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A New Semi-Symmetric Unified Field Theory of  

the Classical Fields of Gravity and Electromagnetism 

 
 

By D. L. Indranu 

 
Introduction 

 

It is now well-known that there are various paths available, provided by geometry alone, 

to a unified description of physical phenomena. The different possibilities for the 

interpretation of the underlying nature and fabric of the Universe in a purely geometric 
fashion imply that there is a deep underlying structural reason for singular harmony that 

lies in the depths of Nature’s unity. Even in the mental sense, it appears that the Universe 

is a self-descriptive continuum which connects what seem to be purely intrinsic 

mathematical objects to physical observables. It is the belief that analytical geometry 

alone is able to provide the profoundest description of the complexity and harmony of our 
structured Universe that has led generations of mathematicians and physicists to 

undertake the task of geometrizing the apparently systematic laws of Nature. Indeed this 

is, as Einstein once described, the effect of the sense of universal causation on the 
inquisitive mind. 

 
The above-mentioned wealth of the inherent mathematical possibility for the 

geometrization of physics has resulted in the myriad forms of unified field theory which 

have been proposed from time to time, roughly since 1918 when H. Weyl’s applied his 
so-called purely infinitesimal geometry which was a relaxation of the geometry of 

Riemann spaces to the task of geometrizing the electromagnetic field in the hope to unify 

it with the already geometrized gravitational field of general relativity [6]. However, 

often for want of simplicity, this fact which basically gives us a vision of a solid, reified 

reality may also lead us to think that the Universe of phenomena must be ultimately 
describable in the somewhat simplest and yet perhaps most elegant mathematical (i.e., 

geometric) formalism. Furthermore, when one is exposed to the different forms of unified 

field theory, especially for the first time, I believe it is better for one to see a less 

complicated version, otherwise one might get overloaded mentally and it follows that 

there is a chance that such a thing will just prevent one from absorbing the essence of our 
desired simplicity which is intuitively expected to be present in any objective task of 

unification.  
 

Given the freedom of choice, we do not attempt, in this work, to speak about which 

version of unified field theory out of many is true, rather we shall present what I believe 

should qualify among the logically simplest geometric descriptions of the classical fields 

of gravity and electromagnetism. Indeed, for the reason that we may not still be fully 
aware of the many hidden aspects of the Universe on the microscopic (quantum) scales, 

at present we shall restrict our attention to the unification and geometrization of the 
classical fields alone. 
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As we know, there are many types of differential geometry, from affine geometry to non-

affine geometry, from metric (i.e., metric-compatible) geometry to non-metric geometry. 
However, the different systems of differential geometry that have been developed over 

hundreds of years can be most elegantly cast in the language of Cartan geometry. The 
geometric system I will use throughout this physical part of our work is a metric-

compatible geometry endowed with a semi-symmetric Cartan connection. It therefore is a 

variant of the so-called Riemann-Cartan geometry presented in Sections 1.1-1.6. As we 
know, the standard form of general relativity adopts the symmetric, torsion-free, metric-

compatible Christoffel connection. We are also aware that the various extensions of 

standard general relativity [7] tend to employ more general connections that are often 

asymmetric (e.g., the Sciama-Kibble theory [8, 9]) and even non-metric in general (e.g., 

the Weyl theory [6]). However, in the present work, we shall insist on logical simplicity 
and on having meaningful physical consequences. Once again, we are in no way 

interested in pointing out which geometric system is most relevant to physics, rather we 

are simply concerned with describing in detail what appears to be among the most 

consistent and accurate views of the physical world. We only wish to construct a unified 

field theory on the common foundation of beauty, simplicity, and observational accuracy 
without having to deal with unnecessarily complex physical implications that might dull 

our perspective on the workings of Nature. I myself have always been fond of employing 
the most general type of connection for the purpose of unification. However, after years 

of poring over the almost universally held and (supposedly) objectively existing physical 

evidence, I have come to the conclusion that there is more reason to impose a simpler 

geometric formulation than a more general type of geometry such as non-metric 

geometry. In this work, it is my hope to dovetail the classical fields of gravity and 
electromagnetism with the conventional Riemann-Cartan geometry in general and with a 

newly constructed semi-symmetric Cartan connection in particular. Our resulting field 

equations are then just the distillation of this motive, which will eventually give us a 
penetrating and unified perspective on the nature of the classical fields of gravity and 

electromagnetism as intrinsic geometric fields, as well as on the possible interaction 
between the translational and rotational symmetries of the space-time manifold.  

 

I believe that the semi-symmetric nature of the present theory (which keeps us as close as 
possible to the profound, observable physical implications of standard general relativity) 

is of great generality such that it can be applied to a large class of problems, especially 
problems related to the more general laws of motion for objects with structure. 

 
 

 1. A Comprehensive Evaluation of the Differential Geometry of Cartan 

Connections with Metric Structure 
 
The splendid, profound, and highly intuitive interpretation of differential geometry by E. 

Cartan, which was first applied to Riemann spaces, has resulted in a highly systematic 

description of a vast range of geometric and topological properties of differentiable 
manifolds. Although it possesses a somewhat abstract analytical foundation, to my 

knowledge there is no instance where Riemann-Cartan geometry, cast in the language of 
differential forms (i.e., exterior calculus), gives a description that is in conflict with the 
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classical tensor analysis as formalized, e.g., by T. Levi-Civita. Given all its successes, 

one might expect that any physical theory, which relies on the concept of a field, can be 
elegantly built on its rigorous foundation. Therefore, as long as the reality of metric 

structure (i.e., metric compatibility) is assumed, it appears that a substantial modified 
geometry is not needed to supersede Riemann-Cartan geometry.  

 

A common overriding theme in both mathematics and theoretical physics is that of 
unification. And as long as physics can be thought of as geometry, the geometric objects 

within Riemann-Cartan geometry (such as curvature for gravity and torsion for intrinsic 

spin) certainly help us visualize and conceptualize the essence of unity in physics. 

Because of its intrinsic unity and its breadth of numerous successful applications, it might 

be possible for nearly all the laws governing physical phenomena to be combined and 
written down in compact form via the structural equations. By the intrinsic unity of 

Riemann-Cartan geometry, I simply refer to its tight interlock between algebra, analysis, 

group representation theory, and geometry. At least in mathematics alone, this is just as 

close as one can get to a “final” unified description of things. I believe that the unifying 

power of this beautiful piece of mathematics extends further still.  
 

I’m afraid the title I have given to this first part of our work (which deals with the 
essential mathematics) has a somewhat narrow meaning, unlike the way it sounds. In 

writing this article, my primary goal has been to present Riemann-Cartan geometry in a 

somewhat simpler, more concise, and therefore more efficient form than others dealing 

with the same subject have done before [1-4]. I have therefore had to drop whatever 

mathematical elements or representations that might seem somewhat highly 
counterintuitive at first. After all, not everyone, unless perhaps he or she is a 

mathematician, is familiar with abstract concepts from algebra, analysis, and topology, 

just to name a few. Nor is he or she expected to understand these things. But one thing 
remains essential, namely, one’s ability to catch at least a glimpse of the beauty of the 

presented subject via deep, often simple, real understanding of its basics. As a non-
mathematician (or simply a “dabbler” in pure mathematics), I do think that pure 

mathematics as a whole has grown extraordinarily “strange”, if not complex (the weight 

of any complexity is really relative of course), with a myriad of seemingly separate 
branches, each of which might only be understood at a certain level of depth by the pure 

mathematicians specializing in that particular branch themselves. As such, a comparable 
complexity may also have occurred in the case of theoretical physics itself as it 

necessarily feeds on the latest formalism of the relevant mathematics each time. 

Whatever may be the case, the real catch is in the essential understanding of the basics. I 
believe simplicity alone will reveal it without necessarily having to diminish one’s 

perspectives at the same time. 

 

 

1.1  A brief elementary introduction to the Cartan(-Hausdorff) manifold 
∞

C  

 

Let i

i

aia

i

a EXE
x

X
∂=

∂

∂
=ω  (summation convention employed throughout this article) 

be the covariant (frame) basis spanning the −n dimensional base manifold ∞C  with local 
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coordinates ( )kaa Xxx = . The contravariant (coframe) basis bθ  is then given via the 

orthogonal projection b

aa

b δωθ =, , where b

aδ  are the components of the Kronecker 

delta (whose value is unity if the indices coincide or null otherwise).  Now the set of 

linearly independent local directional derivatives iii
X

E ∂=
∂

∂
=  gives the coordinate 

basis of the locally flat tangent space )(MTx  at a point ∞∈Cx . Here M  denotes the 

topological space of the so-called −n tuples ( ) ( )nxxhxh ...,,1=  such that relative to a 

given chart ( )( )xhU ,  on a neighborhood U  of a local coordinate point x , our 

−∞C differentiable manifold itself is a topological space. The dual basis to iE  spanning 

the locally flat cotangent space )(* MTx  will then be given by the differential elements 

kdX  via the relation k

ii

kdX δ=∂, . In fact and in general, the one-forms kdX  indeed 

act as a linear map IRMTx →)(  when applied to an arbitrary vector field )(MTF x∈  of 

the explicit form 
a

a

i

i

x
f

X
FF

∂

∂
=

∂

∂
= . Then it is easy to see that 

ii XFF =  and 

aa xFf = , from which we obtain the usual transformation laws for the contravariant 

components of a vector field, i.e., ai

a

i fXF ∂=  and ia

i

i Fxf ∂= , relating the 

localized components of F  to the general ones and vice versa. In addition, we also see 

that kkk FXFFdX ==, . 

