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Abstract—An attempt is made to describe that mechanical
vibrations are not only responsible for evoking spacetime reso-
nances, as Einstein-Cartan-Evans theory predicts, but could also
provide a possible interface for transferring energy from the
quantum vacuum to a rotating shaft.

I. INTRODUCTION

The assembly around a magnetic-wind mill, presented in
[1], may appear unusual at first glance. However, it essentially
serves as a practical experimental setup for investigating a
process of scavenging energy from the quantum vacuum, as
outlined by the ECE theory [2].

The inventor in [1] claims that the magnetic mill generates
useful output power in the kilowatt range. Additionally, it
is worth noting that this assembly represents an evolution
of earlier work involving transparent, fully open, low-power
prototypes [3]1.

As a sequel to [4], analysis of [1] is advanced in the present
paper, with the aim of evaluating if mechanical vibrations
could provide a means of transferring energy to the mill shaft.

We start in Section II by reviewing the setup assemblage.
In Section III, we derive expressions for the global forces
actuating on the magnets, on the basis of an extended Lorentz
Force law that takes elementary magnetic dipole moments into
account. Next, owing to the low rigidity of the assembled
structure, we show in Section IV that the rotor angular
vibrations, which are dynamically generated proportionally to
radial force acceleration, could add net mechanical energy
to the rotating parts. Finally, we conclude the analysis in
Section V, including a numerical example to verify that the
calculated rotor angular vibrations have realistic small values,
as expected.

II. A PECULIAR EXPERIMENTAL SETUP

The flux mill in [1] has a hollow cylindrical rotor that is
assembled from a thin-metal can, and a hinge-like split stator
surrounding the rotor. On the rotor’s surface, 64 PM disks
(short cylindrical-shaped permanent magnets) are fixed in helix
staggering (4 rings with 16 magnets per ring). The 2-part stator
has also 64 magnets in total (4 rings per part, 8 magnets per
split ring), facing the rotor magnets with the same magnetic
polarity.

1The results obtained in this paper are also relevant for [3].

The two parts of the stator are joined together by a non-rigid
clip, which leads to small mechanical vibrations during opera-
tion. All magnet disks have the same dimensions (5mm/2mm),
with some iron filings around to facilitate crossing when
magnets meet during rotation. Moreover, a flywheel is added
to the rotor shaft to smooth rotational speed.

The flux mill shaft is mechanically driven by a belt cou-
pled to the shaft of a 127VAC single-phase motor (washing-
machine motor type). This motor is electrically fed by one
of the two AC outlets of a DC/AC power electronic inverter
(from 12V DC to 110V/60Hz square-wave AC).

In turn, the electronic inverter’s 12VDC inlet is powered
by the rectified DC voltage from an alternator (a automobile
starter motor/generator), while a 12V battery is also linked in
parallel to the same DC contacts. Finally, the alternator’s shaft
is also belt-coupled to the flux mill shaft.

Altogether, we have a loop concerning energy circulation,
where the expected prime-mover is the magnetic flux mill.

To begin with operation, the electronic inverter DC voltage
is set by the 12V battery, in order to bring all the shafts up to
nominal speed (as in an automobile). Subsequently, the battery
cables are disconnected. From this moment on, there are no
other conventional sustainable power sources in the setup.

After reaching stable operation, a variety of loads are
connected to the electronic inverter’s second AC outlet (like
light bulbs, drills, electric saw, etc.), and enough energy is
unfolded, as shown in the video.

Given the ”vibrational” approach stated in [4], there should
be an additional, exterior magnetic field in the environment of
the flux mill, other than the own magnetic fields created by
the stator and rotor magnets.

This external B field is evoked from spacetime resonances,
and has a circularly polarized flux density waveform with
general expression (in ccw convention):

~Bext = BS [cos(κz − ωt)~ax − sin(κz − ωt)~ay] , (1)

where ~ax,~ay are orthonormal vectors referenced to a stationary
frame, and ω the rotor shaft angular velocity. In the case of a
rotor with radius rC and height hC , where n equally separated
rings with η magnets per ring are inlaid, the wavenumber κ
in (1) is found to become

κ =
n− 1

η

π

hC
. (2)
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III. (NON)CONSERVATIVE MAGNETIC FORCES

Fig. 1 shows a situation in which a magnetic dipole moment
that represents a PM disk, ~µC , is attracted/repelled by an
external magnetic field, ~Bext [T ], wherein the disk is moved.
As a result, work will be done in the process.

