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The scientific mind is the same
as the poetic mind and musical mind.
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Preface

The vast impact of this monograph among the best in the world of the physical
sciences and engineering shows that one cannot stop the march of ideas, in
the words of Victor Hugo, nothing stands between science and the freedom
of thought, blind censorship always fails in a dismal way. Intolerance and
scorn always gives way to enlightenment and acceptance of a new truth. The
scientific imagination is no different from poetic or musical imagination. The
paper UFT 313 on www.aias.us and www.upitec.org is the theme for many
variations, producing an objectively powerful post Einsteinian paradigm shift,
in the words of Alwyn van der Merwe. The theme is geometry, the closest thing
to eternity that the human intellect has devised. Geometry is unchanging, a
kind of objective perfection upon which to build variations with hypotheses of
physics. The variations are rigorously tested at every stage, with the use of
computer algebra whenever possible.

History always repeats itself as generation after generation finds its own
voice. For example on July 3rd 1822 Schubert produced a short prose piece
called “Mein Traum”, or “My Dream”, a kind of prelude to the songs in Win-
terreise, Winter’s Journey: “I wandered away to a far, far land ...... through
the long, long years I sang my songs ...... and before I knew it I was in that
circle from which the loveliest melody sounded. I felt the whole measure of
eternal bliss compressed, as it were, into a moment’s space.” He died just short
of his thirty second birthday on 19th November 1828, having produced over
a thousand works, many of them unparalleled masterpieces. Earlier, in the
seventeenth century, Henry Vaughan produced the lines: “I saw eternity the
other night, / Like a great ring of pure and endless light, / All calm as it
was bright.” Both the musical and poetic mind record discoveries made in an
instant which last for centuries, a flash of light can last an eternity, a melody
can be composed in an instant and last forever.

We know that ECE theory will last indefinitely, because the scientometrics
show that the interest has reached a high, constant plateau, and in some ways
the interest is still increasing after fifteen years (March 2003 to present). So the
theory has passed one test of history very quickly, the acid test of permanence.
Schubert was less lucky, apart from his small intellectual circle of good friends
he was unknown in his lifetime until Schumann started to play his music and
publish his work. For more than a century he was still regarded as a songwriter,
until his true place in history emerged. One has to wander into a far, far land
to rid the mind of bad ideas, received ideas, then one finds one’s own voice in
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PREFACE

science, music or poetry, or any area of the human intellect as it strives ever
onward, generation after generation.

Schubert and Brahms always asked who dare follow Beethoven or Mozart
or Haydn. The answer though was always there. Beethoven changed music
after Mozart had achieved a perfection of a kind. Then Schubert changed
music after Beethoven had achieved a perfection of another kind, and so it
goes on. Who dares challenge the dogma of standard physics? The answer is
already here. All humanity can share in the song, millions already do.

In writing my part of this book, all acknowledgment is due to the colleagues,
who are like Schubert’s group of friends. In particular Dr. Horst Eckardt, who
has developed the use of computer algebra and graphics literally to a fine
art, checked everything for over a decade, and added works of his own with
Dr. Douglas Lindstrom. The other main co author is the eminent scholar
and critic Stephen Crothers, so we make a harmonious string quartet. The
orchestra consists of Fellows and staff of AIAS / UPITEC, particular thanks
are due to Dave Burleigh, Gareth Evans, Alex Hill, Robert Cheshire, Steve
Bannister, Kerry Pendergast, Alwyn van der Merwe, Jose Croca, Bo Lehnert,
Simon Clifford, Norman Page, Bob Fritzius, Franklin Amador, Russ Davis and
Axel Westrenius, amid many others. Special thanks to Manfred Feiger for the
artistic design of the book cover and Jakob Jungmaier for precise typesetting.

Craig Cefn Parc, 2017 Myron W. Evans
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Chapter 1

Introduction

The first volume of this book [1] (see also [2] - [24]), is entitled “Principles of
ECE Theory: A New Paradigm Shift of Physics”, (PECE), a paradigm shift
based on geometry. “Ubi materia ibi geometria”, “where there is matter there
is geometry” was a saying coined by Johannes Kepler several hundred years
ago. The teaching of ECE on www.aias.us and www.upitec.org has made
a tremendous impact on physics and the great paradigm shift has developed
rapidly. PECE covered the development up to early 2014. Since then a hun-
dred further papers have appeared so it is timely and important to review the
major advances contained in them, beginning with UFT 313. This paper devel-
oped the rigorous second Bianchi identity using the Jacobi and Ricci identities.
This was the method used by Bianchi and earlier by Ricci, However, spacetime
torsion was unknown in their time so they proceeded with a curvature based
theory. UFT 313 rigorously corrects their work for the presence of torsion, first
inferred by Cartan and others in the early twenties. By basing the correction
in the fundamental Jacobi identity, a rigorous new identity emerges, named
the Jacobi Cartan Evans (JCE) identity purely in order to distinguish it from
other identities in the literature.

The first and by now famous development of the second Bianchi identity
in UFT 88 has made its way around the best universities in the world because
it is the first paper to realize that the structure of the Einsteinian general rel-
ativity is changed completely and fundamentally by torsion. The ECE theory
is based on torsion, and from the outset re-established the correct geometry.
UFT 88 was followed by UFT 99, which uses the commutator method to show
that if torsion is zero then curvature is zero. So neglect of torsion means that
the Einstein theory is fundamentally erroneous. The Einsteinian curvature is
zero, so its gravitational field is zero, reductio ad absurdum. About a dozen
definitive proofs were spun off from UFT 99 and all have been read avidly for
nearly a decade, without any objection. Nothing could be a clearer demonstra-
tion of the complete failure of the Einstein theory. It was an influential theory
in its time, but progress means that it is now obsolete. The UFT papers now
show many faults in the Einstein theory, which is greatly improved by ECE 2.

It was decided to base ECE 2 on the JCE identity because it in turn is
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based on the rigorous Jacobi identity. This required the use of the Evans tor-
sion identity of UFT 109, and of the Ricci identity generalized for torsion. The
tensor algebra of UFT 313 must be translated to vector algebra in order to
define the geometry of the ECE 2 field equations. These are field equations of
gravitation, electrodynamics, fluid dynamics and indeed any area of physics,
a demonstration of the fundamental meaning of a generally covariant unified
field theory. This translation was carried out in UFT 314 and forms part of
chapter two on geometry. Chapter two is a synopsis of UFT 313, UFT 314
and UFT 354. The latter shows that correct consideration of torsion in the
fundamental theorem of metric compatibility completely changes the relation
between connection and metric used by Ricci, Bianchi, and later Einstein.
UFT 354 concludes that the torsion tensor must be completely antisymmetric,
in all three indices, a new discovery in fundamental geometry that goes be-
yond Cartan’s work. This means that Einstein’s field equation is completely
incorrect. The field equation of Einstein was abandoned after the realizations
and implications of UFT 88 were accepted worldwide.

The ECE 2 vector geometry of UFT 314 produces a structure which is su-
perficially similar to the electromagnetic field equations of special relativity,
which are Lorentz covariant in a Minkowski spacetime as is well known. In
Minkowski spacetime however, both torsion and curvature are zero. The ECE 2
field equations are generally covariant in a mathematical space in which both
torsion and curvature must be non zero. This is a fundamental requirement
of any geometry in any mathematical space of any dimension. As shown in
UFT 99, the requirement follows from the action of the commutator of covari-
ant derivatives on any tensor, for example a vector. The result of the operation
of the commutator on the vector is to define the curvature and torsion simul-
taneously. This is demonstrated in full detail in UFT 99 and in the definitive
proofs. The latter are simplifications of UFT 99. The obsolete physics removed
the torsion tensor arbitrarily by use of a symmetric connection and continued
to neglect torsion incorrectly. The symmetric connection implies a symmetric
commutator, which vanishes, so the curvature vanishes if torsion is arbitrarily
neglected. ECE does not use an arbitrary “censorship” of torsion.

UFT 315 introduced a new fundamental axiom, which showed that the
field equations could be based on curvature as well as torsion. This realization
greatly extends the scope of the original ECE field equations. The curvature
based equations were based on the JCE identity. This new axiom is the basis
of ECE 2 and is developed in chapter three, on electrodynamics and gravita-
tion, and following chapters. The field equations were simplified by removal
of internal Cartan indices so their mathematical structure is also simplified.
It looks identical to the Maxwell Heaviside (MH) field equations but with big
differences and advantages. The key difference is that the field equations of
ECE 2 are generally covariant in a space with non zero torsion and curvature.
The general covariance of ECE 2 reduces to Lorentz covariance, but the under-
lying mathematical space is one in which the torsion and curvature are both
zero. This was given the name “ECE 2 covariance”.

The ECE 2 field equations of electrodynamics, gravitation, fluid dynamics,
and any subject area of physics are all Lorentz covariant in a space with
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CHAPTER 1. INTRODUCTION

finite torsion and curvature. The property of Lorentz covariance has the great
advantage of allowing the use of properties which up to the emergence of ECE 2
were associated with special relativity in Minkowski spacetime. For example
the hamiltonian and lagrangian, and the Lorentz force equation. However,
ECE 2 has a considerably richer structure than special relativity, and ECE 2
has the overwhelming advantage of being able to unify what are thought to
be the fundamental force fields of nature: gravitation, electromagnetism, weak
and strong nuclear fields. Unification takes place with ECE 2 covariance.

ECE 2 offers a much greater flexibility in the definitions of fields and po-
tentials than ECE, so there is considerable scope for development. Chapter
three of this book exemplifies this development with UFT 315 to UFT 319,
which define the ECE 2 field equations of gravitation and electromagnetism
and draw several completely original inferences. In UFT 316 the earlier, tor-
sion based, axioms of ECE theory were augmented by curvature based axioms,
and this is the key advance given the appellation ECE 2 theory. For example
the magnetic flux density can be defined in ECE 2 as being proportional to
spin torsion and also as being proportional to spin curvature. In the first case
the proportionality is the scalar magnitude of vector potential, in the second
case it has the units of magnetic flux, which is weber. Similarly the electric
field strength is defined in ECE 2 as being proportional to the orbital torsion,
and also as being proportional to the orbital curvature. Another key insight
of UFT 316 is that internal Cartan indices can be removed, resulting in field
equations that look identical to the Maxwell Heaviside equations (MH), but
these are field equations defined in a space with finite torsion and curvature.
This is the essence of ECE 2 theory.

In UFT 317 the complete set of equations of ECE 2 electrodynamics is given
without internal Cartan indices. In general the magnetic charge current den-
sity is non zero, and vanishes if and only if a choice of spin connection is made.
The set of equations is based directly on Cartan geometry and has the same
format as the MH equations in a mathematical space with non zero torsion
and curvature. This poperty defines ECE 2 covariance and also defines special
relativity in a space with non zero torsion and curvature. In ECE 2, both
torsion and curvature are always non zero as required by fundamental consid-
erations of the commutator described already. This is true of any geometry in
any dimension in any mathematical space. The space of ECE 2 is four dimen-
sional - spacetime. The spin connection enters directly in to these equations.
In UFT 317 the continuity equation of ECE 2 is derived from geometry and a
new set of field potential relations is defined.

In UFT 318 the ECE 2 field equations of gravitation are derived from the
same Cartan geometry as the field equations of electromagnetism, so a gener-
ally covariant unified field theory is derived. The gravitational field equations
are also ECE 2 covariant, and have the same overall properties as electromag-
netism. Example properties are given in UFT 318: antisymmetry, equivalence
principle, counter gravitation and Aharonov Bohm effects. Newtonian gravi-
tation is a small part of ECE 2 gravitational field theory.

This fact is emphasized in UFT 319, which develops Newtonian and non
Newtonian gravitation. The Newtonian limit of ECE 2 gravitational theory
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is defined, and the ECE 2 antisymmetry law used to derive the equivalence
principle between gravitational and inertial mass. Non Newtonian effects in
ECE 2 are exemplified by light deflection due to gravitation, simple estimates of
photon mass are made. These major advances have made UFT 319 a popular
paper, currently being read about one thousand two hundred times a year
from combined sites www.aias.us and www.upitec.org. The combined ECE 2
papers used as the basis of this book are currently being read about forty one
thousand times a year.

The advances made in UFT 313 to UFT 319 form the basis for chapters two
and three of this book. Chapters Five and Six develop the ECE 2 covariance
principle from relevant source papers. In UFT 320 the gravitomagnetic Lorentz
transform is developed on the basis of ECE 2 covariance, which is defined as
Lorentz covariance in a space with finite torsion and curvature. Applying the
ECE 2 transform to the field tensor of gravitation produces the Lorentz force
equation, which is in general relativistic. The gravitomagnetic Biot Savart and
Ampère laws are developed for comparison. The laws are applied to planar
orbits to find the gravitomagnetic field of the orbit and the current of mass
density of the planar orbit. The method is generally valid and can be used on
all scales.

In UFT 322, perihelion precession and light deflection due to gravitation
are developed with the gravitomagnetic Ampère law of ECE 2. The ECE 2
gravitomagnetic field is developed for dynamics in general and for an orbit
in three dimensions. For two dimensional orbits the perihelion precession and
light deflection due to gravitation are expressed in terms of the gravitomagnetic
field of the relevant mass. In UFT 323 orbital theory in general is developed in
terms of the Lorentz transform of the field tensor of ECE 2 gravitomagnetic and
dynamic theories. The concept of Lorentz transform is extended to the Lorentz
transform of frames. In ECE 2 the Lorentz transform becomes a concept of
general rather than special relativity. The theory is applied to an a priori
calculation of the perihelion precession in terms of the gravitomagnetic field.

In UFT 324 the relativistic Binet equation (RBE) is inferred and used to
solve the Lorntz force equation of ECE 2. The RBE is inferred from the
Sommerfeld hamiltonian and relativistic orbital velocity calculated straight-
forwardly. The orbital velocity equation is used to derive the velocity curve
of a whirlpool galaxy and also to give a precise explanation of the deflection
of light and electromagnetic radiation due to gravity. These major advances
are collected in Chapter Seven and overthrow the obsolete Einstein theory. In
UFT 325 the solution of the ECE gravitomagnetic Lorentz force equation is
expressed in terms of the ECE 2 covariant hamiltonian and lagrangian. The
lagrangian is the classical Sommerfeld lagrangian and is solved by computer al-
gebra and relativistic methods. A scatter plot method is used to infer the true
precessing orbit. It is shown that this is not the result of the Einstein theory,
which develops severe difficulties. Therefore ECE 2 gives the exactly correct
result both for perihelion precession and light deflection due to gravitation.

Chapter Five deals with quantization of ECE 2 and applications to spec-
troscopy. Several new types of spectroscopy are inferred. Quantization is
based on ECE 2 covariance, so the quantization of special relativity can be

6



CHAPTER 1. INTRODUCTION

applied but in a space with finite torsion and curvature. Various schemes of
quantization are developed in UFT 327, resulting in new types of shifts that
can be tested experimentally. A new axiom of ECE 2 relativity is introduced,
that the laboratory frame velocity of the ECE transform is bounded above by
c/
√

2, where c is the universal constant of standards laboratories known as
the vacuum speed of light. This axiom allows a particle of mass m (notably
the photon) to move at c, thus removing many obscurities of standard special
relativity. The axiom results immediately in the experimentally observed light
deflection due to gravitation, the “twice Newton” result.

In UFT 327 the ECE 2 metric is used to produce an orbital equation which
can be interpreted as a precessing ellipse. This result confirms the demon-
stration that the lagrangian and hamiltonian of ECE 2 relativity produce a
precessing ellipse without any further assumption. None of the assumptions
used in the obsolete Einstein theory are needed. This is a healthy development
because the Einstein theory is riddled with errors, being fundamentally incor-
rect due to neglect of torsion. UFT 327 provides an important demonstration
of the failings of the Einstein theory. Its claims to produce a precessing ellipse
fail qualitatively (i.e. completely) due to poor methods of approximation.

In UFT 328 the existence of precessing orbits from ECE 2 relativity is con-
firmed using both numerical and theoretical methods. These are used to find
the true precessing orbit using ECE 2 covariance. The true orbit is given by si-
multaneous solution of the ECE 2 lagrangian and hamiltonian using numerical
methods. The only concepts used are the infinitesimal line element, lagrangian
and hamiltonian of ECE 2 relativity. The analytical problem is in general in-
tractable, but the numerical solution is precise. The elaborate and incorrect
methods of Einsteinian relativity are clearly obsolete.

In UFT 329 new types of electron spin resonance (ESR) and nuclear mag-
netic resonance (NMR) spectroscopy are developed. These are of general util-
ity in atoms and molecules, and in all materials. The novel resonance terms are
expressed in terms of the W potential of ECE 2, which has the same units as
the A potential of the obsolete Maxwell Heaviside (MH) theory. UFT 330 de-
velops hyperfine spin orbit coupling theory by replacing the restrictive Dirac
approximation. This method reveals the presence of several novel spectro-
scopies of great potential utility. New schemes of quantization are proposed
and order of magnitude estimates made of the hyperfine splitting.

UFT 331 develops a new type of relativistic Zeeman splitting by discard-
ing the Dirac approximation. The Zeeman effect develops an intricate new
structure, which is illustrated graphically and illustrated with the 2p to 3d
(visible) transitions, and 4p to 5d (infra red) transitions. The former splits
into nine lines, the latter into forty five lines. These can be resolved to pro-
duce an entirely new spectroscopy. This is a popular paper, heavily studied.
It challenges the traditional approach in many ways. UFT 332 follows with the
ECE 2 theory of the anomalous Zeeman effect, producing novel spectroscopic
structure that can be tested experimentally. This paper shows that the ninety
year old Dirac approximation implies that the classical hamiltonian vanishes.
This unphysical result means that a lot of hyperfine structure has been missed.
If this structure exists, it is of great use in the laboratory, if it does not exist
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there is a crisis in relativistic quantum mechanics. It is become clear that
Dirac carefully chose approximations in a subjective manner in order to give
the experimental results. Einstein also used this subjective approach in an
incorrect manner.

UFT 333 develops new and rigorous schemes of quantization of ECE 2 rel-
ativity. Each scheme leads to different spectral results. The method used
by Dirac in the twenties used a subjective choice of approximation, which is
taken literally means that the classical hamiltonian always vanishes, an absurd
result. Dirac avoided the problem by subjective laundering of the approxima-
tions. UFT 333 reveals the fragility of this method because it shows that
different rigorous schemes of approximation give different spectra. This means
that relativistic quantum mechanics is not rigorous, it is a transitional theory
to an as yet unknown theory. Einstein regarded quantum mechanics in much
the same way, and rejected the Copenhagen interpretation out of hand, with
de Broglie, Schroedinger and others.

UFT 334 develops a rigorous test of relativistic quantum mechanics with
ESR. Two example set ups are used: an electron beam and the anomalous
Zeeman effect in atoms and molecules. UFT 335 follows up by considering the
effect on NMR of discarding the Dirac approximation, and replacing it with
rigorous ECE 2 quantization. There are measurable effects on the chemical
shift, spin orbit and spin spin interaction.

UFT 336 begins a new phase of development of vacuum ECE 2 theory by
considering the ECE 2 vacuum needed for the Aharonov Bohm (AB) effect.
This vacuum is traditionally defined as regions where potentials are non zero
but in which fields are zero. It is shown that the AB vacuum contains an
ECE 2 vector potential which can cause ESR and NMR in the absence of
a magnetic field. It should be possible to test these effects experimentally
by using a variation of the Chambers experiments. UFT 337 follows up by
showing that the ECE 2 theory is richly structured AB type vacuum and can
be defined entirely by the spin connection. The ECE 2 vacuum can be used to
explain the radiative corrections, so the theory can be tested experimentally.
The minimal prescription is defined by the W potential of the ECE 2 vacuum,
which is developed in terms of a Tesla vacuum and a relativistic particle flux.

UFT 338 introduces the ECE 2 vacuum particle and defines its mass by us-
ing experimental data on the anomalous g factor of the electron. The vacuum
particle mass can be used to define the g factor to any precision. The severe
limitations of the Dirac theory of the electron are discussed. These limita-
tions are due to the fact that the Dirac approximation, applied directly and
literally, means that the classical hamiltonian always vanishes. The theory of
UFT 338 replaces quantum electrodynamics, which is riddled with subjectivity
and which cannot be tested experimentally without the arbitrary adjustment
of variables and the arbitrary removal of infinities known as renormalization.

UFT 339 follows up by developing the dynamics of the ECE 2 vacuum par-
ticle. The relativistic hamiltonian of the ECE 2 vacuum is inferred, and the
Hilbert constant is reinterpreted as the velocity of the vacuum particle multi-
plied by the universal power absorption coefficient of UFT 49 on www.aias.us.
It is argued that the universe is an equilibrium between elementary and vac-
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CHAPTER 1. INTRODUCTION

uum particles. This process has no beginning and no end. The mass of the
universe is made up of the combined mas of elementary and vacuum particles
and there is no “missing mass” as in the obsolete physics. Some examples are
given of Compton type scattering processes which could be used for experi-
mental testing. UFT 340 follows up by developing the ECE 2 theory of the
Lamb shift from the ECE 2 vacuum, an AB vacuum made up of wave-particles
which can transfer energy and momentum to elementary particles. A survey
on the vacuum papers is given in chapter Six.

UFT 341 is a paper that deals with gravitational amplification by stimu-
lated emission of radiation (GASER). This apparatus design is based on that
of the LASER, and stems from the ECE 2 gravitational field equations, whose
structure is the same as the ECE electromagnetic field equations. The gravi-
tational Rayleigh Jeans and Stefan Boltzmann laws are inferred. The energy
density of gravitational radiation, if observed without controversy, is propor-
tional to the fourth power of temperature. It is reasonable to assume that
gravitons are absorbed and emitted by atoms and molecules. It may become
possible to amplify gravitational radiation to the point where it becomes ob-
servable in the laboratory.

UFT 342 begins a series of papers on cosmology and develops an exact
and simple description of light deflection due to gravitation and perihelion
precession from ECE 2 relativity. Therefore ECE 2 unifies the now obsolete
special and general relativity. UFT 343 develops Thomas and de Sitter pre-
cession from the concepts introduced in UFT 342 and using the foundational
definition of relativistic momentum. UFT 344 develops the theory of planetary
precession as a Larmor precession produced by the torque between the ECE 2
gravitomagnetic field of the sun and the gravitomagnetic dipole moment of the
Earth or any planet. In general, any observable precession can be explained
with the ECE 2 field equations. UFT 345 follows up by applying the method
geodetic and Lense Thirring precessions using ECE 2 gravitomagnetostatics in
an ECE 2 covariant theory. The Lense Thirring calculation is in exact agree-
ment with Gravity Probe B and the geodetic precessional calculation in good
agreement. UFT 346 is a heavily studied paper and gives a general theory of
any precession in terms of the vorticity. The result is given in terms of the
tetrad and spin connection of Cartan geometry. The theory is applied to the
planetary, geodetic and Lense Thirring precessions, giving an exact agreement
in each case in terms of the vorticity of the mathematical space of the ECE 2
field equations.

In UFT 347 the precession of an elliptical orbit is considered in terms of
the ECE 2 Lorentz force equation. The method is to use ECE 2 relativity
and the minimal prescription. The hamiltonian is defined of a particle in the
presence of a gravitomagnetic vector potential with the units of velocity. The
lagrangian is calculated from the hamiltonian using the canonical momentum
and the Euler Lagrange equation used to derive the Lorentz force equation. In
the absence of gravitomagnetism this equation reduces to the Newton equation.
Any precessional frequency of any kind can be described by the precession of
the Lorentz force equation. UFT 348 follows up by considering the minimal
prescription introduced in UFT 347 in order to show that precession emerges

9



directly from the relevant hamiltonian. This is the simplest way to describe
precession. The Leibnitz force equation is augmented by terms which include
the observed precession frequency, and becomes a Lorentz force equation. For
a uniform gravitomagnetic field the force equation can be derived from a simple
lagrangian, and the former can be expressed as a Binet equation. UFT 348 is
a heavily studied paper.

UFT 349 begins the development of the ECE 2 theory of fluid dynamics and
shows that they have the same ECE 2 covariant structure as the ECE 2 equa-
tions of gravitation and electromagnetism, thus achieving triple unification in
terms of ECE 2 relativity described in Chapter Eight. The series UFT 349
to UFT 360 is very heavily studied. UFT 349 shows that spacetime turbu-
lence can be detected by its effect on a circuit such as that in UFT 311 on
www.aias.us. It is shown that Ohm’s Law and the Lorentz force equation are
intrinsic to the ECE 2 field equations, and emerge from their geometry. They
therefore have equivalents in gravitation and fluid dynamics.

UFT 350 is a posting of “Principles of ECE Theory”. UFT 351 develops
the new subject of fluid electrodynamics. The Reynolds number is incorpo-
rated into the calculations, producing the transition to turbulence. Electric
power form spacetime is a direct consequence of fluid electrodynamics. It is
shown that the Stokes and convective derivatives are examples of the Cartan
covariant derivative. The spin connection for the convective derivative is the
Jacobian and is a fundamental concept of fluid dynamics and fluid electro-
dynamics. Numerical solutions illustrate flows. UFT 352 develops a scheme
of computation and animation to calculate the electric field strength (E) and
magnetic flux density (B) imparted to a circuit from the vacuum, or spacetime.
All relevant quantities are calculated from the velocity field, which becomes
turbulent at a given Reynolds number. It is a heavily studied paper.

UFT 353 generalizes ECE 2 fluid dynamics by introducing viscous effects
using the most general format of the Navier Stokes and vorticity equations.
The resulting structure is that of ECE 2 relativity, and it is shown that the
whole of fluid dynamics can be reduced ot one wave equation. UFT 354 is
on connections of the anti symmetric and totally antisymmetric torsion tensor
and is incorporated in Chapter Two on fundamental geometry.

UFT 355 is the most heavily studied paper of the ECE 2 series at present
and introduces simple field and wave equations of fluid electrodynamics. These
describe the transfer of energy and power from a fluid spacetime, aether or
vacuum to a circuit, notably that of UFT 311. It is shown that the process
conserves total energy/momentum and total charge/current density, which are
transferred from fluid spacetime to the circuit. It is followed up by UFT 356,
another very heavily studied paper that considers the induction of spacetime
properties by material fields and potentials. It shows that spacetime is a
richly structured fluid described by fluid electrodynamics. The spacetime in
turn induces properties in a circuit. UFT 357 verifies fluid electrodynamics
experimentally by using the well known radiative corrections, known to high
precision experimentally. These include the g factors of elementary particles
such as the electron, and the Lamb shift in atomic hydrogen. The anomalous
g of the electron is explained to any precision with spacetime vorticity and the
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Lamb shift to any precision with the spacetime potential. All this is subject
of chapter Eight.

UFT 358 introduces the subject area of fluid gravitation, which is ECE 2
unification of gravitation with fluid dynamics. In fluid dynamics, the acceler-
ation due to gravity, mass density and other fundamental concepts originate
in spacetime considered as a fluid. Ultimately, all concepts are derived from a
moving frame of reference. It is shown that the main features of a whirlpool
galaxy can be described with fluid dynamics without the use of dark matter or
black holes. UFT 359 describes spacetime structure generated by Newtonian
gravitation, which is illustrated with the velocity field, vorticity, the charge
defined by the divergence of the velocity field, the vorticity (the curl of the
velocity field, the current and so on). These are illustrated with Gnuplot
graphics. This is followed up by UFT 360 which gives the generally covariant
inverse square law of all orbits, in which the acceleration due to gravity is
defined as the Lagrange or convective derivative of the orbital velocity. This
is the derivative in a moving frame of reference and is an example of the co-
variant derivative of Cartan. These results on unification of gravitation with
fluid dynamics are presented in chapter Nine.

Chapter Ten, contributed by Ulrich E. Bruchholz, presents an alternative
method of unifying Riemann geometry with electromagnetism. As a stunning
result, properties of elementary particles are obtained. Standard modellers
haven even given up to try this. Chapter Eleven was written by Stephen J.
Crothers and reviews the invalidity of Kirchhoff’s Law of thermal emission and
the non-universality thereby of Planck’s equation for thermal spectra, and the
implications for the “CMB” and Big Bang cosmology.

11
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Chapter 2

The Effect of Torsion on
Geometry

2.1 The ECE 2 Theory

The effect of torsion on Riemannian geometry is profound and far reaching.
This was not fully realized until 2003, when the Einstein Cartan Evans (ECE)
unified field theory was inferred. It gradually became clear as the ECE series of
papers progressed that the entire edifice of the Riemennian geometry collapses
if torsion is forced to vanish through use of a symmetric Christoffel symbol.
This means that Einsteinian general relativity becomes meaningless, because
the Einstein field equation is based on torsionless Riemannian geometry. Most
of the obsolete textbooks of the twentieth century do not even mention torsion,
and if they do it is regarded as a removable nuisance. These textbooks are
based on the arbitrary and unprovable assertion that torsion does not exist
because the Christoffel connection is by definition symmetric in its lower two
indices.

This meaningless dogma is based on an astonishing inflexibility of thought.
A casual glance at the mathematics of the connection shows that it is in general
asymmetric in its lower two indices. It consists of a symmetric part and an
antisymmetric part. The latter defines the torsion tensor or its equivalent
in Cartan’s differential geometry, the torsion form, a vector valued two form
antisymmetric in its lower two indices. The torsion form is defined by one
of the Maurer Cartan structure equations, and the curvature form by the
other structure equation. The torsion form is the covariant derivative of the
tetrad, and the curvature form is the covariant derivative of the Cartan spin
connection. The torsion and curvature are related by the Cartan identity
[2]- [13], and by the Evans identity, inferred in the early UFT papers. The
Evans identity is the Cartan identity for Hodge duals. The Cartan and Evans
identities are the geometrical basis of the field equations of ECE. This is a
paradigm shift which led to the first successful unified theory of physics. It
has been described by Alwyn van der Merwe as the post Einsteinian paradigm
shift, and has made an enormous impact on physics, measured accurately by

13



2.1. THE ECE 2 THEORY

the scientometrics of www.aias.us.

The second major paradigm shift occurred in UFT 313 onwards on www.

aias.us and www.upitec.org. It simplified the ECE equations and intro-
duced equations based both on torsion and curvature. The ECE 2 field equa-
tions of electrodynamics look like the obsolete Maxwell Heaviside (MH) field
equations but are written in a mathematical space in which both torsion and
curvature are non zero. This is summarized in chapter one. The second
paradigm shift is called the ECE 2 theory, which has advantages of simplicity
and greater scope. The obsolete Einstein field equation is replaced by a set
of field equations in ECE 2 theory which look like the MH field equations of
electrodynamics, but which are written in a space with finite torsion and cur-
vature. The MH theory is written in the Minkowski spacetime, which has no
torsion and no curvature and which is therefore known as the mathematical
space of special relativity, which is Lorentz covariant but not generally covari-
ant. In the most recent advances of ECE 2, made in the latter half of 2016,
the equations of fluid dynamics have also been developed as field equations
which look like the MH equations, but which are again written in a space with
finite torsion and curvature. So a triple unification has been achieved; that
of gravitation, electrodynamics and fluid dynamics, allowing the possibility of
major advances.

The groundwork for the second paradigm shift was laid down in the classic
UFT 88, which has been read several tens of thousands of times since it was
inferred in 2007. It has been read in several hundred of the world’s best uni-
versities and is an accepted classic. The quality of universities can be ranked
by webometrics, Times, Shanghai and QS world rankings for example. The
readership of ECE and ECE 2 has always been in the world’s best universities,
often in the world’s top twenty. UFT 88 was the first attempt to incorporate
torsion into the second Bianchi identity, upon which the Einstein field equa-
tion is based directly. UFT 88 shows that the incorporation of torsion changes
the identity completely, so the Einstein field equation was discarded as being
incorrect and obsolete in 2007. The scientometrics of www.aias.us (its fil-
tered statistics section and UFT 307 for example), show that the Einstein field
equation has been discarded completely by a large percentage of the colleagues
internationally. This is in itself an important paradigm shift of the history of
science, because a major theory of physics has been discarded by means of the
knowledge revolution brought about by the world wide net. Knowledge is no
longer confined within Plato’s dogmatic cave, and once it is out in the open,
a freedom to think follows and the light of reason prevails.

In UFT 99 it was shown that the well known commutator method of si-
multaneously generating the curvature and torsion tensors also proves that if
torsion vanishes, curvature vanishes. So the arbitrary removal of torsion by
the obsolete physics also removed curvature, leaving no geometry, reductio ad
absurdum, Any valid geometry must be developed in a space where torsion
and curvature are both identically non-zero. UFT 99 was supplemented by well
known definitive proofs, which simplified UFT 99 to its essence: the commuta-
tor is antisymmetric by definition. The indices of the commutator of covariant
derivative are the indices of torsion, so if torsion is forcibly removed by using
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CHAPTER 2. THE EFFECT OF TORSION ON GEOMETRY

equal indices, the commutator vanishes. In consequence the curvature also
vanishes. Removing torsion removes curvature. If curvature is removed the
entire Einsteinian theory collapses.

In UFT 109 a new identity of the torsion tensor was inferred and was named
the Evans torsion identity to distinguish it from the Evans identity of Hodge
duals that is a variation on the Cartan identity. These papers are essential
background reading for UFT 313, in which the Jacobi Cartan Evans (JCE)
identity is inferred. This is the final form of UFT 88, and fully incorporates
torsion into the second Bianchi identity using the methods used by Ricci and
Bianchi, but developing them for torsion.

Ricci and Bianchi were students and friends in the Scuola Normale Supe-
riore in Pisa. It is thought that Ricci was the first to infer the second Bianchi
identity, as a follow up to his inference of the Ricci identity. The latter must
be used to prove the second Bianchi identity. Ricci seems to have lost or
discarded his notes, so it was left to Bianchi to prove the identity in about
1902. The starting point of Bianchi’s proof was the Jacobi identity of covariant
derivatives, a very fundamental theorem which is also true in the presence of
torsion. In 1902 it was an identity of the then new group theory. It can be
written as:

([Dρ, [Dµ, Dν ]] + [Dν , [Dρ, Dµ]] + [Dµ, [Dν , Dρ]])V
κ := 0 (2.1)

where V κ is a vector in any space of any dimension, and where Dµ denotes
the covariant derivative. Consider the first term and use the Leibnitz theorem
to find that:

[Dρ, [Dµ, Dν ]]V κ = Dρ ([Dµ, Dν ]V κ)− [Dµ, Dν ]DρV
κ. (2.2)

From UFT 99:

[Dµ, Dν ]V κ = RκλµνV
λ − TλµνDλV

κ (2.3)

where Rκλµν is the curvature tensor and Tλµν the torsion tensor, defined as:

Tλµν = Γλµν − Γλνµ. (2.4)

The torsion tensor has the same indices as the commutator so if the torsion
vanishes, the commutator vanishes and in consequence the curvature vanishes,
reduction ad absurdum. The commutator is antisymmetric in its indices by
definition, and it follows that the connection is antisymmetric:

Γλµν = −Γλνµ. (2.5)

The Ricci identity must also be corrected for torsion, and becomes:

[Dµ, Dν ]DρV
κ = RκλµνDρV

λ −RλρµνDλV
κ − TλµνDλDρV

κ (2.6)

in which the commutator acts on a rank two tensor DρV
κ. Therefore as shown

in UFT 313 the first term of the Jacobi identity is:

[Dρ, [Dµ, Dν ]]V κ =DρR
κ
λµνV

λ −DρT
λ
µνDλV

κ

+RλρµνDλV
κ − Tλµν [Dρ, Dλ]V κ.

(2.7)
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Adding the other two terms of the Jacobi identity and using the Cartan iden-
tity:

DρT
λ
µν +DνT

λ
ρµ +DµT

λ
νρ := Rλρµν +Rλνρµ +Rλµνρ (2.8)

gives the Jacobi Cartan Evans (JCE) identity, an exact identity in any math-
ematical space of any dimension:

([Dρ,[Dµ, Dν ]] + [Dν , [Dρ, Dµ]] + [Dµ, [Dν , Dρ]])V
κ

=
(
DρR

κ
λµν +DνR

κ
λρµ +DµR

κ
λνρ

)
V λ

−
(
Tλµν [Dρ, Dλ] + Tλρµ [Dν , Dλ] + Tλνρ [Dµ, Dλ]

)
V κ.

(2.9)

In this identity:

(Tλµν [Dρ, Dλ] + Tλρµ [Dν , Dλ] + Tλνρ [Dµ, Dλ])V κ

=
(
Tλµν R

κ
αρλ + TλρµR

κ
ανλ + TλνρR

κ
αµλ

)
V α

−
(
Tλµν T

α
ρλ + Tλρµ T

α
νλ + Tλνρ T

α
µν

)
DαV

κ.

(2.10)

Now use the Evans torsion identity of UFT 109:

Tλµν T
α
ρλ + Tλρµ T

α
νλ + Tλνρ T

α
µλ := 0 (2.11)

to reduce the JCE identity to:

DρR
κ
λµν +DνR

κ
λρµ+DµR

κ
λνρ := Tαµν R

κ
λρα+TαρµR

κ
λνα+TανρR

κ
λµα.

(2.12)

This equation means that:

DρR
κ
λµν +DνR

κ
λρµ +DµR

κ
λνρ 6= 0. (2.13)

Q. E. D.
The original 1902 second Bianchi identity is

DρR
κ
λµν +DνR

κ
λρµ +DµR

κ
λνρ =? 0 (2.14)

and was apparently first inferred by Ricci in 1880. Eq. (2.14) is completely
incorrect because it relies on zero torsion, which means zero curvature, reductio
ad absurdum.

Unfortunately Eq. (2.14) was used uncritically by Einstein and all his
contemporaries, because torsion was unknown until Cartan and his co workers
inferred it in the early twenties.

In UFT 313 the Bianchi Cartan Evans (BCE) identity was also proven:

DµDλT
κ
νρ +DρDλT

κ
µν +DνDλT

κ
ρµ := DµR

κ
λνρ+DρR

κ
λµν +DνR

κ
λρµ.

(2.15)

This was first inferred in UFT 255. It is a development of the Cartan identity,
Eq. (2.8). If torsion is neglected the BCE identity becomes the original second
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CHAPTER 2. THE EFFECT OF TORSION ON GEOMETRY

Bianchi identity of 1902, and the Cartan identity becomes the first Bianchi
identity:

Rλρµν +Rλνρµ +Rλµνρ =? 0 (2.16)

Torsion was inferred in the early twenties by Cartan, who communicated his
discovery to Einstein. There ensued the well known Einstein Cartan corre-
spondence, but Einstein made no attempt to incorporate torsion into his field
equation. The first attempt to do so was made in the classic UFT 88, culminat-
ing in UFT 313 summarized in this chapter. The Einstein field equation, being
geometrically incorrect, cannot have inferred any correct physics. It has been
replaced by ECE, and by ECE 2 using the second paradigm shift described in
this book.

These are described as the post Einsteinian paradigm shifts by van der
Merwe. They change the entire face of physics, so the latter is currently split
into two schools of thought, the ECE 2 theory and the dogmatic and obsolete
standard model.

It is useful to develop these new tensor identities into vector identities,
because this leads to the ECE 2 field equations. Consider firstly the Evans
torsion identity of UFT 109 in Riemannian format:

Tλµν T
α
ρλ + Tλρµ T

α
νλ + Tλνρ T

α
µλ := 0. (2.17)

Replace the λ indices by a indices of Cartan geometry:

T aµν T
α
ρa + T aρµ T

α
νa + T aνρ T

α
µa := 0 (2.18)

and use:

Tαρλ = T aρλ q
α
a (2.19)

where qαa is the inverse tetrad. It follows that:

(T aµν T
b
ρa + T aρµ T

b
νa + T aνρ T

b
µa )qαb := 0 (2.20)

a possible solution of which is:

T aµν T
b
ρa + T aρµ T

b
νa + T aνρ T

b
µa = 0. (2.21)

In the notation of differential geometry Eq. (2.21) is a wedge product

T bρa ∧ T aµν = 0 (2.22)

between a tensor valued one form T bρa and a vector valued two form T aµν .
In order to transform this geometry to electrodynamics the original ECE

hypotheses are used:

F bρa = A(0)T bρa ; F aµν = A(0)T aµν (2.23)

in order to obtain a new identity of electrodynamics:

F bρa ∧ F aµν = 0. (2.24)
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Similar equations can be obtained for gravitation and mixed gravitation and
electrodynamics. Now express Eq. (2.24) as:

F bµa F̃
aµν = 0. (2.25)

where the tilde denotes Hodge dual. The free space field tensors are defined
as:

F̃ aµν =


0 −cBaX −cBaY −cBaZ

cBaX 0 EaZ −EaY
cBaY −EaZ 0 EaX
cBaZ EaY −EaX 0

 ;

F bµν =


0 EbX EbY EbZ
−EbX 0 −cBbZ cBbY
−EbY cBbZ 0 −cBbX
−EbZ −cBbY cBbX 0


(2.26)

where E is the electric field strength in volts per metre and where B is the
magnetic flux density in tesla. Here c is the universal constant known as the
vacuum speed of light.

The tensor F bµa is a tensor valued one form:

F bµa = (F b0a ,−Fba) (2.27)

and the tensor equation (2.25) splits into two vector equations of electrody-
namics:

Fba ·Ba = 0, (2.28)

cF b0aBa = Fba ×Eb. (2.29)

There are also equivalent equations of gravitation. Now use:

F bµa = F bµν q
ν
a (2.30)

in Eq. (2.25) to obtain:

qνaF
b
µν F̃

aµν = 0 (2.31)

a possible solution of which is:

F bµν F̃
aµν = 0. (2.32)

This is the second format of the Evans torsion identity. Using the field tensors
(2.26) gives the result:

Eb ·Ba + Bb ·Ea = 0, (2.33)

which is a new fundamental equation of electrodynamics. Using the equation:

F bµν = qaνF
b
µa (2.34)

18
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it follows that:

F bµν = AaνT
b
µa (2.35)

and this is a new relation between field and potential in electrodynamics.

It also follows that the Evans torsion identity gives a new structure equation
of differential geometry:

T bµν = qaνT
b
µa . (2.36)

Note 314(3) systematically develops the properties of the field tensor F aµb
and shows that one possible solution is:

Fba ×Ea = 0. (2.37)

The Evans torsion identity applied to Hodge duals gives the second Evans
torsion identity:

T̃λµν T̃
α
ρλ + T̃λρµ T̃

α
νλ + T̃λνρ T̃

α
µλ := 0 (2.38)

which is valid only in four dimensions because of the way in which its Hodge
duals are defined. The Evans torsion identity itself is valid in any space of any
dimension. Eq. (2.38) may be written as:

T̃ bµν T
aµν = 0 (2.39)

and using the field tensors:

Fµνa =


0 −EaX −EaY −EaZ
EaX 0 −cBsZ cBaY
EaY cBaZ 0 −cBaX
EaZ −cBaY cBaX 0

 ;

F̃ bµν =


0 cBbX cBbY cBbZ

−cBbX 0 EbZ −EbY
−cBbY −EbZ 0 EbX
−cBbZ EbY −EbX 0


(2.40)

two equations of electrodynamics are obtained:

F̃ab ·Eb = 0 (2.41)

and

cF̃ab ×Bb + F̃ a0bEb = 0. (2.42)

Eq. (2.39) also gives:

Eb ·Ba + Bb ·Ea = 0. (2.43)
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Therefore the complete set of equations is

Fba ·Ba = 0 (2.44)

cF b0aBa = Fba ×Ea (2.45)

F̃ab ·Ea = 0 (2.46)

F̃ a0bEb + cF̃ab ×Bb = 0 (2.47)

and from both identities:

Eb ·Ba + Bb ·Ea = 0. (2.48)

Eqs. (2.44) to (2.47) are identical in structure to the ECE free space
equations given in the Engineering Model (UFT 303):

ωab ·Bb = 0 (2.49)

cωa0bB
b = ωab ×Eb (2.50)

ωab ·Eb = 0 (2.51)

cωab ×Bb + ωa0bE
b = 0 (2.52)

where the spin connection is defined as:

ωaµb = (ωa0b ,−ωab). (2.53)

2.2 Totally Antisymmetric Torsion Tensor

Let us consider, as discussed in UFT 354, the case where the torsion tensor is
totally antisymmetric, as would be expected for an isotropic spacetime:

Tµνρ = −Tνµρ; Tµνρ = −Tρνµ; Tµνρ = −Tµρν . (2.54)

Any two of the above anti-symmetries imply the third so that there is equality
of the torsion tensor elements under counterclockwise cyclic permutation of
the indices, and the negative equality under a clockwise cyclic permutation.

There is a well known relation between the symmetric Christoffel symbols
and the metric [25]:

Γσµν=
1

2
gρσ

(
∂gνρ
∂xµ

+
∂gρµ
∂xν

− ∂gµν
∂xρ

)
. (2.55)

This however, is not valid for a generally asymmetric or antisymmetric con-
nection, generally being restricted to the case of zero torsion. When this is
not true, a more general approach is required.

We can derive an equation similar to equation (2.55) for a connection of
arbitrary symmetry if we start with the equations of metric compatibility as
given for example in [14]:

∂gµν
∂xρ

− Γλρµgλν − Γλρνgµλ = 0, (2.56)
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∂gνρ
∂xµ

− Γλµνgλρ − Γλµρgνλ = 0, (2.57)

∂gρµ
∂xν

− Γλνρgλµ − Γλνµgρλ = 0. (2.58)

Straightforward manipulation of these three equations, as shown in UFT 354,
gives equation (2.55) corrected for the presence of torsion:

Γσµν=
1

2
gρσ

(
∂gνρ
∂xµ

+
∂gρµ
∂xν

− ∂gµν
∂xρ

− Tνµρ − Tµνρ + Tσµν

)
. (2.59)

This has been reported elsewhere [25].
Using equations (2.55) through (2.59) we can write:

Γρµν + Γρνµ

=
1

2
gρσ

(
∂ (gνσ + gσν)

∂xµ
+
∂ (gσµ + gµσ)

∂xν
− ∂ (gµν + gνµ)

∂xσ

−2Tνµσ − 2Tµνσ + Tσµν + Tσνµ

) (2.60)

and:

Γρµν − Γρνµ

=
1

2
gρσ

(
∂ (gνσ − gσν)

∂xµ
+
∂ (gσµ + gµσ)

∂xν
− ∂ (gµν − gνµ)

∂xσ

+Tσµν − Tσνµ
) (2.61)

With total antisymmetry of the torsion tensor equation (2.61) simplifies to:

Γρµν − Γρνµ=
1

2
gρσ

(
∂ (gνσ − gσν)

∂xµ
+
∂ (gσµ − gµσ)

∂xν
− ∂ (gµν − gνµ)

∂xσ
+ 2Tσµν

)
(2.62)

which reduces to the standard definition of torsion equation (2.4) for a sym-
metric metric. Note that:

Tµνσ =
(
Γλνσ − Γλσν

)
gλµ = Γµνσ − Γµσν . (2.63)

For antisymmetry of the torsion tensor in the µ, ν indices, equation (2.60)
simplifies to:

Sρµν=Γρµν + Γρνµ

=
1

2
gρσ

(
∂ (gνσ + gσν)

∂xµ
+
∂ (gσµ + gµσ)

∂xν
− ∂ (gµν + gνµ)

∂xσ
−2Tνµσ − 2Tµνσ

)
(2.64)

where we introduce a tensor Sρµν which we will call the shear of the spacetime.
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It it straightforward, albeit a bit tedious to show equality of the the shear
elements under clockwise and counterclockwise cyclic permutation of the in-
dices. Noting that we can write:

Sµνσ =
(
Γλνσ + Γλσν

)
gλµ = Γµνσ + Γµσν (2.65)

which allows us to write:

Sνσµ = Γνσµ + Γνµσ (2.66)

so that:

Sνσµ − Sµνσ = (Γνσµ − Γµσν) + (Γνµσ − Γµνσ) = Tνσµ + Tνµσ (2.67)

which from (2.54) becomes:

Sνσµ − Sµνσ = 0. (2.68)

This can be repeated for all of the cyclic permutations for the shear as
asserted above to give:

Sνµσ = Sµνσ = Sνσµ = Sµσν = Sσνµ = Sσµν . (2.69)

Q.E.D.
In a similar manner, the symmetry of the shear and the antisymmetry

of the torsion demonstrate antisymmetry in the connection. Compare, for
example, from equation (2.69):

Sσµν− Sµνσ = 0 (2.70)

with, from equation (2.54), using two cyclic permutations:

Tσµν− Tµνσ = 0. (2.71)

Expanding these equations with their definitions in terms of the connection
gives:(

Γσµν + Γσνµ
)
−
(

Γµνσ + Γµσν
)
=0 (2.72)

(
Γσµν − Γσνµ

)
−
(
Γµνσ − Γµσν

)
=0. (2.73)

Adding these gives:

Γσµν = Γµνσ . (2.74)

Subtracting gives:

Γσνµ = Γµσν . (2.75)
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CHAPTER 2. THE EFFECT OF TORSION ON GEOMETRY

Notice that this equation requires two permutations of indices, implying that
three solutions exist:

Γσµν + Γσνµ = 0 (2.76)

or:

Γσµν − Γσνµ = 0. (2.77)

or:

Γσµν = Γσνµ = 0. (2.78)

Thus the connection is either fully symmetric, or anti-symmetric, or zero not
considering the diagonals. If we allow for a non-zero torsion, then the shear
must be zero, and the connection antisymmetric.
Q.E.D.

Total antisymmetry of a non-zero torsion, therefore antisymmetry of the
connection, implies total antisymmetry of the connection as can be seen from
the following arguments.

Equations (2.70) and (2.71) are parts of the larger symmetry equations
given by (2.54) and (2.69). Equation (2.54) can be rewritten as

Tσµν = Tνσµ = Tµνσ . (2.79)

Substituting the connections into this equation and the corresponding parts
of (2.69) results in two equations;

Γσµν − Γσµν = Γµνσ− Γµσν = Γνσµ − Γνµσ . (2.80)

Applying the same procedure to equation (2.70) and applying antisymmetry
to:

Γσµν + Γσµν = Γµνσ+ Γµσν = Γνσµ + Γνµσ = 0. (2.81)

Adding and subtracting these equations gives:

a = Γσµν = Γµνσ = Γνσµ (2.82)

b = Γσµν = Γµσν = Γνµσ (2.83)

with :

a+ b = 0 . (2.84)

This represents a totally antisymmetric connection, non considering the diag-
onal elements.
Q.E.D.
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2.3. DIAGONAL METRIC

2.3 Diagonal Metric

In this section, we restrict ourselves to the case where the metric has only
diagonal elements, the most common form of metric. The diagonal elements
of the connection are shown to be directly calculable from the diagonal metric
elements.

For a totally antisymmetric torsion as defined by equation (2.54), equation
(2.64) becomes:

Sρµν = Γρµν+Γρνµ=
1

2
gρσ

(
∂ (gνσ + gσν)

∂xµ
+
∂ (gσµ + gµσ)

∂xν
− ∂ (gµν + gνµ)

∂xσ

)
(2.85)

which for a symmetric metric is:

Sρµν = Γρµν + Γρνµ=gρσ
(
∂gσν
∂xµ

+
∂gµσ
∂xν

− ∂gµν
∂xσ

)
. (2.86)

If we restrict ourselves to the case where the metric is diagonal, then equation
(2.78) reduces to:

Γρµν+Γρνµ= { gρρ
(
∂gρν
∂xµ +

∂gµρ)
∂xν −

∂gµν
∂xρ

)
if ρ = ν, or ρ = µ, or µ = ν

0 otherwise.

(2.87)

(Note that in the preceding and remaining equations of this section, no summa-
tion is implied over repeated indices.) That is, on the basis of the compatibility
of the metric alone, for a metric that is diagonal and torsion that is totally
antisymmetric, Γρµν is either “antisymmetric” in the lower two indices or zero,
with the exception of the diagonals. The diagonal elements of Γρµν are given
by:

Γρµµ=−1

2
gρρ

∂gµµ
∂xρ

if ρ 6= ν, ρ 6= µ, µ = ν (2.88)

Γνµν + Γννµ=gνν
∂gνν
∂xµ

if ρ = ν, ρ 6= µ, µ 6= ν (2.89)

Γµµµ=
1

2
gµµ

∂gµµ
∂xµ

if ρ = ν, ρ = µ, µ = ν. (2.90)

Given the above, symmetry of the connection is impossible unless it is iden-
tically zero. Earlier arguments have shown, using that antisymmetry of the
commutator, that antisymmetry of Γρµν given by equation (2.5) is valid for the
non-diagonal terms of any connection, requiring that the Christoffel connec-
tion be written as the sum of a diagonal tensor plus an antisymmetric tensor
in the lower two indices.
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Chapter 3

The Field Equations of
ECE 2

3.1 General Theory

The field equations of ECE 2 unify gravitation, electromagnetism and fluid
dynamics based on the Jacobi Cartan Evans (JCE) identity of UFT 313 on
www.aias.us and www.upitec.org. They have the same basic mathematical
structure as the obsolete Maxwell Heaviside (MH) field equations of nineteenth
century electrodynamics, but are written in a mathematical space in which cur-
vature and torsion are identically non-zero. They are equations of a generally
covariant unified field theory. The MH equations are Lorentz covariant and
are not equations of a unified field theory, being equations of Minkowski or flat
spacetime in which both torsion and curvature vanish identically. The JCE
identity of geometry is transformed into field equations using a new hypothe-
sis which distinguishes ECE 2 theory from the earlier ECE theory. This is the
second post Einsteinian paradigm shift developed in this book.