 

The components of the metric tensor ba

abgg θθ ⊗=  of the base manifold ∞C  are 

readily given by  

 

baabg ωω ,=  

 

The components of the metric tensor ( ) ki

ikN dXdXxg ⊗= η  describing the locally flat 

tangent space )(MTx  of rigid frames at a point ( )a

NN xxx =  are given by 

 

( )1,...,1,1, ±±±== diagEE kiikη  

 

In four dimensions, the above may be taken to be the components of the Minkowski 

metric tensor, i.e., ( )1,1,1,1, −−−== diagEE kiikη .  

 

Then we have the expression 

 
k

b

i

aikab XXg ∂∂= η  

 

satisfying 
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b

a

bc

ac gg δ=  

 

where baabg θθ ,= . 

 

The manifold 
∞C  is a metric space whose line-element in this formalism of a 

differentiable manifold is directly given by the metric tensor itself, i.e.,  

 

( ) kib

k

a

iab dXdXxxggds ⊗∂∂==2  

 

where the coframe basis is given by the one-forms ia

i

a dXx∂=θ .  

 

 

1.2  Exterior calculus in n dimensions 
 

As we know, an arbitrary tensor field ∞∈CT  of rank ),( qp  is the object  

 
p

q

q

p

jjj

iii

iii

jjjTT θθθωωω ⊗⊗⊗⊗⊗⊗⊗= ...... 21

21

21

21

...

...  

 

Given the existence of a local coordinate transformation via ( )αxxx ii =  in ∞C , the 

components of ∞∈CT  transform according to 

 
ηνµ

λβα
λαβ

ηµν xxxxxxTT rlk

sjisij

rkl ∂∂∂∂∂∂= .........

...

...

...  

 

Taking a local coordinate basis 
ii dx=θ , a Pfaffian −p form ω  is the completely anti-

symmetric tensor field  
 

p

p

iii

iii dxdxdx /\.../\/\ 21

21 ...ωω =  

 
where 

 

pp

p

p jjjiii

jjj

iii
dxdxdx

p
dxdxdx ⊗⊗⊗≡ ...

!

1
/\.../\/\ 2121

21

21
...

...δ  

 

In the above, the p

p

iii

jjj

...

...
21

21
δ  are the components of the generalized Kronecker delta. They 

are given by 
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



















=∈∈=

p

ppp

p

p

p

p

p

p

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

ii

jjj

iii

jjj

δδδ

δδδ

δδδ

δ

...

............

...

...

det

21

2

2

2

1

2

1

2

1

1

1

1

21

21

21

...

...

...

...  

 

where ( )
pp jjjjjj g ...... 2121

det ε=∈  and 
( )

pp iiiiii

g

...... 2121

det

1
ε=∈  are the covariant and 

contravariant components of the completely anti-symmetric Levi-Civita permutation 
tensor, respectively, with the ordinary permutation symbols being given as usual by 

qjjj ...21
ε  and piii ...21ε .  

 

We can now write 

 

p

p

p

p

jjj

iii

iii

jjj dxdxdx
p

/\.../\/\
!

1
21

21

21

21 ...

...

... ωδω =  

 

such that for a null −p form 0=ω  its components satisfy the relation 

0...

...

... 21

21

21
=

p

p

p iii

iii

jjj ωδ . 

 

By meticulously moving the 
idx  from one position to another, we see that  

 

pqp

qpp

ijjjiiip

jjjiiii

dxdxdxdxdxdxdx

dxdxdxdxdxdxdx

/\/\.../\/\/\/\.../\/\)1(

/\.../\/\/\/\/\.../\/\

21121

21121

−

−

−=
 

 
and 

 

pq

qp

iiijjjpq

jjjiii

dxdxdxdxdxdx

dxdxdxdxdxdx

/\.../\/\/\/\.../\/\)1(

/\.../\/\/\/\.../\/\

2121

2121

−=
 

 

Let ω  and π  be a −p form and a −q form, respectively. Then, in general, we have the 

following relations: 

 

( )
( ) ( ) πωπωπω

πωπω

πωωππω

ddd

ddd

dxdxdxdxdxdx

p

jjjpii

jjjiii

pq q

qp

/\1/\/\

/\.../\/\/\/\.../\/\/\)1(/\ 2121

2121 ......

−+=

+=+

=−=

 

 

Note that the mapping ωω dd =:  is a ( )−+1p form. Explicitly, we have 
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121

1

2121

21
/\/\.../\/\

)!1(

)1( ......

...

+

+∂

∂

+
−

= pp

p

pp

p

ijjj

i

iiiiii

jjj

p

dxdxdxdx
xp

d
ω

δω  

 

For instance, given a (continuous) function f , the one-form i

i dxfdf ∂=  satisfies 

0/\2 =∂∂=≡ ik

ik dxdxfddffd . Likewise, for the one-form i

i dxAA = , we have 

ik

ik dxdxAdA /\∂=  and therefore 0/\/\2 =∂∂= ikl

ikl dxdxdxAAd , i.e., 

0=∂∂ ikl

ikl

rst Aδ  or 0=∂∂+∂∂+∂∂ klilikikl AAA . Obviously, the last result holds 

for arbitrary −p forms sij

rkl

...

...Π , i.e.,  

 

0...

...

2 =Π sij

rkld  

 

Let us now consider a simple two-dimensional case. From the transformation law 
α

α xdxdx ii ∂= , we have, upon employing a positive definite Jacobian, i.e., 

( )
( ) 0
,

,
>

∂

∂
βα xx

xx
ji

, the following: 

 

( )
( )

βα
βα

βα
βα xdxd

xx

xx
xdxdxxdxdx

ji
jiji

/\
,

,

2

1
/\/\

∂

∂
=∂∂=  

 

It is easy to see that  

 

( )
( )

21

21

21
21

/\
,

,
/\ xdxd

xx

xx
dxdx

∂

∂
=  

 
which gives the correct transformation law of a surface element.  

 

We can now elaborate on the so-called Stokes theorem. Given an arbitrary function f , 

the integration in a domain D  in the manifold ∞C  is such that 

 

( ) ( )( ) ( )
( )

21

21

21
21

,

,
/\ xdxd

xx

xx
xxfdxdxxf

D D

ii∫∫ ∫∫ ∂

∂
= α

 

 

Generalizing to n dimensions, for any ( )kii xψψ =  we have 

 

( )
( )

n

n

n
n

dxdxdx
xxx

ddd /\.../\/\
...,,,

...,,,
/\.../\/\

21

21

21
21

∂

∂
=

ψψψ
ψψψ  

 

Therefore (in a particular domain) 
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( ) ( )
( )

n

n

n
in

dxdxdx
xxx

xfdddf /\.../\/\
,...,,

,...,,
.../\.../\/\...

21

21

21
21∫ ∫∫∫∫∫ ∂

∂
=

ψψψ
ψψψ  

 

Obviously, the value of this integral is independent of the choice of the coordinate 

system. Under the coordinate transformation given by ( )αxxx ii = , the Jacobian can be 

expressed as 

 

( )
( )

( )
( )

( )
( )n

n

n

n

n

n

xxx

xxx

xxxxxx ,...,,

,,...,

,...,,

,...,,

,...,,

...,,,
21

21

21

21

21

21

∂

∂

∂

∂
=

∂

∂ ψψψψψψ
 

 

If we consider a ( )−−mn dimensional subspace (hypersurface) ∞∈CS  whose local 

coordinates Au  parametrize the coordinates ix , we have 

 

( )( ) ( )( ) ( )( ) ( )( )( )
( )

mn

mn

AinAiAi
Ai

n

dududu
uuu

uxuxux
uxf

dddf

−
−∫ ∫∫

∫ ∫ ∫

∂
∂

= ...
,...,,

,...,,
...

/\.../\/\...

