following ansatz:

g
2mc
Aa :aa¢+vg0a :aa¢+ga +Ba

A = const. = — >

where v is a constant and
g=(0+mn+2(1+s,)e

is the generalized gravoelectromagnetic charge. Here n is the structure constant (i.e., a
volumetric number) which is different from zero for structured particles, s_ is the spin

constant, and e is the electric charge (or, more generally, the electromagnetic charge).
Now let the gravitational vorticity tensor be given by
1
a)ab = 5 (aa gb - ab ga)

which vanishes in spherically symmetric (i.e., centrally symmetric) situations. Next, the
electromagnetic field tensor is given as usual by

fab:abBa _aaBb

The components of the intrinsic spin tensor can now be written as
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As a further consequence, we have H, = 0 and therefore

= i i R[Cd] _ m02

Fah - 21 abed g eade R[cd]

The electromagnetic field tensor in our unified field theory is therefore given by

mcz ca
fab =-12 (? Eabi R[cd] - a)abJ

Here we see that when the gravitational spin is present, the electromagnetic field does
interact with the gravitational field. Otherwise, in the presence of a centrally symmetric
gravitational field we have

2me*
fab == g eabd R[cd]

and there is no physical interaction between gravity and electromagnetism.

2.3 Equations of motion

Now let us take the unit vector field ¢ to represent the unit velocity vector field, i.e.,

where ds is the (infinitesimal) world-line satisfying

dx® dx’

= Ba ds ds

This selection defines a general material object in our unified field theory as a
hypersurface Y(t) whose world-velocity u is normal to it. Indeed, we will soon see
some profound physical consequences.

Invoking this condition, we immediately obtain the following equation of motion:
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b

VaGahZ%V(Mb V.ou +Du

_ Fb a
)

where we have used the following relations:

F(Cab) = A,
. 1 .
L) == 5 V€ aba u’
D a a a A
La— Vbu“:du +F(Zc)ub uc:du + A u u =u" V,u
Ds ds ds

What happens now if we insist on guaranteeing the conservation of matter and spin?
Letting

V,G" =0
and inserting the value of 4, we obtain the equation of motion

Dua g a b a b
Ds > Fyu —u" V,u
s me

1.e., the generalized Lorentz equation of motion

Du* g

Ds B 2mc?

(74 - 208" - 0

From the above equation of motion we may derive special equations of motion such as
those in the following cases:

1. For an electrically charged, non-spinning, incompressible, structureless (point-
like) particle moving in a static, centrally symmetric gravitational field, we have

m#0,e#0,s =0,n=0,V, _u*=0,f, #0,w, =0. Therefore its equation
of motion is given by

a
Du® e oo
_—2 bu
Ds mc

which is just the standard, relativistically covariant Lorentz equation of motion.

2. For an electrically charged, spinning, incompressible, structureless particle
moving in a non-static, spinning gravitational field, we have
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m#0,e#0,s #0,n=0,V_ u*=0, f, #0,w, #0. Therefore its equation
of motion is given by

Du* _ (1 + sﬁ)

Ds mc? ¢ (fab -2 wab)ub

For a neutral, non-spinning, incompressible, structureless particle moving in a
static, centrally symmetric gravitational field, we have

m#0,e=0,s =0,n=0,V_u*=0, f, =0,w, =0. Therefore its equation
of motion is given by the usual geodesic equation of motion

Du*
Ds

=0

In general, this result does not hold for arbitrary incompressible bodies with
structure.

For a neutral, static, non-spinning, compressible body moving in a static, non-
spinning, centrally symmetric gravitational field, we have

m#0,e=0,s =0,n#0,V u*#0, f, =0, w, =0. Therefore its equation
of motion is given by

Du“
Ds

b
=—u’V,u

which holds for non-Newtonian fluids in classical hydrodynamics.

For an electrically charged, non-spinning, compressible body moving in a static,
non-spinning,  centrally = symmetric  gravitational field, we  have

m#0,e#0,s =0,n#0,V u*#0, f,#0, 0, =0. Therefore its equation
of motion is given by

Du“ 1+
u :l’l( zm)efzub_uavbub
Ds mc

which holds for a variety of classical Maxwellian fluids.

For a neutral, spinning, compressible body moving in a non-static, spinning
gravitational field, the parametric (structural) condition is given by
m#0,e=0,5s, #0,n#0,V, u*#0, f, =0, w, #0. Therefore its equation
of motion is given by
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Du® n(l+m) Y b ; b
=- o, u —u Vyu
Ds mc

Note that the exact equation of motion for massless, neutral particles cannot be directly
extracted from the general form of our equation of motion.