The JCE identity corrects the original 1902 identity of Bianchi, probably
first derived by Ricci, for torsion. The development of UFT 313 started with
the classic UFT 88, published in 2007, which has been read in several hundred
of the world’s best universities, institutes and similar and which has been
accepted as refuting Einsteinian relativity. The new hypothesis is based on
curvature, and exists in addition to the original ECE hypothesis based on
torsion. The JCE identity gives unified field equations for what are thought to
be the fundamental force fields: gravitation, electromagnetism and the weak
and strong nuclear fields. The field equations of fluid dynamics can be unified
with those of gravitation and electrodynamics using the geometrical structure
of the JCE identity, This process eventually leads to the unification of classical
dynamics and fluid dynamics.

In ECE 2 theory the original ECE equations are simplified by a well defined
and rigorous removal of the internal Cartan indices. This can be achieved
without loss of generality, and when more detail is required (such as in the
process that leads to the B(3) field), the indices can be reinstated. The removal
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3.1. GENERAL THEORY

of indices results in field equations of electrodynamics for example which are
Lorentz covariant in a space with finite torsion and curvature. This is given
the appellation “ECE 2 covariance”. One of the major advantages of ECE 2
over MH is that in the former theory the magnetic and electric charge current
densities are defined geometrically. In ECE 2, the field equations of gravitation,
fluid dynamics and the weak and strong nuclear forces have the same format
precisely as the field equations of electrodynamics, so it is clear that unification
of the four fundamental fields, and also of fluid dynamics, has been achieved
for the first time in the history of physics.

Attempts at unification using the standard model are well known to be
riddled with unknowns and unobservables, a theory that Pauli would have de-
scribed as “not even wrong”, meaning that it cannot be tested experimentally
and is non Baconian.

Consider the JCE identity in a space of any dimensionality and identically
non-zero torsion and curvature:

DρR
a
λµν+DνR

a
λρµ+DµR

a
λνρ := RaλραT

α
µν +RaλναT

α
ρµ+RaλµαT

α
νρ (3.1)

in the notation of chapter two the identity is a cyclic sum of covariant deriva-
tives of curvature tensors. In Eq. (3.1) the index a of the Cartan space [2]- [13]
has been used. In the famous 1902 second Bianchi identity, on which the Ein-
stein field equation is based directly, this cyclic sum is incorrectly zero. So the
JCE identity, part of the second post Einsteinian paradigm shift thus named
by Alwyn van der Merwe, immediately signals the fact that the Einstein field
equation is incorrect and should be discarded as obsolete. The www.aias.us

scientometrics show clearly that this is a mainstream point of view. So there
are two main schools of thought, ECE and ECE 2, and the obsolete standard
model.

Clearly, the rigorously correct JCE identity contains torsion tensors. In a
four dimensional space, the Hodge dual of an antisymmetric tensor or tensor
valued two form of differential geometry is another antisymmetric tensor or
vector valued two form. The Hodge dual is denoted by a tilde. So in four
dimensions the second JCE identity is:

DρR̃
a
λµν +DνR̃

a
λρµ+DµR̃

a
λνρ := RaλραT̃

α
µν +RaλναT̃

α
ρµ +RaλµαT̃

α
νρ .

(3.2)

Eqs. (3.1) and (3.2) can be rewritten as:

DµR̃
a µν
λ := RaλµαT̃

αµν (3.3)

and

DµR
a µν
λ := RaλµαT

αµν (3.4)

respectively.
Now define a new curvature tensor as follows:

Rµν := qλaR
a µν
λ . (3.5)
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CHAPTER 3. THE FIELD EQUATIONS OF ECE 2

Its Hodge dual is:

R̃µν := qλaR̃
a µν
λ . (3.6)

The new curvature Rµν and its Hodge dual lead to the new field equations of
ECE 2 theory, and are part of the second paradigm shift. They lead to vector
field equations which have the same fundamental structure as the MH equa-
tions but which contain much more information. Using the tetard postulate
as describe in Note 315(7) on www.aias.us leads to

DµR̃
µν = RµαT̃

αµν ; DµR
µν = RµαT

αµν (3.7)

Now use the Ricci identity, which is the same thing as the covariant derivative
of a rank two tensor:

DσT
µ1µ2 = ∂σT

µ1µ2 + Γµ1

σλT
λµ2 + Γµ2

σλT
µ1λ (3.8)

to find that:

DµR̃
µν = ∂µR̃

µν + ΓµµλR̃
λν + ΓνµλR̃

µλ (3.9)

and

DµR
µν = ∂µR

µν + ΓµµλR
λν + ΓνµλR

µλ. (3.10)

It follows that:

∂µR̃
µν = jν (3.11)

and

∂µR
µν = Jν (3.12)

where:

jν = RµαT̃
αµν − ΓµµλR̃

λν − ΓνµλR̃
µλ (3.13)

and

Jν = RµαT
αµν − ΓµµλR

λν − ΓνµλR
µλ. (3.14)

This geometry is transformed into electrodynamics using the ECE 2 hy-
pothesis:

Fµν = W (0)Rµν (3.15)

where W (0) is a scalar with the units of magnetic flux (weber or tesla metres
squared). It follows that the tensorial equations of electrodynamics in ECE 2
theory are:

∂µF̃
µν = W (0)jν = jνM (3.16)
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and

∂µF
µν = W (0)Jν = JνE (3.17)

where jνM and JνE are magnetic and electric charge / current densities. To
translate the tensor field equations into vector field equations define:

Fµν :=


0 −EX/c −EY /c −EZ/c

EX/c 0 −BZ BY
EY /c BZ 0 −BX
EZ/c −BY BX 0

 (3.18)

and

F̃µν :=


0 −BX −BY −BZ
BX 0 EZ/c −EY /c
BY −EZ/c 0 EX/c
BZ EY /c −EX/c 0

 (3.19)

In the notation of chapter two. It follows that the ECE 2 field equations of
electrodynamics are the following four equations

∇ ·B = W (0)j0 (3.20)

∇×E +
∂B

∂t
= cW (0)j (3.21)

∇ ·E = cW (0)J0 (3.22)

∇×B− 1

c2
∂E

∂t
= W (0)J. (3.23)

In these equations:

j = j1i + j2j + j3k = jX i + jY j + jZk (3.24)

and

J = J1i + J2j + J3k = JX i + JY j + JZk. (3.25)

In Eqs. (3.20) to (3.25) the internal indices are implied (UFT 315 on www.

aias.us). As described in this chapter, they can be removed without loss of
generality.

Eqs. (3.20) to (3.23) have the same overall structure as the MH equations
but contain much more information. This book begins their development.

The ECE 2 field equations (3.20) to (3.23) allow for the existence of the
magnetic charge, or magnetic monopole:

j0
M = W (0)j0 (3.26)

where

j0 = RµαT̃
αµ0 − ΓµµλR̃

λ0 − Γ0
µλR̃

µλ. (3.27)
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The magnetic current density is:

jM = cW (0)j (3.28)

where

jν = RµαT̃
αµν − ΓµµλR̃

λν − ΓνµλR̃
µλ (3.29)

for the three indices

ν = 1, 2, 3. (3.30)

The electric charge density is defined by:

J0
E = cW (0)J0 (3.31)

where

J0 = RµαT
αµ0 − ΓµµλR

λ0 − Γ0
µλR

µλ (3.32)

and the electric current density is:

JE = W (0)J (3.33)

where

J = J1i + J2j + J3k. (3.34)

For the three indices:

ν = 1, 2, 3 (3.35)

then:

Jµ = RµαT
αµν − ΓµµλR

λν − ΓνµλR
µλ. (3.36)

Eqs. (3.20) to (3.23) are the curvature based Gauss, Faraday, Coulomb and
Ampère Maxwell laws.

In the second ECE 2 hypothesis introduced in UFT 315, the electromag-
netic field is defined as:

F aλµν := W (0)Raλµν (3.37)

which compares with the original ECE hypothesis of 2003:

F aµν := A(0)T aµν . (3.38)

Using the Cartan identity:

DµT
a
νρ +DρT

a
µν +DνT

a
ρµ := Raµνρ +Raρµν +Raνρµ (3.39)

it follows that:

DµF
a
νρ +DρF

a
µν +DνF

a
ρµ :=

A(0)

W (0)

(
F aµνρ + F aρµν + F aνρµ

)
. (3.40)
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The Cartan tangent indices can be removed without loss of generality as
described in UFT 316. In the vector notation introduced in UFT 254 and
UFT 255, the Cartan identity splits into two vector equations, the first of
which is:

∇ ·Ta(spin) + ωab ·Tb(spin) = qb ·Ra
b(spin) (3.41)

where Ta(spin) is the spin torsion vector, ωab is the spin connection vector,
qb the tetrad vector and Ra

b(spin) the spin curvature vector. In the original
ECE theory the magnetic flux density is defined as:

Ba = A(0)Ta(spin) (3.42)

where the scalar A(0) has the units of flux density (tesla or weber per square
metre). This definition is used also in ECE 2 and is supplemented by the new
hypothesis:

Ba
b = W (0)Ra

b(spin) (3.43)

where W (0) has the units of weber and where the units of spin curvature are
inverse square metres.

Therefore Eq. (3.41) of geometry becomes:

∇ ·Ba + ωab ·Bb =

(
A(0)

W (0)

)
Ab ·Ba

b =
1

r(0)
qb ·Ba

b (3.44)

of electrodynamics, where the characteristic length r(0) has the units of metres.
The electromagnetic potential Ab is defined in the original ECE theory:

Ab = A(0)qb (3.45)

so Eq. (3.44) becomes the Gauss law of magnetism, Q. E. D.:

∇ ·Ba =
1

W (0)
Ab ·Ba

b − ωab ·Bb (3.46)

The magnetic charge or monopole is defined by:

J (0)
m =

1

W (0)
Ab ·Ba

b − ωab ·Bb. (3.47)

The tangent indices can be removed without loss of generality using a
procedure introduced in UFT 316:

B := −eaBa (3.48)

where ea is the unit vector in the tangent space. In the Cartesian basis:

ea = (1,−1,−1,−1) (3.49)

and in the complex circular basis:

ea =

(
1,− 1√

2
(1 + i) ,− 1√

2
(1− i) ,−1

)
. (3.50)
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So in the complex circular basis:

B = e(0)B
(0) − e(1)B

(1) − e(2)B
(2) − e(3)B

(3). (3.51)

By definition:

B(0) = 0 (3.52)

because the spacelike vector B has no timelike component. In general:

B(1) =
1√
2

(BX i− iBY j) (3.53)

and:

B(2) =
1√
2

(BX i + iBY j) . (3.54)

So in Eq. (3.51):

B =
1√
2

(1 + i)
1√
2

(BX i− iBY j) +
1√
2

(1− i) 1√
2

(BX i + iBY j) +BZk

= BX i +BY j +BZk

(3.55)

where we have used:

B(3) = BZk. (3.56)

Now multiply both sides of Eq. (3.46) by −ea to obtain:

∇ ·B =
1

W (0)
Ab ·Bb − ωb ·Bb (3.57)

in which:

Ab ·Bb = ebebA ·B (3.58)

ωb ·Bb = ebe
bω ·B. (3.59)

In the Cartesian basis:

ebe
b = ebeb = −2 (3.60)

and

ebe
b∗ = ebe ∗b = −2 (3.61)

where ∗ denotes complex conjugate. So:

∇ ·B = 2B ·
(
ω − 1

W (0)
A

)
(3.62)

31



3.1. GENERAL THEORY

and the magnetic monopole can be defined as:

J0
m = 2B ·

(
ω − 1

W (0)
A

)
(3.63)

and vanishes if and only if:

A = W (0)ω. (3.64)

The spin torsion and spin curvature are defined in vector notation as:

Tb(spin) = ∇× qb − ωbc × qc (3.65)

and

Ra
b(spin) = ∇× ωab − ωac × ωcb (3.66)

from which it follows after some algebra that:

∇ · qb × ωab = 0. (3.67)

This is the most succinct format of the vector equation (3.41).
In ECE 2, the magnetic flux potential is defined by:

Wa
b = W (0)ωab. (3.68)

in units of tesla metres. The ECE 2 hypothesis (3.68) augments the original
ECE hypothesis:

Aa = A(0)qa. (3.69)

It follows from the geometrical equation (3.67) that:

∇ ·Ab ×Wa
b = 0 (3.70)

and after removal of indices:

∇ ·A×W = 0 (3.71)

giving a fundamental relation between A and W.
The Faraday law of induction is derived from the second vector format of

the Cartan identity:

1

c

∂Ta(spin)

∂t
+ ∇×Ta(orb) = qb0Ra

b(spin) + qb ×Ra
b(orb)

−
(
ωa0bT

b(spin) + ωab ×Tb(orb)
) (3.72)

in which:

Ta(orb) = −∇qa0 −
1

c

∂qa

∂t
− ωa0bq

b + qb0ω
a
b (3.73)
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is the orbital torsion and

Ra
b(orb) = −∇ωa0b −

1

c

∂ωab
∂t
− ωa0cωcb + ωc0bω

a
c (3.74)

is the orbital curvature. Notes 316(6) and 316(7) on www.aias.us translate
these into equations of electromagnetism using:

Ba = A(0)Ta(spin); Ba
b = W (0)Ra

b(spin);

Ea = cA(0)Ta(orb); Ea
b = cW (0)Ra

b(orb).
(3.75)

After some vector algebra written out in full in Note 316(7), the Faraday law
of induction is deduced:

∂B

∂t
+ ∇×E = Jm (3.76)

where the magnetic current density is:

Jm = 2

(
c
(
ω0 −

q0

r(0)

)
B +

(
ω − 1

r(0)
q

)
×E

)
. (3.77)

This is zero if and only if

q0 = r(0)ω0 (3.78)

and

q = r(0)ω. (3.79)

The complete set of ECE 2 field and potential equations can also be derived
from the Cartan and Cartan Evans identities with two fundamental hypothe-
ses. The tangent indices can be removed and the equations of electrodynamics
derived exactly, together with the conservation laws. The ECE 2 field poten-
tial relations are derived from the Maurer Cartan structure equations. The
resulting field equations as derived in UFT 317 are as follows:

∇ ·B = κ ·B (3.80)

∇ ·E = κ ·E (3.81)

∂B

∂t
+ ∇×E = − (κ0cB + κ×E) (3.82)

∇×B− 1

c2
∂E

∂t
=
κ0

c
E + κ×B (3.83)

where:

κ0 = 2
( q0

r(0)
− ω0

)
(3.84)

κ = 2

(
1

r0
q− ω

)
(3.85)
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and where the tetrad four vector is:

qµ = (q0,−q) . (3.86)

The spin connection four vector is:

ωµ = (ω0,−ω) . (3.87)

Here κ is the wave vector of spacetime, and cκ0 has the units of frequency.
The tetrad and spin connection are incorporated into the wave four vector of
spacetime itself:

κµ =
(
κ0,κ

)
, (3.88)

κµ = (κ0,−κ) . (3.89)

In the absence of a magnetic charge / current density:

∇ ·B = 0 (3.90)

∇×E +
∂B

∂t
= 0 (3.91)

∇ ·E = κ ·E =
ρ

ε0
(3.92)

∇×B− 1

c2
∂E

∂t
= µ0J = κ×B. (3.93)

This is precisely the structure of MH theory but written in a space in which
both curvature and torsion are identically non-zero. In the absence of a mag-
netic charge current density

κ0 = 2
( q0

r(0)
− ω0

)
= 0 (3.94)

and

B⊥κ; E ‖ κ. (3.95)

It follows that:

E⊥B, (3.96)

a result that is self consistently derivable from the JCE identity of UFT 313
in UFT 314 ff. and summarized in this chapter.

The electric charge density is:

ρ = ε0κ ·E (3.97)

and the electric current density is:

J =
1

µ0
κ×B (3.98)
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where

ε0µ0 =
1

c2
. (3.99)

The electric charge current density is therefore:

Jµ = (cρ,J) =
1

µ0

(
1

c
κ ·E,κ×B

)
(3.100)

in the absence of a magnetic monopole. The conservation of charge current
density is a fundamental law of physics which is given immediately by ECE 2
as follows. From Eq. (3.93)

µ0∇ · J = ∇ ·∇×B− 1

c2
∇ · ∂E

∂t
= − 1

c2
∂

∂t
(∇ ·E) = −µ0

∂ρ

∂t
(3.101)

using Eq. (3.91). Therefore:

∂ρ

∂t
+ ∇ · J = 0 (3.102)

i. e.

∂µJµ = 0. (3.103)

This means that:

∂

∂t
(κ ·E) + c2∇ · (κ×B) = 0 (3.104)

in the absence of magnetic charge / current density. Therefore if E and B are
known, κ can be found from Eq. (3.104). The free space equations are defined
by Eq. (3.94) together with

q = r(0)ω (3.105)

and so in free space:

∇ ·B = 0 (3.106)

∇ ·E = 0 (3.107)

∇×E +
∂B

∂t
= 0 (3.108)

∇×B− 1

c2
∂E

∂t
= 0. (3.109)

So classical electrodynamics can be inferred from the Cartan and Evans iden-
tities together with the hypotheses (3.75).

ECE 2 gives all the information in ECE in a much simpler format that is
easily used by scientists and engineers.

The key difference between ECE 2 and MH is that in MH:

Aµ = (φ, cA) ; B = ∇×A (3.110)
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and in ECE 2:

B = ∇×A + 2ω ×A (3.111)

where the spin connection four vector is defined by:

ωµ = (ω0,−ω) . (3.112)

Similarly, in MH:

E = −∇φ− ∂A

∂t
(3.113)

and in ECE 2:

E = −∇φ− ∂A

∂t
+ 2 (cω0A− φω) . (3.114)

The existence of the spin connection was proven recently in UFT 311, a paper
in which precise agreement was reached with experimental data by use of the
spin connection. So ECE 2 is based firmly on experimental data and is a
Baconian theory.

In ECE 2 there are new relations between the fields and spin connections
based on the vector formats of the second Maurer Cartan structure equations:

Ra
b(spin) = ∇× ωab − ωac × ωcb (3.115)

and:

Ra
b(orb) = −∇ωa0b −

1

c

∂ωab
∂t
− ωa0cωcb + ωc0bω

a
c. (3.116)

Tangent indices are removed using:

R(spin) = ebeaR
a
b(spin) (3.117)

and:

R(orb) = ebeaR
a
b(orb). (3.118)

Therefore:

R(spin) = ∇× ω − ωc × ωc = ∇× ω (3.119)

and:

R(orb) = −∇ω0 −
1

c

∂ω

∂t
− ω0cω

c + ωc0ωc = −∇ω0 −
1

c

∂ω

∂t
. (3.120)

The geometry is converted into electrodynamics using:

B = W (0)R(spin) (3.121)

E = cW (0)R(orb) (3.122)
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and:

Wµ = W (0)ωµ (3.123)

and the new potential four vector:

Wµ = (φw, cW) (3.124)

which has the same units as Aµ. Here W (0) has the units of magnetic flux
(weber). Therefore:

B = ∇×W (3.125)

and:

E = −c∇W0 −
∂W

∂t
= −∇φw −

∂W

∂t
(3.126)

where:

φw = cW0. (3.127)

The overall result is:

B = ∇×W = ∇×A + 2ω ×A (3.128)

and

E = −∇φw −
∂W

∂t
= −∇φ− ∂A

∂t
+ 2 (cω0A− φω) . (3.129)

The ECE 2 gravitational field equations are derived from the same geometry
as the electrodynamical field equations. One of the major discoveries of this
method is that the gravitational field can vanish under well defined conditions,
and can become positive, so an object of mass m can be repelled by an object
of mass M . The antisymmetry laws of ECE 2 are derived in the following
development and are used to derive the Newtonian equivalence principle from
geometry. The theory of spin connection resonance can be developed to result
in zero gravitation. The Aharonov Bohm effects of vacuum ECE 2 theory are
analyzed.

The gravitational field equations of ECE 2 are as follows (UFT 317 and
accompanying notes):

∇ · g = κ · g = 4πGρm (3.130)

∇× g +
∂Ω

∂t
= − (cκ0Ω + κ× g) =

4πG

c
JΩ (3.131)

∇ ·Ω = κ ·Ω =
4πG

c
ρΩ (3.132)

∇×Ω− 1

c2
∂g

∂t
=
κ0

c
g + κ×Ω =

4πG

c2
Jm (3.133)

Here g is the gravitational field, G is Newton’s constant, ρm is the mass
density, Jm is the current of mass density, Ω is the gravitomagnetic field, ρΩ

37



3.1. GENERAL THEORY

is the gravitomagnetic mass density, and JΩ is the current of gravitomagnetic
mass density. In these equations, κ0 and κ are defined in the same way as for
electrodynamics and the tetrad and spin connection vectors, being quantities
of geometry, are defined in the same way. The field potential relations are
derived in the same way as those of electrodynamics, from the Cartan and
Evans identities. They are:

g = −∇Φ− ∂Q

∂t
+ 2 (cω0Q− Φω) (3.134)

and

Ω = ∇×Q + 2ω ×Q (3.135)

where the mass / current density four vector is:

Jµm = (cρm,Jm) (3.136)

and where the gravitational vector four potential is:

Qµ = (Φ, cQ) . (3.137)

In electrodynamics it is always assumed that the magnetic charge / current
density is zero. The parallel assumption in gravitational theory leads to the
gravitational field equations:

∇ ·Ω = 0 (3.138)

∇× g +
∂Ω

∂t
= 0 (3.139)

∇ · g = κ · g = 4πGρm (3.140)

∇×Ω− 1

c2
∂g

∂t
= κ×Ω =

4πG

c2
Jm (3.141)

whose overall structure is the same as the ECE 2 electrodynamical equations
and both sets of field equations are ECE 2 covariant. From Eqs. (3.140) and
(3.141):

4πG

c2
∇ · Jm = − 1

c2
∂

∂t
(∇ · g) = −4πG

c2
∂ρm
∂t

(3.142)

and it follows that:

∂ρm
∂t

+ ∇ · Jm = 0 (3.143)

i. e.

∂µJ
µ
m = 0 (3.144)

which is the ECE 2 equation of conservation of mass current density.
In Newtonian gravitation, it is known by experiment that:

g = grer = −MG

r2
er (3.145)
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to an excellent approximation, although the law (3.145) does not account
for precession of the perihelion and similar, and it does not account for the
Coriolis accelerations without the use of a rotating frame such as the plane
polar coordinates. It follows that:

∂gr
∂r

=
2MG

r3
= 2gr

(
1

r(0)
qr − ωr

)
= −2MG

r2

(
1

r(0)
qr − ωr

)
(3.146)

and that:

κr = −2

r
. (3.147)

This equation reduces ECE 2 gravitation to Newtonian gravitation, whose only
field equations are:

g = −∇Φ (3.148)

and

∇ · g = 4πGρm (3.149)

together with the Newtonian equivalence principle:

F = mg = −mMG

r2
er (3.150)

In the Newtonian theory Eq. (3.150) is theoretically unproven but in ECE 2
gravitation it can be derived from geometry and asymmetry as follows.

Consider the ECE 2 generalizations of the Coulomb and Newton laws:

∇ ·E = κ ·E = ρe/ε0 (3.151)

and

∇ · g = κ · g = 4πGρm (3.152)

The electric field strength is defined by:

E = −∇φe −
∂A

∂t
+ 2 (cω0A− φeω) (3.153)

and the electromagnetic four potential is:

Aµ = (cρe,Je) (3.154)

The antisymmetry laws of ECE 2 [1]- [12] are therefore:

−∇φe + 2cω0A = −∂A

∂t
− 2φeω (3.155)

and

−∇Φm + 2cω0Q = −∂Q

∂t
− 2Φmω. (3.156)
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In the absence of a vector potential A and vector gravitomagnetic potential
Q:

E = −∇φe = −2φeω (3.157)

and

g = −∇Φm = −2Φmω. (3.158)

The Newtonian equivalence principle follows immediately from Eq. (3.158):

F = mg = −m∇Φ = −2mΦω (3.159)

where the scalar gravitational potential of Newtonian universal gravitation is:

Φ = −MG

r
. (3.160)

So:

F = mg = −mM
r2

er = −2mMG

r
ω. (3.161)

It follows that the spin connection vector is:

ω =
1

2r
er (3.162)

Similarly in electrostatics:

F = eE = −e∇φe = −2mφeω (3.163)

where the scalar potential is:

φe = − e1

4πε0r
. (3.164)

So

F = eE = − ee1

4πε0r2
er = − 2e1

4πε0r
ω (3.165)

and the spin connection vector is again:

ω =
1

2r
er. (3.166)

In the absence of a vector potential:

E = −∇φe − 2φeω (3.167)

and:

∇ ·E =
ρe
ε0

(3.168)
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or: (
∇2 + k2

0

)
φe = −ρe

ε0
(3.169)

where k2
0 is defined by:

k2
0 = 2∇ · ω. (3.170)

Eq. (3.169) becomes an undamped Euler Bernoulli equation with the following
choice of electric charge density:

ρe = −ε0A cos(kZ) (3.171)

so the Euler Bernoulli equation is:

∂2φe
∂Z2

+ k2
0φe = A cos(kZ) (3.172)

whose solution is:

φe = A
cos(kZ)

k2
0 − k2

. (3.173)

Similarly, in gravitational theory:(
∇2 + k2

0

)
Φm = −4πGρm. (3.174)

This equation becomes an Euler Bernoulli equation if:

4πGρm = −A cos(kZ) (3.175)

giving the solution:

Φm = A
cos(kZ)

k2
0 − k2

. (3.176)

Eq. (3.174) reduces to the Poisson equation of Newtonian dynamics:

∇2Φm = −4πGρm (3.177)

when:

k2
0 = 2∇ · ω = 0. (3.178)

The acceleration due to gravity of the laboratory mass m in ECE 2 theory
is:

gm = −∇Φm − 2ωΦm (3.179)

and the gravitational force between a test mass m and a mass M such as that
of the earth is:

F = Mgm. (3.180)
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In the Z axis:

Φm = A
cos(kZZ)

k2
0 − k2

Z

(3.181)

and:

−∇Φm = −∂Φm
∂Z

= AkZ
sin(kZZ)

k2
0 − k2

Z

(3.182)

so

gZ =
A

k2
0 − k2

Z

(kZ sin(κZZ)− 2ωZ cos(kZZ)) . (3.183)

Under the condition:

tan(kZZ) = 2
ωZ
κZ

(3.184)

it follows that:

gZ = 0 (3.185)

and

F = MgZ = 0. (3.186)

Therefore in ECE 2 theory it is possible for gravitation to vanish.
The gravitational potential energy in joules of the mass m is:

Um = mΦm (3.187)

and the electrostatic potential energy in joules of a charge e is:

Ue = eφe. (3.188)

Therefore:(
∇2 + k2

0

)
Um = −4πmGρm (3.189)

and: (
∇2 + k2

0

)
Ue = −eρe

ε0
. (3.190)

All forms of energy are interconvertible so:(
∇2 + k2

0

)
(Um + Ue) = −

(
4πmGρm +

eρe
ε0

)
. (3.191)

For a mass m of one kilogram and a charge e of one coulomb in a volume of
one cubic metre

eρe
ε0
� 4πmGρm (3.192)
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so to an excellent approximation:(
∇2 + k2

0

)
(mΦm + eφe) = − e

ε0
ρe. (3.193)

This equation shows that gravitation can be engineered by an on board
device that is designed to produce the driving force:

A cos(kZZ) = −eρe
ε0

(3.194)

giving the Euler Bernoulli equation:(
∇2 + k2

0

)
(mΦm + eφe) = A cos (k · r) (3.195)

whose solution is:

mΦm + eφe =
A cos(kZZ)

k2
0 − k2

Z

. (3.196)

In the Z axis:

ΦmZ =
1

m

(
A cos(kZZ)

k2
0 − k2

Z

− eφe
)

(3.197)

and so:

−∂ΦmZ
∂Z

=
1

m

(
AκZ sin(kZZ)

k2
0 − k2

Z

− e∂φe
∂Z

)
(3.198)

giving the acceleration due to gravity:

gZ =
1

m

[(
AkZ sin(kZZ)

k2
0 − k2

Z

− 2ωZ cos(kZZ)

)
+ e

(
∂φe
∂Z

+ 2ωZφe

)]
. (3.199)

There is no gravitational force between m and M under the condition:

tan(kZZ) = 2
ωZ
kZ

(3.200)

and:

∂φe
∂Z

= −2ωZφe. (3.201)

From Eqs. (3.197) and (3.194) the gravitational potential is:

Φm =
e

m

(
ρe

ε0(k2
Z − k2

0)
− φe

)
(3.202)

and there is no gravitational force between m and M if Φm is zero, so in this
case:

φe =
ρe

ε0(k2
Z − k2

0)
(3.203)
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and the electric field strength needed for the condition (3.203) is:

E = −∇φe − 2φeω. (3.204)

When the electric field strength of an on board device contained within a
vehicle of mass m is tuned to condition (3.203), the g forces between m and
M vanish. The vehicle is no longer attracted to the earth’s mass M .

The condition for counter gravitation (positive g) is a negative spin con-
nection so using:

g = −∇Φm + 2Φmω (3.205)

g becomes positive, or repulsive, when

2ωΦ0 >∇Φm (3.206)

and a mass m is lifted off the ground, i. e. is repelled by the earth’s mass
M . This process can be amplified by spin connection resonance as described
already.

The ECE 2 vacuum is defined in several ways in this book. It is convenient
to begin the development of vacuum theory using the equations:

E = −∇φ− ∂A

∂t
+ 2 (cω0A− φω) = 0 (3.207)

and

B = ∇×A + 2ω ×A = 0 (3.208)

which show that φ and A can be non zero when E and B are zero. These are
the well known conditions for the Aharonov Bohm (AB) effects, potentials are
observed experimentally to exist in the absence of fields.

Under the AB condition, the ECE 2 potentials describe the electromagnetic
energy present in spacetime (or vacuum or aether).

By antisymmetry:

−∇φ+ 2cω0A = −∂A

∂t
− 2φω (3.209)

and it follows that the vacuum potentials are defined by:

−∇φ+ 2cω0A = 0, (3.210)

−∂A

∂t
= 2φω, (3.211)

∇×A + 2ω ×A = 0. (3.212)

If it is assumed for the sake of simplicity that:

ω0 = 0 (3.213)

then there are three equations in three unknowns:

−∇φ+ 2cω0A = 0 (3.214)
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−∂A

∂t
= 2φω; ∇×A + 2ω ×A = 0. (3.215)

These can be solved for φ, A and ω of the vacuum.
Using the minimal prescription the energy momentum contained in the

vacuum is:

Eµ =

(
E

c
,p

)
= eAµ = e

(
φ

c
,A

)
. (3.216)

Therefore the ECE 2 vacuum is made up of photons with mass with energy
momentum:

Eµ = eAµ = ~κµ = ~
(ω
c
,κ
)

(3.217)

obeying the vacuum Einstein/de Broglie equations:

E = eφ = ~ω = γmc2 (3.218)

and

p = eA = ~κ = γmv (3.219)

where m is the mass of the photon and where the Lorentz factor is

γ =

(
1− v2

c2

)−1/2

. (3.220)

In UFT 311 on www.aias.us and www.upitec.org, the circuit design needed to
take energy from the vacuum is described in all detail, and excellent agreement
is reported with the earlier ECE theory, developed into ECE 2 theory in this
book.

ECE 2 provides a new and simple explanation for light deflection due to
gravitation, and in so doing gives new estimates of photon mass using ECE 2
covariance. In ECE 2 the force due to gravity is

F = mg = −∇U − ∂p

∂t
− 2Uω + 2cω0p (3.221)

where the potential energy in joules is:

U = mΦ. (3.222)

The spin connection four vector is:

ωµ = (ω0,ω) (3.223)

and from the minimal prescription the linear momentum p is:

p = mQ (3.224)

where the gravitational four potential is:

Φµ =

(
Φ

c
,Q

)
. (3.225)
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By antisymmetry:

−∇U − ∂p

∂t
= −2Uω + 2cω0p (3.226)

so the gravitational force is:

F = mg = 2

(
−∇U − ∂p

∂t

)
= 4 (cω0p− Uω) . (3.227)

It is well known [2]- [13] that there are severe limitations to the Newtonian
theory, it does not give perihelion precession, and cannot explain light deflec-
tion due to gravity or the velocity curve of a whirlpool galaxy. It is also known
that the Einstein theory is riddled with errors and omissions, and cannot de-
scribe the velocity curve of a whirlpool galaxy [2]- [13]. It has already been
shown in this chapter how ECE 2 theory reduces to Newtonian theory, but the
former theory has several major advantages. For example it gives a reason
for gravitation, the latter is geometry with non zero torsion and curvature.
Newton did not give a reason for gravitation.

The ECE 2 theory can be reduced to its Newtonian limit by using:

∇U =
∂p

∂t
(3.228)

and

cω0p = −Uω (3.229)

which are expressions of the equivalence principle as argued in UFT 319 and
its accompanying notes on www.aias.us. Using Eqs. (3.228) and (3.229) in
Eq. (3.226):

F = mg = −4∇U = −8Uω = −mMG

r2
er (3.230)

so:

U = −mMG

4r
(3.231)

and it follows that the spin connection vector is:

ω =
1

2r
er. (3.232)

From Eqs. (3.147) and (3.232):

κr =
1

r(0)
qr − ωr = −2

r
(3.233)

so the tetrad vector is:

κ = κrer; q = −3

2

r(0)

r
er. (3.234)
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Using:

ω0cp = −Uω =
mMG

8r2
er (3.235)

it follows that the momentum vector is:

p = prer = −
∫ τ

0

mMG

8r2
erdt (3.236)

so the scalar part of the spin connection is defined in the Newtonian limit by:

ω0 = − 1

cr2

(∫ τ

0

1

r2
dt

)−1

. (3.237)

The Newtonian potential φ and the ECE 2 potential Φ are related by

φ = 4Φ. (3.238)

The force is therefore defined in the Newtonian limit of ECE 2 as:

F = mg = −4∇U = −8Uω = 4
∂p

∂t
= 8cω0p (3.239)

and in the absence of gravitomagnetic charge current density:

q0 = r(0)ω0. (3.240)

More generally the usual definition of force:

F = mg (3.241)

should be replaced by the gravitational Lorentz force, a concept that does not
exist in standard physics. Note 319(2) on www.aias.us shows that a possible
operator solution of the Newtonian limit of ECE theory is:

(ω0,ω) =
1

2

(
1

c

∂

∂t
,−∇

)
(3.242)

or

ωµ =
1

2
∂µ. (3.243)

Using the Schrödinger quantum condition:

pµ = i~∂µ = 2i~ωµ (3.244)

the Newtonian condition (3.228) becomes:

∇ ∂

∂t
+
∂

∂t
∇ = 0 (3.245)

giving a new anticommutator equation of quantum gravity:{
∇,

1

c

∂

∂t

}
ψ = 0. (3.246)
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Non Newtonian effects can be explained by deviations from the above set of
equations. For example in Note 319(3) it is shown that the condition for zero
gravity is:

ωµ = −1

2
∂µ (3.247)

which is the opposite of Eq. (3.243). In Note 319(4) it is shown that ECE 2
gives a simple and original explanation for light deflection due to gravitation.

ECE 2 covariance means that the infinitesimal line element of the theory
leads to:

c2dτ2 =
(
c2 − v2

)
dt2 (3.248)

where the orbital velocity in plane polar coordinates is:

v2 =

(
dr

dt

)2

+ r2

(
dθ

dt

)2

. (3.249)

Here τ is the proper time. For light deflection by the sun, the orbit to an
excellent approximation is the hyperbola:

r =
α

1 + ε cos θ
(3.250)

with very large eccentricity ε, so the orbit is almost a straight line and the
light from a star grazing the sun is only very slightly deflected. Here α is the
half right latitude. As shown in Note 319(4), the velocity from Eqs. (3.249)
and (3.250) is

v2 =
mG

R0
(1 + ε) (3.251)

where R0 is the distance of closest approach, equal to the half right latitude:

R0 = α. (3.252)

The angle of deflection is:

ζ = 2ψ =
2

ε
∼ 2MG

R0v2
(3.253)

to an excellent approximation. The experimentally observed result is:

ζ =
4MG

R0c2
(3.254)

so it follows that:

v2 =
1

2
c2 (3.255)

which is equivalent to a Lorentz factor:

γ =
dt

dτ
=

(
1− v2

c2

)−1/2

= 0.707. (3.256)
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Therefore ECE 2 covariance gives a simple and straightforward explanation
of the experimental result (3.254). The result (3.255) is further interpreted in
UFT 324. It means that there is an upper bound to the non relativistic velocity
used in the Lorentz transform. The existence of this upper bound immediately
explains the observed deflection of light and electromagnetic radiation due to
gravitation in terms of ECE 2 covariance.

The photon mass can be calculated from

~ω = γmc2 (3.257)

and is graphed in the subsequent section.

3.2 Numerical Analysis and Graphics

3.2.1 Plots of Photon Mass from ECE 2 Theory

The photon mass from the de Broglie-Einstein equation (3.257) is

m =
~ω
γc2

(3.258)

where γ was shown to be

γ =
1√
2
. (3.259)

If photons are considered as oscillators with statistical energy distribution, the
average energy is given by

〈~ω〉 =
~ω

exp( ~ω
kT )− 1

(3.260)

from which follows for the photon mass:

m =
~ω
γc2
· 1

exp( ~ω
kT )− 1

. (3.261)

Here k is the Boltzmann constant and T the temperature of the environment.
Since the temperature near to the surface of the sun is of some thousand Kelvin,
we used corresponding values for the numerical evaluation of Eq. (3.260).
The results for both equations (with and without statistics) are graphed in
Fig. 3.1. The photon mass of a single photon grows linearly on a double-
logarithmic scale while it drops to zero for finite temperatures. There is a
plateau (constant limit) in the infrared.

In a second plot (Fig. 3.2), the ratio v/c in the gamma factor has been
varied for T=293 K. Obviously the results are not very sensitive to γ. Only
in the ultra-relativistic limit the photon mass drops significantly.
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Figure 3.1: Photon mass in dependence of light frequency for various temper-
atures and the single-photon case.

Figure 3.2: Photon mass for T=293K and different ratios v/c.
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Chapter 4

Orbital Theory

4.1 General Theory

In this chapter ECE 2 covariance is developed to produce the Lorentz force
equation, and to develop quantization and orbital theory. In the opening
section the gravitomagnetic Biot Savart and Ampère laws are developed and
these laws are applied to planar orbits and the current of mass density of the
planar orbit. The method is generally valid and can be used on all scales. The
gravitomagnetic field responsible for the centrifugal force of planar orbits can
be calculated. Following sections of this chapter develop ECE 2 quantization
and precessional theory, together with other aspects of orbital theory. From
chapter three, the ECE 2 equations of gravitomagnetism are

∂µG̃
µν = 0 (4.1)

and

∂µG
µν = Jν (4.2)

where the field tensors are defined as:

G̃µν =


0 −cΩ1 −cΩ2 −cΩ3

cΩ1 0 g3 −g2

cΩ2 −g3 0 g1

cΩ3 g2 −g1 0

 (4.3)

and

Gµν =


0 −g1 −g2 −g3

g1 0 −cΩ3 cΩ2

g2 cΩ3 0 −cΩ1

g3 −cΩ2 cΩ1 0

 . (4.4)

In these equations g denotes the gravitational field and Ω the gravitomagnetic
field. It is assumed that the gravitomagnetic charge/current density vanishes.

51



4.1. GENERAL THEORY

The contravariant index notation means that:

g1 = gX , g
2 = gY , g

3 = gZ ,

Ω1 = ΩX , Ω2 = ΩY , Ω3 = ΩZ .
(4.5)

Lorentz transformation [2]- [13] of the field tensors gives the result:

g′ = γ (g + v ×Ω)− γ2

1 + γ

v

c

(v

c
· g
)

(4.6)

Ω′ = γ

(
Ω− 1

c2
v × g

)
− γ2

1 + γ

v

c

(v

c
·Ω
)

(4.7)

where γ is the Lorentz factor:

γ =

(
1− v2

c2

)−1/2

(4.8)

in which v is the non relativistic velocity. In the rest frame:

v = 0. (4.9)

Eqs. (4.6) and (4.7) exactly parallel electrodynamics [2]- [13]:

E′ = γ (E + v ×B)− γ2

1 + γ

v

c

(v

c
·E
)

(4.10)

and

B′ = γ

(
B− 1

c2
v ×E

)
− γ2

1 + γ

v

c

(v

c
·B
)

(4.11)

where E is the electric field strength in volts per metre and B is the magnetic
flux density. In the non relativistic limit:

v � c, γ → 1 (4.12)

the gravitomagnetic Lorentz force is

F = m (g + v ×Ω) . (4.13)

In plane polar coordinates the orbital velocity of a mass m attracted to a
mass M is, in general:

v = ṙer + ω × r = ṙer + ωreθ (4.14)

where the unit vectors of the cylindrical polar system are cyclically related as
follows

er = eθ × k

eθ = k× er

k = er × eθ.

(4.15)
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For a planar orbit, the acceleration in general is:

a =
(
r̈ − ω2r

)
er = r̈er − ω × (ω × r) (4.16)

where r is the radial vector defined by:

r = rer (4.17)

and where the angular velocity vector is:

ω = ωk. (4.18)

The planar orbital force is therefore:

F = mg − ω × (ω × r) = −mMG

r2
er (4.19)

where G is Newton’s constant. Eq. (4.19) is the 1689 Leibniz equation of
orbits. The orbital force equation can be written as:

F = mg + vrot × ω (4.20)

where

vrot = ω × r (4.21)

is the velocity due to a rotating frame first inferred by Coriolis in 1835. The
orbital force equation is the Lorentz force equation if:

Ω = ω =
dθ

dt
k (4.22)

and

v = vrot = ω × r. (4.23)

Therefore Ω is the gravitomagnetic field responsible for the centrifugal force
of any planar orbit. The velocity due to the rotating frame of the plane polar
coordinates is:

vrot = ω × r. (4.24)

In the non-relativistic limit the electromagnetic Lorentz transforms are:

E′ = E + v ×B (4.25)

B′ = B− 1

c2
v ×E (4.26)

and the gravitomagnetic Lorentz transforms are:

g′ = g + v ×Ω (4.27)
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Ω′ = Ω− 1

c2
v × g. (4.28)

The primes indicate the field in the observer frame in which the velocity of
a charge or mass is non zero. The Biot Savart law of magnetism is obtained
from Eq. (4.26) with:

B = 0 (4.29)

which means that there is no magnetic field in the rest frame, the frame in
which the electric charge does not move. The electromagnetic Biot Savart law
is therefore:

B′ = − 1

c2
v ×E (4.30)

in S. I. Units. The prime in Eq. (4.30) means that the law is written in the
observer frame, the frame in which the velocity v of the electric charge is
non-zero. In the usual electrodynamics textbooks the prime is omitted by
convention and the law becomes:

B = − 1

c2
v ×E. (4.31)

The Biot Savart law can be written [2]- [13] as:

∇×B = µ0J (4.32)

which is the Ampère law of magnetostatics, describing the magnetic flux den-
sity generated by a current loop of any shape. It follows in ECE 2 theory
that:

∇×B = − 1

c2
∇× (v ×E) = µ0J (4.33)

so the current density of electrodynamics is:

J = − 1

µ0c2
∇× (v ×E) = −ε0∇× (v ×E) . (4.34)

Here:

∇× (v ×E) = v (∇ ·E)− (∇ · v) E + (E ·∇) v − (v ·∇) E. (4.35)

The electromagnetic charge current density is:

Jµ = (cρ,J) . (4.36)

In exact analogy, the ECE 2 gravitomagnetic mass/current density is:

Jµm = (cρm,Jm) . (4.37)

Therefore:

∇×Ω = − 1

c2
∇× (v × g) =

4πG

c2
Jm (4.38)
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and the current of mass density is:

Jm = − 1

4πG
∇× (v × g) . (4.39)

Now use:

Ω2 =
1

c4
(v × g) · (v × g) =

1

c4

(
v2g2 − (v · g)

2
)
. (4.40)

Eqs. (4.38) and (4.40) are general to any orbit.
For the Hooke/Newton inverse square law:

F = −mMG

r2
er (4.41)

the orbit in plane polar coordinates is the conic section [2]- [13]:

r =
α

1 + ε cos θ
(4.42)

and the orbital linear velocity is:

v2 =

(
dr

dt

)2

+ r2

(
dθ

dt

)2

= MG

(
2

r
− 1

a

)
(4.43)

where the semi major axis of an ellipse, for example, is:

a =
α

1− ε2
. (4.44)

Here α is the half right latitude and ε is the eccentricity. Some examples of
the gravitomagnetic field are developed and graphed later on in this chapter.

The ECE 2 gravitomagnetic field can be calculated for dynamics in general
and for a three dimensional orbit. For the planar part of this orbit the grav-
itomagnetic Ampère law can be used to calculate the light deflection due to
gravitation and the precession of the perihelion from the ECE 2 field equations.

In planar orbital theory it is well known [2]- [13] that the angular velocity
is defined from a Lagrangian analysis in terms of the angular momentum of
the system comprised of a mass m orbiting a mass M :

dθ

dt
k = ω =

L

mr2
k. (4.45)

In this case the gravitomagnetic field is:

Ω = −
(
MG

mc2

)
L

r3
k (4.46)

and the current of mass density is:

Jm = − 3ML

4πmr4
eθ (4.47)
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where the unit vectors are defined as:

eθ = −i sin θ + j cos θ (4.48)

er = i cos θ + j sin θ (4.49)

in terms of the Cartesian unit vectors i and j. From a a hamiltonian analysis
for a force law:

F = −mMG

r2
er (4.50)

it follows that:

L2 = m2MGα (4.51)

in order that the orbit be the conic section (4.42). For an ellipse:

α =
(
1− ε2

)
a (4.52)

and for a hyperbola:

α =
(
ε2 − 1

)
a (4.53)

where a is the semi major axis for the ellipse.
The ECE 2 gravitomagnetic Ampère law (4.38) was first developed in UFT

117 and UFT 119, and orbital theory can be described by this law.
In cylindrical polar coordinates the position vector is:

r = rer + Zk, (4.54)

the velocity vector is:

v = ṙer + ωreθ + Żk (4.55)

and the acceleration vector is:

a =
(
r̈ − rθ̇2

)
er +

(
rθ̈ + 2ṙθ̇

)
eθ + Z̈k. (4.56)

In dynamics in general the gravitomagnetic field is:

Ω = − 1

c2
v × a. (4.57)

If the gravitational potential energy is defined as:

U = −mMG

r
(4.58)

the lagrangian is:

L = T − U (4.59)
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where the kinetic energy is:

T =
1

2
mv2 =

1

2
m
(
ṙ2 + θ̇2r2 + Ż2

)
. (4.60)

There are three Euler Lagrange equations:

∂L

∂θ
=

d

dt

∂L

∂θ̇
(4.61)

∂L

∂r
=

d

dt

∂L

∂ṙ
(4.62)

∂L

∂Z
=

d

dt

∂L

∂Z
. (4.63)

Eq. (4.62) gives the Leibniz equation:

F (r) = −∂U
∂r

= m
(
r̈ − rθ̇2

)
. (4.64)

Eq. (4.63) gives:

Z̈ =
d2Z

dt2
= 0 (4.65)

and Eq. (4.61) gives the conserved angular momentum

L =
∂L

∂θ̇
. (4.66)

In cylindrical polar coordinates:

L = mr× v = m
(
ωrZer + ṙZeθ + ωr2k

)
(4.67)

so for a three dimensional orbit L is not perpendicular to the orbital plane. It
follows from Eq. (4.67) that the Z component of angular momentum is:

LZ = mr2ω (4.68)

and is a conserved constant of motion:

dLZ
dt

= 0 (4.69)

if the angular velocity is defined as in Eq. (4.45). The total angular momentum
is defined by:

L2 = L2
r + L2

θ + L2
Z (4.70)

and is not conserved, i. e.:

dL

dt
6= 0. (4.71)
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The Binet equation [2]- [13] of orbits is defined by Eqs. (4.64) and (4.68) and
is:

F (r) = − L2
Z

mr2

(
d2

dθ2

(
1

r

)
+

1

r

)
. (4.72)

It gives the force law for any orbit, not only the conic section orbits.
For planar orbits it can be shown [2]- [13] that:

rθ̈ + 2ṙθ̇ = 0 (4.73)

so the velocity is:

v = ṙer + ωreθ (4.74)

and the acceleration is:

a =
(
r̈ − rθ̇2

)
er. (4.75)

In three dimensions the position vector is:

r = rer + Zk (4.76)

and the angular momentum vector is:

L = m
(
Z (ωrer + ṙeθ) + ωr2k

)
(4.77)

so a planar orbit of any kind is embedded in the three dimensions defined by
r, θ, and Z. In the usual planar orbit theory it is assumed that

Z = 0 (4.77a)

in Eq. (4.77).
Eq. (4.76) can be defined as:

rtotal = rer + Zk (4.78)

so:

r2
total = r2 + Z2 (4.79)

so a conic section orbit in cylindrical coordinates is defined in general by:

r2
total =

(
α

1 + ε cos θ

)2

+ Z2. (4.80)

In general the lagrangian is:

L =
1

2
m
(
ṙ2 + θ̇2r2 + Ż2

)
− U (r, θ, Z) (4.81)

and the potential energy and force depend on Z as well as on r. Most generally,
the velocity in the observer frame is:

v = ṙer + ω × r (4.82)
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and the acceleration in the observer frame is:

a = r̈er − ω × (ω × r) +
dω

dt
× r + 2ω × dr

dt
er. (4.83)

The vector definitions (4.82) and (4.83) are equivalent to:

v = ṙer + rθ̇eθ (4.84)

and

a =
(
r̈ − ω2r

)
er +

(
2ṙθ̇ + rθ̈

)
eθ. (4.85)

The gravitomagnetic field is proportional to the vector product of v from
Eq. (4.82) and a from Eq. (4.83).

Using these concepts, the phenomena of light deflection due to gravitation
and perihelion precession can be described straightforwardly by ECE 2 theory
as follows.

A precessing orbit can be modelled by:

r =
α

1 + ε cos(xθ)
(4.86)

and advances by:

∆θ = (x− 1) θ (4.87)

In the solar system, x is very close to unity. Later on in this chapter an exact
ECE 2 theory of the perihelion precession is developed by simultaneous solution
of the ECE 2 lagrangian and hamiltonian. However Eq. (4.86) is accurate in
the solar system to a very good approximation. Since x is very close to unity:

L2 = m2MGα (4.88)

to an excellent approximation. From Eqs. (4.72) and (4.86) the force necessary
for the precessing orbital model (4.86) is:

F = mMG

(
−x

2

r2
+

(
x2 − 1

)
α

r3

)
er. (4.89)

Note carefully that this is not the force law of the incorrect Einstein theory,
whose claims to accuracy are nullified because its underlying geometry is in-
correct [2]- [13]. For light grazing the sun, the orbit is a hyperbola with a very
large eccentricity, so the path of the light grazing the sun is almost a straight
line. At the distance of closest approach (R0):

a = R0. (4.90)

The angle of deflection of the light is defined by:

∆ζ =
2

ε
(4.91)
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and the gravitomagnetic field is:

Ω =
MGL

mc2

(
−x

2

r3
+

(
x2 − 1

)
α

r4

)
k. (4.92)

To an excellent approximation:

x ∼ 1 (4.93)

and the gravitomagnetic field at closest approach is:

Ω2
Z =

(MG)
3

c4r6
a
(
ε2 − 1

)
. (4.94)

Now use:

r = a = R0 (4.95)

to find that:

Ω2
Z =

(MG)
3

c4R5
0

(
ε2 − 1

)
. (4.96)

The angle of deflection is therefore:

∆ζ =
2

ε
=

2

ΩZc2

(
(MG)

3

R5
0

)1/2

. (4.97)

For light deflection by the sun:

∆ζ = 8.4848× 10−6 radians (4.98)

so the gravitomagnetic field for light deflection by the sun is:

ΩZ = 0.000314 radians per second. (4.99)

The precession of the perihelion of a planet such as Mercury is defined by
the Z component of the gravitomagnetic field as follows:

ΩZ =
MGL

mc2

(
−x

2

r3
+

(
x2 − 1

)
α

r4

)
(4.100)

where

α = b
(
1− ε2

)1/2
. (4.101)

Here b is the perihelion. Therefore at the perihelion:

ΩZ =
− (MG)

3/2 (
1− ε2

)1/4
x2

c2b5/2
(4.102)
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and

∆θ = (x− 1)
π

2
. (4.103)

The observed precession of the perihelion of Mercury is

∆θ = 7.9673× 10−7 radians per year (4.104)

and at the perihelion:

θ =
π

2
(4.105)

so

x = 1 + 1.268× 10−7 (4.106)

and to an excellent approximation:

x ∼ 1 (4.107)

thus justifying Eq. (4.93). The required experimental data are:

M = 3.285× 1023 kg

b = 4.60012× 1010 m

ε = 0.205630

(4.108)

so the gravitomagnetic field responsible for the precession of the perihelion of
Mercury is:

ΩZ = −2.489× 10−24 rad s−1. (4.109)

As in UFT 323 the concept of Lorentz transform can be extended to the
Lorentz transform of frames, so in ECE 2 the transform becomes one of a
generally covariant unified field theory. The primed frame is the Newtonian or
inertial frame whose axes are at rest. The notes accompanying UFT 323 give
clarifying examples. In contrast to the usual concept of the Lorentz transform
in special relativity a particle may move in the primed Newtonian frame. In the
original theory by Lorentz, the particle is at rest in its own frame of reference,
known as the “rest frame”. The unprimed frame in this theory can move in
any way with respect to the Newtonian or primed frame, so the 1835 theory
by Coriolis is developed into a generally covariant unified field theory.