21

21

21

21

ψψψ

ψψψ

 

 
 

1.3  Geometric properties of a curved manifold 
 

Let us recall a few concepts from conventional tensor analysis for a while. Introducing a 

generally asymmetric connection Γ  via the covariant derivative  
 

c

c

abab ωω Γ=∂  

 
i.e., 

 

( ) [ ]
c

ab

c

abab

cc

ab Γ+Γ=∂=Γ ωθ ,  

 
where the round index brackets indicate symmetrization and the square ones indicate 

anti-symmetrization, we have, by means of the local coordinate transformation given by 

( )αxxx aa =  in ∞C  

 
λβα

βλ
αα

bac

c

abab eeee Γ−Γ=∂  

 

where the tetrads of the moving frames are given by 
αα xe aa ∂=  and 

aa xe αα ∂= . They 

satisfy 
a

bb

a ee δα
α =  and 

α
ββ

α δ=a

a ee . In addition, it can also be verified that 

 

ca

cbb

aa

b

cba

bc

aa

eeee

eeee

α
βλ

αβλα

βαλ
λ

αβαβ

Γ−Γ=∂

Γ−Γ=∂
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From conventional tensor analysis, we know that Γ  is a non-tensorial object, since its 
components transform as 

 
λβα

βλα
α

α ba

c

ab

cc

ab eeeee Γ+∂=Γ  

 

However, it can be described as a kind of displacement field since it is what makes 

possible a comparison of vectors from point to point in 
∞C . In fact the relation 

c

c

abab ωω Γ=∂  defines the so-called metricity condition, i.e., the change (during a 

displacement) in the basis can be measured by the basis itself. This immediately 
translates into  

 

0=∇ abc g  

 

where we have just applied the notion of a covariant derivative to an arbitrary tensor field 

T :  
 

sij

plm

p

rk

sij

rlp

p

mk

sij

rpm

p

lk

pij

rlm

s

pk

sip

rlm

j

pk

spj

rlm

i

pk

sij

rlmk

sij

rlmk

TTT

TTTTT

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Γ−−Γ−Γ−

Γ++Γ+Γ+∂=∇
 

 

such that ( ) sij

rlmk

sij

rlmk TT ...

...

...

...
∇=∂ .   

 

The condition 0=∇ abc g  can be solved to give 

 

( ) [ ] [ ] [ ]( )e

dabe

e

dbae

cdc

abbdaabddab

cdc

ab ggggggg Γ+Γ−Γ+∂+∂−∂=Γ
2

1
 

 
from which it is customary to define 

 

( )bdaabddab

cdc

ab gggg ∂+∂−∂=∆
2

1
 

 
as the Christoffel symbols (symmetric in their two lower indices) and 

 

[ ] [ ] [ ]( )e

dabe

e

dbae

cdc

ab

c

ab gggK Γ+Γ−Γ=  

 
as the components of the so-called contorsion tensor (anti-symmetric in the first two 
mixed indices).  

 

Note that the components of the torsion tensor are given by 
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[ ] ( )α
β

βα
β

βαα
α bccbcbbc

aa

bc eeeee Γ−Γ+∂−∂=Γ
2

1
 

 

where we have set 
λα

βλ
α
β cc eΓ=Γ , such that for an arbitrary scalar field Φ  we have  

 

( ) [ ] Φ∇Γ=Φ∇∇−∇∇ c
c
ababba 2  

 

The components of the curvature tensor R  of ∞C  are then given via the relation 
 

( )

[ ]
sab

rcdw

w

pq

s

wpq

wab

rcd

b

wpq

saw

rcd

a

wpq

swb

rcd

w

rpq

sab

wcd

w

dpq

sab

rcw

w

cpq

sab

rwd

sab

rcdqppq

T

RTRTRT

RTRTRTT

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

2

...

...

∇Γ−

−−−−

+++=∇∇−∇∇

 

 

where  

 

( ) d

ec

e

ab

d

eb

e

ac

d

abc

d

acb

d

abc

d

ec

e

ab

d

eb

e

ac

d

abc

d

acb

d

abc

KKKKKKB

R

−+∇−∇+∆=

ΓΓ−ΓΓ+Γ∂−Γ∂=

ˆˆ
 

 

where ∇̂  denotes covariant differentiation with respect to the Christoffel symbols alone, 
and where  
 

( ) d

ec

e

ab

d

eb

e

ac

d

abc

d

acb

d

abcB ∆∆−∆∆+∆∂−∆∂=∆  

 

are the components of the Riemann-Christoffel curvature tensor of ∞C .  
 

From the components of the curvature tensor, namely, 
d

abcR , we have (using the metric 

tensor to raise and lower indices) 

 

( ) [ ] [ ]

( ) [ ] [ ] [ ]
acb

abc

d

cd

b

ab

acc

bca

aba

a

d

cd

c

ab

c

acb

d

cb

c

ad

c

abcab

c

acbab

KKggBRR

KKKKBRR

−ΓΓ−Γ∇−∆=≡

Γ+Γ∇−−∇+∆=≡

2ˆ4

2ˆ2ˆ

 

 

where ( ) ( )∆≡∆ c

acbab BB  are the components of the symmetric Ricci tensor and 

( ) ( )∆≡∆ a

aBB  is the Ricci scalar. Note that 
d

bcadabc KgK ≡  and 
a

de

becdacb KggK ≡ . 

 

Now since  
 

( )( )
( )( ) [ ]

b

aba

b

ab

a

b

ab

b

ba

b

ba

g

g

Γ+∂=Γ

∂=∆=∆=Γ

2detln

detln
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we see that for a continuous metric determinant, the so-called homothetic curvature 
vanishes: 

 

0=Γ∂−Γ∂=≡ c

cab

c

cba

c

cabab RH  

 

Introducing the traceless Weyl tensor C , we have the following decomposition theorem: 

 

( )

( ) ( )
( ) Rgg

nn

RgRRgR
n

CR

ac

d

bab

d

c

d

cabab

d

c

d

bacac

d

b

d

abc

d

abc

δδ

δδ

−
−−

+

−−+
−

+=

21

1

2

1

 

 

which is valid for 2>n . For 2=n , we have 

 

( )ab

d

cac

d

bG

d

abc ggKR δδ −=  

 
where  

 

RKG
2

1
=  

 

is the Gaussian curvature of the surface. Note that (in this case) the Weyl tensor vanishes. 

 

Any −n dimensional manifold (for which 1>n ) with constant sectional curvature R  and 

vanishing torsion is called an Einstein space. It is described by the following simple 
relations: 

 

( )

Rg
n

R

Rgg
nn

R

abab

ab

d

cac

d

b

d

abc

1

)1(

1

=

−
−

= δδ
 

 

In the above, we note especially that 

 

( )
( )

( )∆=

∆=

∆=

BR

BR

BR

abab

d

abc

d

abc

 

 

Furthermore, after some elaborate (if not tedious) algebra, we obtain, in general, the 

following generalized Bianchi identities: 

 



 12 

[ ] [ ] [ ] [ ] [ ] [ ]( )
[ ] [ ] [ ]( )

[ ] [ ]
cdb

a

a

cd

d

c

c

da

ababab

a

a

bfd

f

ec

a

bfc

f

de

a

bfe

f

cd

a

becd

a

bdec

a

bcde

e

bc

a

ed

e

db

a

ec

e

cd

a

eb

a

dbc

a

cdb

a

bcd

a

dbc

a

cdb

a

bcd

RRgRgR

RRRRRR

RRR

Γ+Γ=







−∇

Γ+Γ+Γ=∇+∇+∇

ΓΓ+ΓΓ+ΓΓ+Γ∂+Γ∂+Γ∂−=++

2
2

1

2

2

 

 

for any metric-compatible manifold endowed with both curvature and torsion. 

 

In the last of the above set of equations, we have introduced the generalized Einstein 
tensor, i.e., 

 

RgRG ababab
2

1
−≡  

 
In particular, we also have the following specialized identities, i.e., the regular Bianchi 

identities: 

 

0
2

1ˆ

0ˆˆˆ

0

=







−∇

=∇+∇+∇

=++

BgB

BBB

BBB

abab

a

a

becd

a

bdec

a

bcde

a

dbc

a

cdb

a

bcd

 

 

In general, these hold in the case of a symmetric, metric-compatible connection. Non-
metric differential geometry is beyond the scope of our present consideration. We will 

need the identities presented in this section in the development of our semi-symmetric, 
metric-compatible unified field theory. 

 

 

1.4  The structural equations 

 
The results of the preceding section can be expressed in the language of exterior calculus 

in a somewhat more compact form.  

 

In general, we can construct arbitrary −p forms eab

fcd

...

...ω  through arbitrary ( )1−p  forms 

eab
fcd

...
...α , i.e., 

 

h

h

eab

fcdeab

fcd

eab

fcd dx
x

d /\

...

......

...

...

... ∂

∂
==

α
αω  

 
The covariant exterior derivative is then given by 

 
heab

fcdh

eab

fcd dxD /\...

...

...

... ωω ∇=  
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i.e., 
 

( ) (
)hfeab

hcd

h

d

eab

fch

h

c

eab

fhd

e

h

hab

fcd

b

h

eah

fcd

a

h

ehb

fcd

peab

fcd

eab

fcd dD

Γ−−Γ−Γ−

Γ++Γ+Γ−+=

/\.../\/\

/\.../\/\1

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

....

ωωω

ωωωωω
 

 
where we have defined the connection one-forms by 

 
ca

bc

a

b θΓ≡Γ  

 

with respect to the coframe basis 
aθ .   