We now proceed to give the most general form of the equation of motion in our unified
field theory. Using the general identity (see Section 1.3)

VaG”b =2 gab F[Lda] Rdc + F[lzd] RCdba

we see that
Va Gab — ?/ [edea R[cd] +— Ecdea Rcdeb} ua

After some algebra, we can show that the above relation can also be written in the form

Du‘ ,
DI’; — _eabcal R[bc] ud

Note that the above general equation of motion is true whether the covariant divergence
of the generalized Einstein tensor vanishes or not. Otherwise, let ®“ =V, G represent

the components of the non-conservative vector of the coupled matter and spin fields. Our
equation of motion can then be written alternatively as

Du® 1
:—E,,Rdea ue_ cDa
DS 2 bede 7/

Let us once again consider the conservative case, in which ®“ = 0. We now have the
relation

1 bcda e 2g - a b a b

~— € R u=——=F,u —u" V,u
2

1€,

%(ecdhh Rcdha + 4_g Fijub — _ua vb ub

For a structureless spinning particle, we are left with
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for which the general solution may read

2
- mc
F,=e

T e R e RS,

where S, # 0 are the components of a generally asymmetric tensor satisfying

b mc?

cde b
Sab u =-e eacde Rb u
401 +s,)

In the case of a centrally symmetric gravitational field, this condition should again allow
us to determine the electromagnetic field tensor from the curvature tensor alone.

Now, with the help of the decomposition

d
R abc c

1
= Cazzbc + E (5: Rac + gac Ri) - 5cd Rab _gab Rd)
1
+ g (5;1 gab - 51:1 gac)R
we obtain the relation

ebcde Rb"d“ = Ebcde [Cbcda + E (ga[y R[hd] - gab R[Ld])j

However, it can be shown that the last two terms in the above relation cancel each other,
since

ebcde g‘lf R[bd] = ebcde gab R[Cd] == 7/ gac (ae uc - ac ue)
therefore we are left with the simple relation

beda beda
ebcde R - Ebcde C

If the space-time under consideration is conformally flat (i.e., C¢,. =0), we obtain the
following integrability condition for the curvature tensor:

beda
Ebcde R =0
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It is easy to show that this is generally true if the components of the curvature tensor are
of the form

1

Rabcd = E (gac gbd - gad gbc) B + Pabcd

where

Pabcd =¢& (gac gbd - gad gbc)F_;s F”

with ¢ being a constant of proportionality. In this case, the generalized Ricci tensor is
completely symmetric, i.e.,

g, (B+12:6 F F")

We also have
R=B+12¢F, F*

such that the variation oS = 0 of the action integral

S = [[[[Jaet(g) Ra*x = [[[[Jdet(g) (B +12¢ F,, F**)d'x

where dV = ./det(g) dx’dx'dx’ dx’ = /det(g) d*x defines the elementary four-

dimensional volume, gives us asetof generalized Einstein-Maxwell equations. Note that
in this special situation, the expression for the curvature scalar is true irrespective of
whether the Ricci scalar B is constant or not. Furthermore, this gives a generalized
Einstein space endowed with a generally non-vanishing spin density. Electromagnetism,
in this case, appears to be inseparable from the gravitational vorticity and therefore
becomes an emergent phenomenon. Also, the motion then becomes purely geodesic:

du‘ :

LA AT w =0
ds

F,u" =0

2.4 The conserved gravoelectromagnetic currents of the theory

Interestingly, we can obtain more than one type of conserved gravoelectromagnetic
current from the intrinsic spin tensor of the present theory.
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We have seen in Section 2.2 that the intrinsic spin tensor in the present theory is given by

—  mc .
b = T = eab ¢ R[cd]
g
We may note that
j'“ = @b F" =0

which is a covariant “source-free” condition in its own right.

Now, we shall be particularly interested in obtaining the conservation law for the
gravoelectromagnetic current in the most general sense. Define the absolute (i.e., global)
gravoelectromagnetic current via the total covariant derivative as follows:

m02

ja = Vb Fha — eabcd Vd Rbc

(S

Now, with the help of the relation

Vc F;zb + Va Fvbc + Vb Fvca ==2 (r[ib] F;d + F[gc] Fad + 1—‘[ca] _bd)
we see that
6 2
-]a == nic “ 5Lfldb R[bL] ud
Simplifying, we have
6
Ja — n’ic R[ab] .
g

At this moment, we have nothing definitive to say about gravoelectromagnetic charge
confinement. We cannot therefore speak of a globally admissible gravoelectromagnetic
current density yet. However, we can show that our current is indeed conserved. As a
start, it is straightforward to see that we have the relative conservation law

However, this is not the most desired conservation law as we are looking for the most
generally covariant one.