This theory produces the following force equation for orbits:

F = m

(
γ (g + v ×Ω)− γ2

1 + γ

v

c

(v

c
· g
))

= −mMG

r2
er (4.110)

and is therefore the generally covariant Leibniz force equation. It is shown as
follows that this equation can describe precessional effects in orbits. The 1835
Coriolis theory is recovered in the limit:

γ → 1, v � c (4.111)
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from which:

F = m (g + v ×Ω) = −mMG

r2
er. (4.112)

In conventional notation the well known Coriolis theory is:

F = m
((
r̈ − rθ̇2

)
er +

(
rθ̈ + 2ṙθ̇

)
eθ

)
= −mMG

r2
er (4.113)

in which:

rθ̈ + 2ṙθ̇ = 0 (4.114)

for all planar orbits [2]- [13]. So for planar orbits:

F = m
(
r̈ − rθ̇2

)
er = −mMG

r2
er. (4.115)

The 1689 Leibniz equation is:

mr̈ = rθ̇2 − mMG

r2
(4.116)

which is recovered from the general theory using:

v = ω × r, Ω = −ω. (4.117)

Therefore in the Leibniz equation one frame moves with respect to another
with the circular part of the orbital velocity

v = ω × r. (4.118)

This is the angular part of the total orbital velocity:

v = ṙer + ω × r. (4.119)

The Leibniz orbital equation produces the conic section:

r =
α

1 + ε cos θ
(4.120)

whereas the observed orbit is accurately modelled by:

r =
α

1 + ε cos(xθ)
(4.121)

so the precession is due to the generalization of Eq. (4.115) to Eq. (4.110).
In the Coriolis limit the gravitomagnetic field is given by Eq. (4.117), so
Eq. (4.110) becomes

F = mγ

(
d2r

dt2
− Ω2r

)
er. (4.122)
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Using:

v = ωreθ = ω × r (4.123)

and:

a = −MG

r2
er (4.124)

Eq. (4.110) reduces to:

F = mγ

(
d2r

dt2
+ |v ×Ω|

)
er. (4.125)

The relativistic correction is due to an effective potential V defined by:

V = U(r) (4.126)

used with the lagrangian:

L =
1

2
mv2 − U(r) (4.127)

and the Euler Lagrange equation:

∂L

∂r
=

d

dt

∂L

∂ṙ
. (4.128)

From Eqs. (4.121) and (4.72) the orbit due to Eq. (4.125) is:

d2

dθ2

(
1

r

)
+

1

r
=

1

γα
(4.129)

in which the Lorentz factor is defined by:

γ =

(
1− v2

c2

)−1/2

. (4.130)

The force given by the Binet Eq. (4.72) must be the same as the force given
by Eq. (4.125) so:

x2 +
(
x2 − 1

) α
r

=
1

γ
. (4.131)

At the perihelion:

r =
α

1 + ε
(4.132)

so:

x2 +
(
x2 − 1

)
(1 + ε) =

1

γ
(4.133)
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so x can be found in terms of γ. The velocity of the Lorentz transform is
defined by:

vΩ = Ωr (4.134)

so:

x2 +
(
x2 − 1

)
(1 + ε) =

(
1− v2

Ω

c2

)1/2

. (4.135)

The precession can be worked out in terms of vΩ for the orbit of the earth
about the sun, and this is done later on in this chapter.

The Lorentz force equation of ECE 2 theory can be solved by using the
relativistic Binet equation for force, and its integral form for the hamiltonian.
The relativistic Binet equation is derived from the Sommerfeld hamiltonian
and the relativistic orbital velocity can be calculated straightforwardly and
used to derive the observed velocity curve of a whirlpool galaxy and the pre-
cisely observed deflection of light due to gravity. These are major advances in
understanding that overthrow the obsolete Einstein theory.

The property of ECE 2 covariance means that the well known equations and
ideas of special relativity can be used in orbital theory. The Lorentz trans-
form is sufficient to produce the velocity curve of a whirlpool galaxy and the
famous result of light deflection due to gravitation. Therefore these phenom-
ena are explained by ECE 2 theory straightforwardly. The relativistic Binet
force equation is equivalent to the ECE 2 Lorentz force equation derived earlier
in this chapter. The former can be derived from the well known lagrangian
of special relativity. The integral form of the Binet equation allows the eval-
uation of the hamiltonian for any orbit and the Binet force equation allows
the evaluation of the central force and gravitational potential for any orbit.
The methods can be exemplified with use of the plane polar coordinates and a
precessing planar orbit. However it can be applied to three dimensional orbits.

It is shown as follows that the solution of the ECE 2 Lorentz force equation
for a planar orbit is:

F = m

(
γ (r̈ + vΩ ×Ω)− γ2

1 + γ

vΩ

c

(vΩ

c
· g
))

=
∂

∂r

(
(γ − 1)mc2

)
er.

(4.136)

The relativistic Binet equation for a planar orbit is:

F =
∂

∂r

(
(γ − 1)mc2

)
er (4.137)

in which the Lorentz factor is:

γ =

(
1− v2

c2

)−1/2

(4.138)

and in which the velocity used in the Lorentz factor is:

v2 = ṙ2 + θ̇2r2. (4.139)
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In the Lorentz force equation vΩ is the velocity of one frame with respect to
another.

The relativistic Binet equation is derived from the lagrangian of special
relativity:

L = −mc
2

γ
− U(r) (4.140)

where U(r) is a central potential. The hamiltonian of special relativity can be
derived from the lagrangian [2]- [13] and is:

H = E + U(r) (4.141)

where the total relativistic energy is:

E = γmc2. (4.142)

The hamiltonian (4.142) can be written as the Sommerfeld hamiltonian:

H(Sommerfeld) = H −mc2 = (γ − 1)mc2 + U(r) (4.143)

where:

T = (γ − 1)mc2 (4.144)

is the relativistic kinetic energy. In the non relativistic limit:

T →
(

1 +
v2

2c2
− 1

)
mc2 =

1

2
mv2 =

p2

2m
. (4.145)

The Euler Lagrange equations of the system are:

∂L

∂θ
=

d

dt

∂L

∂θ̇
(4.146)

∂L

∂r
=

d

dt

∂L

∂ṙ
. (4.147)

For a central potential that depends on r but not θ they produce the results

∂L

∂θ
= γmr2θ̇ (4.148)

and:

d

dt
(γmṙ)− γmrθ̇2 = −∂U

∂r
= F (r). (4.149)

Eq. (4.148) defines the relativistic angular momentum:

L = γmr2θ̇ (4.150)

which is a constant of motion:

dL

dt
= 0. (4.151)
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Eq. (4.149) defines the relativistic force equation of the orbit:

F (r) =
d

dt
(γmṙ)− γmrθ̇2 (4.152)

in which:

m
d

dt
(γṙ) = m

(
ṙ
dγ

dt
+ γr̈

)
. (4.153)

Here:

dγ

dt
=
dγ

dv

dv

dt
(4.154)

so:

d

dt
(γmṙ) = m

(
ṙγ3v

c2
dv

dt
+ γr̈

)
(4.155)

where

v =
(
ṙ2 + θ̇2r2

)1/2

. (4.156)

In general this is a complicated expression that must be developed with com-
puter algebra.

The Binet equation is defined by making a change of variable:

d

dθ

(
1

r

)
= − 1

r2

dr

dθ
= − 1

r2

dr

dt

dt

dθ
(4.157)

where:

dt

dθ
=
γmr2

L
. (4.158)

From Eq. (4.150) it follows that:

θ̇ =
L

γmr2
(4.159)

and

ṙ = − L

γm

d

dθ

(
1

r

)
. (4.160)

The orbital velocity is therefore:

v2
N = ṙ2 + θ̇2r2 =

L2

γ2m2

((
d

dθ

(
1

r

))2

+
1

r2

)
(4.161)

and the integral form of the relativistic Binet equation is found directly from
the Sommerfeld hamiltonian:

H −mc2 = (γ − 1)mc2 − mMG

r
(4.162)
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in which:

L = γmr2θ̇ = γL0. (4.163)

So the relativistic orbital velocity is:

v2
N =

L2

m2

((
d

dθ

(
1

r

))2

+
1

r2

)(
1 +

L2

m2c2

((
d

dθ

(
1

r

))2

+
1

r2

))−1

.

(4.164)

Note carefully that

H −mc2 = H(Sommerfeld) (4.165)

is a constant of motion, so the relativistic Binet force equation is:

F =
∂

∂r

(
(γ − 1)mc2

)
(4.166)

which is the required solution of the ECE 2 Lorentz force equation (4.136),
Q. E. D.

In the non relativistic limit the integral form of the Binet equation is:

U = H − L2

2m

((
d

dθ

(
1

r

))2

+
1

r2

)
(4.167)

and the Binet force equation in the non relativistic limit is the well known [2]-
[13]:

F (r) = − L2

mr2

(
d2

dθ2

(
1

r

)
+

1

r

)
. (4.168)

For the precessing conic section (4.121) for example, the central force is:

F = −∂U
∂r

= − x
2L2

mr2α
+

(
x2 − 1

)
L2

mr3
(4.169)

and the gravitational potential is:

U = −mMG

r
. (4.170)

The hamiltonian is:

H =
x2L2

2m

(
ε2 − 1

α2

)
. (4.171)

In the Newtonian limit:

F = −mMG

r2
, U = −mMG

r
, |E| = mMG

2a
, (4.172)

67



4.1. GENERAL THEORY

and the following well known results are recovered:

x→ 1, r → α

1 + ε cos θ
. (4.173)

It follows that the Einstein theory is not needed to describe a precessing
elliptical orbit. It can be derived classically as above. The Einstein theory
gives an incorrect force law [2]- [13] that is the sum of terms that are inverse
squared in r and inverse fourth power in r. The correct expression is given in
Eq. (4.169).

The relativistic orbital velocity (4.161) gives the correct experimental result
for the velocity curve of a whirlpool galaxy using the hyperbolic spiral orbit
of a star moving outwards from the galactic centre:

1

r
=

θ

r0
. (4.174)

From Eqs. (4.161) and (4.174) the velocity curve of the spiral galaxy is:

v2
N =

L2
0

m2

(
1

r2
0

+
1

r2

)(
1− L2

0

m2c2

(
1

r2
0

+
1

r2

))−1

(4.175)

and goes to the observed constant plateau:

vN −−−→
r→∞

L0

mr0

(
1− L2

0

m2c2r2
0

)−1/2

. (4.176)

These results amount to a strong indication that ECE 2 is preferred by Ock-
ham’s Razor, and by observation, to the Einstein theory, because the latter
fails completely to produce the velocity curve of a whirlpool galaxy [2]- [13].
The non relativistic Newtonian orbital velocity is:

v2(Newton) = MG

(
2

r
− 1

a

)
(4.177)

so:

v2(Newton) =
MG

r

(
2 +

(
ε2 − 1

)
1 + ε cos θ

)
−−−→
r→∞

0 (4.178)

and the Newton theory fails completely in a whirlpool galaxy. The Einsteinian
orbit is claimed to be able to reproduce the precessing ellipse (4.121), so:

v2(Einstein) =
MG

r

(
2 +

(
ε2 − 1

)
1 + ε cos(xθ)

)
−−−→
r→∞

0 (4.179)

and the Einsteinian general relativity also fails completely in a whirlpool
galaxy.

The relativistic orbital velocity from Eq. (4.164) is:

v2
N = v2

(
1 +

v2

c2

)−1

(4.180)
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where vN is the non relativistic orbital velocity:

v2
N = ṙ2 + θ̇2r2 (4.181)

in plane polar coordinates. In light deflection by gravitation:

v ∼ c. (4.182)

It follows from Eqs. (4.180) and (4.182) that:

v2
N →

c2

2
(4.183)

and that there is an upper bound to the non relativistic velocity. This simple
inference of ECE 2 theory exactly explains light deflection by gravitation as
follows.

The non relativistic orbital velocity is:

v2
N = MG

(
2

r
− 1

a

)
(4.184)

where the semi major axis is:

a =
α

1− ε2
. (4.185)

The distance of closest approach is:

R0 =
α

1 + ε
. (4.186)

It follows that:

v2
N =

MG

R0

(
2 +

ε2 − 1

ε+ 1

)
=
MG

R0
(1 + ε) . (4.187)

Light grazing the sum follows a hyperbolic trajectory with a very large eccen-
tricity:

ε� 1 (4.188)

so the orbit is almost a straight line. From Eqs. (4.187) and (4.188):

ε ∼ R0v
2
N

MG
(4.189)

and the angle of deflection is:

∆ζ =
2

ε
=

2MG

R0v2
N

. (4.190)

This is often known as the Newtonian result. However, the non relativistic
velocity from Eq. (4.180) is:

v2
N =

c2

2
(4.191)
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so the angle of deflection is:

∆ζ =
4MG

R0c2
(4.192)

which is exactly the precisely measured experimental result, Q. E. D. The Ein-
stein theory is not needed to produce this result.

The lagrangian and hamiltonian of ECE 2 (those of special relativity) can
be solved simultaneously using numerical scatter plot methods as in UFT 325
on www.aias.us. The result is the precise orbit, the precisely defined precess-
ing ellipse without any further assumption or theory. Note carefully that this
is not the Einsteinian result, which is based on an incorrect geometry without
torsion. As shown in several UFT papers, the Einstein result produces a mi-
rage of precision when the precession is tiny as in the solar system, over the
full range of angle it gives a wildly incorrect orbit [2]- [13] and is known to be
incorrect in many other ways. ECE 2 is a great improvement because it gives
a precessing ellipse directly from the simultaneous solution of the ECE 2 la-
grangian and hamiltonian – a precise, correct and general result. ECE 2 gives
the precessing orbit without any empiricism. The true precessing orbit is not
that of Einstein, and is not the model (4.121). The non relativistic Newton
theory gives no precession at all.

The hamiltonian and lagrangian of ECE 2 are given by Eqs. (4.141) and
(4.140) respectively. It is assumed that the gravitational potential is:

U = −mMG

r
. (4.193)

The orbital velocity is defined by the infinitesimal line element of special rel-
ativity [2]- [13]:

c2dτ2 =
(
c2 − v2

N

)
dt2 (4.194)

where dτ is the infinitesimal of proper time, the time in the frame moving with
the object m orbiting an object M . It follows that the non relativistic velocity
is:

v2
N = ṙ2 + r2θ̇2. (4.195)

The Euler Lagrange equations for this system produce Eq. (4.164) as shown
already.

As shown in Note 325(9) and by computer algebra, the Einstein theory gives
an exceedingly complicated orbit and diverges, so the Einstein theory when
correctly tested over its complete range gives un unphysical result, in fact it
gives complete nonsense. UFT 325 on www.aias.us was the first paper to
point this out in irrefutable detail using computer algebra to eliminate human
error. The Einstein theory is therefore obsolete. The basic incorrectness of
the Einstein theory can be demonstrated easily as follows. The Einsteinian
hamiltonian and lagrangian are well known to be:

H(Einstein) =
1

2
m
(
ṙ2 + r2θ̇2

(
1 +

r0

r

))
+ U (4.196)
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and

L (Einstein) =
1

2
m
(
ṙ2 + r2θ̇2

(
1 +

r0

r

))
− U (4.197)

where:

U = −mMG

r
(4.198)

and where

r0 =
2MG

c2
(4.199)

is known in the obsolete physics as the Schwarzschild radius. The conserved
angular momentum of the Einstein theory is:

L =
∂L

∂θ̇
=
(

1 +
r0

r

)
mr2θ̇ (4.200)

and it follows that:

θ̇ =
L

mr2
=
(

1 +
r0

r

)−1

(4.201)

and

ṙ = − L
m

(
1 +

r0

r

)−1 d

dθ

(
1

r

)
. (4.202)

Therefore the Einsteinian orbital velocity can be worked out from:

v2 = ṙ2 + r2θ̇2 (4.203)

using Eqs. (4.201) and (4.202), giving the result:

v2(Einstein) = v2
N

(
1 +

r0

r

)−2

. (4.204)

As:

vN → c (4.205)

and at the distance of closest approach:

r = R0 (4.206)

the Newtonian angle of deflection is changed to:

∆ζ =
2MG

R0c2

(
1 +

r0

r

)2

(4.207)

and this is not the experimental result, Q. E. D. As shown in detail in papers
such as UFT 150 and UFT 155 on www.aias.us, by now classic papers, Ein-
stein obtained the twice Newton result by a series of invalid approximations.
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The Euler Lagrange equation (4.147) gives the relativistic Leibniz orbital
equation of ECE 2:

d

dt
(γmṙ)− γmrθ̇2 = −∂U

∂r
= F (r). (4.208)

In the limit:

γ → 1 (4.209)

Eq. (4.208) becomes the 1689 Leibniz equation:

mr̈ = mrθ̇2 − mMG

r2
(4.210)

which gives a non precessing orbit. The Newtonian or non relativistic orbital
velocity is:

v2
N =

L2

m2

((
d

dθ

(
1

r

))2

+
1

r2

)
= MG

(
2

r
− 1

a

)
. (4.211)

From Eqs. (4.164) and (4.211) it can be shown that:

v2 = MG

(
2

r
− 1

a

)(
1− MG

c2

(
2

r
− 1

a

))−1

. (4.212)

This result is graphed later in this chapter, in which a synopsis of UFT 325
Section 3 is also given, a Section in which computer algebra is used to show
that simultaneous solution of the lagrangian and hamiltonian of ECE 2 theory
gives the true precessing elliptical orbit for the first time in scientific history.
The solution is a stable orbit and not an unstable, unphysical orbit as in the
Einstein theory.

The property of ECE 2 covariance means that quantization of ECE 2 theory
can be developed straightforwardly, as in UFT 326, which is reviewed briefly
as follows. These quantization schemes accompany a new axiom introduced
logically by ECE 2 theory, that the maximum value of the non relativistic
velocity vN is:

v2
N =

c2

2
. (4.213)

As shown already, this axiom immediately results in the precisely observed
light deflection due to gravity, now known with claimed high precision. This
axiom allows a particle with mass to travel at c. This fact is observed experi-
mentally when electrons are accelerated to very close to c. The usual dogma of
the obsolete physics claimed that only “massless particles” such as the photon
can travel at c. ECE 2 allows the photon with mass to travel at c.

The fundamental equations for the quantization schemes are the Einstein/de
Broglie equations:

E = γmc2 = ~ω (4.214)

72



CHAPTER 4. ORBITAL THEORY

and

p = γmvN = ~κ. (4.215)

The hamiltonian and lagrangian are defined as in Eqs. (4.141) and (4.140).
The relativistic total energy is given by the well known Einstein equation:

E2 = p2c2 +m2c4. (4.216)

This can be factorized in two ways:

E −mc2 =
p2c2

E +mc2
(4.217)

and

E − pc =
m2c4

E + pc
(4.218)

each of which may be quantized using:

pµ =

(
E

c
,p

)
= i~∂µ = i~

(
1

c

∂

∂t
,−∇

)
(4.219)

for the relativistic energy E and relativistic momentum p used in Eqs. (4.214)
and (4.215).

The relativistic Schrödinger equation is obtained from Eqs. (4.217) and
(4.219)

p2

2m
ψ =

mc2

2

(
γ2 − 1

)
ψ (4.220)

and can be developed using various types of quantization as described in the
notes of UFT 326 on www.aias.us. In the non relativistic limit:

vN � c (4.221)

the following result is obtained:

p2

2m
→ mc2

((
1− v2

N

c2

)−1

− 1

)
−−−−→
vN�c

1

2
mv2

N . (4.222)

The relativistic Schrödinger equation of ECE 2 may also be expressed as:(
p2

(1 + γ)m
+ U

)
ψ =

(
H −mc2

)
ψ (4.223)

as explained in Note 326(8). The equation is therefore developed from the
familiar Schrödinger equation using:

p2

2m
→ p2

(1 + γ)m
, (4.224)
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the non relativistic Schrödinger equation being defined by:(
p2

2m
+ U

)
ψ =

(
H −mc2

)
ψ := Etotψ. (4.225)

The relativistic Schrödinger equation may be developed as:(
p2

2m
+ U

)
ψ = Etotψ +

1

2
(γ − 1) (Etot − U)ψ (4.226)

where:

Etot = H −mc2 (4.227)

and where the Coulomb potential is:

U = − e2

4πε0r
. (4.228)

So the energy levels of the H atom are shifted by:

Etot → Etot +
m2v2

N

4

((
1− v2

N

c2

)−1/2

− 1

)
(4.229)

and this allows vN to be found from the spectrum of the H atom. In the usual
Dirac quantization scheme:

H − U −mc2 =
p2c2

H − U +mc2
(4.230)

the rough approximation:

H = γmc2 + U → mc2 (4.231)

is used, implying:

γ → 1, U � E. (4.232)

Using these approximations in Eq. (4.226) leads to:(
−~2∇2

2m
+ U

)
ψ = Etotψ +

~2

4m2c2
∇2 (Uψ) (4.233)

where:

∇2 (Uψ) = U∇2ψ + 2∇U ·∇ψ + ψ∇2U. (4.234)

The energy levels of the H atom are shifted in the Dirac approximation to:

〈∆Etot〉 = − ~2

4m2c2

(∫
ψ∗U∇2ψ dτ +

∫
ψ∗
(
∇2U

)
ψ dτ

+2

∫
ψ∗∇U ·∇ψ dτ

) (4.235)
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and this can be evaluated in the approximation of hydrogenic wave functions.
In the usual interpretation of special relativity the non relativistic velocity

vN of the Lorentz transform is allowed to reach c, the universal constant known
as the vacuum speed of light. The experimentally untestable assumption:

vN →? c (4.236)

results however in an unphysical infinity:

γ →∞ (4.237)

obscurely known in the obsolete physics as the hyper relativistic limit. The
obsolete physics dealt with this unphysical infinity by inventing the massless
particle. The relativistic momentum became indeterminate, zero multiplied by
infinity, for this massless particle. A photon without mass became a dogmatic
feature of the obsolete physics but at the same time introduced many severe
difficulties [2]- [13] and obscurities which were acknowledged by the dogmatists
themselves. The ECE 2 axiom (4.213) removes all these difficulties straight-
forwardly. Under condition (4.213) the relativistic velocity v reaches c and the
Lorentz factor remains finite:

γ →
√

2. (4.238)

As shown already, the ECE 2 axiom (4.213) immediately gives the observed
light deflection due to gravitation. It also gives the correct O(3) little group
of the Poincaré group for a particle with mass, allows canonical quantization
without problems, produces the Proca equation, and is also compatible with
the B(3) field [2]- [13]. The ECE 2 axiom (4.213) introduces photon mass
theory which refutes the Higgs boson and the entire structure of the obsolete
physics. It removes the Gupta Bleuler condition, which was very obscure, and
allows canonical quantization to take place self consistently. Some methods of
measuring vN have been suggested already in order to test the axiom (4.213)
experimentally.

As described in notes such as 326(6) on www.aias.us the relativistic Schrö-
dinger equation may also be written as:

− ~2

2m
∇2ψ =

1

2

(
γ2 − 1

)
mc2ψ := Erelψ (4.239)

whose solution is:

ψ = A exp (iκZ) +B exp (−iκZ) (4.240)

where:

κ2 =
2mErel

~2
. (4.241)

This leads to relativistic quantum theory and also an expression for vN :

(vN
c

)2

= 1−

(
1 +

(
~κ
mc

)2
)−1

(4.242)
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which may be used with Eq. (4.215) to measure vN and m experimentally.
Further details and numerical development are given in UFT 326 and in

numerical methods in UFT 326 Section 3 summarized later in this chapter.
The Minkowski metric of ECE 2 relativity produces a precessing elliptical

orbit, confirming the demonstration earlier in this chapter that the precess-
ing elliptical orbit is produced by simultaneous solution of the lagrangian and
hamiltonian of ECE 2 relativity. The details for the use of the Minkowski
metric to produce precession are given in the background notes accompanying
UFT 327 on www.aias.us. The notes for UFT 327 also refute the Einstein
theory in several ways. For example notes 327(2) and 327(3) use computer al-
gebra to show that the integral approximations used by Einstein in his paper of
Nov. 1915 are incorrect. This paper was heavily criticizsed by Schwarzschild
in Dec. 1915. The computational methods now available remove the need
for the approximations used by Einstein. In UFT 150 and UFT 155 several
other approximations used by Einstein are shown to be incorrect and mean-
ingless. The scientometrics show that these are heavily studied and accepted
papers. The omission of torsion means that the geometry used by Einstein is
fundamentally incorrect as already discussed in chapter two of this book.

It is therefore accepted by leading scholars that Einsteinian general rela-
tivity is meaningless. In Note 327(6) for example an accurate computational
method is developed which proves in another way that the claim by Einstein
to have produced orbital precession is fundamentally incorrect. The results
of this numerical method are given later on in this chapter, together with
graphics.

Consider the ECE 2 infinitesimal line element:

c2dτ2 =
(
c2 − v2

N

)
dt2. (4.243)

This has the same mathematical format as the well known Minkowski metric
of special relativity. Here dτ is the infinitesimal of proper time (the time in
the moving frame) and vN is the Newtonian velocity of the observer frame,
defined in plane polar coordinates by:

v2
N =

(
dr

dt

)2

+ r2

(
dθ

dt

)2

. (4.244)

The rest energy is therefore:

mc2 = mc2
(
dt

dτ

)2

−m
(
dr

dτ

)2

−mr2

(
dθ

dτ

)2

(4.245)

where the Lorentz factor is defined by:

γ =
dt

dτ
=

(
1− v2

N

c2

)−1/2

. (4.246)

There are two constants of motion, the relativistic total energy:

E = γmc2 (4.247)
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and the relativistic angular momentum:

L = γmr2 dθ

dt
:= γL0. (4.248)

The relativistic linear momentum is defined by:

p = γmvN = γpN (4.249)

so it follows that:

p2 = γ2m2v2
N (4.250)

and Eq. (4.245) becomes the Einstein energy equation:

E2 = p2c2 +m2c4. (4.251)

As shown in Note 327(1) and in several UFT papers on www.aias.us, the
orbit of ECE 2 relativity is:(

dr

dθ

)2

= r4

(
E2 −m2c4

c2L2
− 1

r2

)
= r4

(( p
L

)2

− 1

r2

)
. (4.252)

The ratio p/L is defined by:

p

L
=
γpN
γLN

=
pN
LN

(4.253)

Therefore in the Newtonian limit the orbit becomes:(
dr

dθ

)2

= r4

((
pN
LN

)2

− 1

r2

)
(4.254)

in which the non relativistic momentum pN is defined by the classical hamil-
tonian:

H0 =
p2
N

2m
+ U (4.255)

From Eqs. (4.254) and (4.255):(
dr

dθ

)2

=
r4

L2
N

(
2m

(
(H0 − U)− L2

N

2mr2

))
(4.256)

an equation which is well known to give the conic section orbits:

r =
α

1 + ε cos θ
(4.257)

which do not precess.
The infinitesimal (4.243) of ECE 2 relativity is derived from the Lorentz

invariance:

xµxµ = xµ′xµ′ (4.258)
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of the position four vector. In ECE 2 relativity, Lorentz invariance is defined in
a space with finite torsion and curvature. In the original special relativity, the
torsion and curvature are both zero. In ECE 2 relativity the orbit is described
by the underlying Cartan and Evans identities of geometry.

In the fully relativistic version of Eq. (4.252) the relativistic angular mo-
mentum L is the constant of motion:

dL

dt
= 0 (4.259)

and not the classical angular momentum LN defined by:

LN = mr2 dθ

dt
k. (4.260)

The relativistic orbit is:(
dr

dθ

)2

= r4

(
γ2p2

N

L2
− 1

r2

)
(4.261)

where the square of the Lorentz factor is:

γ2 =

(
1− p2

N

m2c2

)−1

. (4.262)

Earlier in this chapter (and in UFT 324 and UFT 325) it was shown that
simultaneous numerical solution of the relativistic hamiltonian of ECE 2:

H = γmc2 + U (4.263)

and the relativistic lagrangian of ECE 2:

L = −mc
2

γ
− U (4.264)

gives a precessing orbit from the relevant Euler Lagrange equations. The in-
finitesimal line element corresponding to Eqs. (4.263) and (4.264) is Eq. (4.243),
whose orbit is defined by Eq. (4.252). Therefore Eq. (4.252) must also give
a precessing orbit for self consistency. The relativistic hamiltonian can be
defined as:

H =
(
c2p2 +m2c4

)1/2
+ U (4.265)

so the relativistic momentum:

p = γpN = γmvN (4.266)

can be defined as:

c2p2 +m2c4 = (H − U)
2
. (4.267)
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As shown earlier in this chapter (and also in UFT 326), Eq. (4.267) can be
expressed as:

H − U −mc2 =
c2p2

H − U +mc2
(4.268)

which reduces to the classical hamiltonian (4.255) in the limit:

vN � c. (4.269)

In the well known Dirac approximation:

U � H ∼ mc2 (4.270)

the classical hamiltonian is defined by:

H0 = H −mc2 (4.271)

and from Eqs. (4.270) and (4.271):

H0 =
p2

2m

(
1− U

2mc2

)−1

+ U, (4.272)

and since:

U � 2mc2 (4.273)

the classical hamiltonian becomes:

H0 ∼
p2

2m

(
1 +

U

2mc2

)
+ U. (4.274)

The factor two in the brackets on the right hand side is the Thomas factor
observable in spin orbit interaction in spectra. In the Dirac approximation the
relativistic momentum is given by:

p2 =

(
1− U

2mc2

)
p2
N (4.275)

and the orbit from Eqs. (4.252) and (4.275) is(
dr

dθ

)2

= r4

(
1

L2

(
1 +

MG

2c2r

)
p2
N +

1

r2

)
. (4.276)

This is the ECE 2 correction of the Newtonian theory of orbits.
The rigorously correct precession is obtained by simultaneous numerical

solution of Eqs. (4.263) and (4.264) as shown in UFT 324 and UFT 325. How-
ever, for small precessions of arc seconds a year, such as those in the solar
system, the precessing orbit can be modelled by:

r =
α

1 + ε cos(xθ)
(4.277)
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in which x is observed by high precision astronomy to be:

x = 1 +
3MG

αc2
. (4.278)

It follows from Eqs. (4.276) and (4.277) that:(
dr

dθ

)2

=
x2ε2r4

α2
sin2(xθ) = r4

((
p2
N

L2
+

1

r2

)
+

(
MG

2c2r

)
p2
N

L2

)
(4.279)

so it has been proven that ECE 2 relativity gives the experimentally observed
precessing orbit provided that Eq. (4.279) is true. So ECE 2 replaces the
obsolete and incorrect Einstein theory.

Additional analysis and graphics are given later on this chapter.
As shown analytically and numerically in UFT 328 the true precessing or-

bit must be found by simultaneous solution of the ECE 2 hamiltonian and
lagrangian. The true orbit is not the one modelled in Eq. (4.277), and is
certainly not the orbit asserted in the early work of Einstein, work which is
riddled with errors. The true precession is given by simultaneous solution of
Eqs. (4.263) and (4.264), in which the gravitational potential is assumed to
be:

U = −mMG

r
(4.280)

of the Hooke/Newton inverse square law. The orbit is considered to be planar.
As shown in UFT 324 and UFT 325 an analysis based on the Euler Lagrange
equations for r and θ leads to:

r̈ =

(
−γ2v2

N + γ2ṙ2 − c2
)
MG+ r

(
γ3r4 + γc2v2

N

)
+ rṙ

(
−γ3v2

N − γc2
)

r2 (γ3v2
N + γc2)

(4.281)

and:

θ̈ =
γṙθ̇MG+ rṙθ̇

(
−2γ2v2

N − 2c2
)

r2 (γ2v2
N + c2)

. (4.282)

In the classical limit these equations reduce to the Leibniz equation:

r̈ = rθ̇2 − MG

r2
(4.283)

and to:

θ̈ = −2ṙθ̇

r
(4.284)

respectively.
In order to compute the relativistic orbit use:

ṙ =

∫
r̈ dt (4.285)
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and:

θ̇ =

∫
θ̈ dt (4.286)

to give various results graphed later in this chapter. As discussed in UFT 328
and its background notes, the ECE 2 version of the Leibniz equation is:

F (r) = −∂U
∂r

=
d

dt
(γmṙ)− γmrθ̇2 (4.287)

with the constant of motion:

L = γmr2θ̇. (4.288)

From Eq. (4.263), the transition from classical to ECE 2 dynamics can be
described as:

p2
N → 2

(
E2

mc2 (E +mc2)

)
p2
N . (4.289)

The method of solution and precessing graphics are given later in this section.
It follows that the most general and rigorously correct method of describing
orbital precession is to solve the ECE 2 hamiltonian and lagrangian simulta-
neously. The resulting graphics show clearly the presence of the true orbital
precession. This method is valid for true precessions of any magnitude. The
Einstein theory becomes wildly incorrect for large precessions, and the model
(4.277) gives fractal conic sections.

4.2 Numerical Analysis and Graphics

4.2.1 Examples of a Gravitomagnetic Field

The gravitomagnetic field in dipole approximation has been analysed numer-
ically and graphically in three dimensions. In ECE 2 theory the gravitomag-
netic field is defined by

Ωg = ∇×Wg (4.290)

where Wg is the gravitomagnetic vector potential. This is – in analogy to
electromagnetism – given by

Wg =
G

c2r3
mg × r (4.291)

where mg is a gravitational dipole moment. For a given mg the vector potential
and gravitomagnetic field can be computed in three dimensions by computer
algebra. (The equations are quite complicated and not shown.) It would be
desirable to draw equipotential lines because these are perpendicular to the
field lines and demonstrate the curving of the field clearly. As the name says,
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these are results of a scalar potential which is not available in the gravitomag-
netic case. However, it is known from electrodynamics that dipole fields can
be defined by a magnetic scalar potential Φ in analogy to the electric case:

Ωg = −∇Φ. (4.292)

Therefore we defined a dipole by two distinct charges ±q and a potential

Φ(r) = C

(
q

|r− r1|
− q

|r− r2|

)
(4.293)

with the “charges” at positions r1 and r2, here placed on the Z axis. The
corresponding field Ωg is rotationally symmetric around this axis and is shown
in Fig. 4.1, together with the equipotential lines of Φ.

It may be interesting how the field looks like if two dipoles are positioned
upon one another. This is a linear arrangement without a quadrupole moment
which would occur in other cases. The results are graphed in Fig. 4.2. There
is a recess in the XY plane which is shown in more detail in Fig. 4.3. Field
lines do not go straight from pole to pole in this region, contrary to the single
dipole. It has been reported by Johnson in the seventies that such a behaviour
has been found for certain magnets.

Figure 4.1: Dipole vector field Ωg (directional vectors only) in XZ plane and
equipotential lines.
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Figure 4.2: Double-dipole vector field in XZ plane and equipotential lines.

Figure 4.3: Double-dipole vector field and equipotential lines, enlarged view.
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4.2.2 Relativistic Lagrange Theory and x Theory

The Lagrangian from special relativity, or Sommerfeld Lagrangian (Eq. (4.140)),
is

L = −mc2

γ
− U (4.294)

with potential energy, γ factor and velocity

U = −mM G

r
, (4.295)

γ =
1√

1− v2

c2

, (4.296)

v2 = ṙ2 + r2 θ̇2. (4.297)

The evaluation of Lagrange equations

∂L

∂r
=

d

dt

∂L

∂ṙ
, (4.298)

∂L

∂θ
=

d

dt

∂L

∂θ̇
(4.299)

gives from the Sommerfeld Lagrangian (4.294):

r̈ = −
c2GM + γ3 r4 ṙ θ̇ θ̈ +

(
γ3 r3 ṙ2 − γ c2 r3

)
θ̇2

γ3 r2 ṙ2 + γ c2 r2
. (4.300)

and

θ̈ = −
γ2 r2 ṙ θ̇3 +

(
γ2 r ṙ r̈ + 2 c2 ṙ

)
θ̇

γ2 r3 θ̇2 + c2 r
. (4.301)

Both equations contain the second derivatives of r and θ in linear form. To
obtain an equation set useable for numerical integration, both θ̈ and r̈ have to
be separated first. From the two equations with two unknowns (4.300,4.301)
the solutions are

r̈ =

(
−γ2 v2 + γ2 ṙ2 − c2

)
GM + r γ

(
γ2 v4 + c2 v2

)
− r ṙ2 γ

(
γ2 v2 + c2

)
r2 γ (γ2 v2 + c2)

,

(4.302)

θ̈ =
γ ṙ θ̇ GM + r ṙ θ̇

(
−2 γ2 v2 − 2 c2

)
r2 (γ2 v2 + c2)

. (4.303)

These are the relativistic Lagrange equations for central motion in a two-
dimensional polar coordinate system. The non-relativistic form of them is
obtained by assuming γ ≈ 1 and making the transition c→∞ which leads to

r̈ = r θ̇2 − GM

r2
, (4.304)

θ̈ = −2 ṙ θ̇

r
. (4.305)
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These are exactly the non-relativistic equations of Newton theory.
For comparison we also investigate the equations of motion from x theory.

The x potential is given by

U =
L2
(
x2 − 1

)
2mr2

− L2 x2

αmr
. (4.306)

With the half latus rectum

α =
L2

m2M G
, (4.307)

the non-relativistic Lagrangian

L =
1

2
mv2 − U (4.308)

is

L =
mx2GM

r
−
L2
(
x2 − 1

)
2mr2

+
m
(
r2 θ̇2 + ṙ2

)
2

(4.309)

which leads to the non-relativistic Lagrange equations with x correction:

r̈ = −x
2GM

r2
+
Lm2

(
x2 − 1

)
m2 r3

+ r θ̇2, (4.310)

θ̈ = −2 ṙ θ̇

r
. (4.311)

The equation for θ̈ is unchanged. For x = 1 the non-relativistic equations are
obtained. For x < 1 a negative contribution of 1/r3 is added to the radial
force component, leading to a precession of the ellipse in the direction of the
orbital motion which is observed for the planet Mercury.

Velocity Comparison

For a graphical examination of the results, we first will examine the graphs
of the velocities. As was shown by Eq.(4.180), the non-relativistic velocity is
given by

v2
N =

v2

1 + v2/c2
(4.312)

where vN for an ellipse is given according to Eq.(4.184) by

v2
N = M G

(
2

r
− 1

a

)
(4.313)

with a = α/(1− ε2) being the major axis. Solving Eq.(4.312) for v gives

v2 =
v2
N

1− v2
N/c

2
. (4.314)
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Figure 4.4: Newtonian and relativistic velocity ratio v/c.

By inserting (4.313) into (4.314), v and vN can be compared in their radial
dependence. The ratios v/c and vN/c are graphed in Fig. 4.4. All parameters
were set to unity. For r → 0, the classical velocity diverges to an infinite value.
For the relativistic velocity, this happens for vN = c where we have vN = 1
in the actual scaling. This behaviour motivates an alternative definition for v′

and v′N with reversed signs in the denominator:

v′2N =
v′2

1− v′2/c2
, (4.315)

v′2 =
v′2N

1 + v′2N/c
2
. (4.316)

This effectively leads to an alternative relativistic velocity curve v/c which
approaches unity for r → 0 as expected (green curve in Fig. 4.4). Otherwise
the case v = c is reached at a much higher r value. However the non-relativistic
formula of the orbit has been used in (4.313) which may be a source of an error,
and the elliptic orbit is defined only in a restricted range of r.

It was shown in UFT 325 that the classical velocity in case of x theory
correction is

v2
x =

L2

α2m2

(
α
(
x2 + 1

)
r

+
(
ε2 − 1

)
x2

)
. (4.317)

To make this comparable with Eq.(4.313), we replace L2 by

L2 = m2M Gα (4.318)
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Figure 4.5: velocity ratio v/c for non-relativistic (Newtonian) and relativistic
case, and for two values of x theory.

and obtain

v2
x =

(((
ε2 − 1

)
r + α

)
x2 + α

)
GM

αr
. (4.319)

From (4.313) and (4.314) then follows

v2
N =

((
ε2 − 1

)
r + 2α

)
GM

αr
, (4.320)

v2 =

((
ε2 − 1

)
r + 2α

)
GM c2

((ε2 − 1) r + 2α) GM + α c2 r
. (4.321)

With parameters set to ε = 0.3, c = 3, all other parameters unity, we can
compare all three velocity expressions. The results are graphed in Fig. 4.5 for
two values of x = 0.75 and x = 1.4. These are the velocities for a precessing
or non-precessing ellipse in the high-relativistic case up to v/c = 0.5. The
curves v(r)/c are plotted in the range [rmin, rmax] of an ellipse with α = 1.
It can be noticed that the relativistic curve (thick line) is not covered exactly
neither by x theory nor by Newton theory. The latter underestimates velocity
at perihelion. Using x = 0.75 (red line) fits the velocity of x theory near to
the aphelion but underestimates it at perihelion. Values for x > 1 cannot
remedy this because the slope becomes too large. The true theoretical orbit
is that from the Lagrangian of special relativity, which is also the Lagrangian
of ECE 2 theory.
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Numerical Solution of Relativistic Orbits and Control Parameters

The equations (4.302-4.303) have been solved numerically as for example in
UFT paper 239 (but we used θ as the integration variable therein, while we
use the time in this work). The results r(t) and θ(t) can be combined in a
so-called scatter-plot in a polar coordinate system to obtain the orbit r(θ). So
the orbit is not given by an analytical formula in this case but numerically by
”points”. The result is graphed in Fig. 4.6, showing directly the precession
of the ellipse. Orbital motion is in positive mathematical angular direction as
is the rotation of the elliptic orbit. This is in coincidence with astronomical
findings.

There is additional information that can be obtained from the solutions r(t)
and θ(t) and their derivatives. Important checks are the constants of motion:
relativistic angular momentum and energy. We validated that the relativis-
tic momentum is conserved as well as the relativistic energy (Hamiltonian).
Fig. 4.7 shows the ratio v/c which is minimal in aphelion as expected. The
same holds for the difference of the r component of force and the angular mo-
mentum between relativistic and non-relativistic calculation (Fig. 4.8). The
total energy is identical to the non-relativistic case at aphelion (Fig. 4.9).

We did the same numerical calculation for the potential of x theory. In
the Newtonian case (x = 1) the well known ellipses follow, for the x theory
the precessing ellipses, all numerically, and can be compared with the rela-
tivistic solution. It is a bit difficult to define comparable x factors for the
relativistic case because there is no analytically given orbit and both theories
show quantitatively different behaviour, see discussion of Fig. 4.5 above. The
initial conditions do not reflect expressions like ε and α, one has to use r,
θ, ṙ and θ̇ primarily, where we pre-computed θ̇ from the same value of given
non-relativistic angular momentum in all cases. Fig. 4.10 shows the precessing
orbit for x = 0.98. The v/c ratio (Fig. 4.11) looks similar as for the relativistic
theory, The force difference changes signs in the orbit and the angular momen-
tum is the same as in the non-relativistic case, i.e. ∆L = 0. The difference of
total energy (Fig. 4.13) shows more variation than in the relativistic case.

The numerical calculations have shown that the solution of relativistic La-
grange equations is a parameter-free, first-principles method of solving the
relativistic Kepler problem. It will be difficult however to obtain orbital pre-
cession values for real planets because these effects are very small and require
very high numerical accuracy.

4.2.3 Relativistic Orbit Properties

We investigate some further parameters derived from the numerical solution
of the relativistic Lagrange equations (4.302, 4.303) and compare them with
the Newtonian solution from (4.304, 4.305). The orbital derivative is given by
(setting θ̇ = ω):

dr

dθ
=
dr

dτ

dτ

dθ
=
dr

dt

dt

dθ
=
ṙ

ω
. (4.322)
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Figure 4.6: Orbit from relativistic theory.

Figure 4.7: Ratio v/c from relativistic theory.
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Figure 4.8: Difference of force component Fr and angular momentum L be-
tween relativistic and Newton theory.

Figure 4.9: Difference of total energy E between relativistic and Newton the-
ory.
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Figure 4.10: Orbit from non-relativistic x theory, x = 0.98.

Figure 4.11: Ratio v/c from non-relativistic x theory.
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Figure 4.12: Difference of force component Fr and angular momentum L be-
tween x theory and Newton theory.

Figure 4.13: Difference of total energy E between x theory and Newton theory.
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We obtain for the relativistic ratio of p/L:

p

L
=

γmv0

γmr2ω
=

v0

ωr2
(4.323)

with constituting equations

v0 =
√
ṙ2 + r2ω2, (4.324)

v = γv0, (4.325)

γ =
1√

1− v2
0/c

2
. (4.326)

The numerical results are compared with the corresponding results of the non-
relativistic, Newtonian Lagrangian (4.307).

The relativistic and non-relativistic calculations started at θ = 0 with the
same radius and initial angular velocity. Therefore the angular momenta were
not the same at the starting point. It is however not possible to use the
non-relativistic L0 in the relativistic equation because this is not a constant
of motion there. From Fig. 4.14 (orbits) it can be seen that the relativistic
orbit is significantly larger for identical initial conditions. This is a hint that it
makes no sense to use an equation for the non-relativistic orbit in a relativistic
context. The orbital derivative dr

dθ is graphed in Fig. 4.15. Since the derivative
takes both signs, there are two overlapping elliptic curves in the polar plot
(negative values are represented by an angular shift of π).

The graph of ṙ (Fig. 4.16) is a circle in the non-relativistic case which is
run through twice because of the symmetry with sign change for a full ellipse.
In the relativistic case the precession leads to a splitting of the circle which
can well be observed in the figure. The angular velocity (Fig. 4.17) remains
positive and shows the relativistic precessing behaviour as do nearly all other
curves.

Fig. 4.18 shows γ(θ), this varies only between 1.00 and 1.03 for this partic-
ular orbit although the orbital precession (graphed in Fig. 4.14) is significant.
The ratio v/c (Fig. 4.19) is dominated by the angular velocity component of
v and therefore resembles ω (Fig. 4.17). The ratio p/L (Fig. 4.20) looks also
very similar due to its dependence on v. There is always a bend in the curves
at the aphelion. The differences between Newtonian and relativistic results for
linear momentum, angular momentum and force have already been shown in
the preceding subsection.

It is of some interest to inspect the angular dependence of the orbital
precession described by Newtonian and relativistic theory. In Newtonian and
x theory, the orbit is

r1(θ) =
α

1 + ε cos(xθ)
(4.327)

(with x = 1 for the Newtonian case), while from the relativistic theory the
precession of θ is not constant but a general function θ1(θ):

r2(θ) =
α

1 + ε cos(θ1(θ))
. (4.328)
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The first problem is to find a meaningful method for comparing the Newtonian
and relativistic case since the maximum radius (as well as the effective ε and
time dependence) are different. Therefore we used the orbital derivatives

dr1

dθ
=
ṙ1

ω1
(4.329)

and

dr2

dθ
=
ṙ2

ω2
(4.330)

for the Newtonian (r1) and relativistic case (r2). Both curves are crossing zero
at perihelion and aphelion and have been normalized so that they look identical
except their dependence on angle θ, see Fig. 4.21. The horizontal difference
between both for a given ordinate value is a measure of the progression of
angular precession, see Fig. 4.21. The difference

∆θ = θ2 − θ1 for
dr1

dθ1
=
dr2

dθ2
(4.331)

has also been plotted in Fig. 4.21. It can be seen that there is no linearly
growing ∆θ as assumed in x theory. Within the first orbit round (0-2π) the
difference becomes even negative just before θ approaches 2π. This is the most
realistic calculation of precession we have done in all papers so far.

Figure 4.14: Orbit r(θ).
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Figure 4.15: Orbit derivative dr/dθ.

Figure 4.16: Radial derivative ṙ.
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Figure 4.17: Angular velocity θ̇ = ω.

Figure 4.18: Relativistic γ factor.
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Figure 4.19: Ratio v/c.

Figure 4.20: Ratio p/L.
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Figure 4.21: Normalized dr/dθ for Newtonian and relativistic calculation, and
difference ∆θ(θ).

4.2.4 Correct Solution of the Einstein Integral

We investigate the counterpart of the orbital equation (4.276) in Einstein’s
obsolete theory. In Einsteinian theory (see UFT 327) the orbit θ(u) with
u = 1/r has to be computed from solving the integral

θ(u) =

∫
L0 du√

2m(H + ku− L2
0

2mu
2 +

L2
0

2mr0u3)
(4.332)

with non-relativistic angular momentum L0, total energy H, k = mMG and
”Schwarzschild radius” r0. The term in the square root is a polynomial of
third order in u and can be written as

1

α
(u− u1)(u− u2)(u− u3) (4.333)

where u1 = 1/r1 etc. are characteristic inverse radii. The constants u1, u2, u3

are defined by Eq.(4.332), and

1

α
= u1 + u2 + u3. (4.334)

Einstein argued by the roots of Eq.(4.333). The physical range of u is between
two values of u where the denominator vanishes, i.e. one has to find the roots
of (4.333) to find the integration interval. In his terminology Einstein wrote
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the terms in the denominator in form of

2A

B2
+

α

B2
u− u2 + αu3 (4.335)

and additionally omitted the cubic term. This seems to be arbitrary but
guarantees that only two roots exist which then are

u(1,2) =
±
√

8AB2 + α2 + α

2B2
. (4.336)

The correct method, however, would be finding the roots of the cubic equation
(4.333). By computer algebra this is possible. Quite complicated solutions
follow from which two are complex-valued. This problem of the “true” solution
of (4.333) has never been addressed in literature.

With modern computer algebra, it is possible to solve Eq.(4.332) analyti-
cally. Writing it in the form

θ(u) =

∫
du√

α(u− u1)(u− u2)(u− u3)
(4.337)

leads to a solution which, after some simplifications, reads

θ(u) =
2√

α(u2 − u1)
F

(
asin

(√
u1 − u2

u1 − u

)
,
u3 − u1

u2 − u1

)
(4.338)

with the elliptic integral of first kind F(x, y). It has to be noted that this
integral is complex-valued. The real value has to be taken as physical value.

Having found this solution, the result can be plotted and computer graphics
gives an impression of the solution immediately. First we have graphed the
integrand of (4.337) as a function f(u) with parameters u1 = 3, u2 = 2, α =
0.1 from which follows u3 = 5. Fig. 4.22 shows that the integrand has strong
infinite asymptotes as was already known from corresponding plots in UFT
papers 150 and 155. u1 and u2 are the physical inverse radii, above u3 an
unlimited unphysical range appears. The real part of solution (4.338) (Fig.
4.23) is dominated by the inverse sine function which is defined between u1 and
u2 correctly. The imaginary part pertains to an unphysical range. Choosing
parameters differently with u1 < u2 (not shown) gives similar results with
positive θ(u). We conclude that there is no multiplicity of solution for θ, i.e.
there is no room for any precession effects from this Einsteinian solution which
probably was analysed in these details for the first time.

The last example is an assessment of relativistic effects for a non-relativistic
elliptic orbit. The latter is given by

r =
α

1 + ε cos(θ)
. (4.339)

We assume that the half-right latitude α is affected by relativistic effects:

α = γ α0 =
1

1− v2
0/c

2
α0 (4.340)
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for a non-relativistic α0. Using the well-known solution

v2
0 =

(
2

r
− 1

a

)
MG (4.341)

and inserting this into (4.339), we obtain an equation for the orbit r(θ) with
relativistic correction:

r =
(2 a ε cos (θ) + 2 a) M G+ aα0 c

2

(ε cos (θ) + 1) M G+ a c2 ε cos (θ) + a c2
. (4.342)

The graph (Fig. 4.24) shows what is to be expected from (4.340): the effective
alpha is enlarged by relativistic effects (here obtained by varying c and keeping
all other parameters to unity). The enlargement is not constant, but there is
no crossing of the curves, that means that the constants of motion are different.
This is plausible because the angular momentum L0 is increased by the gamma
factor. A smaller c here means stronger relativistic effects.

Figure 4.22: Integrand of Einstein integral in form of Eq. (4.337).

4.2.5 Quantization of the Free Particle

The relativistic Schroedinger equation for a free particle is according to UFT 326
(note 4):

H1 = H −mc2 =
p2

m(1 + γ)
(4.343)
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Figure 4.23: Analytical solution (4.338) of the Einstein integral.