 

Now we write the torsion two-forms aτ  as 
 

ba

b

aaa dD θθθτ /\Γ+==  

 

This gives the first structural equation. With respect to another local coordinate system 

(with coordinates 
αx ) in 

∞C  spanned by the basis 
a

ae θε αα = , we see that 

 

[ ]
λβα

βλα εετ /\Γ−= aa e  

 

We shall again proceed to define the curvature tensor. For a triad of arbitrary vectors 

wvu ,, , we may define the following relations with respect to the frame basis aω : 

 

( )
[ ] ( )b

c

cb

c

ca

bvu

a

a

b

b

c

c

vu

uvvuww

wvuw

∇−∇∇≡∇

∇∇≡∇∇

,

ω
 

 

where u∇  and v∇  denote covariant differentiation in the direction of u  and of v , 

respectively. 
 

Then we have 
 

( ) a

dcba

bcduvvu vuwRw ω*=∇∇−∇∇  

 

Note that 
 

[ ]

[ ]
a

be

e

cd

a

bcd

a

be

e

cd

a

ed

e

bc

a

ec

e

bd

a

bcd

a

bdc

a

bcd

R

R

ΓΓ+=

ΓΓ+ΓΓ−ΓΓ+Γ∂−Γ∂=

2

2
*

 

 

are the components of the extended curvature tensor R
*
.  
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Define the curvature two-forms by 
 

dca

bcd

a

b RR θθ /\
2

1 ** ≡  

 
The second structural equation is then 

 
c

b

a

c

a

b

a

b dR ΓΓ+Γ= /\*  

 
The third structural equation is given by 

 
a

b

c

b

a

c

c

b

a

c

a

b

a

b RDRRRdd ****2 /\/\ =Γ+Γ−=Γ  

 

which is equivalent to the generalized Bianchi identities given in the preceding section.  

 
In fact the second and third structural equations above can be directly verified using the 

properties of exterior differentiation given in Section 1.2. 
 

Now, as we have seen, the covariant exterior derivative of arbitrary one-forms 
aφ  is 

given by 
ba

b

aa dD φφφ /\Γ+= . Then 

 

( )
( ) ( )

( ) bc

b

a

c

a

b

cb

c

a

b

ba

b

dc

d

ca

c

ba

b

a

ba

b

aa

d

d

ddd

DDdDD

φ

φφ

φφφφ

φφφ

/\/\

/\/\/\

/\/\/\

/\

ΓΓ+Γ=

ΓΓ−Γ=

Γ+Γ+Γ+=

Γ+=

 

 

where we have used the fact that the aDφ  are two-forms. Therefore, from the second 

structural equation, we have 

 
ba

b

a RDD φφ /\*=  

 

Finally, taking 
aa θφ = , we give the fourth structural equation as 

 
ba

b

aa RDDD θτθ /\*==  

 
or, 

 
ba

b

ba

b

a Rd τθτ /\/\* Γ−=  
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Remarkably, this is equivalent to the first generalized Bianchi identity given in the 

preceding section.  

 

 
1.5  The geometry of distant parallelism 

 

Let us now consider a special situation in which our −n dimensional manifold 
∞C  is 

embedded isometrically in a flat −n dimensional (pseudo-)Euclidean space 
n

E  (with 

coordinates mv ) spanned by the constant basis me  whose dual is denoted by ns . This 

embedding allows us to globally cover the manifold ∞C  in the sense that its geometric 

structure can be parametrized by the Euclidean basis me  satisfying 

 

( )1,...,1,1, ±±±== diagee nmnmη  

 

It is important to note that this situation is different from the one presented in Section 1.1, 

in which case we may refer the structural equations of 
∞C  to the locally flat tangent 

space )(MTx . The results of the latter situation (i.e., the localized structural equations) 

should not always be regarded as globally valid since the tangent space )(MTx , though 

ubiquitous in the sense that it can be defined everywhere (at any point) in 
∞C , cannot 

cover the whole structure of the curved manifold 
∞

C  without changing orientation from 
point to point.  

 

One can construct geometries with special connections that will give rise to what we call 
geometries with parallelism. Among others, the geometry of distant parallelism is a 

famous case. Indeed, A. Einstein adopted this geometry in one of his attempts to 
geometrize physics, and especially to unify gravity and electromagnetism [5]. In its 

application to physical situations, the resulting field equations of a unified field theory 

based on distant parallelism, for instance, are quite remarkable in that the so-called 
energy-momentum tensor appears to be geometrized via the torsion tensor. We will 

therefore dedicate this section to a brief presentation of the geometry of distant 
parallelism in the language of Riemann-Cartan geometry. 

 

In this geometry, it is possible to orient vectors such that their directions remain invariant 
after being displaced from a point to some distant point in the manifold. This situation is 

made possible by the vanishing of the curvature tensor, which is given by the 

integrability condition 

 

( ) 0=∂∂−∂∂= m

abccb

d

m

d

abc eeR  

 
where the connection is now given by 

 
m

ab

c

m

c

ab ee ∂=Γ  
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where m

a

m

ae ξ∂=  and a

m

a

m xe ∂= .  

 

However, while the curvature tensor vanishes, one still has the torsion tensor given by 
 

[ ] ( )m

cb

m

bc

a

m

a

bc eee ∂−∂=Γ
2

1
 

 

with the m

ae  acting as the components of a spin “potential”. Thus the torsion can now be 

considered as the primary geometric object in the manifold ∞
pC  endowed with distant 

parallelism.  

 

Also, in general, the Riemann-Christoffel curvature tensor is non-vanishing as  
 

d

eb

e

ac

d

ec

e

ab

d

acb

d

abc

d

abc KKKKKKB −+∇−∇= ˆˆ  

 

Let us now consider some facts. Taking the covariant derivative of the tetrad m

ae  with 

respect to the Christoffel symbols alone, we have  

 
c

ab

m

c

d

ab

m

d

m

ab

m

ab Keeee =∆−∂=∇̂  

 
i.e., 

 
c

mb

m

a

m

ab

c

m

c

ab eeeeK ∇−=∇= ˆˆ  

 

In the above sense, the components of the contorsion tensor give the so-called Ricci 

rotation coefficients. Then from  
 

( )d

ec

e

ab

d

abc

m

d

m

abc KKKee +∇=∇∇ ˆˆˆ  

 
it is elementary to show that 

 

( ) d

abc

m

d

m

acbbc Bee =∇∇−∇∇ ˆˆˆˆ  

 
Likewise, we have 

 

c

mb

m

a

m

ab

c

m

c

ab

c

ab

m

c

d

ab

m

d

m

ab

m

ab

eeee

eKeee

∇−=∇=∆

∆=−∂=∇
~~

~

 

 

where now ∇
~
 denotes covariant differentiation with respect to the Ricci rotation 

coefficients alone. Then from 
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( )d

ec

e

ab

d

abc

m

d

m

abc ee ∆∆+∆∇=∇∇
~~~

 

 

we get 
 

( ) [ ]( )d

eb

e

ac

d

ec

e

ab

d

eb

e

ac

d

ec

e

ab

e

bc

d

ae

d

abc

m

d

m

acbbc KKKKBee ∆+∆−∆+∆−Γ∆−−=∇∇−∇∇ 2
~~~~

 

In this situation, one sees, with respect to the coframe basis ma

m

a se=θ , that 

 
aba

b

a Td ≡Γ−= θθ /\  

 

i.e.,  

 

[ ]
cba

bc

aT θθ /\Γ=  

 

Thus the torsion two-forms of this geometry are now given by aT  (instead of aτ  of the 
preceding section). We then realize that  

 

0=aDθ  

 
Next, we see that 

 

( )
ba

b

bc

b

a

c

a

b

ba

b

ba

b

aa

R

d

dddTd

θ

θ

θθθ

/\

/\/\

/\/\

*

2

−=

ΓΓ+Γ−=

Γ+Γ−==

 

 

But, as always, 02 =ad θ , and therefore we have  

 

0/\* =ba

bR θ  

 

Note that in this case, 0* ≠a

bR  (in general) as 

 

[ ]
a

be

e

cd

a

bcdR ΓΓ= 2*
 

 
will not vanish in general. We therefore see immediately that 

 

0*** =++ a

dbc

a

cdb

a

bcd RRR  

 
giving the integrability condition 

 

[ ] [ ] [ ] 0=ΓΓ+ΓΓ+ΓΓ a

de

e

bc

a

ce

e

db

a

be

e

cd  
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Meanwhile, the condition 
 

0=adT  

gives the integrability condition 
 

[ ] [ ] [ ] 0=Γ∂+Γ∂+Γ∂ a

dbc

a

cdb

a

bcd  

 

Contracting, we find 
 

[ ] 0=Γ∂ c

abc  

 
It is a curious fact that the last two relations somehow remind us of the algebraic structure 

of the components of the electromagnetic field tensor in physics. 