The center coordinates of the magnet disk are referenced
to orthonormal vectors (~ax,~ay,~az), together with associated
radial and rotational vectors

~ar = cosφ~ax + sinφ~ay, (3)
~aφ = − sinφ~ax + cosφ~ay,

according to the convention for rotation angle φ.
In permanent magnets, the magnetic field arises from in-

trinsic elementary spin dipole moments in the material [5]. As
such, the PM disk is assumed to have homogeneous volumetric
density of magnetic dipole moments, M [Am2/m3], with
M = Bre/µ0, where Bre [T ] is the remanent magnetization
of the material, and µ0 = 4π10−7 [H/m] the permeability of
free space.

Further, as an approximation, we also consider that in a
spacial disk volume, the external B field has approximately
the same value as at the center. Consequently, a PM disk, with
radius RD and height hD, is modeled as single dipole moment,
~µC , which represents the superposition of all elementary spin
dipole moments in the disk volume pointing out in the same
direction, with

‖ ~µC ‖= µC = πR2
DhDM. (4)

In Fig. 1, ~µC with coordinates (xC , yC , zC) is free to rotate
with constant radius rC and angular displacement φ around the
axis ~az . That is to say,

xC = rC cosφ , (5)
yC = rC sinφ ,

and
~µC = µC ~ar . (6)

Superposed to φ, small angular disturbances, φ′S in Fig. 1,
take place, representing shaft angular vibrations, which arouse
when a rotor magnet crosses the stator magnets in proximity,
as considered later.

According to [5], in order to analyze the interaction between
the dipole moment ~µC and the field ~Bext, the classical Lorentz
Force formula has to be extended with one more component
as

~F = q ~Eext + q~v × ~Bext + ~∇(~µC · ~Bext). (7)

The term ~∇(~µC · ~Bext) is capable of performing work, what
is not the case for q~v × ~Bext.

A research question in this discussion paper is, if the mag-
netic force introduced by the ~∇(~µS · ~Bext) term is conservative.
It will be the case if there is zero net work done when moving
the dipole moment ~µC through the field ~Bext, following the
closed cyclic path 0 ≤ φ ≤ 2π. If not, then net energy will be
taken from the external magnetic field.

~ay

~ax
~az

~ar
~aφ

~az

rC

0

φ+ φ′S

yC

~µC

zC

xC

C
~Bext

Fig. 1: Magnetic dipole moment, ~µC , which models a PM
disk in rotational motion with angle φ and constant radius
rC , through an external magnetic field, ~Bext. Small angular
disturbances, φ′S , are also present.

IV. MECHANICAL VIBRATIONS MEET MAGNETIC
OSCILLATIONS

As previously mentioned, a circularly polarized magnetic
flux density waveform is assumed for the external B field,
which is generated by spacetime resonances.

Essentially, due to the low rigidity of the mill frame,
there is an oscillation of the radial distance between rotor
and stator magnets and therefore of the force between them.
Hence, the own magnetic fields created by the rotor and stator
magnets, and, consequently, also the external B field, are
slightly distorted by mechanical vibrations. This oscillation
contains any harmonics of the rotation frequency, but for sake
of simplicity we restrict to the ground frequency.

So, in the sequence, we consider that the external B field
is radial in direction2 and varying with the angle φ, the angle
of the rotational motion of the rotor magnets. Since the stator
magnets are distinct, there should also be angular components,
although symmetric to the positions of the magnets. Anyway,
these angular components are neglected, because they do not
contribute to the net rotational force3.

Therefore, as an extension of (1), the external B field at
(xC , yC , zC) is described by

~Bext = Bext [cosφ~ax + sinφ~ay] , (8)

with φ = ωt− κzC , while

Bext = BS +B′S cos(ηφ), (9)

where BS and B′S are constant, and B′S � BS .
The term B′S cos(ηφ) in (9) is a first-order approximation

for the field magnitude oscillations, when ~µC (that models
one rotor magnet) cyclically crosses over η stator magnets in
a ring, for 0 ≤ φ ≤ 2π.

2i.e., ~Bext = Bext ~ar , with variable Bext.
3Angular components in ~Bext are tangential to ~µC , vanishing in (7).
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Without loss of generality, zC ≡ 0 is chosen for (8),
meaning that the focus is just in one of the stator magnet
rings.