Figure 4.24: Radius function r(θ) for different cases of relativistic effects,
characterized by c.
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with relativistic momentum

p = γ p0 = γ mv0 (4.344)

and γ factor

γ =
1√

1− p20
m2c2

. (4.345)

Inserting p and γ into (4.343) gives a relation between H1, p0 and v0, i.e. the
relativistic energy can be set in relation with the non-relativistic momentum
and the frame velocity. From (4.343) follows

p0
2

m
(

1− p02

m2 c2

) =

 1√
1− p02

m2 c2

+ 1

 H1. (4.346)

This equation can be resolved for p0 by computer algebra, giving intermedi-
ately an equation of eighth order for p0 with three solutions for p2

0:

p2
0 = 0, (4.347)

p2
0 =

m2c2H1

(
H1 − 2mc2

)
(H1 −mc2)

2 , (4.348)

p2
0 =

m2c2H1

(
H1 + 2mc2

)
(H1 +mc2)

2 . (4.349)

It can be seen that in the approximation H1 � mc2 the third solution ap-
proaches the non-relativistic case

p2
0

2m
= H1. (4.350)

Alternatively, the two non-trivial equations (4.348, 4.349) can be resolved
for H1, resulting in two solutions

H1 =
−mc2 p2

0 ± m2c3
√
m2c2 − p2

0 + m3c4

p2
0 − m2c2

. (4.351)

This is the relativistic free particle energy, written in terms of p0.
The relativistic de Broglie wave number was derived in UFT 326, note 6:

κ2 =
(mc

~

)2
(

1

1−
(
p0
mc

)2 − 1

)
. (4.352)

With p0 = mv0 the dependence of κ on v0 can be graphed and compared with
the non-relativistic

κ2 =
(mv0

~

)2

. (4.353)
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In Fig. 4.25 both curves are presented with all constants set to unity. It can
well be seen that the relativistic κ approaches the non-relativistic, linear curve
for low velocities but diverges for v0 → c.

The de Broglie frequency for free particles was given by Eq. (30) of
UFT 326:

ω = κc+
1

~
mc3

γ(c+ v0)
. (4.354)

Inverting this equation for v0 gives the result:

v0 =
c
(
~ω −mc2 − ~ c κ

) (
~ω +mc2 − ~ c κ

)
~2 (ω2 − 2 c κω + c2 κ2) +m2 c4

. (4.355)

Its dependence on κ and ω has been graphed in a 3D plot (Fig. 4.26). There
is a range of negative velocities at the borders which is unphysical. The range
is further confined by Eq. (4.352).

Figure 4.25: Free particle de Broglie wave number κ in dependence of v0/c.
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Figure 4.26: Free particle velocity v0 in dependence of κ and ω.
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Chapter 5

New Spectroscopies

5.1 General Theory

The ECE 2 unified field theory can be used to develop new types of spec-
troscopy of general utility, for example electron spin resonance (ESR) and
nuclear magnetic resonance (NMR). Novel resonance terms can be developed
and expressed in terms of the W potential of ECE 2 theory. This has the same
units as the A potential of the standard model. The new types of ESR and
NMR emerge from the hamiltonian of ECE 2, which can be deduced using its
covariance properties explained in previous chapters:

H =
(
p2c2 +m2c4

)1/2
+ U. (5.1)

Here U is the potential energy, p the relativistic momentum, m the particle
mass, and c the vacuum speed of light regarded as a universal constant. In the
H atom, the potential energy between the electron and proton is the Coulomb
potential:

U = − e2

4πε0r
(5.2)

where e is the charge on the proton and ε0 is the vacuum permittivity in
S. I. Units. Here r is the distance between the electron and proton in the H
atom. The hamiltonian (5.1) can be rewritten as:

H0 := H −mc2 =
p2

m (1 + γ)
+ U (5.3)

in which the Lorentz factor is:

γ =

(
1− p2

0

m2c2

)−1/2

(5.4)

where p0 is the non relativistic momentum defined by:

p2
0 = 2m (H0 − U) . (5.5)
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The relativistic momentum is defined by:

p = γp0 (5.6)

and quantization takes place through the relativistic momentum:

−i~∇ψ = pψ (5.7)

where ψ is the relevant wave function of the hydrogen atom. Therefore the
relativistic quantum mechanical wave equation is constructed from Eq. (5.3),
in which either the operator or classical function can always be used. Using
the operator in the numerator and the classical function in the denominator
produces the following relativistic quantum mechanical equation:

〈H0〉 = −~2c2
∫
ψ∗∇2ψ dτ

m (1 + γ)
+

∫
ψ∗Uψ dτ (5.8)

in which:

p0 = mv0. (5.9)

In a first approximation:(
1− p2

0

m2c2

)−1/2

∼ 1 +
1

2

p2
0

m2c2
(5.10)

so the energy levels from Eq. (5.8) become:

〈H0〉 = −~2c2
∫

ψ∗∇2ψ dτ(
2 +

p20
2m2c2

)
mc2

+

∫
ψ∗Uψ dτ. (5.11)

In the limit:

H0 − U � mc2 (5.12)

Eq. (5.11) reduces to the well known hydrogen atom energy levels of the Schrö-
dinger equation:

〈H0〉 = − ~2

2m

∫
ψ∗∇2ψ dτ +

∫
ψ∗Uψ dτ =

−me4

32π2ε20~2n2
. (5.13)

Using:(
2 +

H0 − U
mc2

)−1

=
1

2

(
1 +

H0 − U
2mc2

)−1

∼ 1

2

(
1− H0 − U

2mc2

)
(5.14)

and for:

H0 − U � 2mc2 (5.15)
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Eq. (5.11) reduces to:

〈H0〉 =
−me4

32π2ε20~2n2
+

~2

4m2c2

∫
ψ∗∇2 ((H0 − U)ψ) dτ. (5.16)

There is a novel shift in the energy levels of the H atom which is different for
each principal quantum number n.

Now use the fact that the classical hamiltonian defined by:

H0 =
−me4

32π2ε20~2n2
(5.17)

is a constant of motion. Therefore:

〈H0〉 =
−me4

32π2ε20~2n2
− ~2

4m2c2

∫
ψ∗∇2 (Uψ) dτ+

~2H0

4m2c2

∫
ψ∗∇2ψ dτ. (5.18)

In the first approximation, Eq. (5.17) can be used for H0 on the right hand
side, so

〈H0〉 =
−me4

32π2ε20~2n2

(
1 +

~2

4m2c2

∫
ψ∗∇2ψ dτ

)
− ~2

4m2c2

∫
ψ∗∇2 (Uψ) dτ

(5.19)

and details of this calculation are given in Note 329(3) on www.aias.us. The
usual Dirac approximation:

H ∼ E ∼ mc2, (5.20)

U � E ∼ mc2 (5.21)

leads to:

〈H0〉 =
−me4

32π2ε20~2n2
− ~2

4m2c2

∫
ψ∗∇2 (Uψ) (5.22)

and misses the following term:

〈H0〉1 =
−me4

32π2ε20~2n2

(
~2

4m2c2

∫
ψ∗∇2ψ dτ

)
. (5.23)

The energy levels in this term can be evaluated by assuming in the first approx-
imation that wave functions are those from the Schrödinger equation. Code
libraries can be used to develop a more accurate approximation.

As shown in detail in Note 329(4) the new hamiltonian in the SU(2) basis
is:

H01 = − 1

4m2c2
σ · pH0 σ · p (5.24)

and leads to the energy level shifts:

H01 =
~2H0

4m2c2
∇2ψ. (5.25)
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The effect of an external magnetic field can be described by the minimal pre-
scription, using the W potential of ECE 2 theory introduced in chapter three.
The hamiltonian (5.24) in the presence of a magnetic field becomes:

H01 = − H0

4m2c2
σ · (p− eW)σ · (p− eW) (5.26)

which quantizes to:

H01ψ =
H0

4m2c2
(
−~2∇2 + e2W 2 + i~e (∇ ·W + W ·∇)

)
ψ (5.27)

giving many effects as described in UFT 250 and UFT 252 and their back-
ground notes. As shown in detail in Note 329(5) on www.aias.us the quanti-
zation scheme that leads to new types of ESR and NMR is:

H01ψ = − H0

4m2c2
σ · (−i~∇− eW)σ · (p− eW)ψ (5.28)

where p is the relativistic momentum. As shown in Note 329(6) the hamilto-
nian of relevance is:

HESRψ = − ie~H0

4m2c2
σ ·∇σ ·Wψ. (5.29)

Using the Pauli algebra:

σ ·∇σ ·W = ∇ ·W + iσ ·∇×W (5.30)

its real and physical part is:

Re (HESRψ) =
e~H0

4m2c2
σ ·Bψ (5.31)

where:

B = ∇×W (5.32)

is the magnetic flux density. Using Eq. (5.17) in the first approximation the
new ESR aand NMR hamiltonian is:

〈Re (HESR)〉 =
−e5

128π2ε20~mc2n2
σ ·B. (5.33)

The minimal prescription for the energy momentum four vector is defined
by:

pµ → pµ − eWµ (5.34)

where:

Wµ = (φW , cW) (5.35)
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and the magnetic flux density is defined by the spin curvature vector as in
UFT 317. Therefore as shown in detail in Note 329(7) the new hamiltonian is
defined by:

Re (HESR)ψ =
e~H0W

(0)

4m2c2
σ ·R(spin)ψ. (5.36)

The energy levels of the new ESR terms are computed and graphed later
in this chapter.

New types of hyperfine spin orbit interaction can also be inferred by remov-
ing the restrictive Dirac approximation (5.20). These new methods result in a
severe test of the basics of relativistic, because they lead to a new type of hy-
perfine splitting superimposed on the fine structure of spin orbit spectroscopy.
If these new details are not observed, then the foundations of relativistic quan-
tum mechanics are challenged.

The new hamiltonian term obtained by lifting the restrictive Dirac approx-
imation is:

H01 = −σ · p H0

4m2c2
σ · p (5.37)

in the SU(2) basis, where p is the relativistic momentum. In the presence of
a magnetic field:

H01 = −σ · (p− eW)
H0

4m2c2
σ · (p− eW) (5.38)

where the hamiltonian H0 is quantized with the ususal Schrödinger equation:

H0ψ =

(
− ~2

2m
∇2 + U

)
ψ. (5.39)

In the H atom the hydrogenic wavefunctions of Eq. (5.39) are well known
analytically.

For comparison the usual Dirac approximation leads to the well known spin
orbit term:

H02 = σ · (p− eW)
U

4m2c2
σ · (p− eW) (5.40)

in which the following relativistic quantization is used, the subscript r denoting
this fact:

pµψr = i~∂µψr. (5.41)

The relativistic four momentum is:

pµ =

(
E

c
,p

)
(5.42)

and by definition the four derivative is:

∂µ =

(
1

c

∂

∂t
,−∇

)
(5.43)
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The energy momentum four vector (5.42) is defined by the relativistic energy
and momentum:

E = γmc2, (5.44)

p = γp0 = γmv0. (5.45)

Eq. (5.37) can therefore be quantized to:

H01ψr = i~σ ·∇ H0

4m2c2
σ · pψr (5.46)

in which the Dirac approximation (5.20) is no longer used. In ECE theory
[2]- [13] the Dirac equation was developed into the fermion equation, which
removes negative energy levels and the need for the unobservable and non
Baconian Dirac sea. In Eq. (5.46), the true relativistic wave functions can be
approximated by the non relativistic Schrödinger wave functions in the first
approximation, justified by the fact that spin orbit splitting in the H atom is
a small effect. There are two types of hamiltonian possible:

H011ψ =
i~

4m2c2
H0ψσ ·∇σ · p (5.47)

and

H012ψ =
i~H0

4m2c2
σ · pσ ·∇ψ (5.48)

because H0 is a constant of motion. Using Pauli algebra produces:

σ · pσ ·∇ψ = p ·∇ψ + iσ · p×∇ψ. (5.49)

Therefore the real and physical parts are:

Re (H011ψ) = − ~
4m2c2

H0ψσ ·∇× p (5.50)

and

Re (H012ψ) = − ~H0

4m2c2
σ · p×∇ψ. (5.51)

Using the minimal prescription with the W potential of ECE 2 theory pro-
duces:

p→ p− eW (5.52)

giving rise to new spectral structure in the presence of a magnetic flux density
B:

HESRψ =
e~H0

4m2c2
σ ·∇×W =

e~H0

4m2c2
ψσ ·B (5.53)

whose energy levels are:

〈HESR〉 =
e~

4m2c2
〈H0〉σ ·B (5.54)
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where for the H atom:

〈H0〉 = − e4m

32π2ε20~2n2
. (5.55)

This is the same result as Eq. (8) of Note 329(6) on www.aias.us producing
a rigorous check for self consistency. The expectation value of Eq. (5.55) can
be expressed as:

〈H0〉 = −~c
2

(
α

rB

)
1

n2
(5.56)

where rB is the Bohr radius and α is the fine structure constant. The conven-
tional ESR hamiltonian is:

〈HESR0〉 = − e~
2m
σ ·B (5.57)

so the magnitude of this new type of fine structure is:

〈HESR〉 =
1

4

(
~
mc

)(
α

rB

)
1

n2
〈HESR0〉

=
1.33128× 10−5

n2
〈HESR0〉

(5.58)

in the H atom. This is within range of ESR and NMR spectrometers, and if
found would be very useful in analytical laboratories. In the H atom it depends
on the principal quantum number n, but in general in atoms and molecules
it would produce a rich and new spectral structure. If this structure is not
found, a fundamental challenge to relativistic quantum mechanics will have
been discovered.

Two more new types of spectra can be inferred using:

H0ψ =

(
−~2∇2

2m
− e2

4πε0r2

)
ψ (5.59)

and:

H012ψ =
i~

4m2c2
σ ·∇ (H0ψ)σ · p (5.60)

to give:

H012ψ =
ie2~

16πε0r3
σ · rσ · pψ − i~3

8m3c2
σ ·∇

(
∇2ψ

)
σ · p. (5.61)

The first part of this expression gives the conventional spin orbit term:

ReHsoψ =
e2~

16πε0m2c2r3
σ · Lψ (5.62)

where the relativistic orbital angular momentum is:

L = r× p. (5.63)
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This is related to the non relativistic angular momentum L0 by:

L = γL0. (5.64)

Additional and new types of fine structure appear from Eq. (5.62). These
should be looked for experimentally. If found, they give new types of spec-
troscopy, if not found, this new theory challenges relativistic quantum theory,
because the latter would have been shown to be restrictive and empirical rather
than a true theory.

In addition there is a second new term from Eq. (5.61):

ReH2ψ = − e~3

8m3c2
σ ·∇

(
∇2ψ

)
× p. (5.65)

In the presence of a magnetic field this term gives:

ReH3ψ = − e~3

8m3c2
σ ·∇

(
∇2ψ

)
×W (5.66)

whose energy levels are:

〈H3〉 = − e~3

8m3c2
σ ·
∫
ψ∗∇

(
∇2ψ

)
dτ ×W. (5.67)

These levels should also be looked for spectroscopically, and if found they
would provide useful new structure. If not found, relativistic quantum theory
is challenged in another way.

As shown in Note 330(7) on www.aias.us the Dirac approximation (5.20)
gives:

〈ReHso1〉 =
e~

8πε0mc2

〈
1

r3

〉
σ ·mind (5.68)

where mind is the induced magnetic dipole moment proportional to the B
Field [2]- [13]. In the H atom it is well known that:〈

1

r3

〉
=

1

r3
BL
(
L+ 1

2

)
(L+ 1)n3

(5.69)

where L is the angular momentum quantum number, and n the principal
quantum number. In more complex atoms and molecules the expectation
value has a much richer structure. This should also be present in ESR, NMR
and MRI. As in Note 330(7) there is also a conventional type two hamiltonian:

〈Hso2〉 =
e3~

16πε0m2c2

〈
1

r

〉
σ ·B. (5.70)

In H:

〈U〉 =

∫
ψ∗Uψ dτ = − e4m

16π2ε20~2n2
(5.71)
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so the energy levels are:

〈Hso2〉 =
e5

4mc2 (16π2ε20~c2)

σ ·B
n2

(5.72)

and should also be observable. If not, then the basics of the standard model
relativistic quantum theory are challenged in yet another way.

The various energy levels from these calculations are computed and tabu-
lated later in this chapter.

As described in UFT 331 a new type of Zeeman spectroscopy can be inferred
by using the correctly relativistic momentum in the kinetic energy term of the
ECE fermion equation. The Lorentz factor is calculated without using the
Dirac approximation, which effectively reduces the relativistic momentum to
the classical momentum. Quantization shows that the Zeeman effect develops
an intricate new structure if correctly calculated in this way. This structure
is exemplified with the visible 2d to 3p line of the H atom, and the infra red
4p to 5d line. The former is split into nine lines, and the latter into forty
five lines, all of which should be looked for spectroscopically. If they exist, a
very useful new structure would have been found, if not, relativistic quantum
theory is essentially refuted, despite its apparent successes.

The usual theory of the Zeeman effect [2]- [13] is based on the classical
hamiltonian:

H0 = T + U (5.73)

in which the classical kinetic energy is:

T =
p2

0

2m
. (5.74)

The influence of an external magnetic flux density B can be calculated using
the ECE 2 W potential in the minimal prescription:

p0 → p0 − eW. (5.75)

Non relativistic quantization produces Schrödinger’s rule:

p0ψ = −i~∇ψ (5.76)

where ψ is the non relativistic wave function. As shown in detail in Note
331(1) on www.aias.us the non relativistic theory contains a term:

H1 = − e

m
W · p0 (5.77)

in which the vector potential of a static magnetic field is defined as:

W =
1

2
B× r (5.78)

so the term (5.77) becomes:

H1 = − e

2m
B× r · p0 = − e

2m
B · r× p0 = − e

2m
B · L0 (5.79)
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where the non relativistic angular momentum is:

L0 = r× p0. (5.80)

As shown already in this chapter, the classical hamiltonian (5.73) is the limit
of the relativistic hamiltonian:

H0 = H −mc2 =
p2

(1 + γ)m
+U ∼ p2

2m

1−


〈
Ĥ0

〉
− U

2mc2

+U (5.81)

so the non relativistic hamiltonian may be written as

H0 = H −mc2 ∼ p2

2m
+ U − · · · (5.82)

in which p is the relativistic momentum and in which the Lorentz factor is
defined by the non relativistic momentum:

γ =

(
1− p2

0

m2c2

)−1/2

. (5.83)

The relativistic hamiltonian governing the Zeeman effect is defined and
developed in Note 331(5) on www.aias.us and is:

H1 = − e

2m

(
1− p2

0

m2c2

)−1/2

L0 ·B ∼ −
e

2m

(
1 +

1

2

p2
0

m2c2

)
L0 ·B (5.84)

when:

p0 � mc. (5.85)

The relativistic hamiltonian may be quantized using:

Ĥ1ψ = − e

2m

(
1 +

1

2

p2
0

m2c2

)
B · L̂0ψ (5.86)

in which L̂0 is an operator and p2
0 is a function. Now align the magnetic field

in Z to produce:

Ĥ1ψ = − e

2m

(
1 +

1

2

p2
0

m2c2

)
BZL̂0Zψ (5.87)

where:

L̂0Z = ~mLψ (5.88)

with:

mL = −L, . . . , L. (5.89)
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Here, ~ is the reduced Planck constant, L is the orbital angular momentum
quantum number, and mL is the azimuthal quantum number. The observable
energy levels are given by the expectation value:

H1 =
〈
Ĥ1

〉
= − e~

2m

(
1 +

1

2

p2
0

m2c2

)
mL (5.90)

in which:

p2
0

2m
=

〈
p̂2

0

2m

〉
. (5.91)

Therefore the energy levels are:

H1 = − e~
2m

mL

(
1 +

1

mc2

〈
p̂2

0

2m

〉)
= − e~

2m
mL

(
1− ~2

4m2c2

∫
ψ∗∇2ψ dτ

)
.

(5.92)

In a more rigorous development ψ must be the relativistic wave function.
To illustrate the new Zeeman spectroscopy consider atomic H, and in an

approximation use the non realtivistic hydrogenic wavefunctions. In this ap-
proximation:〈

p2
0

2m

〉
=

me4

32π2ε20~2n2
(5.93)

so the hamiltonian of the relativistic Zeeman effect is:

H1 =
e~
2m

mL

(
1 +

e4

32π2ε20~2c2n2

)
. (5.94)

Here ε0 is the S. I. vacuum permittivity, c is the vacuum speed of light, and n
is the principal quantum number. The result (5.94) can be expressed as:

H1 = − e~
2m

mL

(
1 +

1

2

(
λc

rB

)
α

n2

)
(5.95)

in which the Compton wavelength is:

λc =
~
mc

= 3.861591× 10−13 m (5.96)

the Bohr radius is:

rB =
4πε0~2

me2
= 5.29177× 10−11 m (5.97)

and the fine structure constant is:

α =
e2

4π~cε0
= 0.007297351. (5.98)
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So the relativistic Zeeman effect hamiltonian is:

H1 = 〈H1〉 = − e~
2m

mLBZ

(
1 +

2.662567× 10−5

n2

)
(5.99)

and is added to the energy levels of the H atom.
In the first approximation use the non relativistic hydrogenic energy levels:

E0 = − me4

32π2ε20~2n2
. (5.100)

The usual non relativistic Zeeman effect is therefore:

E1 = E0 −
e~
2m

mLBZ (5.101)

and the new and correctly relativistic Zeeman effect is:

E2 = E0 −
e~
2m

mLBZ

(
1 +

2.662567× 10−5

n2

)
. (5.102)

The selection rules are:

∆L = ±1 (5.103)

and:

∆mL = 0,±1. (5.104)

For an absorption:

∆L = 1. (5.105)

The selection rule (5.104) means that ∆mL is zero for linear polarization [2]-
[13], 1 for left circularly polarized radiation, and −1 for right circularly polar-
ized radiation.

Now consider the H alpha line of H in the Balmer series. This is the 2p to
3d transition and occurs at 15, 241.4 cm−1 in the red part of the visible. The
Grotian diagram of possible transitions is defined as follows. For left circular
polarization (∆mL = 1):

2p (n = 2, L = 1, mL = 0)→ 3d (n = 3, L = 2, mL = 1)

2p (n = 2, L = 1, mL = 1)→ 3d (n = 3, L = 2, mL = 2)

2p (n = 2, L = 1, mL = −1)→ 3d (n = 3, L = 2, mL = 0) .

(5.106)

For linear polarization (∆mL = 0):

2p (n = 2, L = 1, mL = 0)→ 3d (n = 3, L = 2, mL = 0)

2p (n = 2, L = 1, mL = 1)→ 3d (n = 3, L = 2, mL = 1)

2p (n = 2, L = 1, mL = −1)→ 3d (n = 3, L = 2, mL = −1) .

(5.107)
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For right circular polarization (∆mL = −1):

2p (n = 2, L = 1, mL = 0)→ 3d (n = 3, L = 2, mL = −1)

2p (n = 2, L = 1, mL = 1)→ 3d (n = 3, L = 2, mL = 0)

2p (n = 2, L = 1, mL = −1)→ 3d (n = 3, L = 2, mL = −2) .

(5.108)

Using these rules in the usual non relativistic Zeeman hamiltonian (5.101)
produces three absorption lines:

∆mL = −1, 0, 1 (5.109)

illustrated later in this chapter. Each of these lines are made up of triply
degenerate transitions occurring with the same energy. So the usual non rela-
tivistic Zeeeman spectrum consists of three lines, one at the original frequency,
one at a higher and one at a lower frequency, symmetrically arranged.

This is the well known Zeeman effect.
However the new and correctly relativistic hamiltonian (5.102) produces a

hitherto unknown spectrum of nine lines illustrated later in this chapter, be-
cause relativistic effects lift the triple degeneracy of the non relativistic theory.
In the relativistic theory there is a symmetric central grouping and two asym-
metric groupings which are mirror images of each other. The relativistic effects
are small, but within range of contemporary high resolution spectroscopy and
should be looked for experimentally.

Note 331(7) illustrates the relativistic splittings in the n = 4 to n = 5
transition of atomic hydrogen at 2, 469.1 cm−1 in the infra red. There are
seventeen degenerate transitions as follows for ∆mL = 1:

1) 4s→ 5p (n = 4, L = 0, mL = 0→ n = 5, L = 1, mL = 1)

2) 4p→ 5s (n = 4, L = 1, mL = −1→ n = 5, L = 0, mL = 0)

∗3) 4p→ 5d (n = 4, L = 1, mL = −1→ n = 5, L = 2, mL = 0)

∗4) 4p→ 5d (n = 4, L = 1, mL = 0→ n = 5, L = 2, mL = 1)

∗5) 4p→ 5d (n = 4, L = 1, mL = 1→ n = 5, L = 2, mL = 2)

∗6) 4d→ 5f (n = 4, L = 2, mL = −2→ n = 5, L = 3, mL = −1)

∗7) 4d→ 5f (n = 4, L = 2, mL = −1→ n = 5, L = 3, mL = 0)

∗8) 4d→ 5f (n = 4, L = 2, mL = 0→ n = 5, L = 3, mL = 1)

∗9) 4d→ 5g (n = 4, L = 2, mL = 1→ n = 5, L = 3, mL = 2)

∗10) 4d→ 5g (n = 4, L = 2, mL = 2→ n = 5, L = 3, mL = 3)

∗11) 4f → 5g (n = 4, L = 3, mL = −3→ n = 5, L = 4, mL = −2)

∗12) 4f → 5g (n = 4, L = 3, mL = −2→ n = 5, L = 4, mL = −1)

∗13) 4f → 5g (n = 4, L = 3, mL = −1→ n = 5, L = 4, mL = 0)

∗14) 4f → 5g (n = 4, L = 3, mL = 0→ n = 5, L = 4, mL = 1)

∗15) 4f → 5g (n = 4, L = 3, mL = 1→ n = 5, L = 4, mL = 2)

∗16) 4f → 5g (n = 4, L = 3, mL = 2→ n = 5, L = 4, mL = 3)

∗17) 4f → 5g (n = 4, L = 3, mL = 3→ n = 5, L = 4, mL = 4) .

(5.110)
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For absorption (∆L = 1) there are fifteen degenerate transitions marked with
an asterisk. Therefore the non relativistic hamiltonian (5.101) produces three
Zeeman lines, each of which are fifteen fold degenerate. The correctly relativis-
tic hamiltonian (5.111) produces forty five lines in three groupings of fifteen
lines as illustrated later in this chapter. These should be looked for with high
resolution spectroscopy.

In general for an n to n + 1 absorption of atomic H there are 3n2 − 1
absorption lines in the new relativistic Zeeman effect. So for example, for the
n = 13 to n = 14 transition that occurs at 81.52 cm−1 in the far infra red, there
are 804 lines in three groupings of 268 lines each. For atoms and molecules
more complicated than atomic H, a very rich new spectroscopy emerges from
the relativistic Zeeman effect.

In many cases what is observed experimentally is the anomalous Zeeman
effect [2]- [13] and well known Landé factor. A correctly relativistic treatment
of the anomalous Zeeman effect again produces rich spectral detail which can
be looked for experimentally. All of this detail is the result of using ECE 2
covariance and the W potential, so in ECE 2 relativity it is due to the spin
curvature of spacetime. Consider the relativistic ECE 2 hamiltonian:

E2 = p2c2 +m2c4 (5.111)

from which the following hamiltonian may be defined for convenience:

H = E + U, (5.112)

H0 = H −mc2. (5.113)

As shown in detail in Note 332(1), Eq. (5.112) may be written as:

H0 =
p2

m (1 + γ)
+ U (5.114)

where the Lorentz factor is defined in Eq. (5.83). In the usual Dirac approxi-
mation:

H0 =
p2c2

H − U +mc2
+ U ∼ p2c2

mc2 − U +mc2
+ U (5.115)

so:

H0 ∼
p2c2

2mc2 − U
+ U ∼ p2

2m

(
1 +

U

2m2c2

)
+ U. (5.116)

Therefore Dirac assumed that:

E = γmc2 = H − U ∼ mc2 − U (5.117)

i. e. that the Lorentz factor can be approximated by:

γ ∼ 1− U

mc2
. (5.118)
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However, the correct Lorentz factor is Eq. (5.83). In the limit:

v0 � c (5.119)

the correct Lorentz factor can be approximated by:

γ ∼ 1 +
1

2

p2
0

m2c2
. (5.120)

Comparing Eqs. (5.118) and (5.120):

p2
0

2m
= −U (5.121)

which means that the classical hamiltonian vanishes in the Dirac approxima-
tion.

Despite its uncritical use for almost ninety years, the Dirac approximation
is therefore highly restrictive, and as shown already in this chapter loses a
great deal of hyperfine structure of great potential utility. The usual Dirac
approximation leads to:

H0 = H −mc2 =
p2

2m
+

U

4m2c2
p2 + U (5.122)

and produces the well known spin orbit hamiltonian:

ReHsoψ = − ~e2

16πε0m2c2r3
σ · Lψ (5.123)

in which L is the relativistic angular momentum:

L = γL0 (5.124)

as mentioned already in this chapter. Now use the well known spin angular
momentum operator:

Ŝ =
~
2
σ̂ (5.125)

where σ̂ is the Pauli matrix operator.
As in note 332(1) the expectation value of the relativistic hamiltonian

(5.114) is

〈ReHso〉 =
−e2

16πε0m2c2

(
J (J + 1)− L (L+ 1)− S (S + 1)

r3
Bn

3L
(
L+ 1

2

)
(L+ 1)

)
(

1 +
1

mc2

〈
p2

0

2m

〉) (5.126)

in which:

1

mc2

〈
p2

0

2m

〉
=

1

2

(
λc

rB

)
α

n2
=

2.662567× 10−5

n2
. (5.127)
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The new hyperfine structure depends on the way in which the rigorous hamil-
tonian (5.114) is developed. This is a new inference that affects the whole of
relativistic quantum theory because it means that the latter is not rigorously
logical and objective. Different choices for operators and functions produce
different spectra. Using:

p2 = γ2p2
0 (5.128)

the hamiltonian (5.114) can be written as:

H0 =

(
γ2

1 + γ

)
p2

0

2m
+ U. (5.129)

In the SU(2) basis, as detailed in Note 332(2) on www.aias.us, it can be
written in three ways:

H0 =
1

m
σ · p0

γ2

1 + γ
σ · p0 + U (5.130)

H0 =
γ

m
σ · p0

γ

1 + γ
σ · p0 + U (5.131)

H0 =
1

m

(
γ2

1 + γ

)
σ · p0 σ · p0 + U (5.132)

which give rise to three different patterns of hyperfine structure. This means
that the foundations of relativistic quantum mechanics are incompletely de-
fined. This was noted by Einstein for example, who thought that quantum
mechanics is a transition to a more complete theory.

As shown in Note 332(2) on www.aias.us:

γ2

1 + γ
=̇.

1

2

(
1− U

2mc2
+

1

mc2

(
H0

2
+

p2
0

2m

))
(5.133)

where〈
p2

0

2m2c2

〉
=

1

2

(
λc

rB

)
α

n2
(5.134)

and: 〈
H0

2mc2

〉
= −1

4

(
λc

a0

)
α

n2
(5.135)

so if the relativistic quantized hamiltonian is chosen to be:

H0ψ =

(
1

m
σ · p0

γ2

1 + γ
σ · p0 + U

)
ψ (5.136)

it can be developed as in Note 332(2) as:

H0ψ =
p2

0

2m

(
1 +

1

mc2

(
H0

2
+

p2
0

2m

))
ψ− 1

4m2c2
σ ·p0 U σ · p0 ψ. (5.137)
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The second term on the right hand side of this equation gives the usual spin
orbit fine structure of the Dirac approximation, and the first term gives a
hitherto unknown hyperfine structure.

Note 332(3) gives the transition rules needed and later on this chapter a
table of shifts is given. These can be looked for experimentally. The transition
rules for spin orbit fine structure are:

∆J = 0,±1, J = 0 9 J = 0 (5.138)

with:

mJ = −J, . . . , J (5.139)

and:

∆mJ = 0,±1. (5.140)

The usual spin orbit energy levels are:

Eso =
−e2

16πε0m2c2

(
J (J + 1)− L (L+ 1)− S (S + 1)

r3
Bn

3L
(
L+ 1

2

)
(L+ 1)

)
(5.141)

but the correct levels according to the choice (5.130) are:

Eso1 = Eso

(
1 +

2.662567× 10−5

n2

)
. (5.142)

A table of shifts due to this correction is given later on in this chapter. In
the presence of a magnetic field a very richly structured hyperfine spectrum is
obtained as follows:

Eso2 = Eso1 −
e~
2m

gJmJBZ (5.143)

where gJ is the well known [2]- [13] Landé factor:

gJ = 1 +
J (J + 1) + S (S + 1)− L (L+ 1)

2J (J + 1)
. (5.144)

Note 332(4) gives further details of the evaluation of the hamiltonian (5.137)
and Note 332(5) develops the hamiltonian in the presence of a magnetic field,
giving details of how the Landé factor is derived. It is shown in Note 332(5)
that the correct hamiltonian of the anomalous Zeeman effects is:

〈HAZE〉 = −mc
2α

n2

(
1− 1

4

λc

rB

α

n2

)
− e~

2m
gJmJBZ . (5.145)

The H alpha line of atomic hydrogen for example is split into six lines by
the anomalous Zeeman effect, the three lines of the normal Zeeman effect
being further split into three pairs. The rigorously correct hamiltonian (5.145)
produces hitherto unknown hyperfine shifts of the anomalous Zeeman effect
as discussed later in this chapter.
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In UFT 333 it is shown that the ECE 2 hamiltonian can be quantized using
at least four different classification schemes, each leading to different spectral
results. The method used by Dirac is a subjective choice of approximation.
The schemes in UFT 333 are illustrated with rigorous quantization of the class
one hamiltonian. If the spectral detail predicted by the class one hamiltonian is
not observed, there would be a major crisis in physics, because the philosophy
of the Dirac equation would have been refuted. The ECE 2 hamiltonian is
mathematically the same as the one used to produce relativistic quantum
mechanics in the SU(2) basis. For over ninety years it has been thought that
the procedure used by Dirac is rigorous and foundational, because it appeared
to produce so many well known data, but in this chapter it is shown that it
depends on a subjective choice of approximation and choice of quantization
procedure. In the following it is shown that different spectral detail emerges
from a given choice of quantization.

Classification schemes can be constructed and exemplified by the following
four types of SU(2) hamiltonian:

H0 =
1

m
σ · p0

γ2

1 + γ
σ · p0 + U (5.146)

H0 =
γ

m
σ · p0

γ

1 + γ
σ · p0 + U (5.147)

H0 =
γ2

m
σ · p0

1

1 + γ
σ · p0 + U (5.148)

H0 =
1

m

γ2

1 + γ
σ · p0 σ · p0 + U. (5.149)

For all four schemes the classical relativistic hamiltonian is:

H = E + U (5.150)

where E is the relativistic total energy:

E = γmc2 =
(
c2p2 +m2c4

)1/2
. (5.151)

It follows that:

H0 = H −mc2 =
c2p2

E +mc2
+ U. (5.152)

The Dirac approximation is discussed earlier in this chapter, and is:

H = mc2 (5.153)

which gives the unphysical result:

H0 = 0. (5.154)

The result (5.154) does not seem to have been realized clearly but it leads to
the famous result:

H0 =
c2p2

2mc2 − U
+ U (5.155)
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which describes spectral fine structure, the Thomas factor, and the Landé
factor, and which inferred ESR, and later NMR and MRI.

Using:

p2
0 = 2m (H0 − U) (5.156)

it follows that:

γ2

1 + γ
=

((
1− 2 (H0 − U)

mc2

)
+

(
1− 2 (H0 − U)

mc2

)1/2
)−1

. (5.157)

In the H atom, using the non relativistic, hydrogenic, wave functions in the
first approximation:

〈U〉 = −2 〈H0〉 = −mc2
(α
n

)2

(5.158)

as described in detail in Note 333(4). Quantization takes place by using:

−i~∇ψ = p0ψ (5.159)

for the first p0 in Eq. (5.146) and by using the function for the second p0.
This procedure has no theoretical justification, it is a subjective choice made
in order to produce experimental data. In this sense, the theory is empiricism,
despite its scientific fame. The procedure gives:

H0ψ = − i~
m
σ ·∇

(1− 2 (H0 − U)

mc2

+

(
1− 2 (H0 − U)

mc2

)1/2
)−1

σ · p0 ψ

+ Uψ.

(5.160)

Using computer algebra it is found that:

∇
(

γ2

1 + γ

)
= −

 2 +
(

1− p20
m2c2

)−1/2

(
1− p20

m2c2 +
(

1− p20
m2c2

)1/2
)2

 e2

4πε0m2c2
r

r3
(5.161)

using the Coulomb potential between the electron and proton of the H atom:

U = − e2

4πε0r
. (5.162)

Defining:

A :=
2 +

(
1− p20

m2c2

)−1/2

((
1− p20

m2c2

)1/2

+ 1− p20
m2c2

)2 (5.163)
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it is found that:

H0ψ = − ie2~A
4πε0m2c2r3

σ · rσ · p0 ψ + Uψ. (5.164)

Using the Pauli algebra:

σ · rσ · p0 = r · p0 + i r× p0 (5.165)

and the non relativistic angular momentum:

L = r× p0 (5.166)

it is found that

E = 〈Hso〉 =
e2~A

4πε0m2c2

〈
σ · L
r3

〉
. (5.167)

This result is described as having been obtained from the class one hamiltonian.
Eq. (5.167) reduces to the result obtained by Dirac in the limit:

γ → 1. (5.168)

If p0 and A are regarded as functions in Eq. (5.164), the fine structure
obtained by Dirac is shifted as described later in this chapter. If p0 is very
large, the shift becomes very large and should be experimentally observable.
If it is not observed the foundations of relativistic quantum mechanics are
challenged.

If the expectation value〈
p2

0

m2c2

〉
=

1

2

(α
n

)2

=
2.662567× 10−5

n2
(5.169)

is used an entirely different spectrum emerges from the same starting equation
(5.146). The energy levels of this spectrum are:

E = 〈Hso〉 =
e2~A

4πε0m2c2

〈
σ · L
r3

〉
=

e2A

16πε0m2c2

(
J (J + 1)− L (L+ 1)− S (S + 1)

r3
Bn

3L
(
L+ 1

2

)
(L+ 1)

) (5.170)

in which the total angular momentum quantum number is defined by the
Clebsch Gordan series:

J = L+ S,L+ S − 1, . . . , |L− S| (5.171)

where L is the orbital angular momentum quantum number and in which S
is the spin angular momentum quantum number. In Eq. (5.170), A is defined
by the expectation values:

A =
2 +

(
1−

〈
p20
m2c2

〉)−1/2

((
1−

〈
p20
m2c2

〉)1/2

+ 1−
〈

p20
m2c2

〉)2 . (5.172)
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The selection rules for such a spectrum are:

∆J = 0,±1, (5.173)

∆mJ = 0,±1. (5.174)

Recall that Eq. (5.170) is the rigorous consequence of:

H0 =
1

m
σ · p0

γ2

1 + γ
σ · p0 + U (5.175)

which reduces to the classical hamiltonian:

H0 =
p2

0

2m
+ U (5.176)

in the limit

γ → 1. (5.177)

The energy levels from Eq. (5.170) are graphed later on in this chapter. If
these are not observed experimentally the ninety year old Dirac equation fails
completely.

Electron spin resonance (ESR) and relativistic electron beams can be used
to test the above theory. Consider for example the class one hamiltonian:

H =
1

m
σ · p0

γ2

1 + γ
σ · p0 (5.178)

in the presence of a magnetic field, so that:

p0 → p0 − eW, r =

(
1− p2

0

m2c2

)−1/2

. (5.179)

In the O(3) basis the hamiltonian (5.178) becomes:

H =
1

m

(
γ2

1 + γ

)
(p0 − eW) · (p0 − eW) . (5.180)

The W potential of ECE 2 theory can be written as:

W =
1

2
B× r (5.181)

for a uniform external magnetic flux density B and position vector r. By
vector algebra:

B× r · p0 = r× p0 ·B = L0 ·B (5.182)

where the classical orbital angular momentum is:

L0 = r× p0. (5.183)
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The orbital angular momentum term of the class one hamiltonian is there-
fore:

H = − e

m

(
γ2

1 + γ

)
L0 ·B (5.184)

and for a Z axis magnetic field B the Zeeman effect is modified to:

Hψ = − e

m

(
γ2

1 + γ

)
LZBZψ. (5.185)

As described in Note 334(1) the energy levels of the H atom are modified in
this rigorous theory to:

EH = −1

2
mc2

( α
m

)2

−
(

γ2

1 + γ

)
e~
m
mLBZ (5.186)

where α is the fine structure constant and where n is the principal quantum
number. In this equation:

mL = −L, . . . , L (5.187)

and ~ is the reduced Planck constant. The usual Zeeman effect is recovered in
the non relativistic limit:

γ2

1 + γ
→ 1

2
. (5.188)

The selection rules in Eq. (5.186) are:

any ∆n, ∆L = 1, ∆mL = 0,±1 (5.189)

and in Eq (5.186):

γ2

1 + γ
=

(
1− p2

0

m2c2
+

(
1− p2

0

m2c2

)−1/2
)−1

. (5.190)

If p2
0 is regarded as function then the usual Zeeman effect is shifted. If expec-

tation values in the H atom are used:

EH = −1

2
mc2

(α
n

)2

−

(
1−

(α
n

)2

+

(
1−

(α
n

)2
)1/2

)−1
e~
m
mLBZ (5.191)

the energy levels from Eq. (5.191) become:

p2
0

m2c2
=

〈
p2

0

m2c2

〉
=
(α
n

)2

=
5.3144× 10−5

n
(5.192)

and the Zeeman effect is split into hyperfine structure. There is no theoretical
way of knowing which is the correct choice, Eq. (5.190) or Eq. (5.191), but an
experimental method can be developed based on ESR.
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First quantize the hamiltonian (5.180) as follows as in Note 334(2):

Hψ =
ie~
m

(
γ2

1 + γ

)
σ ·∇σ ·Wψ + · · · (5.193)

so:

Re (Hψ) = −e~
m

(
γ2

1 + γ

)
σ ·B + · · · (5.194)

where in ECE 2 theory (see chapter three):

B = ∇×W. (5.195)

Using the spin angular momentum:

S =
~
2
σ (5.196)

the rigorous hamiltonian of the anomalous Zeeman effect is obtained:

H = − e

m

(
γ2

1 + γ

)
(L + 2S) ·B (5.197)

and reduces to the usual anomalous Zeeman effect hamiltonian

H = − e

2m
(L + 2S) ·B (5.198)

in the limit:

γ2

1 + γ
→ 1

2
. (5.199)

Eq. (5.197) can be expressed [2]- [13] as:

H = − e

m

(
γ2

1 + γ

)
gJ J ·B (5.200)

where the well known Landé factor is:

gJ = 1 +
J (J + 1) + S (S + 1)− L (L+ 1)

2J (J + 1)
. (5.201)

In this definition of the Landé factor, Sommerfeld’s J quantum number is:

J = L+ S, . . . , |L− S| (5.202)

with:

JZψ = ~mJψ, (5.203)

J2ψ = ~2J (J + 1)ψ (5.203a)
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and:

mJ = −J, . . . , J. (5.204)

Therefore the energy levels of the H atom are:

EH = −1

2
mc2

(α
n

)2

− e~
m

(
γ2

1 + γ

)
gJmJBZ (5.205)

with selection rules:

∆J = 0,±1, J = 0 9 J = 0, ∆mJ = 0,±1, any ∆n. (5.206)

Again, there is no way of knowing if the relativistic factor γ2/ (1 + γ) should
be a function or an expectation value. This question can be answered experi-
mentally with ESR of sufficiently high resolution.

Consider a relativistic electron beam in which electrons can be accelerated
to essentially the speed of light, and apply a magnetic field in the Z axis. In
the non relativistic limit of slow moving electrons:

ReHESRψ = − e

m
SZBZψ (5.207)

where:

SZψ = mS~ψ (5.208)

and:

mS = −S, . . . , S = −1

2
,

1

2
(5.209)

with selection rule:

∆mS = 1 (5.210)

for absorption of radiation at the well known ESR frequency [2]- [13]:

ωESR =
e

m
BZ . (5.211)

For relativistic electrons however:

ReHESRψ = −e~
m

(
γ2

1 + γ

)
σ ·Bψ = −2e

m

(
γ2

1 + γ

)
S ·Bψ (5.212)

and the ESR frequency (5.211) is shifted to:

ωESR = 2

(
γ2

1 + γ

)
e

m
BZ (5.213)

and is directly measurable. In this case the relativistic factor is always:

γ2

1 + γ
=

(
1− p2

0

m2c2
+

(
1− p2

0

m2c2

)1/2
)−1

. (5.214)
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As discussed in chapter four, the experimentally measurable momentum of
the electron in the beam is always the relativistic momentum:

p = γp0. (5.215)

The Lorentz factor on the other hand is always defined by the non relativistic
momentum as follows:

γ2 =

(
1− p2

0

m2c2

)−1

(5.216)

so:

p2
0 = p2

(
1 +

p2

m2c2

)−1

(5.217)

The experiment consists of measuring the ESR frequency of a relativistic elec-
tron beam, and measuring the relativistic momentum of the beam. This gives
a simple and direct test of the foundations of relativistic quantum mechanics.

ESR can also be used to test the rigorously relativistic version of Eq. (5.198),
in which:

H = − e

2m
(L + 2S) ·B = − e

2m
gJ J ·B. (5.218)

The spin part of the hamiltonian (5.198) is:

HESR = − e

2m
gJ S ·B. (5.219)

If the magnetic field is aligned in the Z axis:

HESR = − e

2m
gJSZBZ (5.220)

where:

SZψ = mS~ψ (5.221)

and:

mS = ±1

2
(5.222)

so the ESR resonance frequency of the anomalous Zeeman effect is:

ωESR =
1

2
gJ
eBZ
m

(5.223)

where:

J = L+ S,L+ S − 1, . . . , |L− S|. (5.224)

The anomalous Zeeman effect in the ESR spectrum of one electron is split
by the Landé factor gJ . This is the most useful feature of ESR in analytical
chemistry.
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For a free electron in a beam:

J = S, L = 0 (5.225)

so the Landé factor is:

gJ = 1 +
2S (S + 1)

2S (S + 1)
= 2. (5.226)

This is known as the g factor of the electron. This factor is obtained from the
Dirac equation if and only if the Dirac approximation is used:

H = H0 +mc2 ∼ mc2, H0 ∼ 0, (5.227)

as explained earlier in this chapter.
In the rigorously correct theory of this chapter the ESR frequency in the

H atom becomes:

ωESR =

(
γ2

1 + γ

)(
1 +

J (J + 1) + S (S + 1)− L (L+ 1)

2J (J + 1)

)
eBZ
m

. (5.228)

If we use the expectation values:

γ2

1 + γ
=

(
1−

(α
n

)2

+

(
1−

(α
n

)2
)1/2

)−1

(5.229)

the expected ESR splittings can be observed directly.
The above development can also be applied to nuclear magnetic resonance

(NMR) in which the magnetic dipole moment of the nucleus of an atom or
molecule is:

mN = gN
e

2mp
I (5.230)

where gN is the nuclear g factor, mp is the mass of the proton, e the modulus
of the charge on the electron and I the nuclear spin angular momentum. The
interaction hamiltonian between an external magnetic flux density B and the
nuclear magnetic dipole moment is:

Hint,N = −mN ·B. (5.231)

The interaction between B and the spin angular momentum S of the electron
is as discussed earlier in this chapter:

Hint,e = −2
e

me

(
γ2

1 + γ

)
S ·B. (5.232)

Therefore the complete interaction hamiltonian in atomic H (one electron and
one proton) is:

Hint = −2
e

me

(
γ2

1 + γ

)
S ·B− gN

e

2mp
I ·B. (5.233)
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This type of hamiltonian is discussed in detail in Note 335(1) on www.aias.us.
In Note 335(2) it is developed with the Landé method [2]- [13], so Eq. (5.233)
becomes:

Hint = −egM I ·B (5.234)

where:

gM =
1

2

(
1

me

(
γ2

1 + γ

)(
1 +

S (S + 1)− I (I + 1)

M (M + 1)

)
+
gN
mp

(
1 +

I (I + 1)− S (S + 1)

M (M + 1)

)) (5.235)

The magnetic quantum number is defined by:

M = I + S, . . . , |I − S| (5.236)

and the total angular momentum is

M = I + S. (5.237)

Therefore ESR in this system is described by:

HESR = −egM S ·B (5.238)

and NMR by:

HNMR = −egM I ·B. (5.239)

The ESR and NMR resonance frequencies are the same:

ωres = egMBZ (5.240)

and both are changed by discarding the Dirac approximation.
The most important feature of NMR and magnetic resonance imaging

(MRI) is the chemical shift due to the magnetic flux density induced by a
nuclear magnetic dipole moment:

B (mN ) = − µ0

4πr3
(mN − 3r̂r̂ ·mN ) (5.241)

where µ0 is the vacuum permeability. The induced magnetic flux density is
equivalent to the nuclear W potential of ECE 2:

WN =
µ0

4πr3
mN × r (5.242)

and the non relativistic linear momentum of the electron is changed in the
minimal prescription to:

p0 → p0 − eWN . (5.243)

131



5.1. GENERAL THEORY

The classical hamiltonian is changed to:

H =
1

2m
(p0 − eWN ) · (p0 − eWN ) + U (5.244)

and as shown in detail in note 335(3) the interaction hamiltonian:

Hint = − e

me
p0 ·WN + · · · (5.245)

gives the energy of interaction:

E = −
∫

WN · j dτ (5.246)

where the current density is:

j =
e

2me
(ψ∗p0ψ + ψp∗0ψ

∗) . (5.247)

Using Eq. (5.231) the interaction energy is:

E = −mN ·BN = −
∫

WN · j dτ (5.248)

and is responsible for the chemical shift because BN is present as well as the
applied magnetic flux density B of the spectrometer.

The chemical shift is affected by the removal of the Dirac approximation.
In the class one hamiltonian this means:

p2
0

2me
→
(

γ2

1 + γ

)
p2

0

me
. (5.249)

This type of theory is developed in detail in Notes 335(4) and 335(5) on www.

aias.us. In the presence of a nuclear magnetic potential the hamiltonian
(5.146) is changed as in Note 335(4) to give the interaction hamiltonian:

Hint = −2
e

me
p1 · pN (5.250)

where

p1 =

(
γ2

1 + γ

)1/2

p0 (5.251)

and

pN = eWN . (5.252)

The nuclear magnetic flux density can be defined as:

BN =
µ0e

2πmer3
L1 (5.253)
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where L1 is an orbital angular momentum of the electron. In the presence of
an external magnetic flux density B the complete hamiltonian is:

Hint = −mN · (B + BN ) (5.254)

and in spin orbit format (Note 335(4)) this becomes:

Hint = − gNµ0e
2

4πmempr3

(
γ2

1 + γ

)1/2

I · L (5.255)

where I is the spin angular momentum of the nucleus and L is the orbital
angular momentum of the electron.

In direct analogy with the ususal spin orbit theory of electrons, the energy
levels from the hamiltonian (5.255) are given by the following expectation
values:

Eint = − gNµ0e
2

4πmemp

〈(
γ2

1 + γ

)1/2
I · L
r3

〉
. (5.256)

Assume that this can be written as:

Eint = − gNµ0e
2

4πmemp

(
γ2

1 + γ

)1/2〈
I · L
r3

〉
(5.257)

using:

A =
γ2

1 + γ
=

(
1−

(α
n

)2

+

(
1−

(α
n

)2
)1/2

)−1

. (5.258)

In analogy with the spin orbit theory of electrons:〈
I · L
r3

〉
= ~2

(
J (J + 1)− L (L+ 1)− I (I + 1)

2r3
Bn

3L
(
L+ 1

2

)
(L+ 1)

)
(5.259)

where:

J = L+ I, . . . , |L− I|. (5.260)

For the proton:

I =
1

2
,−1

2
. (5.261)

In the presence of an external magnetic field the complete hamiltonian is:

H = −mN ·B + Eint =
−gNe~mI

2mp
BZ + Eint (5.262)

where the interaction energy is:

Eint =
−gNµ0e

2A1/2~2

4πmemp

(
J (J + 1)− L (L+ 1)− I (I + 1)

2r3
Bn

3L
(
L+ 1

2

)
(L+ 1)

)
. (5.263)
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The NMR resonance condition is:

~ω = E (mI − 1)− E (mI) (5.264)

and it is clear that the entire spectrum is affected by the factor:

A =
γ2

1 + γ
(5.265)

and the effect is within range of a high resolution FT NMR spectrometer. If
it is not found the Dirac theory is challenged in another way.

The well known theory of hyperfine interaction in NMR is also changed on a
foundational level by removing the Dirac approximation. Hyperfine structure
in NMR is one of its most useful analytical features, and is generated by
the interaction of the magnetic spin dipole moment of the electron with the
nuclear magnetic field due to the spin angular momentum I of the nucleus. In
the Dirac approximation the magnetic spin dipole moment of the electron is:

mS =
e

me
S (5.266)

but the rigorous definition is:

mS = 2

(
γ2

1 + γ

)
e

me
S. (5.267)

The nuclear magnetic spin dipole moment is:

mN = gN
e

2mp
I (5.268)

where gN is the nuclear g factor and in atomic H, mp is the proton mass
because the nucleus consists of one proton. The nuclear magnetic flux density
is:

B (I) = − µ0

4πr3
(mN − 3r̂r̂ ·mN ) (5.269)

so the interaction hamiltonian is:

Hint =

(
γ2

1 + γ

)
µ0e

2gN
4πmempr3

(S · I− 3S · r̂r̂ · I) (5.270)

and it is clear that the hyperfine structure of NMR is affected by the factor
A, i. e. is affected by the removal of the Dirac approximation as shown later in
this chapter.