 

Finally, from the contraction of the components d
abcB  of the Riemann-Christoffel 

curvature tensor (the Ricci tensor), one defines the regular Einstein tensor by 

 

abababab EkBgBG ≡−≡
2

1ˆ  

 

where k  is a physical coupling constant and abE  are the components of the so-called 

energy-momentum tensor. We therefore see that 

 

[ ] [ ]( )

[ ] [ ] [ ]( )ced

cde

f

ef

d

cd

cee

dec

cd

ab

d

cd

c

ab

c

acb

c

abc

d

cb

c

adab

KKggg
k

KKKK
k

E

+ΓΓ+Γ∇−

Γ−Γ∇+∇−=

2ˆ4
2

1

2ˆ2ˆ1

 

 

In addition, the following two conditions are satisfied: 
 

[ ]

0ˆ

0

=∇

=
ab

a

ab

E

E
 

 

We have now seen that, in this approach, the energy-momentum tensor (matter field) is 
fully geometrized. This way, gravity arises from torsional (spin) interaction (possibly on 

the microscopic scales) and becomes an emergent phenomenon rather than a fundamental 
one. This seems rather speculative. However, it may have profound consequences. 

 

 
1.6  Spin frames 
 
A spin frame is described by the anti-symmetric tensor product 
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( ) [ ]kikiikkiik θθθθθθθθ ,
2

1
/\

2

1
≡=⊗−⊗=Ω  

 
In general, then, for arbitrary vector field fields A  and B , we can form the commutator 

 

[ ] ABBABA ⊗−⊗=,  

 

Introducing another vector field C , we have the so-called Jacobi identity 
 

[ ][ ] [ ][ ] [ ][ ] 0,,,,,, =++ BACACBCBA  

 

With respect to the local coordinate basis elements iiE ∂=  of the tangent space )(MTx , 

we see that, astonishingly enough, the anti-symmetric product [ ]BA,  is what defines the 

Lie (exterior) derivative of B  with respect to A : 
 

[ ] ( )
k

k

i

ik

i

i

A
X

ABBABABL
∂

∂
∂−∂=≡ ,  

 

(Note that [ ] 0, == AAALA .) The terms in the round brackets are just the components 

of our Lie derivative which can be used to define a diffeomorphism invariant (i.e., by 

taking 
iiA ξ=  where ξ  represents the displacement field in a neighborhood of 

coordinate points).  

 

Furthermore, for a vector field U  and a tensor field T , both arbitrary, we have (in 

component notation) the following: 
 

s

m

mij

rkl

j

m

sim

rkl

i

m

smj

rkl

m

r

sij

mkl

m

l

sij

rkm

m

k

sij

rml

msij

rklm

sij

rklU

UTUTUT

UTUTUTUTTL

∂−−∂−∂−

∂++∂+∂+∂=
...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

...

...

...
 

 
It is not immediately apparent whether these transform as components of a tensor field or 

not. However, with the help of the torsion tensor and the relation 

 

[ ]( ) mi

km

i

km

i

k

mi

mk

i

k

i

k UUUUU Γ−Γ−∇=Γ−∇=∂ 2  

 

we can write 
 

[ ] [ ] [ ]

[ ] [ ] [ ]
psij

mkl

m

rp

psij

rkm

m

lp

psij

rml

m

kp

pmij

rkl

s

mp

psim

rkl

j

mp

psmj

rkl

i

mp

s

m

mij

rkl

j

m

sim

rkl

i

m

smj

rkl

m

r

sij

mkl

m

l

sij

rkm

m

k

sij

rml

msij

rklm

sij

rklU

UTUTUT

UTUTUT

UTUTUT

UTUTUTUTTL

...

...

...

...

..

...

...

...

...

...

...

...

...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

...

2...22

2...22

...

...

Γ−−Γ−Γ−

Γ++Γ+Γ+

∇−−∇−∇−

∇++∇+∇+∇=
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Hence, noting that the components of the torsion tensor, namely, [ ]
i

klΓ , indeed transform 

as components of a tensor field, it is seen that the sij

rklU TL ...

...  do transform as components of 

a tensor field. Apparently, the beautiful property of the Lie derivative (applied to an 
arbitrary tensor field) is that it is connection-independent even in a curved manifold. 

 

If we now apply the commutator to the frame basis of the base manifold ∞C  itself, we 
see that (for simplicity, we again refer to the coordinate basis of the tangent space 

)(MTx ) 

 

[ ] ( )
k

k

ai

i

b

k

bi

i

aba
X

XXXX
∂

∂
∂∂∂−∂∂∂=ωω ,  

 

Again, writing the tetrads simply as a

i

a

i

i

a

i

a xeXe ∂=∂= , , we have 

 

[ ] ( )
k

k

ab

k

baba
X

ee
∂

∂
∂−∂=ωω ,  

i.e.,  

 

[ ] [ ] c

c

abba ωωω Γ−= 2,  

 

Therefore, in the present formalism, the components of the torsion tensor are by 

themselves proportional to the so-called structure constants c

abΨ  of our rotation group: 

 

[ ] ( )iab

i

ba

c

i

c

ab

c

ab eee ∂−∂−=Γ−=Ψ 2  

 

As before, here the tetrad represents a spin potential. 

 

Also note that  
 

0=ΨΨ+ΨΨ+ΨΨ e

db

d

ca

e

da

d

bc

e

dc

d

ab  

 
We therefore observe that, as a consequence of the present formalism of differential 

geometry, spin fields (objects of anholonomicity) in the manifold 
∞C  are generated 

directly by the torsion tensor.  

 
 

2. The New Semi-Symmetric Unified Field Theory of the Classical 

Fields of Gravity and Electromagnetism 

 
In this part, we develop our semi-symmetric unified field theory on the foundation of 

Riemann-Cartan geometry presented in Sections 1.1-1.6. We shall concentrate on 
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physical events in the four-dimensional space-time manifold 4S  with the usual 

Lorentzian signature. As we will see, the choice of a semi-symmetric Cartan torsion will 

lead to a set of physically meaningful field equations from which we will obtain not only 
the generally covariant Lorentz equation of motion of a charged particle, but also its 

generalizations.  

 

We are mainly concerned with the dynamical equations governing a cluster of individual 

particles and their multiple field interactions and also the possibility of defining 
geometrically and phenomenologically conserved currents in the theory. We will 

therefore not assume dimensional (i.e., structural) homogeneity with regard to the 

particles. Classically, a point-like (i.e., structureless) particle which characterizes a 

particular physical field is only a mere idealization which is not subject, e.g., to any 

possible dilation when interacting with other particles or fields. Still within the classical 
context, we relax this condition by assigning a structural configuration to each individual 

particle. Therefore, the characteristic properties of the individual particles allow us to 
describe a particle as a field in a physically meaningful sense. In this sense, the particle-

field duality is abolished on the phenomenological level as well. In particular, this 

condition automatically takes into account both the rotational and reflectional symmetries 

of individual particles which have been developed separately. As such, without having to 

necessarily resort to particle isotropy, the symmetry group in our theory is a general one, 
i.e., it includes all rotations about all possible axes and reflections in any plane in the 

space-time manifold 4S . 
 

The presence of the semi-symmetric torsion causes any local (hyper)surface in the space-

time manifold 
4S  to be non-orientable in general. As a result, the trajectories of 

individual particles generally depend on the twisted path they trace in 
4

S . It is important 
to note that this torsion is the generator of the so-called microspin, e.g., in the simplest 

case, a spinning particle is simply a point-rotation in the sense of the so-called Cosserat 

continuum theory [10]. As usual, the semi-symmetric torsion tensor enters the curvature 

tensor as an integral part via the general (semi-symmetric) connection. This way, all 

classical physical fields, not just the gravitational field, are intrinsic to the space-time 
geometry.  

 

 

2.1  A semi-symmetric connection based on a semi-simple (transitive) rotation group 
 
Let us now work in four space-time dimensions (since this number of dimensions is most 

relevant to physics). For a semi-simple (transitive) rotation group, we can show that 
 

[ ] dc

abcdba θϕγωω ∈−=,  

 

where ( ) abcdabcd g εdet=∈  are the components of the completely anti-symmetric four-

dimensional Levi-Civita permutation tensor and ϕ  is a vector field normal to a three-
dimensional space (hypersurface) ( )t∑  defined as the time section .0 constxct ==  
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(where c  denotes the speed of light in vacuum) of 4S  with local coordinates Az . It 

satisfies 1±== γϕϕ a

a  and is given by 

 

d

C

c

B

b

A

ABC

abcda λλλγϕ ∈∈=
6

1
 

 
where 

 

B

A

B

a

a

A

b

a

b

a

A

a

b

A

A

a

A

a

a

A

a

A zx

δλλ

ϕϕγδλλ

λλ

=

−=

∂≡∂≡ ,

 

 

More specifically, 

 
c

C

b

B

a

AabcddABC λλλϕ ∈=∈  

 

from which we find 

 

abcdd

C

c

B

b

A

aABCabcd Λ+∈=∈ ϕλλλ  

 

where 
 

( ) e

cabedbaecdaebcdabcd ϕϕϕϕγ ∈+∈+∈=Λ  

 

Noting that 0=Λ d

abcd ϕ , we can define a completely anti-symmetric, three-index, four-

dimensional “permutation” tensor by 

 
C

c

B

b

A

aABC

d

abcdabc λλλγϕ ∈=∈≡Φ  

 

Obviously, the hypersurface ( )t∑  can be thought of as representing the position of a 

material body at any time t . As such, it acts as a boundary of the so-called world-tube of 

a family of world-lines covering an arbitrary four-dimensional region in 4S . 