A. Magnetic force components

Defining
F = ~µC · ~Bext, (10)

it follows from (6) and (8) that

F = µC (BS +B′S cos(ηφ)) . (11)

Correspondingly, the resulting force on the magnetic dipole
moment ~µC is obtained with reference to (7) :

~FC = ~∇F . (12)

The required gradients in (12) can be calculated as function
of the rotation angle φ with

~FC =
∂F/∂φ
∂xS/∂φ

~ax +
∂F/∂φ
∂yS/∂φ

~ay, (13)

where, from (11),

∂F
∂φ

= −ηµCB′S sin(ηφ), (14)

and, in regard to (5),

∂xS/∂φ = −rC sinφ, (15)
∂yS/∂φ = rC cosφ.

Respecting cylindrical coordinates, ~FC is given by

~FC = Fr ~ar + Fφ ~aφ,

Fr = Fx cosφ+ Fy sinφ, (16)
Fφ = −Fx sinφ+ Fy cosφ.

After substitution of (15) into (13), it follows from (16) that

Fr =
∂F
∂φ

cosφ

−rC sinφ
+
∂F
∂φ

sinφ

rC cosφ

= − 2

rC

∂F
∂φ

cos(2φ)

sin(2φ)
, (17)

Fφ = −∂F
∂φ

sinφ

−rC sinφ
+
∂F
∂φ

cosφ

rC cosφ

=
2

rC

∂F
∂φ

, (18)

which leads to, in view of (14),

Fr = F0
sin(ηφ) cos(2φ)

sin(2φ)
, (19)

Fφ = −F0 sin(ηφ), (20)

with
F0 = 2

ηµCB
′
S

rC
. (21)

A plot of (19)-(20) for η = 16 is shown in Fig. 2. It can be seen
that the magnet assembly geometry brings about impulsive
acceleration for the radial forces4.

4Asymptotic behaviour of (19).
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Fig. 2: Radial (Fr) and rotational (Fφ) forces. Normalized
Eqs.(19)-(20) with η = 16.

B. Rotor angular vibration

The vibrating rotational angle, φ′S in Fig. 1, is due to the
superposition of a variety of mechanical perturbations. Be that
as it may, a primary assumption in this paper is to consider
that φ′S has a component that is dynamically aroused by the
acceleration of radial forces in the flux mill.

Therefore, since stator and rotor radial forces are similar,
an expression for infinitesimal increments of φ′S is written as

dφ′S = λ
∂Fr
∂φ

dφ, (22)

where λ is a constant of proportionality, intrinsic to the
assemblage mechanical rigidity, and, with reference to (19),

∂Fr
∂φ

= −F0

[
2

sin(ηφ)

sin2(2φ)
− η cos(ηφ) cos(2φ)

sin(2φ)

]
. (23)

A plot of (23) for η = 16 is illustrated in Fig. 3.
Owing to (22), the vibrating rotational angle is determined

with

φ′S = λ

∫ φ

0

∂Fr
∂φ

dφ , (24)

and its peak-to-peak magnitude, ∆φ′S , ascertained from

∆φ′S = max(φ′S)−min(φ′S) , 0 ≤ φ ≤ 2π. (25)

C. Energy increments

Work is done by Fφ, the angular force component in (20),
upon the dipole moment ~µC at each linear increment dφ′S .
Since ~µC is located with radius rC around a pivot axis, a
infinitesimal energy increment equal to

dQ′S = Fφ rC dφ
′
S (26)

is, therefore, added to the rotating system parts.
In relation to (18) and (22), (26) is found to become

dQ′S = 2λ

(
∂F
∂φ

)(
∂Fr
∂φ

)
dφ. (27)
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Fig. 3: Rate-of-change of the radial force in Fig.(2). Normal-
ized Eq.(23) with η = 16.

Taking (14) and (23) into account, after some manipulations
it results from (27) that

∂Q′S
∂φ

= Q0
sin(ηφ)

sin(2φ)

[
2

sin(ηφ)

sin(2φ)
− η cos(ηφ) cos(2φ)

]
(28)

with
Q0 = 8

λ(ηµCB
′
S)2

rC
. (29)

A plot of (28) for η = 16 is shown in Fig. 4. It can be seen that
the average of ∂Q′S/∂φ is not zero. Asymmetry in the energy
transfer to the rotating shaft occurs mainly about the regions
with impulsive acceleration (see Fig. 2). As a consequence,

Q′S =

∫ 2π

0

∂Q′S
∂φ

dφ > 0 , (30)

meaning that, after each complete turn, a net mechanical
energy increase equal to Q′S is brought to the rotor shaft.