5.2 Numerical Analysis and Graphics

5.2.1 ECE 2 Energy Levels of Spin-Orbit Coupling

According to Eq. (5.18), the relativistic expectation value of the Hamiltonian
can be approximated by

〈H0〉 = E0 + 〈H0〉s−o + 〈H0〉1 (5.271)
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where the three parts are the non-relativistic energy eigenvalues

E0 = − e4

32 π2 ε20 n
2 m c2

, (5.272)

the spin-orbit contribution of Dirac theory

〈H0〉s−o = f

∫
ψ∗∇2(Uψ) dτ, (5.273)

and the new additional part

〈H0〉1 = −fE0

∫
ψ∗∇2ψ dτ, (5.274)

both with the factor

f = − ~2

4m2c2
. (5.275)

The integrals are evaluated for the Hydrogen wave functions in three dimen-
sions, for details see UFT papers 250 and 308. The Laplace operator in three
dimensions with spherical coordinates (r, θ, φ) is

∇2ψ =
1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1

r2 sin (θ)

∂

∂θ

(
sin(θ)

∂ψ

∂θ

)
+

1

r2 sin2 (θ)

∂2ψ

∂φ2
.

(5.276)

Additional parameters appearing in the wave functions are the atomic number
Z and the Bohr radius a0. The Coulomb energy has been assumed as

U = − Ze2

4πε0r
. (5.277)

For Hydrogen we have Z = 1, for higher Z values these are very crude approx-
imations.

The integral values appearing in Eqs. (5.273, 5.274) have been computed
analytically and are listed in Table 5.1. The ordinary spin-orbit terms depend
on the n and l quantum numbers, not on ml. Surprisingly, the additional
term 〈H0〉1 does not depend on the angular quantum number l, only on the
main quantum number n. Obviously a factor of 1/n2 is contained in the
result. It should be noticed that this factor also appears in E0 but has not
been multiplied here for the integral values. Test runs with a Laplace operator
(5.276) without angular parts showed that 〈H0〉1 becomes dependent on the
l quantum number then. In spectroscopy which is angle-sensitive, we expect
that the new term will show an l dependence.

The numerical values of energy shifts in eV are shown in Table 5.2. The
corrections 〈H0〉1 are smaller than those of the Dirac term of spin-orbit cou-
pling. Nonetheless the 1s state is shifted significantly by the new term. This
is in the order of magnitude of 10−4 eV and should be observable by spec-
troscopy. From Table 5.1 it is seen that the new effects grow with atomic
number Z2 while the ordinary spin-orbit terms grow with Z4. Therefore these
corrections will be less significant for heavier elements.
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n l Integral 〈H0〉s−o Integral 〈H0〉1

1 0 −Z
4

a30
−Z

2

a20

2 0 − Z4

16 a30
− Z2

4a20

2 1 5Z4

48 a30
− Z2

4a20

3 0 − Z4

81 a30
− Z2

9a20

3 1 Z4

27 a30
− Z2

9a20

3 2 7Z4

405 a30
− Z2

9a20

Table 5.1: Energy shifts of Integrals (5.273) and (5.274).

n l E0 〈H0〉s−o 〈H0〉1 〈H0〉

1 0 -13.6056919 0.0003623 0.0001811 -13.6051485

2 0 -3.4014230 0.0000226 0.0000113 -3.4013890

2 1 -3.4014230 -0.0000075 0.0000038 -3.4014268

3 0 -1.5117435 0.0000045 0.0000022 -1.5117368

3 1 -1.5117435 -0.0000045 0.0000012 -1.5117468

3 2 -1.5117435 -0.0000009 0.0000004 -1.5117440

Table 5.2: Energy shifts of Eqs. (5.273, 5.274) and total energies in eV.

136



CHAPTER 5. NEW SPECTROSCOPIES

5.2.2 Hyperfine Spin Orbit ESR

Further relevant terms for Hydrogen ESR are the expectation values of 1/r3

and 1/r4. The former is given by Eq. (5.69), the latter has been computed by
evaluating the integral〈

1

r4

〉
=

∫
ψ∗

1

r4
ψ dτ. (5.278)

In Table 5.3 the expectation values of 1/r3 and 1/r4 and their ratio are com-
piled. We used again the non-relativistic wave functions of Hydrogen as an
approximation as described earlier. For quantum number l = 0, the expecta-
tion values do not exist, which can be seen from the denominator of Eq.(5.69)
for 〈1/r3〉. The ratio is a multiple of Z/a0 where a0 is the Bohr radius. This
means that spectroscopic terms of 〈1/r4〉 are smaller but relevant.

Another expectation value appearing in the new spectroscopy is according
to Eq.(5.67):

〈I2〉 =

∫
ψ∗∇(∇2ψ) dτ. (5.279)

We present the radial component of this term in Table 5.4, together with the
kinetic energy

〈Ekin〉 = −~
∫
ψ∗(∇2ψ) dτ. (5.280)

The kinetic energy is positive and only depends on the main quantum number.
The integral itself is negative. The radial component of the term (5.279) exists
only for s states and is proportional to (Z/a0)3.

n l 〈1/r3〉 〈1/r4〉 〈1/r4〉
〈1/r3〉

1 0 − − −

2 0 − − −

2 1 Z3

24 a30

Z4

24 a40

Z
a0

3 0 − − −

3 1 Z3

81 a30

10 Z4

729 a40

10 Z
9 a0

3 2 Z3

405 a30

2 Z4

3645 a40

2 Z
9 a0

Table 5.3: Expectation values 〈1/r3〉, 〈1/r4〉 and their ratio.
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n l 〈Ekin〉 〈I2〉r

1 0 ~Z2

a20

10
√
π Z3

a30

2 0 ~Z2

4 a20

11
√
π Z3

8 a30

2 1 ~Z2

4 a20
0

3 0 ~Z2

9 a20

4
√
π Z3

3
5
2
√

6 a30

3 1 ~Z2

9 a20
0

3 2 ~Z2

9 a20
0

Table 5.4: Expectation values of kinetic energy and special term Eq. (5.279).

5.2.3 Energy Level Diagrams of Relativistic Zeeman Spec-
troscopy

The energies of the transitions described in Eqs. (5.106 - 5.110) have been
calculated for atomic Hydrogen. The non-realtivistic energies E1 and new
relativistic energies E2 of the Zeeman effect were defined in Eqs. (5.101, 5.102).
The new splitting depends on the magnetic quantum number mL as usual and,
in addition, on the principal quantum number n. There is no dependence on
the angular quantum number l. It is therefore sufficient to to consider the
transitions with highest possible l for given main quantum numbers n1 and
n2. For example the splittings of the transition

3p→ 4d

are contained in

3d→ 4f

for all possible mL values and selection rules ∆mL = 0,±1. For comparability
of the results we plottet the relative energy differences related to the non-
relativistic case. For an initial state i and final state f the spectroscopically
observable energy difference is

∆E = Ef − Ei. (5.281)

This difference, giving the new Zeeman splitting, is first related to the non-
relativistic case. Then the splitting is normalized by dividing by e~/(2m) so
that a dimensionless number for the splitting is obtained:

∆Erelative =
2m

e~
(Ef − Ei − (Ef,non−rel − Ei,non−rel)) . (5.282)
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Figs. 5.1 - 5.12 show all possible splittings with ∆l = 1 (absorption) and
∆mL = 0,±1 for neighboring principal quantum numbers, i.e. n1 = 1 →
n2 = 2, n1 = 2 → n2 = 3, etc. The diagrams are separate for each of the
three selection rules ∆mL = 0,±1 which correspond to linear and circularly
polarized light. For comparability, the scale of the Y axis has been chosen
equal for all diagrams. For the transition 1s → 2p there is only a shift for
∆mL = ±1 and no splitting because there is only one possible transition.
The transition for ∆mL = 0 is unchanged because of mL = 0. In general the
splitting is 2l−1 fold where l is the angular quantum number of the final state.
The terms are graphed in Figs. 5.3 - 5.12. It can be seen that the splitting
becomes smaller for higher n values. This is a consequence of the factor 1/n2

in Eq.(5.102).
In addition to the transitions between neighbouring principal quantum

numbers, we have also investigated two cases with larger differences:

2p→ 4d

and

2p→ 5d,

see Figs. 5.13 and 5.14, plotted only for the selection rule ∆mL = −1. These
diagrams should be compared with Fig. 5.4 which describes the corresponding
splitting for 2p→ 3d. The width of the splitting is somewhat enlarged and the
splitting is shifted to the middle for transitions to higher n. Another general
result is that the splitting is always equidistant.

The calculations have been done by a Maxima program which computes
transitions between any energy levels of Hydrogen with automatic plot. The
program can be obtained from the authors on request.
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Figure 5.1: Term schema for n = 1→ 2, ∆mL = −1.

Figure 5.2: Term schema for n = 1→ 2, ∆mL = 0.
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Figure 5.3: Term schema for n = 1→ 2, ∆mL = 1.

Figure 5.4: Term schema for n = 2→ 3, ∆mL = −1.
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Figure 5.5: Term schema for n = 2→ 3, ∆mL = 0.

Figure 5.6: Term schema for n = 2→ 3, ∆mL = 1.
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Figure 5.7: Term schema for n = 3→ 4, ∆mL = −1.

Figure 5.8: Term schema for n = 3→ 4, ∆mL = 0.
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Figure 5.9: Term schema for n = 3→ 4, ∆mL = 1.

Figure 5.10: Term schema for n = 4→ 5, ∆mL = −1.
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Figure 5.11: Term schema for n = 4→ 5, ∆mL = 0.

Figure 5.12: Term schema for n = 4→ 5, ∆mL = 1.
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Figure 5.13: Term schema for n = 2→ 4, ∆mL = −1.

Figure 5.14: Term schema for n = 2→ 5, ∆mL = −1.
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5.2.4 Energy Level Diagrams of Anomalous Zeeman Hy-
perfine Shifts

The expectation value of the potential energy can be calculated from the re-
lation

〈U〉 = −2 〈T 〉 (5.283)

with the non-relativistic kinetic energy

〈T 〉 =

〈
−~∇2

2m

〉
=

〈
p2

0

2m

〉
= mc2

α2

2n2
(5.284)

as was derived in UFT 332. The relativistic energy levels of Dirac theory
(without an external magnetic field) are given by

ED = 〈U〉+
m c2 α2

2n2
+

α2

4ma0 n3

J(J + 1)− L(L+ 1)− S((S + 1)

L(L+ 1/2)(L+ 1)
(5.285)

while the new hyperfine structure leads to the result:

E =〈U〉+
mc2 α2

2n2

(
1 +

α2

4n2

)
(5.286)

+
α2

4ma0 n3

(
1 +

α2

2n2

)
J(J + 1)− L(L+ 1)− S((S + 1)

L(L+ 1/2)(L+ 1)
.

The term schema of transitions will not change since the new hyperfine
structure does not depend on the mJ quantum numbers. Therefore there
are no additional splittings for the Zeeman effect, only a small shift. The
energies of both cases are compared for the first levels of atomic Hydrogen in
Table 5.5. There is always a lifting of energies due to the correct solution of
the fermion/Dirac equation presented in this work. In addition, the energies
are shown as term schemas in Figs. 5.15 - 5.20.
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Term Non-rel. Dirac ECE2 theory Diff.
ECE2-Dirac

1 s1/2 -0.5 -0.5 -0.4999933435807 6.656 · 10−6

2 s1/2 -0.125 -0.125 -0.1249995839738 4.160 · 10−7

2 p1/2 -0.125 -0.1250001386754 -0.1249997226492 4.160 · 10−7

2 p3/2 -0.125 -0.1250001386754 -0.1249997226492 4.160 · 10−7

3 s1/2 -0.05555555555555 -0.0555555555556 -0.0555554733775 8.218 · 10−8

3 p1/2 -0.05555555555555 -0.0555555677301 -0.0555554855521 8.218 · 10−8

3 p3/2 -0.05555555555555 -0.0555555494683 -0.0555554672903 8.218 · 10−8

3 d3/2 -0.05555555555555 -0.0555555592079 -0.0555554770299 8.218 · 10−8

3 d5/2 -0.05555555555555 -0.0555555531207 -0.0555554709426 8.218 · 10−8

Table 5.5: Energies (in Hartree units) of atomic Hydrogen with spin-orbit
splitting (Dirac theory and this work).

Figure 5.15: Energy schema for 1s states (non-rel., Dirac theory, ECE2 the-
ory).
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Figure 5.16: Energy schema for 2s states (non-rel., Dirac theory, ECE2 the-
ory).

Figure 5.17: Energy schema for 2p states (non-rel., Dirac theory, ECE2 the-
ory).
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Figure 5.18: Energy schema for 3s states (non-rel., Dirac theory, ECE2 the-
ory).

Figure 5.19: Energy schema for 3p states (non-rel., Dirac theory, ECE2 the-
ory).
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Figure 5.20: Energy schema for 3d states (non-rel., Dirac theory, ECE2 the-
ory).

5.2.5 Relativistic Correction of Energy Levels

As described from Eq. (5.232) onwards in this chapter, the electronic interac-
tion energy for ESR etc. is modified by the relativistic factor

A =
γ2

1 + γ
(5.287)

where γ is defined by Eq. (5.216). The electronic momentum is modified by
the square root of this factor, see Eq. (5.251), and the magnetic spin dipole
moment of the electron depends on 2A according to Eq. (5.267):

mS = 2

(
γ2

1 + γ

)
e

me
S. (5.288)

For spin-orbit splitting, the gradient of A in (5.167) appears as an additional
factor, whose radial part is given by (5.161) and (5.163).

To demonstrate the effects, the appearances of A have been graphed in
Fig. 5.21. We plotted the A factor in dependence of a normalized momentum
p0, i.e. a variable

p̄2 =
p2

0

2m
. (5.289)
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For comparison, the gamma factor γ(p̄) has been graphed too. A, 2A,
√
A

and grad(A) go to infinity for p̄ reaching unity which corresponds to velocity
v0 = c.

In Hydrogen the spin-orbit splitting is small (≈ 10−5 eV). In heavy atoms
the splitting becomes high and the linear momentum is significantly larger
than in Hydrogen. Therefore the gradient of the A factor grows remarkably,
giving additional enlargement of splittings. It is seen that the gradient of
A rises much faster than the relativistic gamma factor. An effect should be
detectable in spectra of heavy elements.

The magnetic spin dipole moment (5.288) depends on 2A, which grows
faster than γ in the relativistic range. This gives a change in the magnetic
moment being also larger than the γ enhancement. Only the A and

√
A

behaviour is less pronounced than γ.

Figure 5.21: Diverse functions depending on A(p̄) and γ(p̄).
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Chapter 6

The ECE 2 Vacuum

6.1 General Theory

In ECE 2 theory the vacuum is considered as the geometry of spacetime, so is
richly structured and has physical effects such as the radiative corrections and
the Aharonov Bohm (AB) effects (the subject of UFT 336). The AB vacuum
is defined as regions in which electric and magnetic fields are zero but in which
the ECE 2 vacuum four-potential is non zero and may cause observable effects.
The opening of this chapter summarizes UFT 336, in which it is shown that
the vacuum potential causes effects in electron spin resonance in the absence
of a magnetic field. The well known Chambers experiment can be adopted for
experiments designed to look for this effect.

The AB effects are well known [2]- [13] to be due to potentials in the
absence of fields. Consider the ECE 2 definition of magnetic flux density used
in previous chapters:

B = ∇×W = ∇×A + 2ω ×A (6.1)

where

W = W (0)ω, A = A(0)q. (6.2)

Here ω and q are respectively the spin connection and tetrad vectors. There-
fore the AB vacuum is defined by the geometry:

∇× ω = 0 (6.3)

and

∇× q = 2q× ω. (6.4)

Using the identity:

∇ ·∇× q = 0 (6.5)
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the AB vacuum geometry becomes:

ω ·∇× q = 0 (6.6)

i. e.

W ·∇×A = 0. (6.7)

Now consider the electric field strength E and magnetic flux density of ECE 2
theory as defined by the spin and orbital curvature vectors as in previous
chapters:

E = cW (0)R(orb) (6.8)

and

B = W (0)R(spin). (6.9)

So the AB effects in this type of theory are defined by a Cartan geometry in
which torsion and curvature vanish but in which the tetrad and spin connection
are finite. In minimal notation [2]- [13]:

T = d ∧ q + ω ∧ q, (6.10)

R = d ∧ ω + ω ∧ ω, (6.11)

so the AB vacuum geometry is:

d ∧ q + ω ∧ q = 0, (6.12)

d ∧ ω + ω ∧ ω = 0, (6.13)

with:

T = R = 0. (6.14)

The well known Chambers experiment [2]- [13] shows that the AB vacuum
is a physical vacuum because the Young diffraction of electron matter waves
is affected by potentials in the absence of fields. The AB vacuum is defined
in a different way from the traditional definition in electromagnetic theory,
one based on the absence of charge current density. In this case the ECE 2
electrodynamical field equations are:

∇ ·B = 0 (6.15)

∇ ·E = 0 (6.16)

∂B

∂t
+ ∇×E = 0 (6.17)

∇×B− 1

c2
∂E

∂t
= 0 (6.18)

with:

κ ·B = κ ·E = 0, (6.19)
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κ0cB + κ×E = 0, κ0
E

c
+ κ×B = 0 (6.20)

where:

κ0 = 2
( q0

r(0)
− ω0

)
, (6.21)

κ = 2
( q

r(0)
− ω

)
. (6.22)

Note 336(4) on www.aias.us shows that the solution:

κ0 = 0, κ = 0 (6.23)

means that E and B vanish. The simplest solution of Eqs. (6.15) to (6.22) is:

E = B = 0, κ0 = 0, κ = 0 (6.24)

in which case the traditional vacuum, in which the charge current four density
vanishes, reduces to the AB vacuum.

Note 336(4) shows that if the traditional vacuum is accepted, and plane
wave solutions used for Eqs. (6.15–6.18), the result is:

κ =

(
κ2 + κ2

0

κx + κy

)
(i + j) . (6.25)

Under condition (6.25), ECE 2 theory allows vacuum electric and magnetic
fields to exist in the absence of charge current density – the traditional vac-
uum of electrodynamics. The AB vacuum on the other hand is is defined
by Eq. (6.24). The interaction of the AB vacuum with one electron leads to
the possibility of NMR and ESR (Chapter five) in the absence of a magnetic
field. This type of interaction is considered in Note 336(5) and is based on the
minimal prescription:

pµ → pµ − eAµ (6.26)

where the relevant four potential is defined in previous chapters:

Aµ =

(
φ

c
,A

)
. (6.27)

Therefore the Einstein energy equation becomes:

(E − eφ)
2

= c2 (p− eA) · (p− eA) +m2c4. (6.28)

The total relativistic energy E and the relativistic momentum p are defined
by the Einstein/de Broglie equations as in previous chapters:

E = γmc2 = ~ω (6.29)

and

p = γp0 = ~κ. (6.30)

155



6.1. GENERAL THEORY

The Lorentz factor is therefore:

γ =
~ω
mc2

=

(
1− p2

0

m2c2

)−1/2

(6.31)

and it follows that:

E−mc2 =
1

(1 + γ)m
σ · (p− eA)

(
1− eφ

(1 + γ)mc2

)−1

σ · (p− eA) + eφ.

(6.32)

As in chapter five this reduces to the Dirac theory if

γ → 1 (6.33)

i. e. by the de Broglie equation:

~ω0 = mc2 (6.34)

where ω0 is the rest angular frequency. The Dirac theory is therefore self
contradictory because the electron is not moving:

H0 = H −mc2 =? 0. (6.35)

In the approximation:

eφ� (1 + γ)mc2 (6.36)

Eq. (6.32) becomes:

E −mc2 ∼ 1

(1 + γ)m
σ · (p− eA)σ · (p− eA) +

1

(1 + γ)m

σ · (p− eA)

(
eφ

(1 + γ)mc2

)
σ · (p− eA) + eφ.

(6.37)

The ESR term is contained in the first term on the right hand side, and spin
orbit effects in the second term. Relativistic quantization is defined by:

pµψ = i~∂µψ (6.38)

i. e.:

Eψ = i~
∂ψ

∂t
(6.39)

and

pψ = −i~∇ψ. (6.40)

This procedure cannot be proven ab initio, it is an empirical rule. The required
ESR term is given by:(

E −mc2
)
ψ =

1

m (1 + γ)
(σ · (−i~∇− eA) · ((σ · p− eA)ψ))

=
ie~

m (1 + γ)
σ ·∇σ ·Aψ + · · ·

(6.41)
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Using the Pauli algebra:

σ ·∇σ ·A = ∇ ·A + iσ ·∇×A (6.42)

so the real and physical part of Eq. (6.41) is:(
E −mc2

)
ψ = − e~

m (1 + γ)
σ ·∇×Aψ + · · · (6.43)

The spin angular momentum of the electron is:

S =
~
2
σ (6.44)

so: (
E −mc2

)
ψ = −2

e

m (1 + γ)
S ·∇×Aψ + · · · (6.44a)

in which:

SZψ = ~mSψ (6.45)

where:

mS = −S, . . . , S = −1

2
,

1

2
. (6.46)

Therefore:(
E −mc2

)
ψ = −2

e~
m (1 + γ)

mS (∇×A)Z (6.47)

in which electron spin resonance is defined by:

~ωres = 2
e~

m (1 + γ)

(
1

2
− (−1

2
)

)
(∇×A)Z (6.48)

with resonance frequency:

ωres = 2
e

m (1 + γ)
(∇×A)Z . (6.49)

In the AB effects A is non zero when B is zero, so from Eq. (6.1) the AB
vacuum is defined by:

∇×A = −2ω ×A (6.50)

and under this condition the AB vacuum causes the resonance defined by
Eq. (6.49).

A computational and graphical analysis of this theory is given later on in
this chapter.

As in UFT 337 the ECE 2 theory that describes the AB vacuum can be
used to describe the radiative corrections, notably the Lamb shift. In order to
do this, the minimal prescription used earlier in this chapter for ESR effects
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of the vacuum is replaced by a new type of minimal prescription using the
W potential. This can be developed in terms of a relativistic particle flux
and the Tesla vacuum. The theory of UFT 337 defines the ECE 2 vacuum
particles, which are identified as particles of the Tesla vacuum. Therefore there
is particulate energy momentum in the ECE 2 vacuum that can be transferred
to matter using well known theoretical methods.

Consider the ECE 2 minimal prescription:

pµ → pµ + eWµ (6.51)

where:

pµ =

(
E

c
,p

)
, (6.52)

Wµ =

(
φW
c
,W

)
. (6.53)

In ECE 2 theory:

Wµ = W (0)
(

Ω(0),Ω
)

(6.54)

where the spin connection four vector is:

Ωµ =
(

Ω(0),Ω
)
. (6.55)

It follows that:

φW = cW (0)Ω(0) (6.56)

and:

W = W (0)ω. (6.57)

The units of W (0) are those of magnetic flux:

[W (0)] = weber = volt sec = JC−1s. (6.58)

A summary of S. I. Units is given as follows:

[φW ] = volt = JC−1 (6.59a)

[W ] = tesla metres = JC−1sm−1 (6.60a)

[Ω(0)] = Ω = m−1 (6.59b)

[W (0)] = JC−1s. (6.60b)

The ECE 2 magnetic flux density B (in units of tesla) is defined by Eq. (6.1),
and the ECE 2 electric field strength E in volts per metre is:

E = −∇φW −
∂W

∂t
= −∇φ− ∂A

∂t
+ 2

(
cΩ(0)A− φΩ

)
. (6.61)
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The elementary quantum of magnetic flux is [2]- [13]:

W (0) =
~
e

(6.62)

where ~ is the reduced Planck constant, the quantum of angular momentum
in Js. Therefore:

φW =

(
~c
e

)
Ω(0). (6.63)

The AB spacetime can therefore be defined in terms of the vacuum poten-
tial:

Wµ(vac) =

(
φW (vac)

c
,W(vac)

)
(6.64)

and on the most fundamental level:

Wµ(vac) =
~
e

Ωµ(vac). (6.65)

So the AB spacetime is defined by the spin connection vector within the fluxon
~/e. The latter is negative under charge conjugation symmetry. In the absence
of electric and magnetic fields the AB spacetime (or vacuum or aether) is
defined by Eq. (6.65). The fields E and B on the other hand are defined by
curvature as in Eqs. (6.8) and (6.9). The latter is zero in the AB vacuum, and
so is the torsion:

R = d ∧ Ω + Ω ∧ Ω = 0, (6.66)

T = d ∧ q + Ω ∧ q = 0. (6.67)

Consider now the Einstein energy equation:

pµpµ = m2c2. (6.68)

Using the minimal prescription (6.51) the effect of the AB spacetime on ma-
terial matter such as an electron is:

(pµ + eWµ) (pµ + eWµ) = m2c2. (6.69)

If the electron is at rest:

pµ =

(
E0

c
,0

)
, Wµ =

~
e

(
Ω(0),0

)
(6.70)

so: (
E0 + ~Ω(0)c

)(
E0 + ~Ω(0)c

)
= m2c4. (6.71)

The AB spacetime contains an angular frequency:

ω(vac) = cΩ(0) (6.72)
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so Eq. (6.71) becomes:

E0 + ~ω(vac) = mc2 (6.73)

from which it is clear that the rest frequency of a particle of material matter
is increased by:

ω0 → ω0 + ω(vac) (6.74)

due to the presence of the AB vacuum. So the mechanism of energy from
spacetime becomes clear.

The AB spacetime imparts energy momentum to material matter as fol-
lows:

pµ → pµ + pµ(vac) (6.75)

where:

pµ(vac) = eWµ = ~Ωµ. (6.76)

The angular frequency of the AB spacetime is:

ω(vac) = cΩ(0) (6.77)

and the wave vector of the AB spacetime is:

κ(vac) = Ω. (6.78)

The Einstein/de Broglie equations of the AB spacetime (or vacuum) are:

E(vac) = ~ω(vac) = γm(vac) c2, (6.79)

p(vac) = ~κ(vac) = γm(vac) v0(vac), (6.80)

where the vacuum Lorentz factor is:

γ(vac) =

(
1− v2

0(vac)

c2

)−1/2

. (6.81)

Therefore the existence of a vacuum particle of mass m(vac) has been
inferred via the Einstein/de Broglie equations. There is a statistical ensemble
of such particles. The AB vacuum is quantized using:

E(vac)ψ(vac) = i~
∂ψ(vac)

∂t
(6.82)

and:

p(vac)ψ(vac) = −i~∇ψ(vac) (6.83)

where ψ(vac) is the wavefunction of the vacuum wave/particle. The wavefunc-
tion obeys the ECE wave equation [2]- [13] in the limit:(

� + κ2(vac)
)
ψ(vac) = 0 (6.84)
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where:

κ(vac) =
m(vac) c

~
. (6.85)

The vacuum wavefunction is therefore:

ψ(vac) = exp (−i (ω(vac) t− κ(vac) · r)) (6.86)

and the ECE wave equation of the vacuum is:

(� +R(vac))ψ(vac) = 0. (6.87)

Eq. (6.87) is the quantized version of the Einstein energy equation of the
vacuum:

E2(vac) = c2p2(vac) +m2(vac) c4. (6.88)

The process of taking energy from the vacuum becomes simple to understand:

E → E + E(vac) (6.89)

p→ p + p(vac) (6.90)

and is observed as an energy shift in spectra, notably the Lamb shift of atomic
hydrogen, and also in the anomalous g of the electron.

It appears that such a particle vacuum was proposed but not proven by
Tesla.

The Lamb shift and anomalous g factor can be defined in terms of emergy/momentum
transfer. The conventional theory of the Lamb shift assumes that the electron
in the H atom fluctuates in the presence of the vacuum – this phenomenon is
known as jitterbugging. It can be shown as follows that this is due to vacuum
energy of ECE 2 theory, and the observed Lamb shift can be used to calculate
a mean vacuum angular frequency. The AB vacuum and the B(3) field [2]- [13]
can be defined in terms of ECE 2 theory.

By considerations of the Einstein energy equation in ECE 2 theory, and by
use of the minimal prescription, it can be shown as in Notes 340(1) and 340(2)
that the anomalous g factor of the electron is defined by:

g = 1 +
H

mc2
(6.91)

where H is the hamiltonian of ECE 2 relativity:

H = γmc2 + U =
(
p2c2 +m2c4

)1/2
+ U. (6.92)

For a static electron for which the de Broglie equation (6.34) holds:

g = 2 +
~ω(vac)

mc2
. (6.93)

In general, the anomalous g factor of the electron is:

g = 1 +
~
mc2

(ω + ω(vac)) (6.94)
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where ω is the angular frequency of the electron wave, and ω(vac) is the angular
frequency of the ECE 2 vacuum wave particle. In Note 340(2) on www.aias.us

it is shown in complete detail that the process of momentum transfer from the
vacuum wave particle results in the observable energy shift:

∆E = − e2

4πε0gm2c2

〈
S · L(vac)

r3

〉
. (6.95)

Various methods of calculating this shift are described in Note 340(3). There-
fore momentum as well as energy can be transferred from the ECE 2 vacuum.

In Note 340(4) the ECE 2 vacuum potential is defined as:

U(vac) = eφW (vac) = ~cΩ(0)(vac) = ~ω(vac). (6.96)

It follows that the Coulomb potential UC between an electron and a proton in
the H atom is augmented by:

UC → UC + U(vac) = − e2

4πε0r
+ ~ω(vac). (6.97)

In the well known Bethe theory [2]- [13] of the Lamb shift, it is assumed that
UC jitterbugs as described in Note 340(3):

UC = U (r− δr)− U (r) (6.98)

in which ∂r denotes the fluctuation in position of the electron due to the
vacuum, in this case the ECE 2 vacuum. This idea implies that the vacuum
potential is:

U(vac) = ~ω(vac) = − e2

4πε0

(
1

r − δr
− 1

r

)
=

e2δr

4πε0 (r − δr) r
(6.99)

in which the change in potential energy due to the ECE vacuum is, self con-
sistently:

∆U = U(vac) = U (r− δr)− U (r) . (6.100)

If it is assumed that:

δr � r (6.101)

Eq (6.99) can be written as:

U(vac) = ~ω(vac) =
e2

4πε0

(
δr

r2
+

(δr)
2

r3

)
(6.102)

and averaging over the ensemble of vacuum particles:

〈U(vac)〉 = ~ 〈ω(vac)〉 =
e2

4πε0

 〈δr〉
r2

+

〈
(δr)

2
〉

r3

 . (6.103)
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Using the Bethe assumption:

〈δr〉 = 0 (6.104)

it follows that:

〈ω(vac)〉 =
e2

4πε0~r3

〈
(δr)

2
〉

=
cα

r3

〈
(δr)

2
〉

(6.105)

where α is the fine structure constant. So the mean square fluctuations result
in a mean vacuum angular frequency.

By using a Maclaurin series expansion of the equation:

∆U = U (r− δr)− U (r) (6.106)

it can be shown that

〈∆U〉 =
1

6

〈
(δr)

2
〉
∇2UC . (6.107)

For the 2S1/2 orbital of the H atom [2]- [13]:

〈
∇2U0

〉
=

〈
∇2

(
−e2

4πε0r

)〉
=
e2

ε0
|ψ(0)|2 (6.108)

where ψ(0) is the value of the 2S1/2 wavefunction of H at the origin:∣∣∣ψ2S1/2
(0)
∣∣∣2 =

1

8πr3
B

(6.109)

where rB is the Bohr radius. From Eqs. (6.107) and (6.105) the Lamb shift in
the 2S1/2 energy level of the H atom is:

〈∆U〉 =
e2r3

48ε0r3
Bαc

〈ω(vac)〉 . (6.110)

The measured Lamb shift is:

∆f = 1.058× 109 Hz ∼ 0.04 cm−1 (6.111)

where:

〈∆U〉 = 2π~ 〈∆f〉 . (6.112)

Computing expectation values from the hydrogenic wavefunctions it is found
that:

〈r〉
rB

(1S) =
3

2
,
〈r〉
rB

(2S) = 6,
〈r〉
rB

(3S) =
27

2
. (6.113)

The relevant value for 2S1/2 is:

〈r〉
(
2S1/2

)
= 6rB . (6.114)
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This gives the mean vacuum angular frequency of an ensemble of vacuum wave
particles:

〈ω(vac)〉 =
96πε0α~cr3

B

e2r3
∆f = 3.96750× 108 rad s−1. (6.115)

The de Broglie frequency of one vacuum particle is:

ω(vac) = 1.80058× 1018 rad s−1. (6.116)

The ensemble averaged frequency is much lower than the de Broglie fre-
quency, and the former is responsible for the Lamb shift in H. This means that
there is a tiny universal anisotropy in the vacuum, and this is a tiny anisotropy
of the universe itself, for example in the microwave background radiation. The
2P1/2 wavefunction of atomic H vanishes at the origin and so there is no Lamb
shift in this case.

The mass of the fundamental vacuum particle can be calculated from the
experimentally observed anomalous g factor of the electron. The relativistic
quantum theory of this chapter defines the interaction of the electron with the
ECE 2 vacuum as follows:(

H − eφW −mc2
)
ψ = ie~σ ·∇

((
c2 σ ·W

H − eφW +mc2

)
ψ

)
+ · · · (6.117)

where:

Ωµ =
(

Ω(0),Ω
)

=
e

~
Wµ. (6.118)

Here ψ is the wave function and H is the hamiltonian of ECE 2 relativity:

H = γmc2 + U. (6.119)

The potential energy in joules is defined as:

U = eφW . (6.120)

In the denominator on the right hand side of Eq (6.117):

H − eφW = γmc2 (6.121)

in which the Lorentz factor is defined by:

γ =
~ω
mc2

. (6.122)

It follows that:(
H − eφW −mc2

)
ψ =

ie~
(1 + γ)m

σ ·∇σ ·Wψ (6.123)

whose real part (note 338(4) on www.aias.us) is:

Real
(
H − eφW −mc2

)
ψ =

−e~
(1 + γ)m

σ ·∇×Wψ. (6.124)

164



CHAPTER 6. THE ECE 2 VACUUM

Therefore the anomalous g factor of the electron is:

g = 1 + γ = 1 +
~ω
mc2

. (6.125)

For an electron at rest:

g = 1 +
~ω0

mc2
= 2 (6.126)

because of the de Broglie equation for a rest particle:

~ω0 = mc2. (6.127)

Notes 338(1) to 338(3) show that the frequency of an electron wave in contact
with the ECE 2 vacuum is:

ω0 → ω0 + ω(vac) (6.128)

so the anomalous g factor of the rest electron is:

g = 2 +
~ω(vac)

mc2
= 2.002319314 (6.129)

to nine decimal places. Therefore

~ω(vac) = 0.002319314 m(vac) c2. (6.130)

It follows that the mass of the vacuum particle is given by the de Broglie
Einstein equation:

m(vac) =
~ω(vac)

c2
=

~Ω(0)

c
= 2.1127× 10−33 kg. (6.131)

This calculation infers the existence of a new elementary particle whose
mass is known with precision, and which is given the appellation “vacuum
particle”.

It follows from Ockham’s Razor that hugely more complicated theories
such as quantum electrodynamics are not needed to calculate the g factor of
elementary particles. It is well known that QED is made up of adjustables
and artificial procedures, so it is not a Baconian theory. It has problems of
renormalization, dimensional regularization, summation of series with numer-
ous terms, series whose convergence is dubious. It has virtual particles that
can never be observed. QED is not an exact theory because of these ad-
justables and procedures, unknowables and unobservables – Pauli’s “not even
wrong” type of theory. Pauli meant that such a theory cannot be tested exper-
imentally. Feynman himself described QED as dippy hocus pocus, and Dirac
described it as an ugly theory. QCD has yet more difficulties.

The above calculation is a great improvement, it does not use the Dirac
approximation, criticised earlier in this book, and is the first Baconian expla-
nation of the anomalous g factor of the electron. It can be repeated for other
elementary particles.
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The effect of the vacuum wave/particle of angular frequency ω1 on an
electron wave/particle of angular frequency ω is:

ω → ω + ω1. (6.132)

The electron’s wave vector is changed analogously:

κ→ κ+ κ1. (6.133)

The Einstein/de Broglie equations become:

E = ~ (ω + ω1) = γmc2 (6.134)

p = ~ (κ+ κ1) = γmv0 (6.135)

and the Lorentz factor is changed to:

γ =
~
mc2

(ω + ω1) . (6.136)

For the rest electron:

γ =
~
mc2

(ω0 + ω1) = 1 +
~ω1

mc2
(6.137)

and as in Eq. (6.125) the anomalous g factor of the electron is:

g = 1 + γ. (6.138)

The de Broglie / Einstein equation:

~ω1 = γm1c
2 (6.139)

gives the mass of the vacuum particle.
In UFT 49 on www.aias.us the Hubble constant is defined to be:

H = αc (6.140)

where α is the power absorption coefficient thought to be responsible for the
cosmological red shift. Eq. (6.140) rejects “big bang”, which is refuted in ECE
and ECE 2 theory [2]- [13]. Big bang has also been refuted experimentally.
Now introduce the new equation:

H = v(vac)α1 (6.141)

where v(vac) is the velocity of the vacuum frame with respect to a static
elementary particle and in which α1 is a universal power absorption coeffi-
cient. These ideas are derivable from ECE 2 relativity. The Hubble constant
in S. I. units is:

H = 2.333× 10−16s−1 (6.142)
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and the velocity of the vacuum particle can be identified with that of the aether
frame:

v(vac) = 0.068 c. (6.143)

Therefore the Hubble constant is:

H = 0.068 cα(universal). (6.144)

It is proposed that α is a universal constant with S. I. Units of:

α(universal) = 1.1444× 10−23 m−1 (6.145)

and the conventional spectroscopic units of:

α(universal) = 1.144× 10−25 neper cm−1. (6.146)

The Hubble constant no longer indicates that distant objects recede in an
expanding universe. It means that light from distant objects is absorbed to a
greater extent in an universe in equilibrium, an equilibrium between elemen-
tary and vacuum particles. The anthropomorphic concepts of beginning and
end of the universe become irrelevant.

Compton scattering theory has been developed in the classic UFT 158 to
UFT 248 and can be applied in the present context as described in notes 339(5)
to 339(7). The original theory of Compton scattering has been greatly devel-
oped in UFT 158 to UFT 248, and relied on the scattering of an assumed mass-
less photon from a massive electron. It was shown in these UFT papers that
the original theory collapses completely when attempts are made to modify it
for two particles with mass. The reason is that Compton scattering is elastic
scattering, whereas particle collisions in general are inelastic and endoergic.
In general there is transmutation, so the particle collision process is:

A+B → C +D + E (6.147)

where E is the energy released in the collision. It follows that the collision of
the massive vacuum particle with a massive elementary particle produces en-
ergy from the ECE 2 vacuum. Crossover symmetry in particle physics implies
that:

A+ C̄ → B̄ +D + E (6.148)

where the bar denotes antiparticle.
In elastic collisions:

E = 0 (6.149)

and elastic Compton scattering is denoted as:

γ + e− → γ + e−. (6.150)

By crossover symmetry:

γ → e+
(
B → C̄

)
(6.151)
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and

e− → γ
(
C → B̄

)
(6.152)

giving the annihilation of a positron and electron to give two photons:

e− + e+ → 2γ. (6.153)

In UFT 171 it was shown that an elastic, Compton type, theory cannot be
applied to equal mass scattering, such a procedure produces nonsense. The
correct theory must be inelastic with release of energy E:

e− + e+ → 2γ + E. (6.154)

Electron positron annihilation is well known ot be the basis of experiments
for example at CERN. These produce many types of elementary particle as is
well known. Similarly the scattering of a photon with mass from an electron
makes sense if and only if:

γ + e− → γ + e− + E. (6.155)

Similarly the collision of two massive vacuum particles (denoted “vac”)
may lead to transmutation as follows:

vac + vac→ A+B + E (6.156)

where A and B are elementary particles and E is energy from the ECE 2
vacuum. It is known experimentally that electron positron pairs emerge from
the vacuum:

vac + vac→ e− + e+ + E. (6.157)

The conservation of parity inversion symmetry requires that:

vac + vac→ e− + e+ + E (6.158)

because a vacuum particle has finite mass. A particle is its own antiparticle
only if it is massless, and in ECE 2 there are no massless particles. This means
that there exists a vacuum antiparticle. Synthesis of matter in the universe
therefore occurs by:

vac + vac→ A+ Ā+ E. (6.159)

where A and Ā denote any particle and antiparticle from which evolve stars,
planets, galaxies and so on using well known processes. If m1 denotes the mass
of the vacuum particle, its collision with a static elementary particle of mass
m2 is governed by the law of conservation of energy:

γm1c
2 +m2c

2 = γ′m3c
2 + γ′′m4c

2 + E (6.160)

in which new particles of mass m3 and m4 appear. This process is detailed in
Note 339(7).
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6.2 Numerical Analysis and Graphics

6.2.1 Graphical Demonstration of Vector Potential Prop-
erties

We demonstrate some properties of the vector potential in order to explain
that it is difficult to assess the type of vector potential from its appearance.
First we consider a dipole vector field in two dimensions:

A(X,Y ) = q1

(
X−X0

((X−X0)2+Y 2)3/2

Y
((X−X0)2+Y 2)3/2

)
+ q2

(
X+X0

((X+X0)2+Y 2)3/2

Y
((X+X0)2+Y 2)3/2

)
. (6.161)

The direction vectors of this field have been graphed in Fig. 6.1, together with
the equipotential lines following from the Coulomb-type potential

V (X,Y ) =
q1

((X −X0)2 + Y 2)
1/2

+
q2

((X −X0)2 + Y 2)
1/2

. (6.162)

The two values of charges were chosen different from each other: q1 = 1, q2 =
−1.6. As a result, the potential and dipole field at the right hand side is much
more contracted than at the left, and a rotational structure of directional
vectors can be seen at the right hand side. Nevertheless, the curl of a dipole
field vanishes as can be calculated from Eq. (6.161):

∇×A(X,Y ) = 0. (6.163)

This seems not to be as expected at a first glance.
As a second example we consider the vector potential of an infinitely ex-

tended solenoid in cylindrical coordinates (r, θ, Z). From electrodynamics is
known that the corresponding vector potential has only a θ component. It rises
linearly within the solenoid (until radius a) and drops hyperbolically outside:

Aθ =

{
fr for r ≤ a
f a

2

r for r > a
(6.164)

where f is a factor. The Z component of the curl of this vector potential is

(∇×A)Z =

{
2f for r ≤ a
0 for r > a

, (6.165)

the other components are zero. This describes the fact that an idealized infi-
nite solenoid contains a homogeneous magnetic field inside, and the magnetic
field vanishes outside as is the case for the Aharonov Bohm effect. The vector
potential is graphed in Fig. 6.2 with some circles describing isolines of the
magnitude of A. Although the structure of this potential is very regular com-
pared to Fig. 6.1, the curl does not vanish in the inner part. The curl follows
from the coordinate dependence of the A components in a quite intricate way.

Fig. 6.2 may serve as a demonstration of the potential for the Aharonov
Bohm effect where the solenoid normally has a torus-like, closed form. Inter-
preting A as a vacuum potential, it may even be permitted that the curl does
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not vanish outside. According to newest experimental results there may fluc-
tuating electric and magnetic fields be present in the vacuum on a very short
time scale. This justifies the approach for electron spin resonance (Eq. (6.49))
in this paper.

Figure 6.1: Equipotential lines and direction vectors of a dipole field.
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Figure 6.2: Vector potential and lines of equal magnitude for an infinite
solenoid (cross section). The red circle indicates the radius of the solenoid.

171



6.2. NUMERICAL ANALYSIS AND GRAPHICS

172



Chapter 7

Precessional Theory

7.1 General Theory

ECE 2 theory gives an exact description of light deflection due to gravity and
also of planar orbital precession, as described in UFT 342 and UFT 325, where
a fundamental new hypothesis was introduced, one that imposed an upper
bound on the Lorentz factor. It was shown in UFT 325 that massive particles
such as electrons can travel at the speed of light without violating fundamental
laws. This fact is well known experimentally at accelerators such as SLAC
and CERN, which routinely accelerate electrons to c. The new hypothesis
of UFT 325 also means that photons with mass can travel at c. In UFT 328
planar orbital precession was described without additional hypothesis simply
by simultaneously solving the hamiltonian and lagrangian of ECE 2 theory.
None of these methods use the incorrect and obsolete Einstein theory.

The planetary precession of the perihelion is known experimentally with
claimed accuracy, although there have been severe criticisms by Myles Mathis
and others, developed in the UFT papers on www.aias.us [2]- [13]. Accepting
the experimental claims for the sake of argument, the experimental data are
summarized empirically as follows:

r =
α

1 + ε cos(xθ)
(7.1)

x = 1− 3MG

c2α
(7.2)

in plane polar coordinates (r, θ). Here M is the mass of an object around
which an object m orbits. G is Newton’s constant, c is the universal constant
known as the vacuum speed of light and α is the half right latitude of the
orbit, for example a precessing ellipse and ε is the eccentricity. Both α and ε
are observable with precision. In the solar system x is very close to unity.

As in previous chapters the ECE 2 lagrangian is:

L = −mc
2

γ
− U (7.3)
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and the ECE 2 hamiltonian is:

H = γmc2 + U (7.4)

in which the Lorentz factor is:

γ =

(
1− v2

N

c2

)−1/2

. (7.5)

Note carefully that vN is the Newtonian velocity. The experimentally observ-
able velocity is always the relativistic velocity:

v = γvN . (7.6)

In these equations U is the potential energy of attraction between m and M .
The Euler Lagrange analysis of UFT 325 and UFT 328 defines the relativistic
angular momentum:

L = γmr2θ̇ (7.7)

which is a constant of motion:

dL

dt
= 0. (7.8)

The Newtonian and non precessing planar orbit is:

r =
α

1 + ε cos θ
(7.9)

and is described by the non relativistic hamiltonian:

H =
1

2
mv2

N + U (7.10)

and non relativistic lagrangian:

L =
1

2
mv2

N − U. (7.11)

In this case the non relativistic angular momentum:

L0 = mr2θ̇0 (7.12)

is the constant of motion:

dL0

dt
= 0. (7.13)

The relativistic angular velocity is

ω =
dθ

dt
(7.14)
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and the non relativistic angular velocity is:

ω0 =
dθ0

dt
. (7.15)

The relativistic orbital velocity is defined as follows in terms of the rela-
tivistic angular momentum:

v2 =
L2

m2r4

(
r2 +

(
dr

dθ

)2
)
. (7.16)

From Eqs. (7.1) and (7.16):

v2 =
L2

m2

(
1

r2
+
x2ε2

α2
sin2(xθ)

)
. (7.17)

Eq. (7.6) means that:

v2 =
v2
N

1− v2N
c2

. (7.18)

From Eq. (7.9):

v2
N =

L2
0

m2

(
1

r2
+
ε2

α2
sin2 θ

)
. (7.19)

It follows from Eqs. (7.18), (7.17) and (7.19) that:

L2

(
1

r2
+
x2ε2

α2
sin2(xθ)

)
=

L2
0

(
1
r2 + ε2

α2 sin2 θ
)

1−
(
L0

mrc

)2 ( 1
r2 + ε2

α2 sin2 θ
) (7.20)

an equation which is analyzed numerically and graphically later in this chapter.
It is demonstrated that r(θ) from Eq. (7.20) is a precessing ellipse. This
confirms the results of UFT 328 and shows that ECE 2 relativity produces a
precessing ellipse directly from the lagrangian and hamiltonian, without any
additional assumption. This theory is Lorentz covariant in a space of finite
torsion and curvature and is part of the ECE 2 generally covariant unified field
theory.

In UFT 343 the Thomas and de Sitter precessions are developed with
ECE 2 relativity. In the standard physics, Thomas precession is the rota-
tion of the Minkowski line element and de Sitter precession is the rotation
of the Schwarzschild line element. In previous UFT papers [2]- [13] it has
been shown that the derivation of the Schwarzschild line element is riddled
with errors, notably it is based on an incorrect geometry without torsion. The
Thomas frame rotation in the Newtonian limit is:

θ1 = θ + ωθt (7.21)
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where ωθ is the constant angular velocity of frame rotation. The angle θ1 is
that of a rotating plane polar coordinate system denoted (r, θ1). The total
angular velocity is defined by:

ω1 =
dθ1

dt
=
dθ

dt
+ ωθ (7.22)

and the classical lagrangian is:

L1 =
1

2
mv2

1 − U (7.23)

where:

v2
1 =

(
dr

dt

)2

+ r2

(
dθ1

dt

)2

. (7.24)

The Euler Lagrange equations are:

∂L1

∂θ1
=

d

dt

∂L1

∂θ̇1

(7.25)

and

∂L1

∂r
=

d

dt

∂L1

∂ṙ
(7.26)

from which the conserved angular momentum in the rotating frame is:

L1 = mr2 dθ1

dt
= L+ ωθmr

2 (7.27)

where:

L = mr2 dθ

dt
(7.28)

is the conserved angular momentum of the static frame (r, θ). Both L1 and L
are constants of motion.

The hamiltonian in the rotating frame is:

H1 =
1

2
m

(
dr

dt

)2

+
1

2

L2
1

mr2
+ U(r) (7.29)

where:

U(r) = −mMG

r
(7.30)

is the gravitational potential. As shown in Note 343(2) the hamiltonian pro-
duces the rotating conic section:

r =
α1

1 + ε1 cos(θ + ωθt)
(7.31)
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in which the time is defined by:

t =

∫ (
2

m
(H − U)− L2

1

m2r2

)−1/2

dr. (7.32)

Eqs. (7.31) and (7.32) can be solved simultaneously by computer algebra to
give r in terms of θ. As shown in Note 343(4):

θ = cos−1

(
1

ε1

(α1

r
− 1
))
− ωθ

∫ (
2

m
(H − U)− L2

1

m2r2

)−1/2

dr (7.33)

an equation that can be inverted numerically to give a plot of r against θ, the
required orbit.

The orbit of de Sitter precession follows immediately as:

r =
α1

1 + ε1 cos(xθ1)
(7.34)

where it is known experimentally that:

x = 1− 3MG

c2α1
. (7.35)

The half right latitude of the rotating frame is:

α1 =
L2

1

m2MG
(7.36)

and the eccentricity in the rotating frame is:

ε1 =

(
1 +

2H1L
2
1

m3M2G2

)1/2

. (7.37)

The reason for Eq. (7.34) is that de Sitter or geodedic precession is defined
by rotating the plane polar coordinates system in which the precession of
the planar orbit is observed. The original method by Sitter was much more
complicated and based on the incorrect Einstein field equation.

In contrast, Eq. (7.34) is rigorously correct and much simpler, and based
on the theory of ECE 2 relativity.

The orbital velocity from Eq. (7.31) is:

v2
N1 =

L2
1

m2r4

(
r2 +

(
dr

dθ

)2
)

(7.38)

in which the relativistic velocity is:

v2 = v2
N1

(
1− v2

N1

c2

)−1

. (7.39)

The relativistic velocity is the one defined by Eq. (7.34):

v2 =
L2

m2

(
1

r2
+
x2ε2

α2
sin2(xθ1)

)
. (7.40)
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It follows that:

L2

m2

(
1

r2
+
x2ε2

α2
sin2(xθ1)

)
=

L2
1

(
1
r2 +

ε21
α2

1
sin2 θ1

)
1−

(
L1

mrc

)2 ( 1
r2 +

ε21
α2

1
sin2 θ1

) (7.41)

in which both L and L1 are constants of motion. Here θ1 is defined by:

θ1 = θ + ωθt. (7.42)

The velocity of the Thomas precession is: the relativistic velocity:

v2
T =

L2
1

(
1
r2 +

ε21
α2

1
sin2 θ1

)
1−

(
L1

mrc

)2 ( 1
r2 +

ε21
α2

1
sin2 θ1

) (7.43)

and the Thomas angular velocity (the relativistic angular velocity) is:

ΩT =
vT
r
. (7.44)

This was used in UFT 110 to define the Thomas phase shift.
In the numerical analysis and graphics of UFT 343 it is shown that the

Thomas precession produces a precessing orbit, which is therefore produced
by rotating the plane polar coordinate system.

Planetary precession can also be thought of as a Larmor precession as
described in UFT 344, it is the Larmor precession produced by the torque
between the gravitomagnetic field of the sun and the gravitomagnetic dipole
moment of the planet. In general any astronomical precession can be be ex-
plained with the ECE 2 gravitational field equations. This goes beyond what
the obsolete Einstein theory was capable of. In UFT 318 the ECE 2 gravita-
tional field equations were derived in a space in which equation are Lorentz
covariant, and in which the torsion and curvature are both non zero. This is
known as ECE 2 covariance. In UFT 117 and UFT 119 the gravitomagnetic
Ampère law was used to describe the earth’s gravitomagnetic precession and
the precession of the equinox.