 
Meanwhile, in the most general four-dimensional case, the torsion tensor can be 

decomposed according to 
 

[ ] [ ] [ ]( ) [ ]

0

0

6

1

3

1

==

=++

+Γ∈∈+Γ−Γ=Γ

a

ba

a

ab

cabbcaabc

dab

cdp

st

rtqsd

pqr

c

abd

d

bd

c

a

d

ad

c

b

c

ab

QQ

QQQ

Qgggδδ
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In our special case, the torsion tensor becomes completely anti-symmetric (in its three 

indices) as  
 

[ ]
d

abed

cec

ab g ϕγ ∈−=Γ
2

1
 

  

from which we can write 

 

[ ]cdb

abcda Γ∈−=
3

1
ϕ  

 

where, as usual, [ ] [ ]
e

cdbecdb g Γ=Γ . Therefore, at this point, the full connection is given by 

(with the Christoffel symbols written explicitly) 

 

( ) dc

abdbdaabddab

cdc

ab gggg ϕγ ∈−∂+∂−∂=Γ
2

1

2

1
 

 

We shall call this special connection “semi-symmetric”. This gives the following simple 

conditions: 
 

( ) ( )

[ ]

[ ]

( )( )g

K

gggg

a

b

ba

b

ab

b

ab

dc

abd

c

ab

c

ab

bdaabddab

cdc

ab

c

ab

detln

0

2

1

2

1

∂=Γ=Γ

=Γ

∈−=Γ=

∂+∂−∂=∆=Γ

ϕγ  

 

Furthermore, we can extract a projective metric tensor ϖ  from the torsion (via the 

structure constants) as follows: 
 

[ ] [ ]
d

cb

c

adbaabab g ΓΓ=−= 2ϕϕγϖ  

 
In three dimensions, the above relation gives the so-called Cartan metric. 

 
Finally, we are especially interested in how the existence of torsion affects a coordinate 

frame spanned by the basis aω  and its dual bθ  in a geometry endowed with distant 

parallelism. Taking the four-dimensional curl of the coframe basis 
bθ , we see that 

 

[ ]
( ) qp

a

nm

qpnm

aaa

ee

Td

ϕγ

θθ

∂∈−=

==∇ 22,
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where m

m

b

b s ∂=∇=∇ θ  and 
( )

abcdabcd

g
ε

det

1
=∈ . From the metricity condition of 

the tetrad (with respect to the basis of nE ), namely, 0=∇ m

ab e , we have 

 

bnc

ab

m

c

m

ab

b

p

pnm

a

n

m

c

c

ab

m

ab

eeeee

ee

Γ=∂=∂

Γ=∂

η
 

 
It is also worthwhile to note that from an equivalent metricity condition, namely, 

0=∇ b

ma e , one finds 

 
c

n

b

m

a

bc

a

mn eee Γ−=∂  

 

Thus we find 

 

[ ] [ ] ed

a

bc

bcdea ωϕγθ Γ∈−=∇,  

 

In other words, 
 

[ ] ed

a

bc

bcdeaa
dT ωϕγθ Γ∈−==

2

1
 

 

For the frame basis, we have 
 

[ ] [ ] edbca

bcde

a ωϕγω Γ∈−=∇ ,  

 

At this point it becomes clear that the presence of torsion in 4S  rotates the frame and 

coframe bases themselves. The basics presented here constitute the reality of the so-

called spinning frames.  

 
 

2.2  Construction of the semi-symmetric field equations 

 
In the preceding section, we have introduced the semi-symmetric connection  

 

( ) dc

abdbdaabddab

cdc

ab gggg ϕγ ∈−∂+∂−∂=Γ
2

1

2

1
 

 

based on the semi-simple rotation group 
 

[ ] dc

abcdba θϕγωω ∈−=,  
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Now we are in a position to construct a classical unified field theory of gravity and 

electromagnetism based on this connection. We shall then call the resulting field 
equations semi-symmetric, hence the name semi-symmetric unified field theory. (Often 

the terms “symmetric” and “asymmetric” refer to the metric rather than the connection.) 
 

Using the results we have given in Section 1.3, we see that the curvature tensor built from 

our semi-symmetric connection is given by  
 

( ) ( ) g

f

def

abgec

def

acgeb

e

c

d

abe

e

b

d

ace

d

abc

d

abc ggBR ϕϕδδγϕϕγ −+∇∈−∇∈−=
2

3ˆˆ
2

1
 

 

As before, the generalized Ricci tensor is then given by the contraction 
c

acbab RR = , i.e., 

 

( ) dc

cd

abbaababab gBR ϕγϕϕγ ∇∈−−−= ˆ
2

1

2

1
 

 
Then we see that its symmetric and anti-symmetric parts are given by 

 

( ) ( )

[ ] cd

cd

abab

baababab

FR

gBR

∈−=

−−=

γ

ϕϕγ

2

1

2

1

 

 
where  

 

( )abbaabF ϕϕ ∂−∂=
2

1
 

 

are the components of the intrinsic spin tensor of the first kind in our unified field theory. 

Note that we have used the fact that abbaabba ϕϕϕϕ ∂−∂=∇−∇ ˆˆ . 

 
Note that if 

 
aa

0δγϕ =  

 

then the torsion tensor becomes covariantly constant throughout the space-time manifold, 

i.e., 
 

[ ] [ ] 0ˆ =Γ∇=Γ∇ c

abd

c

abd  

 

This special case may indeed be anticipated as in the present theory, the two fundamental 

geometric objects are the metric and torsion tensors. 
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Otherwise, in general let us define a vector-valued gravoelectromagnetic potential A  via 

 
aa Aλϕ =  

 

where 
 

2/1









=

a

a AA

γ
λ  

 

Letting γλ2=∈ , we then have 

 

( ) ( )cdcd

cd

abbaababab HFAAgBR +∈−∈−−= λγ
2

1

2

1
 

 
where 

 

( )

( )λλ abbaab

abbaab

AAH

AAF

∂−∂−=

∂−∂=

2

1

2

1

 

 

We may call abF  the components of the intrinsic spin tensor of the second kind. The 

components of the anti-symmetric field equation then take the form 

 

[ ] ( )cdcd

cd

abab HFR +∈−= λγ
2

1
 

 
Using the fact that 

 

0=∂+∂+∂ abccabbca FFF  

 
 we obtain 

 
[ ] 0ˆ =∇ ab

a R  

 

The dual of the anti-symmetric part of the generalized Ricci tensor is then given by 

 

[ ]
[ ] ( )abba

cd

abcdab RR ϕϕ ∂−∂−=∈=
2

1

2

1~
 

 

i.e., 
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[ ] ( )ababab HFR +−= λ~
 

 