V. NUMERICAL EXAMPLE

The primary parameter for quantification of the analysis in
the previous sections is B′S , the oscillating magnitude of the
magnetic flux aroused by mechanical vibrations.

If a working setup is available for open research, it should
be possible to measure the value of B′S . Alternatively, if
∆φ′S is measured (the peak-to-peak magnitude of the angular
vibration), the value of B′S can be fetched by try-and-error
iterations, following the procedure below. Based on the value
of B′S , all the other coefficients for the previous equations can
be obtained.

The geometric dimensions from Table 1 are applied in the
sequence, being similar to the ones in [1].

For instance, if it is desired to have a flux mill that delivers
P =500W mechanical power out of the rotor shaft at 1000rpm,
the necessary total mechanical energy per turn, say QΣ, at
ω = 2π

60 1000 [rad/s], should be

QΣ = P/ω = 4.77 [J ]. (31)
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Fig. 4: Oscillations in energy transfer as function of the shaft
angular position. Normalized Eq.(28) with η = 16.

TABLE I: Parameters and geometrical dimensions

Parameter Value Description
Bre [T] 1.42 remanent magnetization NFeB 52
RD [mm] 2.5 PM disk radius
hD [mm] 2.0 PM disk height
rC [mm] 40 rotor radius
hC [mm] 45 rotor height
n [-] 4 number of rotor rings with PM’s
η [-] 16 number of PM’s per ring
P [W] 500 rotor mechanical output power
rpm [turns/min] 1000 shaft rotation speed

Since there are 64 (= n · η) magnets inlaid on the rotor, the
required energy increment per turn per magnet will be

Q′S =
QΣ

64
= 74.6 [mJ ]. (32)

Regarding (28), it results for η = 16 that

Q′S
Q0

=
1

Q0

∫ 2π

0

∂Q′S
∂φ

dφ = 50.27 , (33)

⇒ Q0 =
1

50.27
Q′S = 0.0015. (34)

To proceed, an attempt value for B′S is needed. Let’s try B′S =
80mT, which is a small quantity if, for instance, the remanent
flux density of the magnets in Table 1 is taken as reference
(Bre = 1.42T).

Continuing,

F0 = 2
ηµCB

′
S

rC
= 2.90 , (35)

λ =
1

8

rC
(ηµCB′S)2

Q0 = 0.0022 , (36)

and the vibrating angle φ′S is calculated from (24):

φ′S = λ

∫ φ

0

∂Fr
∂φ

dφ , 0 ≤ φ ≤ 2π , (37)

as shown in Fig. 5.
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Fig. 5: Angular rotor disturbances. Eq.(24) with η = 16 and
B′S = 80mT.
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Fig. 6: Peak-to-peak angular vibration magnitude superposed
on the rotor shaft , as function of oscillations in the magnetic
flux magnitude. Eq.(25) with η =16 and P =500W at 1000rpm.

At last, inspecting Fig. 5, we get with (25) that

∆φ′S = 0.0067π = 1.20o , (38)

confirming that transfer of energy from the quantum vacuum
could be realized based on narrow rotational vibrations in the
construction of the flux mill.

Fig. 6 shows the sensitivity of ∆φ′S with respect of B′S . The
higher B′S , the narrower the vibrations needed for generating
the same power of 500W at 1000rpm.

VI. CONCLUSION

Applying the concepts of [4] to the situation of [1], it is
hypothesized that mechanical vibrations and magnetic flux

oscillations are cooperative in a magnetic-wind mill. The
underlying premises are: (a) the magnitude of the external
magnetic flux bears an oscillating radial component due to
the low rigidity of the mechanical construction, and (b) the
rotational motion has a vibrating angular component propor-
tional to the acceleration of dynamic radial forces. In this
way, a path is suggested for describing the transfer of energy
from the quantum vacuum to the mill shaft.

A numerical example is detailed to check if the calculated
peak-to-peak magnitude of the rotor’s angular vibration has a
small realistic value.
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