Consider the magnetic dipole moment of electromagnetism:

m = − e

2m
L (7.45)

where −e is the charge on the electron, m its mass and L its orbital angular
momentum. The following torque:

Tq = m×B (7.46)

is produced between m and a magnetic flux density B. Such a torque is
animated by the well known Evans Pelkie animation on www.aias.us and
youtube. The Larmor pecessional frequency due to the torque is:

ωL =
eg

2m
B (7.47)
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where g is the Landé factor described in previous chapters.
This well known theory can be adapted for planetary precession by cal-

culating the gravitomagnetic dipole moment and using the orbital angular
momentum of a planet. The charge −e on the electron is replaced by the
orbiting mass m, so the gravitomagnetic dipole moment is:

mg =
m

2m
L =

1

2
L (7.48)

and is a constant of motion. The orbital angular momentum is defined by:

L = r× p = mr× v (7.49)

where v is the orbital velocity of m and where r is the distance between m
and M . Therefore:

mg =
m

2
r× v. (7.50)

In general this theory is valid for any type of orbit, but for a planar orbit:

L = mrvk. (7.51)

A torque is formed between mg and the gravitomagnetic field Ω of ECE 2
general relativity:

Tq = mg ×Ω (7.52)

resulting in the gravitomagnetic Larmor precession frequency:

ωg =
1

2
grΩ (7.53)

where gr is the gravitomagnetic Landé factor. The precession frequency of a
planet in this theory is the gravitomagnetic Larmor precession frequency. For
example consider the sun to be a rotating sphere. It rotates every 27 days or
so around an axis tilted to the axis of rotation of the earth, so Learth is not
parallel to Lsun and there is a non zero torque. The gravitomagnetic field of
this rotating sphere in the dipole approximation is:

Ωsun =
2G

c2r3

(
Lsun − 3

(
Lsun ·

r

r

) r

r

)
(7.54)

Here r is the distance from the sun to the earth. The rotation axis of the sun
is tilted by 7.25◦ to the axis of the earth’s orbit, so to a good approximation:

Lsun · r ∼ 0 (7.55)

and in this approximation:

Ωsun =
2G

c2r3
Lsun. (7.56)
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The torque is therefore:

Tq =
G

c2r3
Learth × Lsun (7.57)

and is non zero if and only if Lsun and Learth are not parallel, where Learth is
the angular momentum of the earth’s spin and Lsun is that of the sun’s spin.
The angle subtended by Learth and Lsun is approximately 7.25◦.

The magnitude of the angular momentum of the sun can be modelled in
the first approximation by that of a spinning sphere:

L = ωI =
2

5
MR2 (7.58)

where I is the moment of inertia and R the radius of the sun. Therefore the
magnitude of the gravitomagnetic field of the sun is:

Ωsun =
MGω

5c2R
(7.59)

where ω is its angular velocity. After a rotation of 2π radians:

ω =
2π

T
(7.60)

where T is about 27 days. Therefore:

Ωsun =
π

5

r0

R

1

T
(7.61)

where:

r0 =
2MG

c2
= 2.95× 103 m (7.62)

and where the radius of the sun is:

R = 6.957× 109 m. (7.63)

In one earth year (365.25 days):

Ωsun = 365.25× 24× 3600
π

5

r0

R

1

T
(7.64)

in radians per year.
The Larmor precession frequency at the distance R is:

ωL = 1.802× 10−6 geff rad s−1 (7.65)

where geff is the gravitomagnetic Landé factor. The observed perihelion pre-
cession of the earth at the earth sun distance is:

ω(perihelion) = 5.741× 10−21 rad s−1. (7.66)
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Therefore the earth’s gravitomagnetic Landé factor is:

geff(earth) = 2
ωg
Ω
. (7.67)

Each planet has its characteristic geff and in general every object m in orbit
around an object M has its own geff. This theory is rigorously correct and is
again much simpler than the incorrect Einstein theory. In general, perihelion
precession is a Larmor precession frequency:

ωL = geff
π

10

(r0

R

) 1

T
. (7.68)

In one earth year, or revolution through 2π radians, the precession frequency
at the point R is:

ωL = 365.25× 3600× 24 geff
π

10

(r0

R

) 1

T
. (7.69)

The experimentally observed precession of the perihelion is:

ωL =
6πGM

ac2 (1− ε2)
. (7.70)

Later in this chapter this theory is developed numerically and graphically
using spherical polar coordinates.

The well known geodetic and Lense Thirring precessions can be calculated
straightforwardly in ECE 2 theory as in UFT 345. Consider the gravitomag-
netic field of the earth in the dipole approximation [2]- [13], first used in
UFT 117:

Ω =
2

5

MGR2

c2r3
(ω − 3n (ω · n)) (7.71)

where the earth is considered to be a spinning sphere. In Eq. (7.71), M is
the mass of the earth, R is the radius of the earth, r is the distance from the
centre of the earth to a satellite such as Gravity Probe B, ω is the angular
velocity vector of the earth and n is the unit vector defined by:

n =
r

r
. (7.72)

Gravity Probe B was in polar orbit, orbiting in a plane perpendicular to the
equator in a geocentric orbit. The angular velocity vector of the spinning earth
is:

ω = ωk (7.73)

because the earth spins around the k axis perpendicular to the equator. The
distance between the centre of the earth and Gravity Probe B is defined in the
plane perpendicular to k:

r = Y j + Zk (7.74)
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so:

ω − 3n (ω · n) = ω

((
1− 3Z2

r2

)
k− 3Y Z

r2
j

)
. (7.75)

The experimental inclination of Gravity Probe B was almost exactly 90◦.
Therefore in the dipole approximation, as in UFT 117:

Ω =
2

5

MGR2

c2r3
ω

((
1− 3Z2

r2

)
k− 3Y Z

r2
j

)
. (7.76)

The Gravity Probe B spacecraft carried precision gyroscopes which are cur-
rents of mass and which are therefore gravitomagnetic dipole moments (m).
The torque between the earth and the spacecraft is:

Tq = m×Ω (7.77)

and produces the Larmor precession frequency:

ΩLT =
1

2
|Ω|. (7.78)

This is known in the standard literature as Lense Thirring precession. The
relevant data are as follows:

M = 5.98× 1024 kg

R = 6.37× 106 m

r = 7.02× 106 m

c = 2.998× 108 ms−1

G = 6.67× 10−11 m3kg−1s−2

ω = 7.292× 10−5 rad s−1.

(7.79)

At the equator:

ω · n = 0 (7.80)

and the magnitude of the gravitomagnetic field of the earth from Eq. (7.76)
is:

Ω = 1.52× 10−14 rad s−1 (7.81)

compared with the experimental value from UFT 117 of:

Ω(exp) = 1.26× 10−14 rad s−1. (7.82)

More generally:

ω · n =
Z

r
ωk (7.83)
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and:

3n (ω · n) =
3Zω

r2
(Y j + Zk) . (7.84)

It follows that:

ω − 3n (ω · n) = ωk− 3ωZ

r

(
Y

r
j +

Z

r
k

)
. (7.85)

Defining:

sin θ =
Z

r
, cos θ =

Y

r
(7.86)

then:

ω − 3n (ω · n) = ω
(
−3 sin2 θ k− 3 sin θ cos θ j

)
. (7.87)

Therefore the Lense Thirring precession is:

ΩLT =
MGR2ω

5c2r3

∣∣(1− 3 sin2 θ
)
k− 3 sin θ cos θ j

∣∣ . (7.88)

Later in this chapter an average value of the precession is worked out and
the latitude identified for precise agreement with Gravity Probe B. In general
the Lense Thirring precession depends on latitude, so it is assumed that the
experimental result is an average. It is not clear from the literature how the
Lense Thirring effect is isolated experimentally from the geodetic precession.
For the sake of argument we accept the experimental claims.

The analogue of Eq. (7.71) in magnetostatics is:

B =
µ0

4πr3
(m− 3n (m · n)) (7.89)

where µ0 is the magnetic permeability in vacuo. In Eq. (7.89) m is the mag-
netic dipole moment:

m = − e

2m
L. (7.90)

The gravitomagnetic vacuum permeability of the ECE 2 field equations is:

µ0G =
4πG

c2
(7.91)

so:

Ω =
G

c2r3
(mg − 3n (mg · n)) (7.92)

where the gravitomagnetic dipole moment mg is defined in analogy to Eq. (7.90)
by

mg =
1

2
L. (7.93)
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The angular momentum of the spinning spherical earth is:

L =
2

5
MR2ω (7.94)

so:

Ω =
MGR2ω

5c2r3
= 49.4 millarcsec per year. (7.95)

The geodetic precession is is calculated from the same starting equation as
the Lense Thirring precession:

Ω =
MG

2c2r
|ω − 3n (ω · n)| . (7.96)

The vector r is defined by Eq. (7.74) because Gravity Probe B was in polar
orbit once every 90 minutes, giving an angular velocity of:

ω =
2π

90× 60
= 1.164× 10−3 rad s−1. (7.97)

As seen from a frame of reference fixed on Gravity Probe B, the earth rotates
at a given angular velocity, generating the angular momentum:

L = Mrω (7.98)

for an assumed circular orbit, a good approximation to the orbit of Gravity
Probe B. If it is assumed that:

ω = ωX i (7.99)

perpendicular to the polar orbit, then:

Ω =
MGω

2c2r
. (7.100)

For the earth:

MG

2c2
= 2.12175× 10−3 m. (7.101)

If it is assumed that r is the distance from the centre of the earth to Gravity
Probe B then:

r = 7.02× 106 m (7.102)

giving:

Ω = 3.677× 10−13 rad s−1. (7.103)

The experimental claim is:

Ω(exp) = 1.016× 10−12 rad s−1. (7.104)
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The theory is in good agreement with the experimental claim. It has been
assumed that the angular momentum needed for Eq. (7.96) is generated by a
static earth in a rotating frame. This is the passive rotation equivalent to the
active rotation of Gravity Probe B around the centre of the earth in a polar
orbit once every ninety minutes. Exact agreement with the experimental data
can be obtained by assuming an effective gravitomagnetic Landé factor, or by
assuming that the rotation is described more generally by:

ω = ωX i + ωY j (7.105)

and

r = Y j + Zk. (7.106)

Later on in this chapter, computer algebra and graphics are used to evaluate
the magnitude:

x = |ω − 3n (ω · n)| (7.107)

from Eqs. (7.105) and (7.106). Therefore exact agreement with Gravity Probe
B can be obtained from the gravitational field equations of ECE 2.

These field equations can be used to explain any astronomical precession
in terms of magnitude of vorticity and the result can be expressed in terms
of the tetrad and spin connection of Cartan geometry. This theory can be
applied to the Lense Thirring, geodetic and perihelion precessions to give exact
agreement in each case in terms of the vorticity of the underlying mathematical
space of the ECE 2 theory. The perihelion precession in this type of theory
is developed in terms of the orbital angular momentum of the sun as seen
from the earth. In general any precession can be developed in terms of the
magnitude of the vorticity spacetime, which can be expressed in terms of a well
defined combination of tetrad and spin connection. This combination appears
in the ECE 2 gravitational field equations.

As shown in Notes 346(1) to 346(3) any precession can be described in the
dipole approximation in terms of angular momentum L:

Ω =
G

2c2

∣∣∣∣∇× (L× r

r3

)∣∣∣∣ =
G

2c2r3

∣∣∣∣3r

r

(r

r
· L
)
− L

∣∣∣∣ . (7.108)

When this equation is applied to perihelion precession of the earth about the
sun, r is the distance from the earth to the sun. If the sun is considered to
rotate about an axis k, the plane of the earth’s orbit is inclined to the plane
perpendicular to k at an angle of 7.25◦. So as in Note 346(3):

r = iX cos θ + kX sin θ + Y j. (7.109)

The observed precession of the earth’s perihelion is:

Ω = (0.05± 0.012)
′′

a year = 7.681× 10−15 rad s−1. (7.110)

From the earth, the sun appears to be orbiting with an angular momentum:

L = Mr2ω (7.111)
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where M is the mass of the sun, and where ω is the angular frequency of the
orbit. The earth rotates around the sun once every year, or 3.156 × 107 sec,
so:

ω =
2π

3.156× 107
rad s−1 (7.112)

Using:

r = 1.4958× 1011 m (7.113)

MG

c2
= 1.475× 103 m (7.114)

the perihelion precession is found to be:

Ω = 0.981× 10−15 rad s−1. (7.115)

The experimental result is:

Ω(exp) = 7.681× 10−15 rad s−1. (7.116)

Exact agreement can be found by using an effective angular momentum L.
The above theory has used a circular orbit in the first approximation.

The fundamental assumption is that the orbit of the earth about the sun
produces a torque:

Tq = mg ×Ω (7.117)

where mg is the gravitomagnetic dipole moment:

mg =
1

2
L (7.118)

and where Ω is the gravitomagnetic field. Here L is the orbital angular mo-
mentum. The gravitomagnetic field is the curl of the gravitomagnetic vector
potential:

Ω = ∇×Wg (7.119)

so:

Wg =
G

2c2r3
L× r. (7.120)

In direct analogy, the Lense Thirring precession of the earth with respect to the
sun is due to to the latter’s spin angular momentum about its own axis. The
sun spins once every 27 days about its axis, so the relevant angular momentum
in this case is the spin angular momentum of the sun:

Lsun =
2

5
MR2ω = Iω. (7.121)
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Similarly the Lense Thirring precession of Gravity Probe B is due to the spin
of the earth every 24 hours. This spin produces a mass current and a gravito-
magnetic dipole moment:

mg(spin) =
1

2
Ls (7.122)

due to spin angular momentum.
The perihelion precession of the earth is a geodetic precession caused by an

orbital angular momentum, the orbital angular momentum of the sun, which
is observed in a frame of reference fixed on the earth.

As in previous chapters the magnetic flux density B of ECE 2 theory can
be defined by curvature through the W potential:

B = ∇×W = ∇×A + 2ωs ×A. (7.123)

The A potential is defined by torsion, and ωs is the spin connection vector.
In precise analogy the gravitomagnetic field is defined by:

Ω = ∇×Wg = ∇×Ag + 2ωs ×Ag. (7.124)

where:

Aµ
g = (Φg, cAg) (7.125)

and where Φg is the scalar potential of gravitation. Note that Wg has the
units of linear velocity, so:

Ω = ∇× vg (7.126)

which defines the gravitomagnetic field as a vorticity in analogy with fluid
dynamics. This analogy is developed later in this book in chapters eight and
nine. The vorticity is that of spacetime, or the aether or vacuum.

It follows that any precession can be defined precisely as follows:

Ω =
1

2
|Ω| = 1

2
|∇× vg| (7.127)

so all precessions of the universe are due to the vorticities of ECE 2 spacetime,
vacuum or aether. If it is assumed that:

∇ · vg = 0 (7.128)

then the spacetime is inviscid, and in chapters 8 and 9 it is shown that space-
time is in general a fluid. The field equations of fluid dynamics can be unified
with those of electrodynamics and gravitation.

The equations of gravitomagnetostatics are:

∇×Ω = κ×Ω =
4πG

c2
Jm (7.129)

where:

κ =
1

r(0)
q− ωs. (7.130)
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Here Jm is the current density of mass, q is the tetrad vector, ωs is the spin
connection vector, and r(0) is a scalar with units of metres. It follows from
Eq. (7.129) that

∇ ·∇×Ω = ∇ · κ×Ω = 0. (7.131)

Now use:

∇ · (κ×Ω) = Ω · (∇× κ)− κ · (∇×Ω) = 0 (7.132)

so:

Ω · (∇× κ) = κ ·∇×Ω. (7.133)

One possible solution is:

Ω = vgκ (7.134)

where:

vg = |vg|. (7.135)

Therefore the ECE 2 equation of any precession is:

Ω = ∇× vg = vgκ (7.136)

where:

Ω =
1

2
|∇× vg| =

1

2
vg

( q

r(0)
− ωs

)
. (7.137)

These are generally valid equations without any approximation, and are based
on Cartan geometry.

In the dipole approximation:

Ω =
G

2c2
∇×

(
L× r

r3

)
(7.138)

and comparing Eqs. (7.136) and (7.138):

vg =
G

2c2r3
L× r. (7.139)

This is also an expression for the Wg potential. Finally:

κ =
G

2c2vg
∇×

(
L× r

r3

)
= r3∇×

(
L× r

r3|L× r|

)
(7.140)

which shows that any precession is due to Cartan geometry, Q. E. D.
Later in this chapter a numerical analysis with graphics is given using

computer algebra to check the above calculations.
Using ECE 2 relativity and the minimal prescription the hamiltonian for

a particle in the presence of a gravitomagnetic potential can be defined. The
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lagrangian can be calculated from the hamiltonian using the canonical mo-
mentum and the relevant Euler Lagrange equations used to derive the grav-
itomagnetic Lorentz force equation. In the absence of gravitomagnetism this
equation reduces to the Newton equation. The precession frequency of the
Lorentz force equation is an orbital precession frequency of any kind. This
method gives a simple general theory of precession in ECE 2 relativity.

Consider the gravitomagnetic minimal prescription:

p→ p +mvg (7.141)

in which the linear momentum of a particle of mass m is incremented by the
gravitomagnetic vector potential:

Wg = vg. (7.142)

The free particle hamiltonian becomes:

H =
1

2m
(p +mvg) · (p +mvg) =

p2

2m
+

1

2
mv2

g +
1

2
L ·Ωg (7.143)

where the orbital angular momentum is:

L = p× r (7.144)

and the gravitomagnetic field is the vorticity:

Ω = ∇× vg. (7.145)

Any orbital precession frequency is defined, as we have argued earlier in this
chapter, by:

Ω =
1

2
|Ω|. (7.146)

Consider an object of mass m in orbit around a mass M . The central gravi-
tational potential is:

U(r) = −mMG

r
(7.147)

and the hamiltonian is:

H =
1

2m
(p +mvg) · (p +mvg) + U(r). (7.148)

This reduces to the Newtonian hamiltonian:

H =
p2

2m
+ U(r) (7.149)

in the absence of a gravitomagnetic field. The Newtonian hamiltonian pro-
duces the conic section orbit:

r =
α

1 + ε cos θ
. (7.150)
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The hamiltonian (7.148) can be developed as:

H =
p2

2m
+

1

2
mv2

g +
1

2
L ·Ωg + U(r) (7.151)

as shown in all detail in the Notes accompanying UFT 347 on www.aias.us.
The lagrangian is calculated from the hamiltonian using the methods of

classical dynamics and the canonical momentum:

pq =
∂L

∂q̇
(7.152)

where q is a generalized coordinate. Denote:

ṙ =
1

m
(p +mvg) (7.153)

then:

H = p · ṙ−L . (7.154)

The lagrangian is therefore:

L =
1

2
m (p +mvg) · (p +mvg)− U(r)−mṙ · vg. (7.155)

The relevant Euler Lagrange equation is:

∇L =
d

dt

(
∂L

∂ṙ

)
. (7.156)

The left hand side of this equation is:

∇L = ∇
(

1

2
mṙ · ṙ− U(r)

)
−m∇ (ṙ · vg) . (7.157)

In general:

∇ (ṙ · vg) = (ṙ ·∇) vg + (vg ·∇) ṙ + ṙ× (∇× vg) + vg × (∇× ṙ) (7.158)

and reduces to

∇ (ṙ · vg) = (ṙ ·∇) vg + ṙ× (∇× vg) (7.159)

if it is assumed that:

(vg ·∇) ṙ = 0 (7.160)

and

∇× ṙ = 0. (7.161)

So:

∇L = −∇U(r)−m ((ṙ ·∇) vg + ṙ× (∇× vg)) . (7.162)
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The right hand side of Eq. (7.156) is:

d

dt

(
∂L

∂ṙ

)
=

d

dt
(mṙ−mvg) . (7.163)

The total or Lagrange derivative must be used as follows:

dvgX
dt

=
∂vgX
∂t

+

(
∂X

∂t

)(
∂vgX
∂X

)
+ · · · (7.164)

Therefore:

dvg
dt

=
∂vg
∂t

+ (ṙ ·∇) vg (7.165)

and

d

dt

(
∂L

∂ṙ

)
= mr̈−m

(
∂vg
∂t

+ (ṙ ·∇) vg

)
. (7.166)

The Euler Lagrange equation is therefore:

d

dt

(
∂L

∂ṙ

)
= mr̈−m

(
∂vg
∂t

+ (ṙ ·∇) vg

)
(7.167)

i. e.:

mr̈ = −∇U(r) +m
∂vg
∂t
−mṙ× (∇× vg) . (7.168)

Now define:

mφg = −U(r) (7.169)

and:

Ω = ∇× vg (7.170)

to find the gravitomagnetic Lorentz force equation:

F = mr̈ = −m (Eg + ṙ×Ω) (7.171)

where:

Eg = −∇φg −
∂vg
∂t

(7.172)

is the gravitomagnetic analogue of the acceleration due to gravity in ECE 2
relativity.

The precession of any orbit is therefore governed by the gravitomagnetic
force law (7.171) with precession frequency (7.146).

From Eqs. (7.169) and (7.147):

φg =
MG

r
(7.173)
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and it follows that:

∇φg = −MG

r2
er (7.174)

so:

Eg =
MG

r2
er −

∂vg
∂t

. (7.175)

The gravitomagnetic Lorentz force is therefore:

F = mr̈ = −mMG

r2
er +m

∂vg
∂t
−mṙ×Ω (7.176)

where:

ṙ =
1

m
(p +mvg) . (7.177)

In the absence of a gravitomagnetic field Eq. (7.176) reduces to the Newtonian:

F = mr̈ = −mMG

r2
er. (7.178)

For a planar orbit it is well known that:

v = ṙ =
dr

dt
=

d

dt
(rer) = ṙer + rθ̇eθ (7.179)

in the absence of a gravitomagnetic field. The acceleration in the absence of a
gravitomagnetic field is:

a = r̈ =
dv

dt
=

d

dt

(
ṙer + rθ̇eθ

)
(7.180)

an expression which gives rise to the well known centrifugal and Coriolis forces.
So the gravitomagnetic force terms occur in addition to these well known
forces, and result in precession, whereas the centrifugal and Coriolis terms do
not result in a precessing orbit as is well known.

The gravitomagnetic field Ω is governed by the gravitational equivalent of
the Ampère Law [2]- [13]:

∇×Ω =
4πG

c2
Jg (7.181)

where Jg is the localized current density of mass, analogous to electric current
density in electrodynamics. The gravitomagnetic vacuum permeability is:

µ0g =
4πG

c2
(7.182)

and the gravitomagnetic four potential is:

Wµ
g = (φg, cWg) . (7.183)
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In UFT 328 it was shown that simultaneous solution of the hamiltonian and
lagrangian leads to orbital precession. The above analysis confirms that find-
ing.

It can be shown as follows that a new type of precessing ellipse emerges
from the hamiltonian (7.148), so this is the simplest way of describing any
precession. The precessing ellipse obtained in this way is a rigorous and ac-
curate description of the experimentally observed orbit because the observed
precession frequency is used in the equations. The calculated precessing ellipse
is similar in structure to:

r =
α

1 + ε cos(xθ)
(7.184)

but in this new theory x is no longer a constant. For a uniform gravitomagnetic
field the Lorentz force equation reduces to a precessional Binet equation. The
orbit calculated from the hamiltonian can be used in this precessional Binet
equation to give the force law. Later on in this chapter a description is given
with graphics of the methods used to produce the precessing orbit.

For a uniform gravitomagnetic field:

v2
g = Ω2r2 (7.185)

where Ω is the observed precessional frequency. As in the Notes for UFT 347
on www.aias.us the hamiltonian (7.148) may be developed as:

H =
1

2
m
(
v2 + v2

g

)
+ ΩL+ U(r) (7.186)

where L is the constant magnitude of the angular momentum:

L = r× p (7.187)

and where Ω is the observed precession frequency, considered to be a Larmor
precession frequency. Eqs. (7.185) and (7.186) give

H =
1

2
m
(
v2 + Ω2r2

)
+ ΩL+ U(r) (7.188)

where:

v2 =

(
dr

dt

)2

+ r2

(
dθ

dt

)2

. (7.189)

Therefore the hamiltonian is:

H =
1

2
m

((
dr

dt

)2

+ r2

(
dθ

dt

)2

+ Ω2

)
+ ΩL+ U(r) (7.190)

or:

H1 = H − ΩL =
1

2
m

((
dr

dt

)2

+ r2

(
dθ1

dt

)2
)

+ U(r) (7.191)
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where(
dθ1

dt

)2

=

(
dθ

dt

)2

+ Ω2. (7.192)

A hamiltonian of type (7.191) leads to a conic section orbit:

r =
α

1 + ε cos θ1
. (7.193)

Denote:

ω1 =
dθ1

dt
, ω =

dθ

dt
(7.194)

to find that:

ω2
1 = ω2 + Ω2. (7.195)

If

Ω� ω (7.196)

then to an excellent approximation:

dθ1

dt
=

(
1 +

1

2

(
Ω

ω

)2
)
dθ

dt
(7.197)

i. e.:

ω1 ∼ ω

(
1 +

1

2

(
Ω

ω

)2
)

(7.198)

so:

dθ1 =

(
1 +

1

2

(
Ω

ω

)2
)
dθ (7.199)

and

θ1 =

∫ (
1 +

1

2

(
Ω

ω

)2
)
dθ. (7.200)

In Eq. (7.200) ω is the angular frequency corresponding to the hamiltonian:

H0 =
p2

0

2m
+ U(r) (7.201)

and is defined by:

ω =
L0

mr2
. (7.202)
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In Eq. (7.202):

r =
α0

1 + ε0 cos θ
(7.203)

therefore:

1

ω2
=
m2r4

L2
0

=
m2α4

0

L2
0 (1 + ε0 cos θ)

4 (7.204)

and

θ1 =

∫ (
1 +

m2α4
0Ω2

2 (1 + ε0 cos θ)
4
L2

0

)
dθ. (7.205)

This integral is evaluated numerically later in this chapter. The orbit is:

r =
α

1 + ε cos θ1
(7.206)

and it is demonstrated numerically that this is a precessing orbit, Q. E. D.
Therefore the minimal prescription (7.141) is enough to produce a precess-

ing orbit.
In the x theory of previous UFT papers it was assumed that:

θ1 = xθ. (7.207)

In this more accurate theory it is seen that x depends on θ. The most accurate
theory of precession in ECE 2 is UFT 328, which is rigorously relativistic and
which solves the relativistic hamiltonian and lagrangian simultaneously. How-
ever UFT 328 uses a scatter plot method and does not give a known analytical
solution. The method described above gives an analytical solution in the non
relativistic limit. In the above theory the constant angular momenta are:

L = mr2 dθ1

dt
, L0 = mr2 dθ

dt
, (7.208)

the half right latitudes are:

α =
L2

m2MG
, α0 =

L2
0

m2MG
(7.209)

and the eccentricities are:

ε2 = 1 +
2H1L

2

m3M2G2
(7.210)

and

ε20 = 1 +
2HL2

0

m3M2G2
. (7.211)

In general:

θ1 = θ +
m2α4

0Ω2

2L2
0

∫
dθ

(1 + ε0 cos θ)
4 (7.212)
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and this integral can be valuated analytically as shown later in this chapter.
If it is assumed that:

θ1 = xθ (7.213)

then:

x = 1 +
1

2

(
mα2

0Ω

L0

)2 ∫
dθ

(1 + ε0 cos θ)
4 (7.214)

and the orbit can be put into the form of an orbit of x theory [2]- [13]:

r =
α

1 + ε cos(xθ)
. (7.215)

The orbit (7.206) is graphed later in this chapter and is shown to precess,
Q. E. D. It is generated by the orbital Lorentz force equation:

F = mr̈ = −mMG

r2
er +m

∂vg
∂t
−mṙ×Ω (7.216)

in which the canonical momentum is:

mṙ = p +mvg. (7.217)

In the absence of a gravitomagnetic vector potential vg Eq. (7.216) reduces to
the Leibniz force equation:

F = m
(
r̈ − rθ̇2

)
er = −mMG

r2
er (7.218)

in which:

r̈ =
dṙ

dt
=
dv

dt
. (7.219)

Therefore the Leibniz equation is:

r̈ − rθ̇2 = F (r) (7.220)

and can be transformed to the Binet equation:

d2

dθ2

(
1

r

)
+

1

r
= −mr

2

L2
F (r). (7.221)

The Leibniz equation gives the non precessing conic section:

r =
α

1 + ε cos θ
(7.222)

Eqs. (7.216) and (7.217) give:

F = mr̈ = m

(
dv

dt
+
dvg
dt

)
= −mMG

r2
er +m

∂vg
∂t
−mṙ×Ωg. (7.223)
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To develop this equation consider the Lagrange derivative:

dvX
dt

=
∂vX
∂t

+
∂X

∂t

∂vX
∂X

+ · · · (7.224)

then to first order:

dv

dt
=
∂v

∂t
+
(
Ṙ ·∇

)
v (7.225)

where

Ṙ =
∂X

∂t
i +

∂Y

∂t
j +

∂Z

∂t
k. (7.226)

It follows that:

dv

dt
− ∂v

∂t
=
(
Ṙ ·∇

)
v (7.227)

so Eq. (7.223) becomes:

F = m
dv

dt
= −mMG

r2
er −

(
Ṙ · v

)
vg −mṙ×Ωg

= m
(
R̈− rθ̇2

)
er.

(7.228)

Here:

R = Xi + Y j + Zk = Rer (7.229)

and

v =
dR

dt
= Ṙer +Rθ̇eθ = Ṙ (7.230)

and:

R̈ =
(
R̈−Rθ̇2

)
er (7.231)

for a planar orbit. Therefore the orbital Lorentz force equation becomes:

F = m
(
R̈−Rθ̇2

)
er = −mMG

r2
er −

(
Ṙ ·∇

)
vg −mṙ×Ω (7.232)

in which the canonical momentum is:

mṙ = m (v + vg) = m
(
Ṙ + vg

)
. (7.233)

The lagrangian corresponding to this general equation is developed in Note
348(3).

The hamiltonian (7.188) and the orbit (7.206) are based on the assumption
of a uniform gravitomagnetic field defined by:

Ω = ∇× vg (7.234)
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and:

vg =
1

2
Ω× r. (7.235)

As in Note 347(2):

v2
g =

1

4
Ω× r ·Ω× r =

1

4

(
Ω2r2 − (Ω · r) (Ω · r)

)
(7.236)

and if the gravitomagnetic field is perpendicular to the plane of the orbit:

v2
g =

1

4
|Ω|2 r2 = Ω2r2 (7.237)

which is Eq. (7.185). In general the lagrangian is:

L =
1

2m
(p +mvg) · (p +mvg)− (p +mvg) · vg − U(r) (7.238)

which can be written as:

L =
1

2
m
(
v2 − v2

g

)
− U(r). (7.239)

From Eqs. (7.237) and (7.239) the lagrangian becomes:

L =
1

2
m
(
ṙ2 + r2θ̇2 − Ω2r2

)
− U(r). (7.240)

The rotational Euler Lagrange equation is:

∂L

∂θ
= 0 =

d

dt

∂L

∂θ̇
(7.241)

in which the conserved angular momentum is:

L = mr2θ̇. (7.242)

The other Euler Lagrange equation is:

∂L

∂r
=

d

dt

∂L

∂ṙ
(7.243)

which gives the force equation:

F (r) = −∂U
∂r

= m
(
r̈ − r

(
θ̇2 − Ω2

))
(7.244)

in which:

U = −mMG

r
, F = −mMG

r2
. (7.245)

This is the Lorentz force equation of the precessing orbit (7.206), and as in
Note 348(5) can be transformed to the precessional Binet equation:

F (r) = − L2

mr2

(
d2

dθ2

(
1

r

)
+

1

r

)
−mΩ2r. (7.246)
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7.2 Numerical Analysis and Graphics

7.2.1 Vector Potential and Torque of a Dipole Field

A gravitomagnetic field in dipole approximation has already been analysed
numerically and graphed in chapter 4, section 4.2.1. A scalar potential was
used to construct a dipole field as described there. In this section we compute
the dipole field

Ωg = ∇×Wg (7.247)

directly from the gravitomagnetic vector potential according to

Wg =
G

c2r3
mg × r (7.248)

where mg is a gravitational dipole moment. For a given mg the vector potential
and gravitomagnetic field can be computed in three dimensions by computer
algebra. (The equations are quite complicated and not shown.) Positioning
the dipole in the Z direction:

mg =

0
0
1

 (7.249)

leads to a rotationally symmetric vector potential in the XY plane which
is graphed in Fig. 7.1. The lines of constant values are circles. There are
no Z components of Wg. This can be seen in the 3D vector plot of Fig.
7.2. The vector potential is a type of spherical vortex, being strongest in the
centre. The vector potential has units of a velocity vector whose vorticity is
the gravitomagnetic field. Therefore the arrows in Fig. 7.2 can be interpreted
as velocities directly, showing a hydrodynamical vortex.

An interesting question is what the torque

Tq = mg ×Ωg (7.250)

looks like. This has been graphed in Fig. 7.3. It has a shape similar to the
vector potential but with an essential difference: the torque is zero in the
equatorial plane Z = 0 because it changes sign from below to above and vice
versa. This can be seen when comparing the arrows in Fig. 7.3 with those of
Fig. 7.2. If a planet moves on a non-equatorial orbit around the centre, there
is a torque which takes both directions for one revolution cycle. If the orbit
is a circle, the effects will cancel out but there are changes of velocity of both
signs during one revolution.
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Figure 7.1: Dipole vector potential Wg in XY plane, only directional vectors
shown within lines of constant absolute value.

200



CHAPTER 7. PRECESSIONAL THEORY

Figure 7.2: 3D view of dipole vector potential Wg.

Figure 7.3: 3D view of dipole torque field Tq.

201



7.2. NUMERICAL ANALYSIS AND GRAPHICS

7.2.2 The Gravitomagnetic Field in Spherical Symmetry

The gravitomagnetic field is given by Eq. (7.92):

Ω =
G

c2r3
(mg − 3n (mg · n)) (7.251)

with gravitational dipole moment and angular momentum

mg =
1

2
L. (7.252)

It depends on space coordinates, X, Y , Z in a cartesian frame. In order to
get an impression on its behaviour in a spherical symmetry we transform it to
spherical coordinates (r, θ, φ), according to the transformation equations

X = r sin θ cosφ (7.253)

Y = r sin θ sinφ (7.254)

Z = r cos θ (7.255)

with radius r, polar angle θ and azimutal angle φ. Applying an analogous
transformation for the angular momentum, we obtain an expression for Ω(r, θ, φ).
Using the choice

L =

0
0
1

 (7.256)

(in arbitrary units) and restricting Ω to the XZ plane (φ = 0), we obtain
(with constants and radius set to unity):

Ω = 2

−3 cosθ sinθ
0

1− 3 cosθ2

 . (7.257)

The components of this vector have been graphed as a function of θ in Fig. 7.4.
The Y component vanishes as expected, the X and Z components are phase
shifted. At the equator (θ = π/2) and at the poles there is only a Z component.

The structure of the gravitomagnetic field in dipole approximation (7.251)
can further be demonstrated by computing two-dimensional hypersurfaces.
These will be shown for the cartesian components ΩX,Y,Z . First we have to
evaluate the full angular dependence in Eq. (7.251) which gives quite compli-
cated expressions. Then we define a constant value ΩX,Y,Z = Ω0 for each of
the components. This gives equations which can be resolved for the radial
coordinate r, defining a hypersurface in 3D. We choose L again to lie in the Z
axis as in Eq. (7.256). Then the equations for the hypersurfaces take the form

r = A1(cosφ cos θ sin θ)1/3 (7.258)

r = A1(sinφ cos θ sin θ)1/3 (7.259)

r = A2(2− 3(sin θ)2)1/3 (7.260)
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with constants A1 and A2. The first hypersurface (for the X component of
Ω) has been graphed in Fig. 7.5. The surface for the Y component looks
the same but is rotated by 90◦ around the Z axis. These have a shape of
atomic p orbitals. The Z component (Fig. 7.6) has a different form, being
reminiscent of an atomic d orbital. If the axis of angular momentum is rotated,
the hypersurfaces change to a form similar as (but not identical to) a rotated
ΩZ . As an example we have plotted ΩZ for an angular momentum

L =

1
0
1

 (7.261)

in Fig. 7.7. This effect will occur qualitatively in the solar system where the
sun’s rotation axis is tilted by about 7.25◦ from the axis of the earth’s orbit.

Figure 7.4: Components of Ω according to Eq. (7.257).
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Figure 7.5: Hypersurface of ΩX , identical to that of ΩY except a 90◦ rotation.

Figure 7.6: Hypersurface of ΩZ .
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Figure 7.7: Hypersurface of ΩZ for a tilted angular momentum L = [1, 0, 1].

7.2.3 Orbits of Thomas and de Sitter Precession

The orbits for Thomas and de Sitter precession will be analysed. The equations
(7.31) and (7.32) have to be solved simultaneously for r and t. Eq.(7.33) can
be used to obtain θ if the orbit r is known. For a Newtonian frame (r, θ1) in
which the ellipse is stationary, it is

θ1 = θ + ωθ t (7.262)

and the radius function is

r =
α1

1 + ε1 cos(xθ1)
(7.263)

where we have Thomas precession for x = 1 and de Sitter precession (with
additional rotation of the elliptic axes) for x 6= 1. Computation of the time
dependence of θ could be done by solving the integral in (7.32) either ana-
lytically or numerically, but we use a simpler method derived in UFT 238,
Eqs. (148/203):

t =
2α2

1m

xL1

atan
(

(2 ε1−2) sin(θ1 x)

2
√

1−ε12 (cos(θ1 x)+1)

)
√

1− ε12 (ε12 − 1)
(7.264)

− ε1 sin (θ1 x)

(cos (θ1 x) + 1)
(

(ε13−ε12−ε1+1) sin(θ1 x)2

(cos(θ1 x)+1)2
− ε13 − ε12 + ε1 + 1

)
 .
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We want to show how the ellipse rotates in a fixed frame with coordinates r, θ
and t. The time t relates to the motion in the Newtonian frame as well as to
the rotating frame. A complication is introduced by the fact that via (7.262)
the angle θ1 depends additionally on time, when considered from the fixed lab
frame. Consequently, θ1 is not an independent variable. An iterative solution
procedure has been designed as follows. We define a grid of one-dimensional
angular values θn etc. and compute the sequence

θn = θn−1 + ∆θ (7.265)

θ1,n = θn + ωθ tn−1 (7.266)

tn = t(θ1,n) (7.267)

rn = r(θ1,n) (7.268)

with a fixed increment ∆θ. This allows for a numerical evaluation of the func-
tions r(θ) and t(θ) which are graphed in Fig. 7.8 with numerical parameters
G = M = m = α1 = 1, L1 = 5, H = −0.5, ε1 = 0.3. We first study the
effect of ωθ. For a static ellipse we have ωθ = 0. The time function as well
as the radius function are scaled horizontally when switching to ωθ = 0.5.
The radius function is graphed in Fig. 7.9 as a polar diagram for both ωθ
values. There is a clear precession if ωθ > 0. The reverse precession occurs
if ωθ < 0 (not shown). This is an example for orbital or Thomas precession.
A de Sitter precession can be added by setting x 6= 1, for example x = 0.95
as done for Fig. 7.10. Now the original ellipse (for ωθ = 0) precesses. When
orbital precession is added (by ωθ > 0, see Fig. 7.10), the orbital precession
is compensated in part by the de Sitter precession. Both types of precession
can give an increase or decrease of total precession, depending on the sign of
ωθ and the condition x > 1 or x < 1.
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Figure 7.8: Orbit r(θ) and time t(θ) for a static ellipse (ωθ = 0) and Thomas
precession (ωθ > 0).

Figure 7.9: Polar plot of orbit r(θ) for a static ellipse (red) and Thomas
precession (blue).
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Figure 7.10: Polar plot of orbit r(θ), x = 0.95, for de Sitter precession (red)
and de Sitter plus Thomas precession (blue).

7.2.4 Lense Thirring and Geodetic Precession

Lense Thirring Effect

For the Lense Thirring effect the gravitomagnetic field in dipole approximation
is calculated from Eq. (7.71) which can be written

Ω =
2

5

MGR2

c2r3
ωx (7.269)

with the angular vectorial factor

x = ωn − 3n(ωn · n) (7.270)

containing the unit vector of angular momentum ωn. If ωn is perpendicular
to the radius unit vector n, it is

|x| = 1 (7.271)

while for ωn being parallel to n, we have

|x| = 2 (7.272)

so the modulus of x varies between 1 and 2. It is assumed that the experimental
value of Ω is an angular averaged value. We can determine this average value
as follows. For the special geometry of ω in direction of the Z axis and n in
the Y -Z plane, we have according to Eqs. (7.73-7.76):

x =

 0
−3 sin θ cos θ
1− 3 sin2 θ

 (7.273)

208



CHAPTER 7. PRECESSIONAL THEORY

and

x2 = 9 sin2 θ cos2 θ +
(
1− 3 sin2 θ)2

)2
(7.274)

= 4− 3 cos2θ.

The angular dependencies of x2 and x are graphed in Fig. 7.11, showing how
x varies between 1 and 2. In addition, the Y and Z component of the angular
vector x are shown. They are both crossing zero but at different angles θ,
therefore the modulus of x is always greater than unity.

Taking the average of x2:

〈
x2
〉

=
1

π/2

∫ π/2

0

(4− 3 cos2θ) dθ (7.275)

gives the result 5/2. Assuming〈
x2
〉

= 〈x〉2 (7.276)

then we obtain

〈x〉 =
√
〈x2〉 =

√
5

2
= 1.5811. (7.277)

Multiplying the theoretical result of Ω = 1.52 · 10−14 rad/s obtained from
Eq. (7.81) by this value gives

Ω = 2.40 · 10−14 rad/s (7.278)

and, using Eq. (7.82), a ratio

Ωtheory

Ωexp
= 1.91. (7.279)

This could correspond to an effective gravitomagnetic g factor of the Larmor
frequency:

g = 2 · 1.91 = 3.82. (7.280)

Another – perhaps more realistic – explanation of the deviation would be that
the momentum of inertia for the earth was calculated assuming a homogeneous
sphere, but the earth core has a much higher mass density than the earth
mantle so the angular momentum is smaller than that of a homogeneous sphere
of equal mass. The radius of the core and the average outer radius are

Rcore = 3.485 · 106m, (7.281)

Rearth = 6.371009 · 106m. (7.282)

About 35% of the earth mass is concentrated in the core, therefore the masses
of the core and the outer spherical shell (the earth mantle) are

Mcore = 0.35 · 5.97219 · 1024kg = 2.090 · 1024kg, (7.283)

Mmantle = 0.65 · 5.97219 · 1024kg = 3.882 · 1024kg. (7.284)
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The moments of inertia of earth core and mantle (a sphere and a spherical
shell) are

Icore =
2

5
McoreR

2
core = 1.015 · 1037kg m2, (7.285)

Imantle =
2

5
Mmantle

R5
earth −R5

core

R3
earth −R3

core

= 7.167 · 1037kg m2. (7.286)

The sum is smaller than the moment of inertia taken simply by the earth mass
and earth radius:

Iearth =
2

5
MearthR

2
earth = 9.696 · 1037kg m2 (7.287)

so that the ratio of both models is

Icore + Imantle

Iearth
= 0.8439 . (7.288)

So we have to multiply the results obtained for the gravitomagnetic field by
this value. From the second line in Table 7.1, where the results are listed, we
see that the minimal theoretical value (Lense-Thirring effect at the equator)
coincides very well with the experimental value within 1.6%.

Geodetic Precession

The same calculation for the angular average as above can be done for the
geodetic effect, described by Eq. (7.71) too. The angular factor is the same as
for the Lense Thirring effect so the angular average is identical to Eq. (7.277).
The theoretical value of geodetic precession (3.675 · 10−13 rad/s, Eq. (7.103))
here is lower than the experimental value (1.016 · 10−12 rad/s, Eq. (7.104)),
therefore applying the average x factor leads to

Ω = 5.811 · 10−13 rad/s (7.289)

which is nearer to, but still below the experimental value. The averaging
method has been repeated with a more general position of the angular mo-
mentum axis:

ω = ωX i + ωY j (7.290)

i.e. the position has been tilted from the X axis. The highest value of angular
average x is obtained for a 45 degree’s tilting (i.e. ωX = ωY ):

〈x〉 = 1.8587 (7.291)

corresponding to

Ω = 6.831 · 10−13 rad/s. (7.292)

Even for the maximum value x = 2 the result remains below the experimental
value. Translating x = 1.5811 into a geodetic gravitomagnetic g factor gives

g =
Ωtheory

Ωexp
= 1.49 (7.293)
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Theory min. Theory max. Theory av. Exp.
Lense-Thirring effect,
std. I 1.52 · 10−14 3.04 · 10−14 2.40 · 10−14 1.26 · 10−14

Lense-Thirring effect,
improved I 1.28 · 10−14 2.56 · 10−14 2.02 · 10−14

geodetic effect 3.677 · 10−13 7.354 · 10−13 5.811 · 10−13 1.016 · 10−12

geodetic effect,
modified ω 6.831 · 10−13

Table 7.1: Theoretical and experimental values of gravitomagnetic field in
units of rad/s. I is moment of inertia, see text.

and could be an explanation of the deviation. We conclude that all theoretical
results are close to the experimental findings. The numbers are comprehen-
sively listed in Table 7.1. A final assessment can only be done after all details
of the experiments have been understood.

Figure 7.11: Angular factors x and x2, and Y and Z components of vector x.

7.2.5 Precession from Orbital Lorentz Force

It was shown earlier in this chapter that a uniform gravitomagnetic field gives
precessional orbits. First we study the precession in terms of x theory, then we
investigate some alternative methods of integrating the gravitomagnetic field
into the lagrangian.
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Figure 7.12: Angular dependence of x factor.

The precession factor x, defined by Eq. (7.214), is not constant and de-
pendent on the angle θ. The integral can be solved analytically, yielding a lot
of terms, whose leading term is a periodic arcustangens function:

x = 1 +
A

θ

∫
dθ

(1 + ε0 cos θ)4
(7.294)

= 1 + a
A

θ
atan

(
(ε0 − 1) sinθ√

1− ε20 (cosθ + 1)

)
+ . . .

with constants A and a. This function x(θ) is graphed in Fig. 7.12. It scales
to be slightly larger than unity. The periodicity of 2π is visible but not exact
because (7.214) is an approximation. The factor of 1/2θ in (7.214) obviously
outperforms the integral. The orbit (7.215) is shown in Fig. 7.13 for x = 1 and
x(θ) given by Eq. (7.294). This results in a precessing ellipse as can clearly
be seen.

Some variants of the Lagrangian for the Lorentz force equation are inves-
tigated in the following. First we consider a direct method where Lagrangian
and Hamiltonian are given by

L = T − U (7.295)

H = T + U (7.296)

with kinetic energy T and potential energy U . Replacing p by the canonical
momentum

p = mv→ p +mvg (7.297)
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Figure 7.13: Elliptic orbitals for a = 0 and a = 0.05 (with precession).

then leads to

L1 =
1

2m
(p +mvg)

2 − U(r), (7.298)

H1 =
1

2m
(p +mvg)

2 + U(r). (7.299)

(See Eq. (7.235) for definition of vg.) In a more general case, however, we can
use the relation between Hamiltonian and Lagrangian known from Hamilton’s
equations. Then:

H =
∑
j

pj q̇j −L (7.300)

where qj are the generalized coordinates and pj the generalized momenta. In
our case we only have one generalized momentum (7.297) – in vector form –
which is obtained by the minimal prescription. Since q is the space position
vector r, its time derivative is the velocity v. Evaluating (7.300) has to give
the Hamiltonian (7.299). To achieve this result, the Lagrangian has to be
defined as

L2 =
1

2m
(p +mvg)

2 − (p +mvg)vg − U(r) (7.301)

so that we obtain again:

H2 = H1 =
1

2m
(p +mvg)

2 + U(r). (7.302)

For an example we will use plane polar coordinates (r, θ) in which the linear
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L vg L

L1 vg1
m
2

((
r θ̇ + rg θ̇

)2

+ (ṙg + ṙ)
2

)
− U(r)

vg2
m
2

((
r θ̇ + rg θ̇g

)2

+ (ṙg + ṙ)
2

)
− U(r)

L2 vg1
m
2

(
ṙ2 +

(
r2 − r2

g

)
θ̇2 − ṙ2

g

)
− U(r)

vg2
m
2

(
ṙ2 + r2θ̇2 − ṙ2

g − r2
g θ̇

2
g

)
− U(r)

Table 7.2: Lagrangians for different vg models.

velocity is given by

v =

[
ṙ

rθ̇

]
. (7.303)

For the extra velocity derived from the gravitomagnetic field we use two vari-
ants. First we use

vg1 =

[
ṙg
rg θ̇

]
(7.304)

where the angular coordinate is the same as for the orbit, i.e. the particle
m and velocity vg rotate in the same frame. In the second case we use a
completely independent vg with both coordinates independent from the orbital
motion:

vg2 =

[
ṙg
rg θ̇g

]
. (7.305)

The Lagrangians of all four combinations L1,2,vg1,2 are listed in Table 7.2.
For L1, mixed terms in r ·rg appear. This leads to corresponding combinations
in the constants of motion (angular momentum) shown in Table 7.3. These
have been calculated by the Lagrangian method, Eq. (7.241). A similar result
appears in the third line of Table 7.3. However in the fourth line the angular
momentum of a particle without precession appears. This astonishing result
means that the angular motion is not impacted by the precessional velocity
vg2. The reason is that in the Lagrangian the term θ̇2 appears without a
coupling factor to rg so this result is plausible. The Hamiltonians (Table 7.4)
are equal for L1 and L2 as expected. They only differ in the appearance of
θ̇g by the different definitions of vg1 and vg2.
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L vg L

L1 vg1 m(r + rg)
2 θ̇

vg2 mr (r θ̇ + rg θ̇g)

L2 vg1 m(r + rg)(r − rg) θ̇
vg2 mr2 θ̇

Table 7.3: Constants of motion L for different Lagrangians and vg models.

L vg H

L1 vg1
m
2

(
ṙ2 + r2θ̇2 + ṙ2

g + r2
g θ̇

2
)

+ U(r)

vg2
m
2

(
ṙ2 + r2θ̇2 + ṙ2

g + r2
g θ̇

2
g

)
+ U(r)

L2 vg1
m
2

(
ṙ2 + r2θ̇2 + ṙ2

g + r2
g θ̇

2
)

+ U(r)

vg2
m
2

(
ṙ2 + r2θ̇2 + ṙ2

g + r2
g θ̇

2
g

)
+ U(r)

Table 7.4: Hamiltonians H for different Lagrangians and vg models.
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Chapter 8

Triple Unification: Fluid
Electrodynamics

8.1 General Theory

The field equations of fluid dynamics, electrodynamics and gravitation can be
unified using ECE 2 theory, providing the opportunity for many fundamental
developments. Spacetime, (or the aether or vacuum) can be developed with the
concepts of fluid dynamics, and in theory can become turbulent. This turbu-
lence can be observed with the circuit of UFT 311 on www.aias.us. Concepts
can be transferred between one subject area and the other, for example Ohm’s
Law and the Lorentz force law have their equivalents in both fluid dynamics
and gravitation and are intrinsic parts of the geometrical structure of ECE 2.

In a development of work by Kambe [26]- [27] Note 349(1) gives the fol-
lowing ECE 2 equations of fluid dynamics:

∇ ·BF = 0 (8.1)

∇ ·EF = qF (8.2)

∇×EF +
∂BF
∂t

= 0 (8.3)

∇×BF −
1

a2
0

∂EF

∂t
= µ0FJF (8.4)

which are identical in structure with field equations of electrodynamics and
gravitation developed earlier in this book. All three sets of equations are based
on the same geometrical structure so this theory is a powerful unification of
fluid dynamical gravitational theory, classical dynamics and electrodynamics.
In Eq. (8.1), BF is the fluid magnetic flux density:

BF = ∇× v (8.5)

and also the vorticity, where v is the fluid velocity field [2]- [13]. The fluid
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electric field strength is:

EF = −∂v

∂t
−∇h (8.6)

where h is the enthalpy per unit mass in joules per kilogram. The four potential
of ECE 2 fluid dynamics is:

φµF =

(
h

a0
,v

)
(8.7)

where a0 is the speed of sound and the d’Alembertian of fluid dynamics is:

� =
1

a2
0

∂2

∂t2
−∇2. (8.8)

The fluid dynamical four potential is directly analogous with the four potential
of ECE 2 electrodynamics defined earlier in this book and in UFT 318 on www.

aias.us:

Wµ =

(
φW
c
,W

)
= W (0)ωµ (8.9)

where ωµ is the spin connection four vector. Kambe derives the Lorenz con-
dition of fluid dynamics:

∂µφ
µ
F = 0 (8.10)

where:

∂µ =

(
1

a0

∂

∂t
,∇
)
. (8.11)

In vector notation:

1

c2
∂φW
∂t

+ ∇ ·W = 0. (8.12)

In ECE 2 electrodynamics the Lorenz condition is:

∂µJ
µ =

∂ρ

∂t
+ ∇ · J = 0 (8.13)

where:

Jµ = (cρ,J) . (8.14)

In vector notation:

∂µφ
µ
F =

1

a2
0

∂h

∂t
+ ∇ · v = 0. (8.15)

The continuity equation of ECE 2 fluid dynamics is:

∂qF
∂t

+ ∇ · JF = 0 (8.16)
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where the charge and current densities of fluid dynamics are:

qF = ∇ · ((v ·∇) v) (8.17)

and

JF =
∂2v

∂t2
+ ∇∂h

∂t
+ a2

0∇× (∇× v) (8.18)

respectively. In direct analogy the continuity equation of ECE 2 electrody-
namics is:

∂µJ
µ =

∂ρ

∂t
+ ∇ · J = 0 (8.19)

where the electromagnetic charge current density is:

Jµ = (cρ,J) . (8.20)

It can be shown that transition to turbulence in fluid dynamics can be devel-
oped in terms of Ohm’s law of electrodynamics in the presence of a magnetic
flux density [28]:

J = σ (E + v ×B) (8.21)

where σ is the conductivity in units of C2J−1m−1s−1. In the non relativis-
tic limit the Lorentz force equation of ECE 2 electrodynamics was developed
earlier in this book and can be extended to force density as follows:

F0 = ρ (E + v ×B) (8.22)

where F0 is the force density. The force is:

F =

∫
F0 dV. (8.23)

Therefore:

F0 =
ρ

σ
J. (8.24)

With these definitions it can be shown that the structure of the ECE 2 field
equations of electromagnetism, developed earlier in this book and in UFT 317
and UFT 318 contain Ohm’s Law and the Lorentz force equation. This is an
important advance because the Maxwell Heaviside (MH) field equations do
not contain Ohm’s law nor do they contain the Lorentz force equation.