We therefore see that 
 

[ ] [ ] [ ] 0
~~~

=∂+∂+∂ abccabbca RRR  

 
At this point, the components of the intrinsic spin tensor take the following form: 

 

[ ]( )ab

cd

abcdab HRF 2
2

1
+∈−=

λ
 

 
The generalized Einstein field equation is then given by 

 

abababab TkRgRG =−=
2

1
 

 

where k  is a coupling constant, 
2

3
−== BRR

a

a  (in our geometrized units) is the 

generalized Ricci scalar, and abT  are the components of the energy-momentum tensor of 

the coupled matter and spin fields. Taking the covariant divergence of the generalized 

Einstein tensor with the help of the relations 
 

[ ]
[ ]

ab

bb

ab

aaa

acb

ac

ab

a

ab

a

F

BRR

RRR

ϕϕϕ ∇−=

∂=∂=∇

Γ−∇=∇

ˆ
2

1

ˆ

 

 
we obtain 

 
ab

a

ab

a

ab

a FGG ϕγ−∇=∇ ˆ  

 
On the other hand, using the integrability condition 

 

0ˆˆ =∂∂∈=∇∇∈ dcb

abcd

dcb

abcd ϕϕ  

 

we have 

 

( )ba

a

ab

a

ab

a BR ϕϕγ ∇−∇=∇ ˆ
2

1ˆˆ  

 

Therefore 
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( ) ab

a

b

a

aa

a

bab

a

ab

a FGG ϕγϕϕϕϕγ −∇+∇+∇=∇ ˆˆ
2

1ˆˆ  

 

where, as before, BgBG ababab
2

1ˆ −= . But as 0ˆˆ =∇ ab

a G , we are left with  

 

( ) ab

a

b

a

aa

a

bab

a FG ϕγϕϕϕϕγ −∇+∇=∇ ˆˆ
2

1
 

 

We may notice that in general the above divergence does not vanish. 
 

We shall now seek a possible formal correspondence between our present theory and 

both general relativistic gravitomagnetism and Maxwellian electrodynamics. We shall 
first assume that particles do not necessarily have point-like structure. Now let the rest 

(inertial) mass of a particle and the speed of light in vacuum (again) be denoted by m  
and c , respectively. Also, let φ  represent the scalar gravoelectromagnetic potential and 
let ag  and aB  denote the components of the gravitational spin potential and the 

electromagnetic four-potential, respectively. We now make the following ansatz: 

 

aaaaaa BggvA

mc

g
const

++∂=+∂=

−==

φφ

λ

0

2
2

.
 

 

where v  is a constant and  

 

( ) ( ) esnmg π+++= 121  

 

is the generalized gravoelectromagnetic charge. Here n  is the structure constant (i.e., a 

volumetric number) which is different from zero for structured particles, πs  is the spin 

constant, and e  is the electric charge (or, more generally, the electromagnetic charge). 

 

Now let the gravitational vorticity tensor be given by  

 

( )abbaab gg ∂−∂=
2

1
ω  

 

which vanishes in spherically symmetric (i.e., centrally symmetric) situations. Next, the 

electromagnetic field tensor is given as usual by 
 

baabab BBf ∂−∂=  

 

The components of the intrinsic spin tensor can now be written as 
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ababab fF
2

1
−= ω  

 

As a further consequence, we have 0=abH  and therefore 

 

[ ]
[ ]cd

cd

ab

cd

abcdab R
g

mc
RF ∈=∈−=

2

2

1

λ
 

 

The electromagnetic field tensor in our unified field theory is therefore given by 

 

[ ] 







−∈−= abcd

cd

abab R
g

mc
f ω

2

2  

 

Here we see that when the gravitational spin is present, the electromagnetic field does 
interact with the gravitational field. Otherwise, in the presence of a centrally symmetric 

gravitational field we have 
 

[ ]cd

cd

abab R
g

mc
f ∈−=

22
 

 

and there is no physical interaction between gravity and electromagnetism. 

 

 

2.3  Equations of motion 
 

Now let us take the unit vector field ϕ  to represent the unit velocity vector field, i.e., 
 

ds

dx
u

a
aa ==ϕ  

 

where ds  is the (infinitesimal) world-line satisfying 

 

ds

dx

ds

dx
g

ba

ab=1  

 

This selection defines a general material object in our unified field theory as a 

hypersurface ( )t∑  whose world-velocity u  is normal to it. Indeed, we will soon see 

some profound physical consequences.  

 

Invoking this condition, we immediately obtain the following equation of motion: 
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ab

a

b
a

a

bab

a F
Ds

uD
uuG ϕγγ −








+∇=∇

2

1
 

 

where we have used the following relations: 
 

( )

[ ]

( )
a

b

bcba

bc

a
cba

bc

a
a

b

b
a

dc

abd

c

ab

c

ab

c

ab

uuuu
ds

du
uu

ds

du
uu

Ds

uD

u

∇=∆+=Γ+=∇=

∈−=Γ

∆=Γ

ˆ

2

1
γ  

 

 

What happens now if we insist on guaranteeing the conservation of matter and spin? 
Letting 

 

0=∇ ab

a G  

 

and inserting the value of λ , we obtain the equation of motion 
 

b

b

aba

b

a

uuuF
mc

g

Ds

uD
∇−−=

2
 

 

i.e., the generalized Lorentz equation of motion 

 

( ) b

b

aba

b

a

b

a

uuuf
mc

g

Ds

uD
∇−−= ω2

2 2
 

 

From the above equation of motion we may derive special equations of motion such as 

those in the following cases:   

 
1. For an electrically charged, non-spinning, incompressible, structureless (point-

like) particle moving in a static, centrally symmetric gravitational field, we have 

0,0,0,0,0,0,0 =≠=∇==≠≠ abab

a

a funsem ωπ . Therefore its equation 

of motion is given by 

 

ba

b

a

uf
mc

e

Ds

uD
2

=  

 
             which is just the standard, relativistically covariant Lorentz equation of motion.  

 

2. For an electrically charged, spinning, incompressible, structureless particle 
moving in a non-static, spinning gravitational field, we have 
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0,0,0,0,0,0,0 ≠≠=∇=≠≠≠ abab

a

a funsem ωπ . Therefore its equation 

of motion is given by 

                          

( ) ( ) ba

b

a

b

a

ufe
mc

s

Ds

uD
ωπ 2

1
2

−
+

=  

 

3. For a neutral, non-spinning, incompressible, structureless particle moving in a 

static, centrally symmetric gravitational field, we have 

0,0,0,0,0,0,0 ===∇===≠ abab

a

a funsem ωπ . Therefore its equation 

of motion is given by the usual geodesic equation of motion 

                          

0=
Ds

uD
a

 

 

            In general, this result does not hold for arbitrary incompressible bodies with 
structure.  

 

4. For a neutral, static, non-spinning, compressible body moving in a static, non-
spinning, centrally symmetric gravitational field, we have 

0,0,0,0,0,0,0 ==≠∇≠==≠ abab

a

a funsem ωπ . Therefore its equation 

of motion is given by 
                          

b

b

a
a

uu
Ds

uD
∇−=  

 

            which holds for non-Newtonian fluids in classical hydrodynamics. 
 

5. For an electrically charged, non-spinning, compressible body moving in a static, 
non-spinning, centrally symmetric gravitational field, we have 

0,0,0,0,0,0,0 =≠≠∇≠=≠≠ abab

a

a funsem ωπ . Therefore its equation 

of motion is given by 

                          

( ) b

b

aba

b

a

uuufe
mc

mn

Ds

uD
∇−

+
=

2

1
 

 

            which holds for a variety of classical Maxwellian fluids. 

 

6. For a neutral, spinning, compressible body moving in a non-static, spinning 

gravitational field, the parametric (structural) condition is given by 

0,0,0,0,0,0,0 ≠=≠∇≠≠=≠ abab

a

a funsem ωπ . Therefore its equation 

of motion is given by 
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( ) b

b

aba

b

a

uuu
mc

mn

Ds

uD
∇−

+
−= ω

2

1
 

      

Note that the exact equation of motion for massless, neutral particles cannot be directly 
extracted from the general form of our equation of motion. 

 

We now proceed to give the most general form of the equation of motion in our unified 

field theory. Using the general identity (see Section 1.3) 

 

[ ] [ ]
cdb

a

a

cd

d

c

c

da

abab

a RRgG Γ+Γ=∇ 2  

 

we see that 

 

[ ] acdeb

cdea

cdb

cda

ab

a uRRG 






 ∈+∈=∇
2

1
γ  

 

After some algebra, we can show that the above relation can also be written in the form 
 

[ ] dbca

bcd

a

uR
Ds

uD
∈−=  

 
Note that the above general equation of motion is true whether the covariant divergence 

of the generalized Einstein tensor vanishes or not. Otherwise, let ba

b

a G∇=Φ  represent 

the components of the non-conservative vector of the coupled matter and spin fields. Our 

equation of motion can then be written alternatively as 

 

aebcda

bcde

a

uR
Ds

uD
Φ−∈= γ

2

1
 

 

Let us once again consider the conservative case, in which 0=Φ a . We now have the 

relation 

 

 

b

b

aba

b

ebcda

bcde uuuF
mc

g
uR ∇−−=∈

2

2

2

1
 

 

i.e., 
 

b

b

aba

b

cdha

cdhb uuuF
mc

g
R ∇−=







 +∈
2

4

2

1
 

 

For a structureless spinning particle, we are left with 
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( )
0

14
2

=






 +
+∈ ba

b

cdha

cdhb uFe
mc

s
R π  

 

for which the general solution may read 
 

( )
( ) ab

cde

abcde

cde

bacdeab SRR
s

mc
eF +∈−∈

+
=

π14

2

 

 

where 0≠abS  are the components of a generally asymmetric tensor satisfying 

 

( )
bcde

bacde

b

ab uR
s

mc
euS ∈

+
−=

π14

2

 

 

In the case of a centrally symmetric gravitational field, this condition should again allow 
us to determine the electromagnetic field tensor from the curvature tensor alone. 

 

Now, with the help of the decomposition 

 

( )

( ) Rgg