Now, with the help of the relations
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el F = _ ot (r[‘;w] F, + T}, Fae)
Ty = — % Y € g
we obtain
VR =—2Fy,
Therefore

u, V, R =0

Using this result together with the fact that
Rl v S F,F,=0
a ub 2 }/ € ab cd

we see that

2
v, o= (v, R 4 Ry )= 0

g

1.e., our gravoelectromagnetic current is conserved in a fully covariant manner.

Let us now consider a region in our space-time manifold in which the
gravoelectromagnetic current vanishes. We have, from the boundary condition j* =0,
the governing equation

R[ab] Z/lb =0

which is equivalent to the following integrability condition:

abed
e u, (0,u, —0,u

)=0

In three dimensions, if in general curlu # 0, this gives the familiar integrability condition
u-curlu =0
where the dot represents three-dimensional scalar product.

We are now in a position to define the phenomenological gravoelectromagnetic current
density which shall finally allow us to define gravoelectromagnetic charge confinement.
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However, in order to avoid having extraneous sources, we do not in general expect such
confinement to hold globally. From our present perspective, what we need is a relative
(i.e., local) charge confinement which can be expressed solely in geometric terms.

Therefore we first define the spin tensor density (of weight +2) as

2

f=det(g) F* = mgc Jdet(g) ™ R

The phenomenological (i.e., relative) gravoelectromagnetic current density is given here
by

2
]_-a — ab f{lb — % (ab [det(gj) gabcd R[cd]

1€,

2
. mc

j = g gade g” (ab grs) R[cd]

Meanwhile, using the identity

bc

0,8"=-g" 80,8,
we see that
(0,¢7)@,g,)=0,2.)0,2")

Using this result and imposing continuity on the metric tensor, we finally see that

—a 2 abc: l rs rs
0,J" = % g™ (5 g" ¢" (0,2.)0,8,)-0.27)0, grs)) Ry =0

which is the desired local conservation law. In addition, it is easy to show that
V,j“=0

Unlike the geometric current represented by j, the phenomenological current density

given by j° corresponds directly to the hydrodynamical analogue of a
gravoelectromagnetic current density if we set

J* =det(g) pu
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which defines charge confinement in our gravoelectrodynamics. Combining this relation
with the previously given equivalent expression for j, we obtain

2
mc apc rs
pP=—7—"E¢ ved Z/la 8 (ab grs)R[cd]
28
1€,
m02
abed h
P == o Dy R[cd]
g

for the gravoelectromagnetic charge density. Note that this is a pseudo-scalar.

At this point, it becomes clear that the gravoelectromagnetic charge density is generated
by the properties of the curved space-time itself, i.e., the non-unimodular character of the

space-time geometry, for which \/det(g) #1 and I'}, # 0, and the torsion (intrinsic spin)

of space-time which in general causes material points (whose characteristics are given by
g ) to rotate on their own axes such that in a finite region in the space-time manifold, an
“individual” energy density emerges. Therefore, in general, a material body is simply a
collection of individual material points confined to interact gravoelectrodynamically with
each other in a finite region in our curved space-time. More particularly, this can happen
in the absence of either the electromagnetic field or the gravitational vorticity, but not in
the absence of both fields. To put it more simply, it requires both local curvature and
torsion to generate a material body out of an energy field.

3. Final Remarks

At this point, we may note that we have not considered the conditions for the balance of
spin (intrinsic angular momentum) in detail. This may be done, in a straightforward
manner, by simply expressing the anti-symmetric part of the generalized Ricci tensor in
terms of the so-called spin density tensor as well as the couple stress tensor. This can then
be used to develop a system of equations governing the balance of energy-momentum in
our theory. Therefore, we also need to obtain a formal representation for the energy-
momentum tensor in terms of the four-momentum vector. This way, we obtain a set of
constitutive equations which characterize the theory.

This work has simply been founded on the feeling that it could be physically correct as a
unified description of physical phenomena due to its manifest simplicity. Perhaps there
remains nothing more beyond the simple appreciation of that possibility. It is valid for a
large class of particles and (space-time) continua in which the coordinate points
themselves are allowed to rotate and translate. Since the particles are directly related to
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the coordinate points, they are but intrinsic objects in the space-time manifold, just as the
fields are.

It remains, therefore, to consider a few physically meaningful circumstances in greater
detail for the purpose of finding particular solutions to the semi-symmetric field
equations of our theory.
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