The complete ECE 2 field equations of electrodynamics are:

∇ ·B = κ ·B (8.25)

∇ ·E = κ ·E (8.26)

∂B

∂t
+ ∇×E = − (κ0cB + κ×E) (8.27)

∇×B− 1

c2
∂E

∂t
=
κ0

c
E + κ×B (8.28)

κ0 = 2
( q0

r(0)
− ω0

)
(8.29)

κ = 2

(
1

r(0)
q− ω

)
. (8.30)
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The spin connection four vector is:

ωµ = (ω0,ω) (8.31)

and the tetrad four vector is:

qµ = (q0,q) (8.32)

where r(0) has the units of metres. The charge current density is:

Jµ = (cρ,J) (8.33)

and the Aµ and Wµ four potentials are:

Aµ =

(
φ

c
,A

)
(8.34)

and:

Wµ =

(
φW
c
,W

)
. (8.35)

The field potential equations are:

E = −∇φW −
∂W

∂t
(8.36)

and:

B = ∇×W (8.37)

with:

φW = W (0)ω0 = cW0, W = W (0)ω. (8.38)

In general:

ρ = ε0κ ·E (8.39)

and:

J =
1

µ0

(κ0

c
E + κ×B

)
. (8.40)

It follows immediately that the Lorentz force density equation has a geomet-
rical structure:

F0 =
ρ

µ0σ

(κ0

c
E + κ×B

)
=

ρ

µ0σ

(
∇×B− 1

c2
∂E

∂t

)
. (8.41)

The MH field equations are:

∇ ·B = 0 (8.42)

∇ ·E =
ρ

ε0
(8.43)

∂B

∂t
+ ∇×E = 0 (8.44)

∇×B− 1

c2
∂E

∂t
= µ0J (8.45)
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and do not contain Ohm’s Law or the Lorentz force equation. The MH equa-
tions use zero torsion and curvature, which is incorrect geometry. The ECE 2
field equations are based on Cartan geometry [2]- [13] in which both torsion
and curvature are identically non zero.

In the presence of material polarization P and magnetization H:

D = ε0E + P, B = µ0 (H + M) (8.46)

where ε0 and µ0 are the permittivity and permeability in vacuo and where D
is the electric displacement and H the magnetic field strength, and the MH
equations become the homogeneous:

∇ ·B = 0 (8.47)

∇×E +
∂B

∂t
= 0 (8.48)

and the inhomogeneous:

∇ ·D = ρ (8.49)

∇×H− ∂D

∂t
= J. (8.50)

In ECE 2 electrodynamics the homogeneous field equations are (8.25) and
(8.27) and the inhomogeneous equations are:

∇ ·D = κ ·D (8.51)

∇×H− ∂D

∂t
=
κ0

c
D + κ×H = J. (8.52)

Therefore in presence of polarization and magnetization:

F0 =
ρ

σ

(κ0

c
D + κ×H

)
=
ρ

σ

(
∇×H− ∂D

∂t

)
. (8.53)

If it is assumed that magnetic charge/current density is zero, then:

κ ·B = 0 (8.54)

κ0cB + κ×E = 0. (8.55)

Eq. (8.55) implies Eq. (8.54) because from Eq. (8.55):

B = − 1

κ0c
κ×E (8.56)

and:

κ · κ×E = E · κ× κ = 0 (8.57)

giving Eq. (8.54). By definition:

B = ∇×W (8.58)
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and if there is no magnetic monopole (i. e. magnetic charge density):

κ ·∇×W = 0. (8.59)

Using the vector identity:

κ ·∇×W = W ·∇× κ−∇ · κ×W (8.60)

it follows that the absence of a magnetic monopole requires:

W ·∇× κ = ∇ · κ×W (8.61)

where:

W = W (0)ω (8.62)

and:

κ = 2

(
1

r(0)
q− ω

)
. (8.63)

The geometrical condition for the absence of a magnetic monopole is:

r(0)ω ·∇× ω = ω ·∇× q−∇ · q× ω. (8.64)

Now consider the Cartan identity in vector notation: (UFT 350, chapter three)
and earlier in this book:

∇ · ωab × qb = qb ·∇× ωac − ωab ·∇ · qb. (8.65)

The procedure of removing internal indices that produces ECE 2 theory leads
to:

∇ · ω × q = q ·∇× ω − ω ·∇× q. (8.66)

which is a well known vector identity. The derivation of this identity confirms
the procedures that lead to the ECE 2 field equations.

From Eqs (8.64) and (8.66), the geometrical condition for the absence of
magnetic charge density and magnetic current density is:

∇ · q× ω = r(0)ω ·∇× ω. (8.67)

This geometry is transformed into electromagnetism using the definitions:

A = A(0)q (8.68)

W = W (0)ω. (8.69)

For the absence of magnetic charge current density:

r(0)∇ ·A×W = W ·∇×W (8.70)

222



CHAPTER 8. TRIPLE UNIFICATION: FLUID ELECTRODYNAMICS

an equation which implies

∇ ·B = 0 (8.71)

which in turn implies the Beltrami structure:

∇×B = kB (8.72)

so:

∇× (∇×W) = k∇×W. (8.73)

If it is assumed that W is a Beltrami potential then:

∇×W = kW. (8.74)

and the condition for the absence of a magnetic monopole reduces to

∇ ·A×W =
k

r(0)
W ·W = x. (8.75)

The integral form of this equation is found from the divergence theorem:∫
V

∇ ·A×W dV =

∮
S

A×W · n dA =

∫
x dV. (8.76)

Later on in this chapter a numerical and graphical analysis of these results
is given, based on Section 3 of UFT 349 and using graphical analysis of flow.

Using these ideas the field equations of “fluid electrodynamics”, a new
subject area of physics, can be developed as follows. The Reynolds number
can be incorporated, allowing transition to turbulence. Electric power from
spacetime is a direct consequence of fluid electrodynamics. The Stokes and
convective derivatives of fluid electrodynamics are examples of the Cartan
covariant derivative, whose spin connection is a foundational property both of
fluid electrodynamics and of electrodynamics. Numerical solutions of the key
equations illustrate the fluid flows of spacetime (or aether or vacuum).

The main field equations of fluid dynamics can be established as follows.
The minimal prescription shows that the velocity v and ECE 2 vector potential
W of a single particle are related by:

v =
e

m
A (8.77)

where e and m are the charge and mass of the particle. For the continuum
fluid:

v =
ρ

ρm
A (8.78)

where ρ is the charge density and ρm is the mass density. The basic S. I. Units
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are as follows:

[E] = volt m−1 = JC−1m−1

[W] = JsC−1m−1

[φW ] = JC−1 = volt

[B] = JsC−1m−2 = tesla

[ρ] = Cm−3

[J] = Cm−2s−1

[ε0] = J−1C2m−1

[µ0] = Js2C−2m−1

(8.79)

The Kambe field equations of fluid dynamics are converted into the equations
of fluid electrodynamics as follows:

Kambe’s “fluid electric field” is:

EF = −∂v

∂t
−∇h = (v ·∇) v (8.80)

where the velocity field is the following function of Cartesian coordinates X,
Y , Z and time:

v = v (X(t), Y (t), Z(t), t) (8.81)

and where the following definition is used of enthalpy per unit mass h:

∇h =
1

ρm
∇P. (8.82)

Here P denotes pressure, defined in non standard units. In ECE 2 electrody-
namics, the electric field strength is:

E = −∇φW −
∂W

∂t
. (8.83)

From Eqs. (8.80) and (8.83);

W =
ρm
ρ

v (8.84)

and it follows that:

φW =
ρm
ρ
h (8.85)

in units of joules per coulomb.
Kambe’s “fluid magnetic field” is defined to be the vorticity:

BF = w = ∇× v (8.86)

and it follows that:

∇ ·BF = ∇ ·w = 0. (8.87)
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Kambe’s “fluid charge” and “fluid current” are respectively:

qF = ∇ ·EF = ∇ · ((v ·∇) v) (8.88)

and

JF =
∂2v

∂t2
+ ∇∂h

∂t
+ a2

0 ∇× (∇× v) . (8.89)

It follows that the charge density ρ and the current density J of fluid electro-
dynamics are:

ρ = ε0
ρm
ρ
qF (8.90)

and

J = ε0
ρm
ρ

JF . (8.91)

Therefore the Colomb Law of fluid electrodynamics is

∇ ·
(
ρ

ρm
E

)
=

ρ

ρm
∇ ·E + E ·∇

(
ρ

ρm

)
=

1

ε0

ρ2

ρm
(8.92)

and contains more information than the Coulomb law of electrodynamics. The
former reduces to the latter if:

∇ ·
(
ρ

ρm

)
= 0. (8.93)

The inhomogeneous field equation of Kambe is:

a2
0 ∇×BF −

∂EF

∂t
= JF (8.94)

where a0 is the constant speed of sound. It follows that the Ampère Maxwell
Law of fluid electrodynamics is:

a2
0 ∇×

(
ρ

ρm
B

)
− ∂

∂t

(
ρ

ρm
E

)
=

1

ε0

ρ

ρm
J (8.95)

in which:

∇×
(
ρ

ρm
B

)
=

ρ

ρm
∇×B +

(
∇ ρ

ρm

)
×B (8.96)

and:

∂

∂t

(
ρ

ρm
E

)
=

ρ

ρm

∂E

∂t
+ E

∂

∂t

(
ρ

ρm

)
. (8.97)

Eq. (8.95) becomes the Ampère Maxwell law of electrodynamics if:

∂

∂t

(
ρ

ρm

)
= 0, ∇

(
ρ

ρm

)
= 0, a0 → c (8.98)
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in which case:

∇×B− 1

c2
∂E

∂t
= µ0J. (8.99)

Eq. (8.95) can be written as:

∇×B− 1

a2
0

∂E

∂t
= µJ (8.100)

if

∂

∂t

(
ρ

ρm

)
= 0, ∇

(
ρ

ρm

)
= 0 (8.101)

where the fluid permeability is defined as:

µ =
1

ε0a2
0

. (8.102)

Using Eqs. (8.88), (8.90) and (8.94), the sound equation of fluid electrodynam-
ics is:

∂2

∂t2

(
ρ

ρm
E

)
+ a2

0 ∇×
(
∇×

(
ρ

ρm
E

))
= − 1

ε0

∂

∂t

(
ρ

ρm
J

)
(8.103)

and under conditions (8.93) and (8.98) this becomes:

∂2E

∂t2
+ a2

0 ∇× (∇×E) = − 1

ε0

∂J

∂t
. (8.104)

In conventional electrodynamics the vacuum is defined by:

ρ = 0, J = 0 (8.105)

but in fluid electrodynamics the vacuum is a richly structured fluid that can
create electric and magnetic fields in a circuit as in the Ide circuit of UFT 311.

Therefore to translate the Kambe equations into fluid electrodynamics use:

v =

(
ρ

ρm

)
W (8.106)

h =

(
ρ

ρm

)
φW (8.107)

BF =

(
ρ

ρm

)
B (8.108)

EF =

(
ρ

ρm

)
E (8.109)

qF =
1

ε0

ρ2

ρm
. (8.110)
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The S. I. Units of the quantities used by Kambe are:

qF = s−2, EF = ms−2, JF = ms−3, BF = s−1. (8.111)

The continuity equation of fluid electrodynamics is:

∂ρm
∂t

+ ∇ · Jm = 0 (8.112)

where ρm is mass density and Jm the current of mass density defined by:

Jm = ρm · v. (8.113)

Therefore:

∂ρm
∂t

+ ρm∇ · v + v ·∇ρm = 0. (8.114)

Kambe transforms Eq. (8.112) into:

∂qF
∂t

+ ∇ · JF = 0. (8.115)

The continuity equation of ECE electrodynamics is:

∂ρ

∂t
+ ∇ · J = 0 (8.116)

where ρ is electric charge density and J is electric current density. It follows
that the charge density of fluid electrodynamics is:

ρ = ε0
ρm
ρ
qF (8.117)

and is a property of the velocity field of the fluid being considered. This can
be matter or the vacuum, depending on context.

The continuity equation in fluid dynamics is the conservation of matter,
which can be neither created nor destroyed in a conservative, classical sys-
tem. The other fundamental equations of fluid dynamics are conservation of
fluid linear momentum (the Euler and Navier Stokes equations); conservation
of fluid energy; and conservation of fluid angular momentum (the vorticity
equation). The Euler equation given by Kambe is:

Dv

Dt
=
∂v

∂t
+ (v ·∇) v =

1

ρ
∇P (8.118)

and can be developed into the Navier Stokes equation by adding terms on the
right hand side. The convective derivative is defined by:

Dv

Dt
=
∂v

∂t
+ (v ·∇) v (8.119)

and the Stokes derivative is:

Dρ

∂t
=
∂ρ

∂t
+ v ·∇ρ. (8.120)
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Conservation of fluid energy is defined by Kambe through conservation of
entropy per unit mass:

DS

Dt
=
∂S

∂t
+ v ·∇S. (8.121)

Conservation of fluid angular momentum is expressed by Kambe as the vor-
ticity equation:

∂w

∂t
+ ∇× (w × v) = 0. (8.122)

More generally Eq. (8.122) is developed as in Note 351(1) on www.aias.us for
the Reynolds number R:

∂w

∂t
+ ∇× (w × v) =

1

R
∇2w. (8.123)

The Reynolds number produces turbulence and shearing. In general the
Kambe equations apply to compressible fluids with finite viscosity. In inviscid
fluids:

∇ · v = 0. (8.124)

The Kambe field equations are the result of rearranging these fundamental
conservation equations. The rearrangement results in field equations whose
structure is shown in this chapter to be that of Cartan geometry itself. This
is the same structure as the ECE 2 electrodynamics and gravitation. This is
referred to as “triple unification”. The Stokes derivative is:

Dρ

Dt
=
∂ρ

∂t
+ ∇ρ · v =

∂ρ

∂t
+

∂ρ

∂X

dX

dt
+
∂ρ

∂Y

dY

dt
+
∂ρ

∂Z

dZ

dt
(8.125)

where the fluid mass density is the function:

ρ = ρ (X(t), Y (t), Z(t), t) . (8.126)

The covariant derivative of Cartan geometry is:

DV a

Dxµ
=
∂V a

∂xµ
+ ωaµbV

b (8.127)

where the general vector field V a is defined in a tangent space at point P of
the base manifold. The general spin connection is ωaµb . Define the four vector:

V µ = (cρ,vρ) (8.128)

and consider the indices:

µ = 0, a = 0. (8.129)

It follows that:

Dρ

Dt
=
∂ρ

∂t
+ ω0

01ρ
dX

dt
+ ω0

02ρ
dY

dt
+ ω0

03ρ
dZ

dt
. (8.130)
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This is the Stokes derivative, Q. E. D., provided that:

ω0
01ρ =

∂ρ

∂X
, ω0

02ρ =
∂ρ

∂Y
, ω0

03ρ =
∂ρ

∂Z
(8.131)

i. e.

∇ρ = ωρ (8.132)

where the spin connection vector is:

ω = ω0
01i + ω0

02j + ω0
03k. (8.133)

Similarly the convective or material derivative is:

Dv

Dt
=
∂v

∂t
+ (v ·∇) v (8.134)

where the fluid velocity field is:

v = v (X(t), Y (t), Z(t), t) . (8.135)

The convective derivative is therefore:

Dv

Dt
=
∂v

∂t
+

(
vX

∂

∂X
+ vY

∂

∂Y
+ vZ

∂

∂Z

)
v. (8.136)

The X component for example is:

DvX
Dt

=
∂vX
∂t

+ vX
∂vX
∂t

+ vY
∂vX
∂Y

+ vZ
∂vX
∂Z

=
∂vX
∂t

+ v ·∇ vX . (8.137)

Considering the index:

µ = 0 (8.138)

in Eq. (8.127) implies that:

ω1
01 =

∂vX
∂X

, ω1
02 =

∂vX
∂Y

, ω1
03 =

∂vX
∂Z

(8.139)

and in general the spin connection of the convective derivative is:

ωa0b =
∂va

∂xb
(8.140)

Q. E. D. So all the equations of fluid dynamics originate in the spin connection
of Cartan geometry, which also describes the field equations of fluid dynamics.

Kambe’s “fluid magnetic field” is the vorticity:

BF = w = ∇× v (8.141)

so:

∇ ·BF = ∇ ·w = 0. (8.142)
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The homogeneous field equation of Kambe is:

∇×EF +
∂BF

∂t
= 0 (8.143)

where:

BF = w (8.144)

and the vorticity equation used by Kambe is:

∂w

∂t
+ ∇× (w × v) = 0. (8.145)

Therefore Kambe’s convective derivative is:

Dv

Dt
=
∂v

∂t
+ EF . (8.146)

From Eqs. (8.143) and (8.145),

EF = v ×w = (v ·∇) v. (8.147)

In the particular case of Beltrami flow:

∇× v = kv (8.148)

and:

(v ·∇) v = 0. (8.149)

For a general flow, Eq. (8.147) must be solved numerically for v:

v × (∇× v) = (v ·∇) v. (8.150)

The Reynolds number R responsible for turbulent flow enters into the analysis
using:

∂w

∂t
+ ∇× (w × v) =

1

R
∇2w (8.151)

so:

∇×EF =
1

R
∇2w −∇× (w × v) . (8.152)

Now use:

∇× (∇×w) = ∇ (∇ ·w)−∇2w (8.153)

and

∇ ·w = 0 (8.154)
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to find that:

∇2w = −∇× (∇×w) . (8.155)

It follows from Eqs. (8.152) and (8.155) that:

EF = (v ·∇) v = v ×w − 1

R
∇×w. (8.156)

Therefore transition to turbulence is governed in general using:

∇×w = −R ((v ·∇) v − v ×w) . (8.157)

Turbulence in Beltrami flow is defined by:

∇×w = −R (v ·∇) v. (8.158)

Here:

∇×w = ∇× (∇× v) = v (∇ · v)−∇2v (8.159)

so from Eqs. (8.158) and (8.159) turbulence in Beltrami flow is governed by:

∇2v = R (v ·∇) v + ∇ (∇ · v) (8.160)

which can be solved numerically.
Examples of numerical solutions from flow algorithms are given later in

this chapter.
The Kambe equations can be developed to include the viscous force and

other terms in the most general Navier Stokes and vorticity equations. The
general Navier Stokes equation is:

Dv

Dt
=
∂v

∂t
+ (v ·∇) v = −∇h−∇φ+ fvisc (8.161)

where fvisc is the viscous force and φ is a potential such as the gravitational
potential. Kambe used the equation:

Dv

Dt
=
∂v

∂t
+ (v ·∇) v = −∇h (8.162)

so omitted two terms. The more general definition of Kambe’s “fluid electric
field” is:

EF = −∇h−∇φ+ fvisc −
∂v

∂t
. (8.163)

The viscous force is defined most generally [2]- [13] by:

fvisc = µ∇2v + (µ+ µ′)∇ (∇ · v) (8.164)

and it follows that:

Φ = h+ φ− (µ+ µ′)∇ · v − φ1 (8.165)
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where µ and µ′ are coefficients to be determined. Here:

EF = −∇Φ− ∂v

∂t
(8.166)

∇φ1 = µ∇2v. (8.167)

With this definition of the scalar potential Φ, the Kambe field equations follow:

∇ ·BF = ∇ ·w = ∇ ·∇× v = 0 (8.168)

∇×EF +
∂BF

∂t
= 0 (8.169)

∇ ·EF = qF (8.170)

a2
0 ∇×BF −

∂EF

∂t
= JF . (8.171)

It has been shown that the most general form of fluid dynamics can be ex-
pressed as ECE 2 covariant field equations, Q. E. D. Here a0 is the assumed
constant speed of sound as used by Kambe. In general a0 is not constant.

The most general vorticity equation is:

∂w

∂t
+ ∇× (∇×w) =

1

ρ2
∇ρ×∇P +

µ

ρ
∇2w. (8.172)

Kambe omitted the second and third terms on the right hand side of Eq. (8.172),
the baroclinic and Reynolds number terms.

In the field equations (8.168) to (8.171) the fluid charge is defined by:

qF = ∇ ·EF = ∇ · ((v ·∇) v) (8.173)

and the fluid current by:

JF = a2
0 ∇× (∇× v)− ∂

∂t
((v ·∇) v) . (8.174)

As in Note 353(5) it follows that:

∇2Φ +
∂

∂t
(∇ · v) = −qF (8.175)

and:

�v + ∇
(
∇ · v +

1

a2
0

∂Φ

∂t

)
=

1

a2
0

JF (8.176)

where the d’Alembertian operator is defined by:

� :=
1

a2
0

∂2

∂t2
−∇2. (8.177)

These equations can be simplified using the continuity equation:

∂qF
∂t

+ ∇ · JF = 0. (8.178)
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As shown in detail in Note 353(6), this is an exact consequence of the defini-
tions (8.173) and (8.174). With the definitions:

JµF = (a0qF ,JF ) (8.179)

∂µ =

(
1

a0

∂

∂t
,∇
)

(8.180)

and (8.178), the continuity equation can be written as:

∂µJ
µ
F = 0. (8.181)

Now define the velocity four vector:

vµ =

(
Φ

a0
,v

)
(8.182)

and assume:

∂µv
µ =

1

a2
0

∂Φ

∂t
+ ∇ · v = 0. (8.183)

This is the Lorenz gauge assumption of fluid electrodynamics. With the as-
sumption (8.183), Eqs. (8.175) and (8.176) reduce to:

�Φ = qF (8.184)

and:

�v =
1

a2
0

JF (8.185)

which can be combined in to the single wave equation:

� vµ =
1

a2
0

JµF (8.186)

Q. E. D.
The relevant S. I. Units are as follows:

� = m−2, Φ = m2s−2, qF = s−2, JF = ms−3, a0 = ms−1. (8.187)

From Eqs. (8.178), (8.184) and (8.185):

1

a2
0

∂

∂t
(�Φ) + ∇ ·�v = 0 (8.188)

and by commutativity of differential operators:

�

(
1

a2
0

∂Φ

∂t
+ ∇ · v

)
= 0. (8.189)

The Lorenz condition (8.183) is a possible solution of Eq. (8.189), Q. E. D. So
the analysis is rigorously self consistent. It has been shown that the entire
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subject of fluid dynamics can be reduced to a single wave equation, which like
all wave equations of physics, is an example of the ECE wave equation

(� +R) vµ = 0 (8.190)

of Cartan geometry [2]- [13], provided that the scalar curvature is defined by:

Rvµ := − 1

a2
0

JµF . (8.191)

Later in this chapter these results are analysed with graphics and anima-
tions, using advanced flow dynamics algorithms. The animations are archived
on www.aias.us.

Using these results, simple equations can be developed to describe the
transfer of energy and power from a fluid vacuum or aether or spacetime to
a circuit. The process rigorously conserves total energy momentum and total
charge current density.

The electric field (EF ) of ECE 2 fluid dynamics is defined by the Kambe
equation:

∇ ·EF (circuit) = qF (spacetime) (8.192)

where the Kambe charge is:

qF (spacetime) = ∇ · ((v ·∇) v) (8.193)

so:

EF (circuit) = (v ·∇) v. (8.194)

The electric field strength in volts per metre induced in the circuit is:

E(circuit) =

(
ρm
ρ

)
(circuit) EF (circuit) (8.195)

in the notation of this chapter. Not carefully that the ratio of mass density to
charge density is that in the circuit, while v is the velocity field of the fluid
vacuum. So E of the circuit is calculated directly from v of the vacuum (or
spacetime or aether). The latter is computed numerically from the vacuum
vorticity equation:

Dv

Dt
=
∂v

∂t
+ (v ·∇) v =

1

2
∇v2 − 1

R

(
∇ (∇ · v) +∇2v

)
(8.196)

where R is the vacuum Reynolds number. The boundary conditions of Eq.
(8.196) are determined by the design of the circuit in contact with the ubiqui-
tous vacuum.

Having found v from Eq. (8.196) the Kambe current of the fluid vacuum
can be found from:

JF = a2
0 ∇× (∇× v)− ∂

∂t
((v ·∇) v) . (8.197)
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The Kambe magnetic field induced in the circuit by the fluid vacuum is:

BF = w = ∇× v (8.198)

so the magnetic field strength in tesla induced in the circuit by the vacuum is:

B(circuit) =
ρm
ρ

(circuit)∇× v. (8.199)

Eqs. (8.195) and (8.199) are simple expressions for E and B induced in a circuit
such as that of UFT 311 on www.aias.us. Conversely, E and B of any circuit
produce patterns of flow in the vacuum. The great advantage of this method
is its simplicity, and the fact that knowledge is required only of ρm/ρ in the
circuit. The electric field strength in volts per metre induced in the circuit can
be expressed as:

E(circuit) =

(
ρm
ρ

)
(circuit) ((v ·∇) v) (spacetime)

=

(
ρm
ρ

)
(circuit)

(
−∇Φ− ∂v

∂t

)
(spacetime)

(8.200)

where Φ is the general potential of fluid dynamics defined earlier in this chap-
ter. Using the spacetime Lorenz condition defined earlier in this chapter:

1

a2
0

∂Φ

∂t
+ ∇ · v = 0 (8.201)

the potential can be defined by:

Φ = −a2
0

∫
∇ · v dt. (8.202)

As in Note 355(5) on www.aias.us it can be used to define a simplified Navier
Stokes equation:

Dv

Dt
=
∂v

∂t
+ (v ·∇) v = a2

0 ∇
(∫

∇ · v dt
)

(8.203)

from which v may be computed numerically. Eq. (8.203) may be more ame-
nable to numerical solution than:

∂v

∂t
= v × (∇× v)− 1

R
∇× (∇× v) . (8.204)

As in Note 355(2) the Lorenz condition (8.201) corresponds to the wave
equation of fluid electrodynamics:

�Wµ(circuit) = µ0J
µ(spacetime) (8.205)

where:

Wµ(circuit) =

(
φW
c
,W

)
(circuit). (8.206)
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The four current of fluid spacetime is defined by:

JµF (spacetime) = (a0qF ,JF ) . (8.207)

Defining the velocity four vector:

vµ =

(
Φ0

a0
,v

)
. (8.208)

it follows that:

� vµ(circuit) =
1

a2
0

JµF (spacetime). (8.209)

This equation is equivalent to:

�Φ(circuit) = qF (spacetime) (8.210)

�v(circuit) =
1

a2
0

JF (spacetime) (8.211)

and to:

�Wµ(circuit) =
1

c2

(
ρm
ρ

)
(circuit) JµF (spacetime). (8.212)

It follows that the wave equation defining transfer of energy/momentum from
spacetime is:

�Wµ(circuit) =
(a0

c

)2
(
ρm
ρ

)
(circuit)� vµ(circuit). (8.213)

The converse of this theory shows that material or circuit potentials and
electric and magnetic fields induce a rich structure in the fluid vacuum.

Consider the velocity field vF of any fluid. The fluid magnetic and electric
fields are defined by:

BF = wF = ∇× vF (8.214)

and:

EF = (vF ·∇) vF . (8.215)

The fluid velocity field itself is the fluid vector potential:

WF = vF . (8.216)

Define:

x =

(
ρm
ρ

)
(material) (8.217)
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in the notation of this chapter. It follows that the vector potential W, the
electric field strength E and the magnetic flux density B of a material or circuit
in contact with the vacuum are:

W = xWF , E = xEF , B = xBF . (8.218)

For example consider a static electric field strength in volts per metre in a
spherical polar coordinate system:

E = − e

4πε0r2
er = x (vF ·∇) vF (8.219)

where −e is the charge on the electron, er is the radial unit vector, r the
distance between two charges and ε0 the S. I. permittivity in vacuo. Eq. (8.219)
is a non-linear partial differential equation in the velocity field vF . For a static
electric field strength in volts per metre of a material or circuit:

Er = − e

4πε0r2
= x (vF ·∇) vrF (8.220)

Eφ = 0 = x (vF ·∇) vφF (8.221)

Eθ = 0 = x (vF ·∇) vθF (8.222)

and may be solved using Maxima to give:

vrF =

(
− er

3

ε0x
− 12πC

x

)1/2

(6π)
1/2

r2
(8.223)

where C is a constant of integration. This solution is graphed later in this
chapter. The same type of solution applies to a gravitational field:

g = −MG

r2
er (8.224)

and the subject of fluid gravitation emerges. It is developed in chapter nine.
In Cartesian coordinates:

E = − e

4πε0Z2
k = x (vF ·∇) vF (8.225)

for a static electric field aligned in the Z axis. The system to be solved is:

EZ = x

(
vFX

∂

∂X
+ vFY

∂

∂Y
+ vFZ

∂

∂Z

)
vFZ = − e

4πε0Z2
(8.226)

EY = x

(
vFX

∂

∂X
+ vFY

∂

∂Y
+ vFZ

∂

∂Z

)
vFY = 0 (8.227)

EZ = x

(
vFX

∂

∂X
+ vFY

∂

∂Y
+ vFZ

∂

∂Z

)
vFZ = 0 (8.228)

which is comprised of three linear differential equations in three unknowns,
and can be solved given a set of boundary conditions.
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The above equations are augmented by Eq. (8.218), which calculates the
vacuum velocity field directly from the material’s W potential. Knowing vF ,
the electric and magnetic fields of the vacuum can be calculated without the
need to solve differential equations. The BF and EF of the vacuum induce
material electric and magnetic properties as follows:

E = xEF , B = xBF (8.229)

and this is energy from spacetime (ES) currently the subject of a House of
Lords Committee on new sources of energy. Various types of vector potential
are listed in Note 356(7), and each type can be used to compute vacuum
properties as reported late in this chapter.

Having computed vF induced in the vacuum, the following vacuum prop-
erties can also be computed.

1) The induced vacuum acceleration field:

aF =
∂vF
∂t

+ (vF ·∇) vF (8.230)

where:

(vF ·∇) vF =
1

2
∇v2

F − vF × (∇× vF ) . (8.231)

2) The induced electric charge of the fluid vacuum:

qF = ∇ ·EF . (8.232)

3) The induced electric current of the fluid vacuum:

JF = a2
0 ∇× (∇× vF )− ∂EF

∂t
. (8.233)

4) The induced scalar potential ΦF using the vacuum Lorenz condition:

∂ΦF
∂t

+ a2
0 ∇ · vF = 0. (8.234)

5) The induced magnetic field of the fluid vacuum:

BF = wF = ∇× vF . (8.235)

6) The induced electric field of the fluid vacuum:

EF = (vF ·∇) vF =
1

2
∇v2

F − vF × (∇× vF )

= −∇ΦF −
∂vF
∂t

.

(8.236)

7) The induced vacuum scalar potential from the vacuum wave equation:

�ΦF = qF . (8.237)
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8) The induced vacuum current JF using:

�vF =
1

a2
0

JF . (8.238)

9) The induced enthalpy gradient of the vacuum:

∇hF =
1

ρF
∇PF = −∂vF

∂t
−EF . (8.239)

10) The induced baroclinic torque of the vacuum:

1

ρ2
F

∇ρF ×∇PF =
∂wF
∂t

+ ∇× (WF × vF )− 1

RF
∇2wF (8.240)

where RF is the vacuum Reynolds number.

11) The induced vacuum Reynolds number for vanishing baroclinic torque:

∂wF

∂t
+ ∇× (wF × vF ) =

1

RF
∇2wF . (8.241)

Later on in this chapter these quantities are computed and graphed.
Finally in this chapter it is shown that fluid electrodynamics gives an ex-

planation to any precision of the well known radiative corrections, exemplified
by the anomalous g factor of the electron and the Lamb shift. The former is
due to the vacuum vorticity induced by a material flux density in tesla, and
the latter by the existence of the vacuum potential.

Consider the well known Dirac hamiltonian defined by the interaction of a
magnetic flux density B and and an electron of charge modulus e and mass
m:

H = − e

2m
(L + 2S) ·B. (8.242)

Here L is the orbital angular momentum and S is the spin angular momentum
of the electron. The factor of two that premultiplies S is the g factor of the
Dirac electron. However the experimental g factor to nine decimal places is:

g = 2.002319314. (8.243)

The experimental result (8.243) has long been considered to be due to the
vacuum, a radiative correction. It is a well established proof of energy from
spacetime (or vacuum or aether). The explanation of the anomalous g of the
electron rests on the existence of the vacuum potential W(vac) induced by the
material magnetic flux density. In ECE 2 fluid electrodynamics:

w =
1

2
B× r (8.244)

where v(vac) is the velocity field induced in the vacuum by B. The induced
vacuum potential in turn induces a potential:

W1 =
m

e
v(vac) (8.245)
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in the electron. So the relevant minimal prescription is:

p→ p− eW −mW1 = p− e (W + W2) . (8.246)

Assume that:

W2 = xW (8.247)

then as shown in Note 357(2) the interaction hamiltonian (8.242) is changed
to:

H1 = − e

2m
((1 + x) (2S ·B) + L) (8.248)

giving the anomalous g factor of the electron:

g = 2 (1 + x) . (8.249)

Therefore to nine decimal places:

x = 0.002319314. (8.250)

The additional magnetic flux density induced in the electron by fluid spacetime
is:

B1 =
m

e
∇× v(vac) = xB (8.251)

where the spacetime vorticity is:

w(vac) = ∇× v(vac). (8.252)

Finally assume that:

B = BZk (8.253)

to find that:

x =
m

e

wZ(vac)

BZ
= 0.002319314. (8.254)

For a magnetic flux density of one tesla the vacuum vorticity needed to produce
the observed g factor of the electron is:

wZ(vac) = −4.07923× 108 s−1. (8.255)

In general:

wZ(vac) = 0.002319314
e

m
BZ (8.256)

which is the equation defining the vacuum vorticity induced by a static mag-
netic flux density.
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In the Dirac theory of Note (357(3)) the following energy levels of the H
atom are degenerate:

2S1/2 (n = 2, l = 0, j = 1/2) (8.257)

2P1/2 (n = 2, l = 1, j = 1/2) . (8.258)

However it is observed experimentally that 2S1/2 is higher in frequency by:

ω = 6.64675× 109 rad s−1. (8.259)

This is known as the Lamb shift, also a radiative correction that indicates
directly that energy is transferred from the vacuum to the H atom. It was first
explained by Bethe using a fluctuating Coulomb potential:

U = U (r + δr) (8.260)

so:

∆U = U (r + δr)− U(r). (8.261)

For the 2S1/2 orbital of the H atom:

〈∆U〉 =
1

6

〈
(δr)

2
〉 〈
∇2U

〉
=

1

6

〈
(δr)

2
〉∫

ψ∗∇2

(
−e2

4πε0r

)
ψ dτ

=
e2

48πε0r3
B

〈
(δr)

2
〉 (8.262)

where rB is the Bohr radius. Therefore the additional potential energy induced
in the 2S1/2 orbital by the vacuum is:

UW = eΦW = mΦ =
e2

48πε0r3
B

〈
(δr)

2
〉
. (8.263)

In fluid electrodynamics this additional energy is explained by the scalar
potential Φ of the fluid vacuum. This induces the potential energy:

ΦW =
m

e
Φ (8.264)

in the 2S1/2 orbital of the H atom in such a way that:

UW = eΦW = mΦ. (8.265)

The vacuum potential needed to explain the Lamb shift is:

Φ =
e2

48πε0mr3
B

〈
(δr)

2
〉

(8.266)
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and is non zero if the expectation value of ∇2U is non zero. It is non zero in
the 2S1/2 orbital of the H atom, but zero in the 2P1/2 orbital of the H atom.
The potential energy may be expressed as:

UW = mΦ = ~ω. (8.267)

so can be calculated from the observed Lamb shift. It is:

Φ = 7.6947924× 105 m2s−2 (8.268)

and from this value, the Bethe radius is:(〈
∆r2

〉)1/2
= 7.35× 10−14 m. (8.269)

The free electron radius is

re = 2.8× 10−15 m (8.270)

and the Bohr radius is:

rB = 5.29× 10−11 m. (8.271)

Fluid electrodynamics is therefore much simpler and more powerful than
quantum electrodynamics.

8.2 Technical Appendix: Scheme for Compu-
tation and Animation

This appendix is based on UFT 352, and describes a scheme for the compu-
tation and animation of the electric field strength and magnetic flux density
induced in a circuit by the vacuum. The scheme starts with the vorticity equa-
tion of fluid dynamics, in which the Reynolds number appears. All relevant
quantities are computed and animated in terms of the velocity field of the vac-
uum, which becomes turbulent at a given Reynolds number. The animations
are archived on www.aias.us.

The first step is to calculate and animate the vacuum velocity field from
the simplified vorticity equation:

∂v

∂t
+ w × v = − 1

R
∇×w (8.272)

where the vorticity is:

w = ∇× v (8.273)

Subsequent steps compute the vacuum current:

JF = − ∂

∂t
((v ·∇) v) + a2

0 ∇× (∇× v) (8.274)
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and vacuum electric field:

EF = (v ·∇) v. (8.275)

The vacuum charge density and current density are then calculated using:

ρ(vac) = ε0
ρm
ρ
qF (8.276)

J(vac) = ε0
ρm
ρ

JF (8.277)

and these induce the electric field strength E in volts per meter and the mag-
netic flux density B in tesla using:

∇ ·
((

ρ

ρm

)
circuit

E

)
=

1

ε0

ρ2

ρm
(vacuum) (8.278)

and

a2
0 ∇×

((
ρ

ρm

)
circuit

B

)
− ∂

∂t

((
ρ

ρm

)
circuit

E

)
=

1

ε0

(
ρ

ρm
J

)
(vacuum).

(8.279)

The four potential in the circuit can be computed from

�Wµ(circuit) = µ0J
µ(vacuum). (8.280)

The results of this appendix are discussed later in this chapter.

8.3 Numerical Analysis and Graphics

8.3.1 Examples of Kambe Fields

Dynamic Charge Distribution

We investigate the dynamic charge density q derived from the velocity field v
by Kambe (Eq. 8.17):

q = ∇ · (v ·∇) v. (8.281)

For an incompressible fluid it is required that the velocity field is divergence-
free:

∇ · v = 0. (8.282)

We will inspect some velocity models by specifying v analytically. We use plane
polar coordinates that are identical with cylindrical coordinates with Z =
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0. Therefore we can use the differential operators of cylindrical coordinates
(r, θ, Z). Then we have

∇ψ =

 ∂ψ
∂r

1
r
∂ψ
∂θ
∂ψ
∂Z

 (8.283)

and

∇ · v =
1

r

∂(r vr)

∂r
+

1

r

∂vθ
∂θ

+
∂vZ
∂Z

, (8.284)

∇× v =

 1
r
∂vZ
∂θ −

∂vθ
∂Z

∂vr
∂Z −

∂vZ
∂r

1
r
∂(r vθ)
∂r − 1

r
∂vr
∂θ

 (8.285)

for a scalar function ψ and vector v.
A first simple case is

v1 =

arb
0

 (8.286)

with constants a and b from which follows

∇ · v1 = 0 (8.287)

and

(v1 ·∇) v1 =

−a2r30
0

 , (8.288)

∇× v1 =

0
0
b
r

 . (8.289)

The result (8.288), representing the electric field, does not depend on b, and
so does not the charge distribution:

q1 =
2a2

r4
. (8.290)

All results were obtained by computer algebra. Tests showed that a radial
component dependent on r is necessary to give a vanishing divergence of v.
The velocity field v1 has been graphed in Fig. 8.1. This is a vortex around
the coordinate origin where the angle of velocity is a tangent to a circle in
the far field but not in the near field. This is the impact of 1/r. The first
component of (8.288) and the charge distribution (8.290) look similar as v1

but have higher exponents of r in the denominator. q1 is graphed in Fig. 8.2
in a contour plot, showing the steep rise of charge density.
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The next example is non-trivial. It was chosen so that the divergence
vanishes, although this is not obvious from the velocity field:

v2 =

 a cosθ
r2

a sinθ
r2 + b

0

 (8.291)

with constants a and b. Computer algebra gives the results:

∇ · v2 = 0, (8.292)

(v2 ·∇) v2 = − a

r5

a sin2θ + b r2 sinθ + 2 a cos2θ
cosθ

(
a sinθ − b r2

)
0

 , (8.293)

∇× v2 =

0
0
b
r

 , (8.294)

q2 =
a

r6

(
5 a sin2θ + b r2 sinθ + 7 a cos2θ

)
. (8.295)

The vector field (8.291) is shown in Fig. 8.3. There is a centre of rotation
below the coordinate centre. The velocities are much higher above the centre
than below. This leads to partially asymmetric electric field components Er
and Eθ, Eq. (8.293), which are graphed in Figs. 8.4 and 8.5. There are sharp
peaks for Eθ at four sides. The E field has been converted to vector form in
the XY plane and its (normalized) directional vectors are graphed in Fig. 8.6.
The lower centre in Fig. 8.3 can be identified to produce a kind of ”hole”
in the electric field. There is a kind of flow along the Y axis which would
not be expected from the form of the velocity field in Fig. 8.3. Despite these
asymmetries, the charge distribution of this model velocity is mainly centrally
symmetric as can be seen from Fig. 8.7. This result was not obvious from the
formulas.

A more general example can be constructed by

v3 =

 a
rn

f(r, θ)
0

 (8.296)

with a general function f(r, θ). Then it follows

∇ · v3 = r−n−1

(
rn

d

d θ
f (r, θ)− an+ a

)
, (8.297)

(v3 ·∇) v3 =

 −a2 n r−2n−1

r−n−1
(
rn f (r, θ) d

d θ f (r, θ) + a r d
d r f (r, θ)

)
0

 , (8.298)

∇× v3 =

 0
0

d
d r f (r, θ) + 1

r f (r, θ)

 (8.299)

245



8.3. NUMERICAL ANALYSIS AND GRAPHICS

Figure 8.1: Velocity model v1.

Figure 8.2: Velocity model v1, charge distribution q1.
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Figure 8.3: Velocity model v2.

Figure 8.4: Velocity model v2, first component (Er) of Eq. (8.293).
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Figure 8.5: Velocity model v2, second component (Eθ) of Eq. (8.293).

Figure 8.6: Velocity model v2, directional vectors of E field.
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Figure 8.7: Velocity model v2, charge distribution q2.

and the charge distribution takes the form

q3 = r−2n−2

(
r2n f (r, θ)

d2

d θ2
f (r, θ) (8.300)

+ r2n

(
d

d θ
f (r, θ)

)2

+ a rn+1 d2

d r d θ
f (r, θ) + 2 a2 n2

)
.

The divergence of this velocity model vanishes if

r−n−1

(
rn
(
d

d θ
f (r, θ)

)
− an+ a

)
= 0, (8.301)

which is a differential equation for f(r, θ) with the solution

f (r, θ) =
a (n− 1) θ

rn
+ c. (8.302)

For n = 1 we obtain the model for v1 discussed above.

Solution of Ampère-Maxwell Law

The complete Ampère-Maxwell law of ECE 2 reads in the electrodynamic case:

∇×B− 1

c2
∂E

∂t
= µ0J (8.303)
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with current density (Eq.(8.40)):

J =
1

µ0

(κ0

c
E + κ×B

)
(8.304)

which in in non-relativistic approximation is:

J = σ (E + v ×B) . (8.305)

Here v is the velocity of charge carriers moving in a medium with conductivity
σ. In the static case the law simplifies to

∇×B =
κ0

c
E + κ×B = σ (E + v ×B) , (8.306)

which is a destination equation for the magnetic field if all other quantities are
given. In the absence of an electric field the equation

∇×B = κ×B (8.307)

has to be solved. In the case of a constant κ, this gives three differential
equations for the three components of the B field, but computer algebra shows
that these equations are under-determined. For example making an approach
with oscillatory functions:

B = A exp(−i (xκx + y κy + z κz)) (8.308)

leads to a solution for the (complex-valued) vectorial amplitude

A =

α2/κy
i α/κy
α

 (8.309)

with an arbitrary constant α. If an electric field is included as in Eq.(8.306),
there is no solution to that equation with the approach (8.308).

The situation changes if we assume a Beltrami solution for B. Then we
have

∇×B = κB (8.310)

with a constant κ, and for the pure magnetic case without electric field (non-
relativistically):

κB = µ0J = µ0σv ×B. (8.311)

However, for a fixed v, there is no solution of this equation for B. This
is an important result, showing that not all equations being derivable from
simplifications of ECE 2 theory are deployable for solving real world problems.
This situation changes as soon as the electric field is included in the Beltrami
structure for B:

κB = µ0σ (E + v ×B) . (8.312)
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This gives an inhomogeneous linear equation system for the components of B,
in contrast to Eq. (8.311), which is a homogeneous system. Defining a velocity
constant

w =
µ0σ

κ
, (8.313)

the general solution is

B =
1

w(w2 + v2)

 (vx vz + w vy) Ez − wEy vz + vx vy Ey +
(
v2
x + w2

)
Ex

(vy vz − w vx) Ez + wEx vz +
(
v2
y + w2

)
Ey + vxEx vy(

v2
z + w2

)
Ez + (vy Ey + vxEx) vz + w vxEy − wEx vy

 .
(8.314)

Trivially, Eq. (8.312) can also be resolved for E, giving

E =

−vy Bz +By vz + wBx
vxBz −Bx vz + wBy
wBz − vxBy +Bx vy.

 . (8.315)

It is important to note that the same equation is not a valid equation for v,
there is no solution. Therefore it is not possible to specify E and B a priori
and find a suitable charge carrier velocity v.

Finally we give a numerical example for the Beltrami solution (8.314).
Setting

w = 1, v =

1
0
0

 , E =

0
0
1

 (8.316)

results to

B =

 0
−1/2
1/2

 . (8.317)

Defining this a little bit more general:

w = 1, v =

vx0
0

 , E =

 0
0
Ez

 (8.318)

this leads to

B =

 0
− vxEzv2x+1
Ez
v2x+1

 . (8.319)

For a better understanding, a vector map (vx, Ez) → (By, Bz) has been con-
structed in Fig. 8.8 to show the resulting magnetic field in the Y Z plane.
There is a zero field for Ez = 0. Directions of the B field are maintained by
crossing this line but the signs differ.
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Figure 8.8: Vector map (vx, Ez)→ (By, Bz) for model of Eq. (8.318).

8.3.2 Solutions of Fluid Dynamics Equations

The equations (8.155), (8.157) and (8.160) have been solved numerically by
the finite element program FlexPDE. The 3D volume was chosen as for typical
Navier-Stokes applications: a plenum box with a circular inlet at the bottom
and an offset circular outlet at the top, see Fig. 8.9. The boundary condi-
tions were set to v = 0 at the borders of the box and a directional derivative
perpendicular to the openings area was assumed. This allows for a free float-
ing solution of the velocity field. As a test, a solution for the Navier-Stokes
equation

(v ·∇) v + ∇p− η∇2v = 0. (8.320)

was computed, with η being a viscosity. The pressure term was added because
the equation is otherwise homogeneous which means that there is no source
term, leading to a solution which does not guarantee conservation of mass.
The divergence of the pressure gradient is assumed to be in proportion to the
divergence of the velocity field:

∇ ·∇p = P ∇ · v (8.321)

with a constant P for “penalty pressure”. This represents an additional equa-
tion for determining the pressure. The result for the velocity is graphed in
Fig. 8.10, showing a straight flow through the box which is perpendicular to
the inlet and outlet surfaces as requested by boundary conditions.
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Next the vorticity equation (8.155) was solved, again with the pressure
term to guarantee solutions:

∇2w + ∇× (∇×w) + ∇p = 0. (8.322)

It is difficult to define meaningful boundary conditions because this is a pure
flow equation for the vorticity w. We used the same as for the Navier-Stokes
equations. The result is graphed in Fig. 8.11. There is a flow-like structure
with a divergence at the left, the flow is not symmetric. By definition, there
should not be a divergence because of Eq. (8.154). We assume that the
boundary conditions are not adequate for this type of equation.

The situation is more meaningful for Eq. (8.157) which we solved as

∇×w +R ((v ·∇) v − v ×w) + ∇p = 0. (8.323)

The solution for R = 1 gives an inclined input and output flow (Fig. 8.12).
In the middle hight of the box the flow is more over the sides, therefore the
intensity of velocity is low in the middle plane shown. The divergence (not
shown) is practically zero in this region. Fig. 8.13 shows a divergent and
convergent flow in the XY plane, the flow goes over the full width of the box.
Results for higher Reynolds numbers reveal no significant difference.

Finally we solved Eq. (8.160) which holds for a Beltrami flow:

∇2v −R (v ·∇) v −∇ (∇ · v) + ∇p = 0. (8.324)

Here the flow is strongly enhanced in the middle region (Fig. 8.14). In the
perpendicular plane a similar effect can be seen (Fig. 8.15). The field is not
divergence-free there. For a Beltrami field we should have

w × v = kv × v = 0. (8.325)

The vorticity w corresponding to Fig. 8.15 has been graphed in Fig. 8.16.
There are indeed large regions where both w and v are parallel or antiparallel.
The factor k seems to be location dependent, we did not constrain the Beltrami
property by further means. Therefore the result is satisfactory. For larger R
values the results remain similar again.
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Figure 8.9: Geometry of FEM calculations.

Figure 8.10: Velocity solution for Navier-Stokes Equation (8.320).

Figure 8.11: Vorticity solution for Eq. (8.322).
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Figure 8.12: Velocity solution of Eq. (8.323) for R = 1, plane Y = 0.

Figure 8.13: Velocity solution of Eq. (8.323) for R = 1, plane Z = 0.

Figure 8.14: Beltrami solution of Eq. (8.324) for R = 1, plane Y = 0.
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Figure 8.15: Beltrami solution of Eq. (8.324) for R = 1, plane Z = 0.

Figure 8.16: Vorticity of solution for Eq. (8.324) for R = 1, plane Z = 0.

8.3.3 Wave Equations of Fluid Electrodynamics

In this section the wave equations of fluid electrodynamics have been devel-
oped. In case of an external current density J the wave equation (8.185) of
standard electrodynamics reads

1

a2
0

∂2v

∂t2
−∇2v =

1

a2
0

J. (8.326)

Assuming a harmonic time dependence, we define

v(r, t) = vS(r) exp(iωt) (8.327)

and

J(r, t) = JS(r) exp(iωt) (8.328)
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with a time frequency ω and only space-dependent velocities vS and current
densities JS . Then Eq. (8.326) reads

−ω
2

a2
0

vS −∇2vS =
1

a2
0

JS (8.329)

which is an eigenvalue equation. For vanishing current density it can be written
in the standard form

∇2vS + λvS = 0 (8.330)

with positive eigenvalues

λ :=
ω2

a2
0

(8.331)

which correspond to acoustic eigen frequencies for example. This equation can
be solved numerically by the finite element method. In our example we re-
adopt the 3D flow box of the preceding section with corresponding boundary
conditions, irrespective of further utility considerations. The first six eigenval-
ues (in arbitrary units) are listed in Table 8.1. There is a degeneracy between
the first and second eigenvalue and between the fifth and sixth eigenvalue.
This is due to internal symmetry of the flow box. The values are lying near to
each other. The modulus of the first and sixth velocity eigen state has been
graphed in Figs. 8.17-8.20 for two planes of symmetry (Z = 0 and Y = 0). The
sixth eigen state has a node in the middle plane of symmetry. This symmetry
is also present in the vorticity vectors, see Figs. 8.21-8.22. The divergence
of velocity has been graphed in Figs. 8.23 and 8.24. The divergence is not
restricted to the boundary regions and is more pronounced for the higher eigen
state.