RgRRgRCR

ac

d

bab

d

c

d

cabab

d

c

d

bacac

d

b

d

abc

d

abc

δδ

δδ

−+

−−++=

6

1

2

1

 

 

we obtain the relation 

 

[ ] [ ]( )






 −+∈=∈ cdabbdacbcda

bcde

bcda

bcde RgRgCR
2

1
 

 

However, it can be shown that the last two terms in the above relation cancel each other, 

since 
 

[ ] [ ] ( )ecce

accdab

bcde

bdac

bcde uugRgRg ∂−∂−=∈=∈ γ  

 
therefore we are left with the simple relation 

 
bcda

bcde

bcda

bcde CR ∈=∈  

 

If the space-time under consideration is conformally flat (i.e., 0=d

abcC ), we obtain the 

following integrability condition for the curvature tensor: 

 

0=∈ bcda

bcde R  
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It is easy to show that this is generally true if the components of the curvature tensor are 

of the form 
 

( ) abcdbcadbdacabcd PBggggR +−=
12

1
 

 

where 

 

( ) rs

rsbcadbdacabcd FFggggP −= ε  

 

with ε  being a constant of proportionality. In this case, the generalized Ricci tensor is 
completely symmetric, i.e., 
 

( ) ( )

[ ] 0

12
4

1

=

+=

ab

rs

rsabab

R

FFBgR ε
 

 
We also have 

 
ab

ab FFBR ε12+=  

 

such that the variation 0=Sδ  of the action integral 

 

( ) xdFFBgxdRgS ab

ab

44 12)(det)(det ε+== ∫ ∫∫∫∫ ∫∫∫  

 

where xdgdxdxdxdxgdV 43210 )(det)(det ==  defines the elementary four-

dimensional volume,  gives us a set of generalized Einstein-Maxwell equations. Note that 

in this special situation, the expression for the curvature scalar is true irrespective of 

whether the Ricci scalar B  is constant or not. Furthermore, this gives a generalized 
Einstein space endowed with a generally non-vanishing spin density. Electromagnetism, 

in this case, appears to be inseparable from the gravitational vorticity and therefore 

becomes an emergent phenomenon. Also, the motion then becomes purely geodesic: 

 

0

0

=

=∆+

b

ab

cba

bc

a

uF

uu
ds

du

 

 
 

2.4  The conserved gravoelectromagnetic currents of the theory 
 
Interestingly, we can obtain more than one type of conserved gravoelectromagnetic 

current from the intrinsic spin tensor of the present theory.  
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We have seen in Section 2.2 that the intrinsic spin tensor in the present theory is given by 

 

[ ]cd

cd

abab R
g

mc
F ∈=

2

 

 

We may note that 
 

0ˆˆ =∇≡ ba

b

a Fj  

 

which is a covariant “source-free” condition in its own right.  
 

Now, we shall be particularly interested in obtaining the conservation law for the 
gravoelectromagnetic current in the most general sense. Define the absolute (i.e., global) 

gravoelectromagnetic current via the total covariant derivative as follows: 

 

bcd

abcdba

b

a
R

g

mc
Fj ∇∈=∇≡

2

 

 

Now, with the help of the relation 

 

[ ] [ ] [ ]( )bd

d

caad

d

bccd

d

abcabbcaabc FFFFFF Γ+Γ+Γ−=∇+∇+∇ 2  

 

we see that 
 

[ ]
d

be

ab

cd

cea
uRg

g

mc
j δ

26
−=  

 
Simplifying, we have 

 

[ ]
b

aba
uR

g

mc
j

26
=  

 

At this moment, we have nothing definitive to say about gravoelectromagnetic charge 

confinement. We cannot therefore speak of a globally admissible gravoelectromagnetic 
current density yet. However, we can show that our current is indeed conserved. As a 

start, it is straightforward to see that we have the relative conservation law 

 

0ˆ =∇ a

a j  

 

However, this is not the most desired conservation law as we are looking for the most 
generally covariant one. 

 

Now, with the help of the relations 
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[ ] [ ]( )

[ ]
da

bcd

a

bc

ae

e

bceb

e

ac

abcd

abc

abcd

u

FFF

∈−=Γ

Γ+Γ∈−=∇∈

γ
2

1  

 
we obtain 

 
[ ]

a

abab

a uFR 2−=∇  

 

Therefore 

 
[ ] 0=∇ ab

ab Ru  

 

Using this result together with the fact that  

 

[ ] 0
2

1
=∈−=∇ cdab

abcd

ba

ab FFuR γ  

 

we see that 

 

[ ] [ ]( ) 0
6 2

=∇+∇=∇ ba

abab

ab

a

a uRRu
g

mc
j  

 
i.e., our gravoelectromagnetic current is conserved in a fully covariant manner. 

 

Let us now consider a region in our space-time manifold in which the 

gravoelectromagnetic current vanishes. We have, from the boundary condition 0=aj , 

the governing equation 

 

[ ] 0=b

ab uR  

 

which is equivalent to the following integrability condition: 

 

( ) 0=∂−∂∈ cddca

abcd uuu  

 

In three dimensions, if in general 0≠ucurl , this gives the familiar integrability condition 

 

0=⋅ ucurlu  

 

where the dot represents three-dimensional scalar product. 

 

We are now in a position to define the phenomenological gravoelectromagnetic current 
density which shall finally allow us to define gravoelectromagnetic charge confinement. 
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However, in order to avoid having extraneous sources, we do not in general expect such 

confinement to hold globally. From our present perspective, what we need is a relative 
(i.e., local) charge confinement which can be expressed solely in geometric terms.  

 
Therefore we first define the spin tensor density (of weight 2+ ) as 

 

( ) ( ) [ ]cd

abcdabab
Rg

g

mc
Fgf εdetdet

2

=≡  

 
The phenomenological (i.e., relative) gravoelectromagnetic current density is given here 

by 

 

( )( ) [ ]cd

abcd

b

ab

b

a
Rg

g

mc
fj εdet

2

∂=∂=  

 

i.e., 
 

( ) [ ]cdrsb

rsabcda
Rgg

g

mc
j ∂= ε

2

2

 

 
Meanwhile, using the identity 

 

rsa

csbrbc

a gggg ∂−=∂  

 
we see that 

 

( ) ( ) ( ) ( )rs

brsarsb

rs

a gggg ∂∂=∂∂  

 

Using this result and imposing continuity on the metric tensor, we finally see that 

 

( ) ( ) ( ) ( ) [ ] 0
2

1

2

2

=






 ∂∂−∂∂=∂ cdrsb

rs

apqbrsa

pqrsabcda

a Rgggggg
g

mc
j ε  

 

which is the desired local conservation law. In addition, it is easy to show that 
 

0ˆ =∇ a

a j  

 

Unlike the geometric current represented by aj , the phenomenological current density 

given by aj  corresponds directly to the hydrodynamical analogue of a 

gravoelectromagnetic current density if we set 

 

( ) aa ugj ρdet=  



 38 

 

which defines charge confinement in our gravoelectrodynamics. Combining this relation 

with the previously given equivalent expression for 
aj , we obtain  

 

( ) [ ]cdrsb

rs

a

abcd
Rggu

g

mc
∂∈=

2

2

ρ  

 
i.e., 

 

[ ]cd

h

hba

abcd
Ru

g

mc
Γ∈=

2

ρ  

 
for the gravoelectromagnetic charge density. Note that this is a pseudo-scalar. 

 

At this point, it becomes clear that the gravoelectromagnetic charge density is generated 

by the properties of the curved space-time itself, i.e., the non-unimodular character of the 

space-time geometry, for which 1)(det ≠g  and 0≠Γh

hb , and the torsion (intrinsic spin) 

of space-time which in general causes material points (whose characteristics are given by 

g ) to rotate on their own axes such that in a finite region in the space-time manifold, an 

“individual” energy density emerges. Therefore, in general, a material body is simply a 

collection of individual material points confined to interact gravoelectrodynamically with 

each other in a finite region in our curved space-time. More particularly, this can happen 
in the absence of either the electromagnetic field or the gravitational vorticity, but not in 

the absence of both fields. To put it more simply, it requires both local curvature and 

torsion to generate a material body out of an energy field. 

 

 

3. Final Remarks 
 
At this point, we may note that we have not considered the conditions for the balance of 

spin (intrinsic angular momentum) in detail. This may be done, in a straightforward 
manner, by simply expressing the anti-symmetric part of the generalized Ricci tensor in 

terms of the so-called spin density tensor as well as the couple stress tensor. This can then 

be used to develop a system of equations governing the balance of energy-momentum in 

our theory. Therefore, we also need to obtain a formal representation for the energy-

momentum tensor in terms of the four-momentum vector. This way, we obtain a set of 
constitutive equations which characterize the theory. 

 

This work has simply been founded on the feeling that it could be physically correct as a 
unified description of physical phenomena due to its manifest simplicity. Perhaps there 

remains nothing more beyond the simple appreciation of that possibility. It is valid for a 
large class of particles and (space-time) continua in which the coordinate points 

themselves are allowed to rotate and translate. Since the particles are directly related to 
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the coordinate points, they are but intrinsic objects in the space-time manifold, just as the 

fields are.  
 

It remains, therefore, to consider a few physically meaningful circumstances in greater 
detail for the purpose of finding particular solutions to the semi-symmetric field 

equations of our theory. 
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