For a correct treatment of the wave equation within fluid electrodynamics,
we have to include the current density (8.174):

JF = a2
0∇× (∇× v)− ∂

∂t
((v ·∇)v) . (8.332)

The second term is not linear in v so the time-harmonic approach is only
possible for the first term. From (8.329) this gives the more general eigenvalue
equation

∇2vS + ∇× (∇× vS) + λvS = 0. (8.333)

As a result, the eigenvalues are very small, compared to Eq. (8.330), and
there are a lot more turbulences. The numerical calculation takes half an hour
on a standard PC but converges. The numerical precision, however, is not
satisfactory, therefore these result can only show a tendency. The first six
eigenvalues are listed in Table 8.2. There is no degeneration any more. In
Figs. 8.25-8.30 the vorticity in the plane Y = 0 has been graphed, this can
be compared with Figs. 8.21 and 8.22. Obviously Eq. (8.333) incurs a lot
more of turbulence structures. One can see that eigen state n possesses n+ 1
vortices. This seems to be a particularity of Eq. (8.333).
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A time-dependent calculation has been tried by assuming that the second-
order time derivative can be neglected against the first-order time derivative
in the current density:

∇2vS = −∇× (∇× v) +
∂

∂t
((v ·∇)v) . (8.334)

Adding a pressure term ∇p as described in the previous section gives a non-
singular equation but no time solution. Obviously the nonlinearity prevents a
solution – at least for this special problem of boundary values considered.

Coming back to the solution of Eq. (8.333), this seems to be the first time
that an ECE 2 wave equation of type

(� +R)v = 0 (8.335)

(see Eq. (8.190)) has been solved for a curvature R which in turn depends on
the variable v. This is certainly a step beyond contemporary standard equa-
tions of physics, e.g. the Dirac equation, where always a constant curvature
has been assumed. The numerical problems, however, are enormous and a lot
of work will be required to develop this field of ECE 2 physics.

No. Eigenvalue
1 12.1031274
2 12.1031274
3 12.1919561
4 13.2402655
5 13.3685992
6 13.3685992

Table 8.1: Eigenvalues of Eq. (8.330).

No. Eigenvalue
1 2.56351677e-3
2 2.68244759e-3
3 4.08141046e-3
4 6.27378404e-3
5 7.79542935e-3
6 8.34876355e-3

Table 8.2: Eigenvalues of Eq. (8.333).
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Figure 8.17: Velocity modulus of Eq. (8.330) on Z=0, eigen state 1.

Figure 8.18: Velocity modulus of Eq. (8.330) on Z=0, eigen state 6.

Figure 8.19: Velocity modulus of Eq. (8.330) on Y=0, eigen state 1.
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Figure 8.20: Velocity modulus of Eq. (8.330) on Y=0, eigen state 6.

Figure 8.21: Vorticity of Eq. (8.330) on Y=0, eigen state 1.

Figure 8.22: Vorticity of Eq. (8.330) on Y=0, eigen state 6.
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Figure 8.23: Divergence of velocity of Eq. (8.330) on Y=0, eigen state 1.

Figure 8.24: Divergence of velocity of Eq. (8.330) on Y=0, eigen state 6.

Figure 8.25: Vorticity of Eq. (8.333) on Y=0, eigen state 1.
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Figure 8.26: Vorticity of Eq. (8.333) on Y=0, eigen state 2.

Figure 8.27: Vorticity of Eq. (8.333) on Y=0, eigen state 3.

Figure 8.28: Vorticity of Eq. (8.333) on Y=0, eigen state 4.
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Figure 8.29: Vorticity of Eq. (8.333) on Y=0, eigen state 5.

Figure 8.30: Vorticity of Eq. (8.333) on Y=0, eigen state 6.

8.3.4 Examples for Applications of Fluid Electrodynam-
ics

We start with the operator (v ·∇)v. This is part of the total derivative of
variables, sometimes named the convective derivative or material derivative,
see Eq. (8.134) and also Eqs. (8.194, 8.200). In the examples of this section,
the operator has to be expressed in spherical coordinates. In detail, this oper-
ator in cartesian, cylindrical and spherical coordinates is defined for arbitrary
vector functions a and b [29] as follows:

(acart ·∇)bcart =

aX ∂bX
∂X + aY

∂bX
∂Y + aZ

∂bX
∂Z

aX
∂bY
∂X + aY

∂bY
∂Y + aZ

∂bY
∂Z

aX
∂bZ
∂X + aY

∂bZ
∂Y + aZ

∂bZ
∂Z

 , (8.336)

(acyl ·∇)bcyl =

ar ∂br∂r + aθ
r
∂br
∂θ + aZ

∂br
∂Z −

aθbθ
r

ar
∂bθ
∂r + aθ

r
∂bθ
∂θ + aZ

∂bθ
∂Z + aθbr

r

ar
∂bZ
∂r + aθ

r
∂bZ
∂θ + aZ

∂bZ
∂Z

 , (8.337)

(asph ·∇)bsph =

 ar
∂br
∂r + aθ

r
∂br
∂θ +

aφ
r sin θ

∂br
∂φ −

aθbθ+aφbφ
r

ar
∂bθ
∂r + aθ

r
∂bθ
∂θ +

aφ
r sin θ

∂bθ
∂φ + aθbr

r −
aφbφ cot θ

r

ar
∂bφ
∂r + aθ

r
∂bφ
∂θ +

aφ
r sin θ

∂bφ
∂φ +

aφbr
r +

aφbθ cot θ
r

 .
(8.338)
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The operator (8.338) for spherial coordinates has to be used in Eq. (8.219),
leading to the solution for the radial velocity component

vr = ± e√
2πε0x

√
1

r
− c (8.339)

with an integration constant c. This is a function of type 1/
√
r and has been

graphed in Fig. 8.31 for three values of c. Setting c > 0 gives imaginary
solutions, and c < 0 gives asymptotes different from zero for r →∞, therefore
c = 0 seems to be the physically best choice.

In the following we will consider examples for vector potentials of given
material fields. These give rise to spacetime fluid effects as described by Eqs.
(8.192-8.219). We will present selected cases with graphics.

Simple rotating field

The first example is a magnetic vector potential

W =
B(0)

2

 Y
−X

0

 . (8.340)

This gives a spacetime velocity field

vF =
ρ

ρm
W =

B(0)ρ

2ρm

 Y
−X

0

 (8.341)

and the resulting vacuum electric field

EF = (vF ·∇)vF =
(B(0))2ρ2

4ρ2
m

−X−Y
0

 . (8.342)

Eq. (8.341) describes a rigid mechanical rotation since the rotation veloc-
ity rises linearly with radius, see Fig. 8.32. The total derivative operator
transforms this into a central electric field, also increasing linearly with radial
distance (Fig. 8.33). The velocity field is that of a rigid body but there is
no classical counterpart for the induced electric field. The spacetime velocity
further induces a magnetic field

BF = ∇× vF =
B(0)ρ

ρm

 0
0
−1

 (8.343)

which is constant everywhere, and a constant Kambe charge density

qF = ∇ ·EF = − (B(0))2ρ2

2ρ2
m

. (8.344)

The stationary part of the fluid electric current vanishes:

JF = a2
0∇× (∇× vF ) = 0. (8.345)
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Plane Wave Potential

A potential for plane waves in the circular cartesian basis is given by

W =
W (0)

√
2

exp(iωt− κZZ)

 1
−i
0

 (8.346)

where ω is the time frequency and κZ the wave vector component in Z direc-
tion. The derived spacetime quantities are

vF =
W (0)

√
2

ρ

ρm
exp(iωt− κZZ)

 1
−i
0

 , (8.347)

EF = 0, (8.348)

BF = κZ
W (0)

√
2

ρ

ρm
exp(iωt− κZZ)

 1
−i
0

 , (8.349)

qF = 0, (8.350)

JF = a2
0κ

2
Z

W (0)

√
2

ρ

ρm
exp(iωt− κZZ)

 1
−i
0

 . (8.351)

In contrast to the simple rotating field, the derived fluid electric field and
charge density disappear. Velocity, magnetic field and current density are all
in parallel, having no Z component. The real part is schematically plotted in
Fig. 8.34 for an instant of time t. The tops of the vector arrows describe a
helix in space.

Magnetostatic Current Loop

The field of a circular current loop is best described in spherical polar coordi-
nates (r, θ, φ). The vector potential of a loop with radius a and current I has
only a φ component given by

W =


0
0

µ0 a
2 r sin(θ) I

(
15 a2 r2 sin(θ)2

8 (r2+a2)2
+1

)
4 (r2+a2)

3
2

 . (8.352)

This gives the velocity field

vF =
ρ

ρm
W 6= 0 (8.353)

and an electric field perpendicular to vF in the (r, θ) plane:

EF =
µ2

0 a
4 r ρ2 I2

(
15 a2 r2 sin(θ)2

8 (r2+a2)2
+ 1
)2

16 ρ2
m (r2 + a2)

3

 −sin (θ)
2

−cot (θ) sin (θ)
2

0

 . (8.354)
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The other fields BF , qF ,JF are also different from zero but highly complicated.
BF has components in r and θ direction and JF in φ direction.

The dependence of the component vφ is graphed in Fig. 8.35 for a = 1.
this is largest in the XY plane (θ = π/2) and vanishes at the poles. The
absolute strength decreases with distance from r = a as expected. The angular
distribution of electric field components Er, Eθ is shown in Fig. 8.36.

Centre Fed Linear Antenna

Next we consider a linear antenna with length d and sinusoidal current density
in the wire. The cartesian Z component of the vector potential is given [30]
by

WZ =
µ0 e

i k r
(

cos
(
d k cos(θ)

2

)
− cos

(
d k
2

))
I

2π k r sin (θ)
2 (8.355)

where k = ω/c is the wave number of the sinusoidal current with angular
frequency ω. Since WZ is given in dependence of the spherical polar angle θ,
we first transform this expression to spherical coordinates:

W =

cos (φ) sin (θ) sin (φ) sin (θ) cos (θ)
cos (φ) cos (θ) sin (φ) cos (θ) −sin (θ)
−sin (φ) cos (φ) 0

 0
0
WZ

 (8.356)

= WZ

 cos(θ)
− sin(θ)

0

 .
There is no φ component because the vector potential is symmetric in azimutal
direction (see graph in Fig. 8.37). The resulting electric field has components
in r and θ coordinates as well as the current density. The magnetic field
goes only in φ direction, this is similar as a magnetic field of a linear current
wire. There is also a non-vanishing spacetime charge density. Both qF and Bφ
have been graphed in Fig. 8.38. Bφ is largest in the XY plane similar to the
velocity in Fig. 8.35. The Kambe charge density is highest at the poles, i.e. in
Z direction.

Nuclear Dipole Potential

Dipole fields were already investigated in previous sections. Here we start
directly from a dipole vector potential in cartesian coordinates:

mD =
µ0

4π (X2 + Y 2 + Z2)
3
2

mY Z −mZY
mZX −mXZ
mXY −mYX

 . (8.357)

This field is plotted for

m =

0
0
1

 (8.358)
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in Fig. 8.39 in the XY plane. It leads to an electric spacetime field similar to
Fig. 8.33 but with increasing amplidudes for the radius going to zero according
to r−3. All spacetime fields do not vanish. The shapes of BZ and q are
presented in Fig. 8.40 along the X axis. There is a a divergence of both at the
centre where the source dipole is located.

Figure 8.31: Radial velocity component (8.339) of solution for Eq. (8.219).
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Figure 8.32: Simple velocity field (8.341).

Figure 8.33: Central electric field (8.342) derived from (8.341).
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Figure 8.34: Vectors vF , BF , and JF of the plane wave potential.

Figure 8.35: Velocity component vφ of the magnetostatic current loop.
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Figure 8.36: Components Er (outer) and Eθ (inner) of electric field for the
magnetostatic current loop, spherical distribution.

Figure 8.37: Components vr (ellipsoid) and vθ (torus) of velocity field for the
center-fed antenna, spherical distribution.
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Figure 8.38: Component Bφ and qF for the center-fed antenna.

Figure 8.39: Velocity field (vX , vY ) in the plane Z = 0 for a nuclear dipole
potential.
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Figure 8.40: Component BZ and qF at Y = 0, Z = 0 for the nuclear dipole
potential.
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Chapter 9

Triple Unification: Fluid
Gravitation

9.1 General Theory

In this chapter the ECE 2 theory is used to unify the field equations of fluid
dynamics and gravitation to produce the subject of fluid dynamics, which can
be described as the effect of the fluid vacuum or aether on gravitational theory.
To start the chapter it is shown that fluid dynamics can describe all the main
features of a whirlpool galaxy, so is preferred both to the Newton theory and
the Einstein theory.

In fluid gravitation the acceleration due to gravity is defined as:

g(matter) = EF (vacuum) (9.1)

where EF is the Kambe electric field of fluid dynamics, used in chapter eight:

EF = (vF ·∇) vF = −∇hF −
∂vF
∂t

(9.2)

where vF is the velocity field of the spacetime, aether or vacuum, hF is the
enthalpy per unit mass, and ΦF is the scalar potential defined by:

ΦF = hF . (9.3)

The vacuum magnetic field is the vorticity:

BF = wF = ∇× vF (9.4)

and the vacuum law:

∇×EF +
∂BF

∂t
= 0 (9.5)

follows from Eqs. (9.2) to (9.4). This is equivalent to the Faraday law of
induction of electrodynamics.
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The Newtonian acceleration due to gravity is defined by:

g = −MG

r2
er = (vF ·∇) vF (9.6)

where M is a gravitating mass, G is Newton’s constant and r the distance
between M and an orbiting mass m. The acceleration due to gravity g induces
EF in the vacuum, and conversely the vacuum velocity field induces g in
matter.

There is an exact analogy between the ECE 2 gravitational field equations:

∇ ·Ω = 0 (9.7)

∇× g +
∂Ω

∂t
= 0 (9.8)

∇ · g = 4πGρm = κ · g (9.9)

∇×Ω− 1

c2
∂g

∂t
=

4πG

c2
Jm = κ×Ω (9.10)

g = −∇φg −
∂vg
∂t

(9.11)

Ω = ∇× vg (9.12)

and the ECE 2 field equations of fluid dynamics:

∇ ·BF = 0 (9.13)

∇×EF +
∂BF

∂t
= 0 (9.14)

∇ ·EF = qF (9.15)

∇×BF −
1

a2
0

∂EF

∂t
=

1

a2
0

JF . (9.16)

Both sets of equations are ECE 2 covariant. Here Ω is the gravitomagnetic
field, g is the gravitational field, ρm is the mass density, κ is defined in terms of
the spin connection, Jm is the current of mass density, φg is the scalar potential
of ECE 2 gravitation, and vg is the vector potential of ECE 2 gravitation. In
the ECE 2 equations of fluid dynamics, EF is the fluid electric field, BF is the
fluid magnetic field, qF is the fluid charge, JF is the fluid current, and a0 the
assumed constant speed of sound.

It follows that:

Ω(matter) = ∇× vF = wF (9.17)

and

g(matter) =

(
−∇φg −

∂vg
∂t

)
(matter)

=

(
−∇ΦF −

∂vF
∂t

)
(vacuum)

(9.18)

and that:

Ω(matter) = (∇×W) (matter) = (∇× vF ) (vacuum). (9.19)
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From the gravitational field equation:

∇ · g(matter) = 4πGρm(matter) = (κ · g) (matter) (9.20)

it follows that:

∇ · g(matter) = 4πGρm(matter) = qF (vacuum) (9.21)

so material mass density is:

ρm(matter) =
qF (vacuum)

4πG
(9.22)

and originates in the vacuum charge:

qF (vacuum) = (∇ ·EF ) (vacuum). (9.23)

In general:

(∇ · ((vF ·∇) vF )) (vacuum) = 4πGρm(matter) (9.24)

so any spacetime velocity field gives rise to material mass density. Conversely
any mass density induces a spacetime velocity field.

The vacuum wave equation of chapter eight and UFT 349 ff. is:

�ΦF = qF (9.25)

given the vacuum Lorenz condition:

∂ΦF
∂t

+ a2
0 ∇ · vF = 0 (9.26)

which is a particular solution of vacuum continuity equation:

∂qF
∂t

+ a2
0 ∇ · vF = 0 (9.27)

in which the vacuum current is:

JF = a2
0 ∇× (∇× vF )− ∂

∂t
((vF ·∇) vF ) . (9.28)

The d’Alembertian in Eq. (9.25) is:

� =
1

a2
0

∂2

∂t2
−∇2. (9.29)

The Newtonian solution is:

((vF ·∇) vF ) (vacuum) = −
(
MG

r2
er

)
(matter) (9.30)

as in Note 358(3). This equation is formally identical to (8.219) and its solution
has already been discussed numerically and graphically at the beginning of
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section 8.2.4. To exemplify the elegance of fluid gravitation consider as in
Note 358(4) on www.aias.us the constant vacuum angular momentum:

LF = mrrF × vF (9.31)

which can be defined for any central force between m and M . Here rF is the
position vector and vF the velocity field. The reduced mass is defined by:

mr =
mM

m+M
(9.32)

of m orbiting M . The subscript F for any quantity denotes the fluid vacuum.
For a planar orbit:

rF × LF = mrrF × (rF × vF )

= mr (rF (rF · vF )− vF (rF · rF ))
(9.33)

and:

rF · vF = 0 (9.34)

so the vacuum velocity field is:

vF = − 1

mrr2
F

LF × rF (9.35)

where:

LF = LFZk (9.36)

and:

vF =
LFZ
mrr2

F

(−YF i +XF j) . (9.37)

This is a divergenceless velocity field:

∇ · vF = 0. (9.38)

The material gravitomagnetic field is then:

Ω(matter) =
2

mr2
F

LF (9.39)

and is perpendicular to the plane of the orbit. In a whirlpool galaxy for
example the gravitomagnetic field is perpendicular to the plane of the galaxy
and the gravitational field between a star of mass m of the whirlpool galaxy
and its central mass M is:

g(matter) = (vF ·∇) vF . (9.40)

In Cartesian coordinates:

vF ·∇ =
LFZ
mrr2

F

(
−YF

∂

∂XF
+XF

∂

∂YF

)
(9.41)
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so:

g(matter) =
L2
FZ

m2
rr

4
F

((
YF

∂YF
∂XF

−XF

)
i +

(
XF

∂XF

∂YF
− YF

)
j

)
. (9.42)

Now assume that

∂YF
∂XF

=
∂XF

∂YF
= 0 (9.43)

and it follows that:

g(matter) = − L2
FZ

m2
rr

4
F

rF (9.44)

where:

rF = XF i + YF j. (9.45)

Finally use:

rF = rFer (9.46)

to find an inverse cube law between m and M :

g(matter) = − L2
FZ

m2
rr

3
F

er (9.47)

the force being:

F = mrg(matter). (9.48)

From the vacuum Binet equation:

F = − L2
F

mrr2
F

(
1

rF
+

d2

dθ2

(
1

rF

))
(9.49)

the orbit of m around M is the hyperbolic spiral:

1

rF
=

θ

r0F
. (9.50)

In plane polar coordinates (r, θ) the velocity of a star in the whirlpool galaxy
is:

v2 =

(
dr

dt

)2

+ r2

(
dθ

dt

)2

=

(
dθ

dt

)2
(
r2 +

(
dr

dθ

)2
)
. (9.51)

From lagrangian theory:

dθ

dt
=

L

mrr2
(9.52)
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so the velocity of the star is:

v2 =
L2

m2

(
1

r2
+

1

r2
0

)
−−−→
r→∞

(
L

mr2
0

)2

= constant. (9.53)

From Eqs. (9.26) and (9.38) it follows that:

∂ΦF
∂t

=
∂hF
∂t

= 0 (9.54)

so the vacuum potential is constant:

ΦF = hF = constant (9.55)

in a whirlpool galaxy. It follows from the wave equation (9.25) that:

∇2ΦF = −4πGρm(matter). (9.56)

The vacuum charge of the whirlpool galaxy is:

qF = (∇ · g) (matter) =

(
LFZ
mrr2

F

)
(9.57)

so from Eq. (9.24):

ρm(matter) =
1

4πG

(
LFZ
mrr2

F

)2

−−−→
r→0

∞ (9.58)

and there is a very large mass at the centre of the galaxy, as observed.
The spacetime current (9.28) that gives rise to a whirlpool galaxy is:

JF = a2
0 ∇× (∇× vF ) (9.59)

if EF is time independent. Therefore with this assumption:

JF =
4a2

0

r2
F

vF (9.60)

and JF is proportional to vF .
Numerical and graphical analysis of these characteristics are developed

later in this chapter.
In the subject of fluid gravitation. Newtonian gravitation produces a rich

structure in the fluid vacuum, a structure which can be illustrated with the ve-
locity field, vorticity, charge and static current using Gnuplot graphics. A new
law of planar orbital theory can be inferred and the Newtonian acceleration
due to gravity becomes the convective derivative of the orbital linear velocity.

The velocity field vF induced by the Newtonian acceleration due to gravity
g is defined by:

g = −MG

r2
er = (vF ·∇) vF (9.61)
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where:

r = rer. (9.62)

Similarly, the static electric field strength in volts per metre induces vacuum
structure in an exactly analogous manner:

E = − e

4πε0r2
er = x (vF ·∇) vF . (9.63)

In general there are many solutions of Eq. (9.61), one of which is developed as
follows from Note 359(6) on www.aias.us:

vF = vF1 + vF2 + vF3 (9.64)

where:

vF1 =

√
2 (MG)

1/2

(X2 + Y 2 + Z2)
3/4

(−Y i +Xj) (9.65)

vF2 =

√
2 (MG)

1/2

(X2 + Y 2 + Z2)
3/4

(−Zi +Xk) (9.66)

vF3 =

√
2 (MG)

1/2

(X2 + Y 2 + Z2)
3/4

(−Zj + Y k) . (9.67)

These components are graphed later on in this chapter using Gnuplot, and are
richly structured. The above velocity field gives:

g = −MG

r2
er (9.68)

where:

r2 = X2 + Y 2 + Z2. (9.69)

The three vacuum charges are:

qF1 = ∇ · gF1 = −MG

2

(
2Z2 − Y 2 −X2

(X2 + Y 2 + Z2)
5/2

)
(9.70)

qF2 = ∇ · gF2 =
MG

2

(
Z2 − 2Y 2 +X2

(X2 + Y 2 + Z2)
5/2

)
(9.71)

qF3 = ∇ · gF3 =
MG

2

(
Z2 + Y 2 − 2X2

(X2 + Y 2 + Z2)
5/2

)
(9.72)

and sum to zero in this solution:

qF1 + qF2 + qF3 = 0. (9.73)
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The vacuum charges exhibit a swirling motion as shown by Gnuplot later on
in this chapter. The vacuum vorticities are:

wF1 = ∇× vF1

=
(MG)

1/2

23/2 (X2 + Y 2 + Z2)
7/4

(
3XZi + 3Y Zj +

(
4Z2 + Y 2 +X2

)
k
) (9.74)

wF2 = ∇× vF2

=
(MG)

1/2

23/2 (X2 + Y 2 + Z2)
7/4

(
−3XY i−

(
Z2 + 4Y 2 +X2

)
j− 3Y Zk

)
(9.75)

wF3 = ∇× vF3

=
(MG)

1/2

23/2 (X2 + Y 2 + Z2)
7/4

((
Z2 + Y 2 + 4X2

)
i + 3XY j + 3XZj

) (9.76)

and self consistently obey the equations:

∇ ·wF1 = ∇ ·wF2 = ∇ ·wF3 = 0. (9.77)

These are also graphed later in this chapter using Gnuplot, and also exhibit a
swirling motion.

We therefore arrive at a new law of orbits where the Newtonian acceleration
due to gravity between m and M is the convective derivative of the orbital
linear velocity.

By definition:

∇ ·wF = 0, (9.78)

∇× gF +
∂wF

∂t
= 0. (9.79)

In ECE 2 electromagnetism they become the homogeneous field equations:

∇ ·B = 0 (9.80)

∇×E +
∂B

∂t
= 0. (9.81)

The vacuum current is defined by:

JF = a2
0 ∇× (∇× vF )− ∂

∂t
((vF ·∇) vF ) (9.82)

where a0 is the assumed constant speed of sound. Therefore the inhomoge-
neous field equations of the vacuum are:

∇ · vF = qF (9.83)
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and

∇×wF −
1

a2
0

∂gF
∂t

=
1

a2
0

JF . (9.84)

If it is assumed that:

∂gF
∂t

= 0 (9.85)

then:

JF = a2
0 ∇× (∇× vF ) (9.86)

and using Eq. (9.61):

JF1 =
9a2

0

25/2 (X2 + Y 2 + Z2)
7/4

(−Y i +Xj) (9.87)

JF2 =
9a2

0

25/2 (X2 + Y 2 + Z2)
7/4

(−Zi +Xk) (9.88)

JF3 =
9a2

0

25/2 (X2 + Y 2 + Z2)
7/4

(−Zi + Y k) (9.89)

which again exhibit a swirling motion.
The fundamental philosophy of fluid gravitation is:

g(matter) = gF (vacuum) (9.90)

so the familiar Newtonian g(matter) induces vF1, vF2, vF3, gF1, gF2, gF3,
qF1, qF2, qF3, wF1, wF2, wF3, JF1, JF2, JF3 in the vacuum. The converse is
also true as developed in chapter eight.

In order to apply fluid gravitation to planar orbits consider the linear ve-
locity in plane polar coordinates:

v = ṙer + rθ̇eθ (9.91)

where the unit vectors are:

er = i cos θ + j sin θ (9.92)

and

eθ = −i sin θ + j cos θ. (9.93)

In fluid gravitation there is a new and general relation between the orbital
velocity v and the Newtonian acceleration g:

g = (v ·∇) v. (9.94)

From Eqs. (9.65) and (9.91) it follows that:

v2 = ṙ2 + r2θ̇2 =
MG

(X2 + Y 2)
1/2

(9.95)
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and

(MG)
1/2

X
(
X2 + Y 2

)−3/4
= ṙ sin θ + rθ̇ cos θ (9.96)

(MG)
1/2

Y
(
X2 + Y 2

)−3/4
= rθ̇ sin θ − ṙ cos θ. (9.97)

From Eqs. (9.96) and (9.97) it follows that:

v2 =
MG

(X2 + Y 2)
1/2

(9.98)

therefore for any planar orbit:

X =
MG

v3

(
ṙ sin θ + rθ̇ cos θ

)
(9.99)

and

Y =
MG

v3

(
rθ̇ sin θ − ṙ cos θ

)
. (9.100)

For an elliptical planar orbit for example:

v2 = ṙ2 + r2θ̇2 = MG

(
2

r
− 1

a

)
(9.101)

and:

1

(X2 + Y 2)
1/2

=
2

r
− 1

a
(9.102)

where:

a =
α

1− ε2
(9.103)

is the semi major axis, α the half right latitude and ε the eccentricity. In plane
polar coordinates:

r =
α

1 + ε cos θ
(9.104)

and in Cartesian coordinates:

X2

a2
+
Y 2

b2
= 1 (9.105)

where the semi minor axis is:

b =
α

(1− ε2)
1/2

. (9.106)

In the case of the ellipse:

dr

dθ
=
εr2

α
sin θ (9.107)
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and:

dθ

dt
=

L

mr2
, (9.108)

L2 = m2MGα. (9.109)

It follows that for the planar elliptical orbit:

X = α1/2

(
ε

α
sin2 θ +

1

r
cos θ

)(
2

r
− 1

a

)−3/2

(9.110)

and:

Y = α1/2

(
1

r
sin θ − ε

α
sin θ cos θ

)(
2

r
− 1

a

)−3/2

. (9.111)

These properties are graphed and analyzed later in this section.
For circular orbits:

ε = 0,
2

a
− 1

r
=

1

r
, r = α (9.112)

so:

X = r cos θ (9.113)

Y = r sin θ (9.114)

Therefore a new and general theory of orbits has been inferred.
Using fluid gravitation it can be shown as follows that all observable orbits

can be expressed as a generally covariant inverse square law:

g = −MG

r2
er = (v ·∇) v. (9.115)

Therefore g is the convective derivative of v. For planar orbits, the inverse
square law is:

g = − MG

X2 + Y 2
er (9.116)

and from Eq. (9.115) the orbital velocity is:

v = (MG)
1/2 (−Xi + Y j)

(X2 + Y 2)
3/4

. (9.117)

In plane polar coordinates:

v2 =
MG

(X2 + Y 2)
1/2

= ṙ2 + r2θ̇2 (9.118)

and for elliptical orbits:

v2 = MG

(
2

r
− 1

a

)
(9.119)
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so for the elliptical orbit:

1

(X2 + Y 2)
1/2

=
2

r
− 1

a
=

1

MG

(
ṙ2 + r2θ̇2

)
(9.120)

and the acceleration due to gravity is:

g = − MG

X2 + Y 2
er = −MG

(
2

r
− 1

a

)2

er

= − 1

MG

(
ṙ2 + r2θ̇2

)2

er.

(9.121)

Eq. (9.120) shows that the acceleration due to gravity can be expressed as:

g = − v4

MG
er. (9.122)

For all planar orbits:

X = MG
(
ṙ sin θ + rθ̇ cos θ

)(
ṙ2 + r2θ̇2

)−3/2

(9.123)

and

Y = MG
(
rθ̇ sin θ − ṙ cos θ

)(
ṙ2 + r2θ̇2

)−3/2

. (9.124)

In the case of the whirlpool galaxy:

r =
r0

θ
(9.125)

and it follows that:

ṙ2 + r2θ̇2 =
L2

m2

(
1

r2
+

1

r2
0

)
(9.126)

where the angular momentum L is a constant of motion. It follows as in Note
360(3) that:

X = MG

(
L

mr
cos
(r0

r

)
− L

mr0
sin
(r0

r

))( L2

m2

(
1

r2
+

1

r2
0

))−3/2

(9.127)

and

Y = MG
L

m

(
1

r
sin
(r0

r

)
− 1

r0
cos
(r0

r

))( L2

m2

(
1

r2
+

1

r2
0

))−3/2

. (9.128)

For the precessing orbit in a plane in a simple model:

r =
α

1 + ε cos(xθ)
(9.129)
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where:

x = 1 +
3MG

c2α
. (9.130)

It follows as in Note 360(4) that:

ṙ =
dr

dt
=
xεL

mα

(
1 +

1

ε2

(α
r
− 1
)2
)1/2

(9.131)

and

θ̇ =
L

mr2
(9.132)

so X and Y can be graphed. They are illustrated later on in this chapter.
As shown in Note 360(5):

g = − v4

MG
er (9.133)

so for the precessing orbit:

g = − L4

m4MG

(
x2ε2

α2

(
1− 1

ε2

(α
r
− 1
)2
)

+
1

r2

)2

. (9.134)

ECE 2 dynamics with the convective derivative can be developed as in
UFT 361 by expressing the velocity field as:

v = v (r(t), θ(t), Z(t), t) (9.135)

where cylindrical polar coordinates have been used. In classical dynamics:

v = v(t). (9.136)

The material derivative is:

Dv

Dt
=
∂v

∂t
+ (v ·∇) v

=
∂v

∂t
+

(
vr
∂

∂r
+
vθ
r

∂

∂θ
+ vZ

∂

∂Z

)
(vrer + vθeθ + vZk)

=
∂v

∂t
+ vr

∂

∂r
(vrer) +

vθ
r

∂

∂θ
(vrer) + vZ

∂

∂Z
(vrer)

+ vr
∂

∂r
(vθeθ) +

vθ
r

∂

∂θ
(vθeθ) + vZ

∂

∂Z
(vθeθ)

+ vr
∂

∂r
(vZk) +

vθ
r

∂

∂θ
(vZk) + vZ

∂

∂Z
(vZk)

(9.137)

in which:

∂er
∂r

=
∂er
∂θ

=
∂er
∂Z

=
∂eθ
∂Z

=
∂k

∂r
=
∂k

∂θ
=
∂k

∂Z
= 0 (9.138)
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and:

∂r

∂θ
= 0 (9.139)

is a property of the coordinate system. By construction:

∂er
∂θ

= eθ,
∂eθ
∂θ

= −er (9.140)

so it follows that:

Dv

Dt
=
∂v

∂t
+

(
vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+ vZ
∂vr
∂Z

)
er +

vθvr
r

∂er
∂θ

+

(
vr
∂vθ
∂r

+
vθ
r

∂vθ
∂r

+ vZ
∂vθ
∂Z

)
eθ −

v2
θ

r

∂eθ
∂r

+

(
vr
∂vZ
∂r

+
vθ
r

∂vZ
∂θ

+ vZ
∂vZ
∂Z

)
k

=
∂

∂t

vrvθ
vZ

+

 ∂vr
∂r

1
r
∂vr
∂θ

∂vr
∂Z

∂vθ
∂r

1
r
∂vθ
∂θ

∂vθ
∂Z

∂vZ
∂r

∂vZ
∂θ

∂vZ
∂Z

+

 0 −vθr 0
vθ
r 0 0
0 0 0

vrvθ
vZ

 .
(9.141)

The second matrix has the antisymmetric structure of a rotation generator.
The derivative (9.141) is a special case of the Cartan derivative:

Dva

Dt
=
∂va

∂t
+ ωa0bv

b (9.142)

in which the spin connection in plane polar coordinates is:

ωa0b =

[
∂vr
∂r

1
r
∂vr
∂θ

∂vθ
∂r

1
r
∂vθ
∂θ

]
+

[
0 − vθr
vθ
r 0

]
. (9.143)

Therefore:

D

Dt

[
vr
vθ

]
=

∂

∂t

[
vr
vθ

]
+

([
∂vr
∂r

1
r
∂vr
∂θ

∂vθ
∂r

1
r
∂vθ
∂θ

]
+

[
0 − vθr
vθ
r 0

])[
vr
vθ

]
. (9.144)

The velocity vector in plane polar coordinates is:

v = ṙer + rθ̇eθ (9.145)

so:

vr = ṙ, vθ = rθ̇ (9.146)

and: [
0 − vθr
vθ
r 0

]
=

[
0 −θ̇
θ̇ 0

]
(9.147)
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where the angular velocity of the rotating frame is:

ω = θ̇ =
dθ

dt
. (9.148)

Therefore the spin connection components are:

ω1
01 =

∂ṙ

∂r
(9.149)

ω1
02 =

1

r

∂ṙ

∂θ
− θ̇ (9.150)

ω2
01 =

∂
(
rθ̇
)

∂r
+ θ̇ (9.151)

ω2
02 =

1

r

∂
(
rθ̇
)

∂θ
(9.152)

and in terms of unit vectors:

Dv

Dt
=
∂vr
∂t

er +
∂vθ
∂t

eθ +

(
vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
− v2

θ

r

)
er

+

(
vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vθvr
r

)
eθ.

(9.153)

Eq. (9.153) is the following covariant derivative of Cartan geometry:

a =
Dv

Dt
=
Dvr
Dt

er +
Dvθ
Dt

eθ. (9.154)

So for any acceleration:

a =
∂v

∂t
+ (v ·∇) v =

Dvr
Dt

er +
Dvθ
Dt

eθ. (9.155)

The individual covariant derivatives are:

Dvr
Dt

=
∂vr
∂r

+ ṙ
∂ṙ

∂r
+ θ̇

∂ṙ

∂θ
− rθ̇2 (9.156)

and

Dvθ
Dt

=
∂vθ
∂t

+ rθ̈ + 2ṙθ̇ + rṙ
∂θ̇

∂r
+ θ̇2 ∂r

∂θ
. (9.157)

Therefore:

vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
− v2

θ

r
=

([
∂vr
∂r

1
r
∂vr
∂θ

0 0

]
+

[
0 −θ̇
0 0

])[
vr
vθ

]
(9.158)

and:

vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vθvr
r

= rθ̈ + 2ṙθ̇ + rṙ
∂θ̇

∂r
+ θ̇2 ∂r

∂θ

=

[
0 0
∂vθ
∂r

1
r
∂vθ
∂θ

] [
vr
vθ

]
+

[
0 0

θ̇ 0

] [
vr
vθ

]
.

(9.159)

287



9.1. GENERAL THEORY

There are new accelerations:

a1 =

(
ṙ
∂ṙ

∂r
+ θ̇

∂ṙ

∂θ

)
er +

(
rṙ
∂θ̇

∂r
+ θ̇2 ∂r

∂θ

)
eθ (9.160)

which are absent from classical dynamics, in which:

a =
dv

dt
=

d

dt
(vrer) +

d

dt

(
rθ̇eθ

)
=
(
r̈ − rθ̇2

)
er +

(
rθ̈ + 2ṙθ̇

)
eθ.

(9.161)

On the right hand side of Eq. (9.161) appear the Newtonian acceleration:

aN = r̈er (9.162)

the centrifugal acceleration:

acent = −rθ̇2er (9.163)

and the Coriolis accelerations:

aCoriolis =
(
rθ̈ + 2ṙθ̇

)
eθ. (9.164)

The use of the convective derivative leads to the accelerations (9.160) which
occur in addition to the fundamental accelerations of classical dynamics. They
are the result of replacing v(t) of classical dynamics by the velocity field:

v = v (r(t), θ(t), t) . (9.165)

These new accelerations are interpreted later on in this chapter and developed
numerically.

These concepts can be used as in UFT 362 to investigate the effect of the
vacuum on orbital theory. In classical dynamics there is no such effect. Con-
sider the convective derivative of any vector field:

DF

Dt
=
∂F

∂t
+ (v ·∇) F (9.166)

in plane polar coordinates. In Eq. (9.166) the velocity field is:

v = v (r(t), θ(t), t) . (9.167)

In plane polar coordinates Eq. (9.166) becomes:

DF

Dt
=
∂F

∂t
+

(
vr
∂

∂r
+
vθ
r

∂

∂θ

)
(Frer + Fθeθ)

=
∂F

∂t
+ vr

(
∂Fr
∂r

er + Fr
∂er
∂r

+
∂Fθ
∂r

eθ + Fθ
∂eθ
∂r

)
+
vθ
r

(
∂Fr
∂θ

er + Fr
∂er
∂θ

+
∂Fθ
∂θ

eθ + Fθ
∂eθ
∂θ

) (9.168)
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where the Leibniz Theorem has been used. For plane polar coordinates [2]-
[13]:

∂er
∂r

=
∂eθ
∂r

= 0,
∂er
∂θ

= eθ,
∂eθ
∂θ

= −er (9.169)

so the convective derivative (9.168) is

DF

Dt
=
∂F

∂t
+

(
vr
∂Fr
∂r

+
vθ
r

∂Fr
∂θ
− vθ

r
Fθ

)
er

+

(
vr
∂Fθ
∂r

+
vθ
r

∂Fθ
∂θ

+
vθ
r
Fr

)
eθ

(9.170)

where:

vθ
r

= θ̇ =
dθ

dt
= ω. (9.171)

In component format:

D

Dt

[
Fr
Fθ

]
=

∂

∂t

[
Fr
Fθ

]
+

[
∂Fr
∂r

1
r
∂Fr
∂θ

∂Fθ
∂r

1
r
∂Fθ
∂θ

] [
vr
vθ

]
+

[
0 −θ̇
θ̇ 0

] [
Fr
Fθ

]
(9.172)

so:

F = Fr (r(t), θ(t), t) er + Fθ (r(t), θ(t), t) eθ. (9.173)

In classical dynamics:

F = F(t) (9.174)

and there is no functional dependence of F on r(t) and θ(t). In classical
dynamics therefore:

D

Dt

[
Fr
Fθ

]
=

∂

∂t

[
Fr
Fθ

]
+

[
0 −θ̇
θ̇ 0

] [
Fr
Fθ

]
(9.175)

and this result is assumed implicitly in classical orbital theory and cosmology.
The assumption (9.174) simplifies Eq. (9.170) to:

DF

Dt
=
∂F

∂t
− θ̇Fθer + θ̇Freθ (9.176)

which is the ECE 2 Cartan derivative with spin connection:

ωa0b =

[
0 −θ̇
θ̇ 0

]
(9.177)

which is the rotation generator of the axes of the plane polar system. In
classical dynamics, if F(t) represents the position vector r(t), then the orbital
velocity is given by the Cartan derivative:

D

Dt

[
r
0

]
=

∂

∂t

[
r
0

]
+

[
0 −θ̇
θ̇ 0

] [
r
0

]
. (9.178)
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In vector notation the orbital velocity is:

v = vrer + vθeθ = ṙer + rθ̇eθ. (9.179)

If F(t) represents the time dependent velocity vector v(t) of classical dynamics
then the orbital acceleration is given by:

D

Dt

[
ṙ

rθ̇

]
=

∂

∂t

[
ṙ

rθ̇

]
+

[
0 −θ̇
θ̇ 0

] [
ṙ

rθ̇

]
. (9.180)

In vector notation:

a = arer + aθeθ =
(
r̈ − rθ̇2

)
er +

(
rθ̈ + 2ṙθ̇

)
eθ. (9.181)

In the UFT papers on www.aias.us it has been shown that the Coriolis accel-
erations vanish for any planar orbit:

rθ̈ + 2ṙθ̇ = 0 (9.182)

so the Leibniz equation:

F = ma = m
(
r̈ − ω2r

)
er = −mMG

r2
er (9.183)

is inferred for any planar orbit.
In classical dynamics the vacuum is a “nothingness”, but in fluid gravita-

tion it is richly structured as argued earlier in this chapter. It follows that the
velocity (9.178) is generalized to:

D

Dt

[
r
0

]
=

∂

∂t

[
r
0

]
+

[
0 −θ̇
θ̇ 0

] [
r
0

]
+

[
Ω1

01r Ω1
02r

Ω2
01r Ω2

02r

] [
ṙ

rθ̇

]
(9.184)

and that the acceleration (9.180) is generalized to:

D

Dt

[
ṙ

rθ̇

]
=

∂

∂t

[
ṙ

rθ̇

]
+

[
0 −θ̇
θ̇ 0

] [
ṙ

rθ̇

]
+

[
Ω1

01v Ω1
02v

Ω2
01v Ω2

02v

] [
ṙ

rθ̇

]
(9.185)

in an orbit influenced by the vacuum. Different types of spin connection com-
ponents appear in Eqs. (9.184) and (9.185). In Eq. (9.184):[

Ω1
01r Ω1

02r

Ω2
01r Ω2

02r

]
=

[
∂Rr
∂r

1
r
∂Rr
∂θ

∂Rθ
∂r

1
r
∂Rθ
∂θ

]
(9.186)

and in Eq. (9.185):[
Ω1

01v Ω1
02v

Ω2
01v Ω2

02v

]
=

[
∂vr
∂r

1
r
∂vr
∂θ

∂vθ
∂r

1
r
∂vθ
∂θ

]
(9.187)

For example the orbital velocity components of classical dynamics are gener-
alized to:

vr =
(
1 + Ω1

01r

)
ṙ + Ω1

02rωr (9.188)
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and:

vθ =
(
1 + Ω2

01r

)
ωr + Ω2

01r ṙ (9.189)

so that the velocity vector becomes:

v = vrer + vθeθ (9.190)

and its square becomes:

v2 = v2
r + v2

θ . (9.191)

Orbital precession can be explained straightforwardly as an effect of the
fluid vacuum.

Consider the position vector R of an element of a fluid:

R = R (r, t) (9.192)

it follows that the velocity field of the fluid is:

v (r, t) =
DR

Dt
=
∂R

∂t
+ (v ·∇) R (9.193)

and in component format:

D

Dt

[
Rr
Rθ

]
=

∂

∂t

[
Rr
Rθ

]
+

[
0 −θ̇
θ̇ 0

] [
Rr
Rθ

]
+

[
∂Rr
∂r

1
r
∂Rr
∂θ

∂Rθ
∂r

1
r
∂Rθ
∂θ

] [
vr
vθ

]
. (9.194)

In plane polar coordinates:

R = Rer (9.195)

so:

Rr = R, Rθ = 0. (9.196)

The relevant spin connection matrix is therefore:[
Ω1

01r Ω1
02r

Ω2
01r Ω2

02r

]
=

[
∂Rr
∂r

1
r
∂Rr
∂θ

0 0

]
(9.197)

with components:

Ω1
01r =

∂Rr
∂r

, Ω1
02r =

1

r

∂Rr
∂θ

,

Ω2
01r = 0, Ω2

02r = 0.
(9.198)

The velocity field components are therefore:

vr =
(
1 + Ω1

01r

)
ṙ + Ω1

02rωr (9.199)

and:

vθ = θ̇r = ωr. (9.200)
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The hamiltonian and lagrangian are therefore:

H =
1

2
m
(
v2
r + v2

θ

)
+ U (9.201)

and:

L =
1

2
m
(
v2
r + v2

θ

)
− U (9.202)

where U is the potential energy. It is known in the solar system that precession
is a very tiny effect, so:

Ω1
01r ∼ Ω1

02r � 1. (9.203)

In contrast to the above analysis, classical dynamics is defined by:

v(t) =
Dr(t)

Dt
=
∂r(t)

∂t
+ (v ·∇) r(t) (9.204)

i. e. by the convective derivative of the position r(t) of a particle rather than
the position R (r, t) of a fluid element. So in classical dynamics:[

vr
vθ

]
=

∂

∂t

[
r(t)

0

]
+

[
0 −θ̇
θ̇ 0

] [
r(t)

0

]
. (9.205)

In component format Eq. (9.205) is:

vr =
∂r(t)

∂t
(9.206)

vθ = θ̇ r(t) (9.207)

which gives the pendant to the Coriolis velocity:

v = ṙer + rθ̇eθ (9.208)

Q. E. D.
The Euler Lagrange equations of the system are:

∂L

∂r
=

d

dt

∂L

∂ṙ
(9.209)

and:

∂L

∂θ
=

d

dt

∂L

∂θ̇
. (9.210)

From Eq. (9.209) a new force law can be found using the lagrangian:

L =
1

2
m
((

1 + Ω1
01r

)2
ṙ2 + Ω1 2

02r r
2θ̇2

+2Ω1
02r

(
1 + Ω1

01r

)
ṙθ̇r + θ̇2r2

)
− U

(9.211)
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and is:

F = m
((

1 + Ω1
01r

)2
r̈ + Ω1

02r

(
1 + Ω1

01r

) (
rθ̈ + θ̇ṙ

)
−
(
1 + Ω1 2

02r

)
rθ̇2 − Ω1

02r

(
1 + Ω1

01r

)
ṙθ̇
)
.

(9.212)

In comparison, the force law of a conic section orbit is:

F = m
(
r̈ − rθ̇2

)
(9.213)

so the orbit is changed by Ω1
01r and Ω1

02r.
Assume for the sake of analytical tractability that:

Ω1
02r =

1

r

∂Rr
∂θ
∼ 0 (9.214)

and the lagrangian simplifies to:

L =
1

2
m
((

1 + Ω1
01r

)2
ṙ2 + θ̇2r2

)
− U. (9.215)

The constant angular momentum can be found from the Euler Lagrange equa-
tion (9.210):

L =
∂L

∂θ
= mr2θ̇ (9.216)

and is a constant of motion:

dL

dt
= 0. (9.217)

In the approximation (9.214) the force law (9.212) becomes:

F = m
((

1 + Ω1
01r

)2
r̈ − rθ̇2

)
. (9.218)

Using the Binet variable:

u =
1

r
(9.219)

it follows that:(
1 + Ω1

01r

)2 d2

dθ2

(
1

r

)
+

1

r
= −mr

2

L2
F (r) (9.220)

and can be interpreted as the Binet equation of an orbit in a fluid aether or
vacuum. It reduces to the Binet equation of classical dynamics when:

Ω1
01r → 0. (9.221)

If the orbit is a conic section:

r =
α

1 + ε cos θ
(9.222)
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it follows from Eq. (9.220) that its force law is:

F (r) = − L2

mr2

(
1− y
α

+
y

r

)
(9.223)

where:

y = 1−
(
1 + Ω1

01r

)2
. (9.224)

It is known from UFT 193 that the force law of a precessing ellipse modelled
by

r =
α

1 + ε cos(xθ)
(9.225)

is:

F (r) = − L2

mr2

(
x2

α
+

1

r

(
1− x2

))
(9.226)

from the Binet equation of classical dynamics

d2

dθ2

(
1

r

)
+

1

r
= −mr

2

L2
F (r). (9.227)

Therefore:

y = 1− x2 (9.228)

and

x = 1 + Ω1
01r. (9.229)

To contemporary precision in astronomy:

x = 1 +
3MG

αc2
(9.230)

so:

Ω1
01r =

∂Rr
∂r

=
3MG

αc2
. (9.231)

Therefore orbital precession is due to the effect of the fluid dynamic function
∂Rr/∂r, which is the rate of displacement of a position element R(r, t) of a
fluid dynamic background, or vacuum. The spin connection makes the orbit
precess. The conic section orbit (9.222) used in the Binet equation of fluid
dynamics (9.220) is exactly equivalent to the use of the precessing orbit (9.225)
in the Binet equation of classical dynamics. In both cases the law of attraction
is the sum of terms inverse squared and inverse cubed in r. The obsolete
Einstein theory incorrectly claims to give a precessing orbit with a sum of
inverse squared and inverse fourth power terms.

294



CHAPTER 9. TRIPLE UNIFICATION: FLUID GRAVITATION

9.2 Numerical Analysis and Graphics

9.2.1 Examples for Fluid Spacetime Fields

The Newtonian acceleration, Eq. (9.61), leads to several fields of fluid space-
time as described by Eqs. (9.63-9.89). These fields have been analyzed graph-
ically, using unity constants (except ε = 0.3). The mapping of equations to
the graphs is compiled in Table 9.1. The velocity fields vF1-vF3 are parallel to
the planes spanned by the three cartesian axes. The total field vF is a vortex
with angular momentum axis in [1,-1,1] direction. This axis can be altered by
using different signs for the velocity components. This shows that different
solutions for the velocity field are possible. The gravitational field gF is a
central field as expected. The vorticity wF looks complicated. An analysis by
computer algebra shows that wF is always perpendicular to vF . The current
JF is parallel to the velocitiy field as expected. The three components of the
Kambe charge density qF look different but their sum vanishes, indicating a
new kind of symmetry not yet investigated.

The concept of fluid gravitation has been applied to planar orbits, starting
with Eq. (9.91). The lines for Figs. 9.11 and 9.12 of Table 9.1 describe
the cartesian elliptical orbit components X(θ) and Y (θ) for an orbit r(θ),
according to definitions of Eqs. (9.99-9.104). Their graph shows an oscillating
behaviour. When, in addition, the radius is taken as a parameter, There are
surfaces X(r, θ) and Y (r, θ) whose intersections represent the behaviour of
orbits with a fixed r(θ) relation.

Finally the line for Fig. 9.13 in Table 9.1 relates to a hyperbolic spiral.
Their components X(r), Y (r) have been plotted on a logarithmic scale.

Figure no. graphed Quantity Equations
9.1 vF1 (9.65)
9.2 vF2 (9.66)
9.3 vF3 (9.67)
9.4 vF (9.64)
9.5 gF (9.61)
9.6 wF (9.74-9.76)
9.7 JF (9.86)
9.8 qF1 (9.70)
9.9 qF2 (9.71)
9.10 qF3 (9.72)
9.11 X(θ), Y (θ) (9.104, 9.110-9.111)
9.12 X(r, θ), Y (r, θ) (9.110-9.111)
9.13 X(r), Y (r) (9.127-9.128)

Table 9.1: Mapping of figures to equations.

295



9.2. NUMERICAL ANALYSIS AND GRAPHICS

Figure 9.1: Component vF1 of velocity field.

Figure 9.2: Component vF2 of velocity field.
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Figure 9.3: Component vF3 of velocity field.

Figure 9.4: Velocity field vF .
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Figure 9.5: Gravitational field gF .

Figure 9.6: Vorticity field wF .
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Figure 9.7: Static current density JF .

Figure 9.8: Kambe charge density qF1 for Z = 0.
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Figure 9.9: Kambe charge density qF2 for Z = 0.

Figure 9.10: Kambe charge density qF3 for Z = 0.
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Figure 9.11: Elliptical orbit components X(θ) and Y (θ).

Figure 9.12: Elliptical orbit components X(r, θ) and Y (r, θ) in the (r, θ) plane.
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Figure 9.13: Orbit coordinates X(r) and Y (r) for a hyperbolic spiral.

9.2.2 Non-classical Acceleration

First we do some calculations on the accelerations in ECE 2 fluid dynamics.
The Newtonian acceleration (9.161) in plane polar coordinates is

a = (r̈ − rθ̇2)er + (rθ̈ + 2ṙθ̇)eθ, (9.232)

and there is an extra acceleration due to fluid spacetime (9.160):

a1 =

(
ṙ
∂ṙ

∂r
+ θ̇

∂ṙ

∂θ

)
er +

(
rṙ
∂θ̇

∂r
+ θ̇2 ∂r

∂θ

)
eθ. (9.233)

Now use

∂θ̇

∂θ
=
∂θ̇

∂t

dt

dθ
=
θ̈

θ̇
, (9.234)

and similarly

∂θ̇

∂r
=
θ̈

ṙ
,

∂ṙ

∂θ
=
r̈

θ̇
, (9.235)

∂ṙ

∂r
=
r̈

ṙ
,

∂r

∂θ
=
ṙ

θ̇
. (9.236)

Inserting this into (9.233) gives

a1 = 2 r̈ er +
(
rθ̈ + ṙθ̇

)
eθ. (9.237)
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In total, the acceleration now is

atot = a + a1 = (3r̈ − rθ̇2)er + (2rθ̈ + 3ṙθ̇)eθ. (9.238)

This is a massive modification of (9.232). The latter is valid for mass point
dynamics only with v = v(t).

For evaluation of examples, the time dependence shall be eliminated. From
conservation of angular momentum L0 in Z direction follows

θ̇ =
L0

mr2
(9.239)

and

θ̈ =
dθ̇

dt
=
dr

dt

∂

∂r

(
L0

mr2

)
= −2 ṙ

L0

mr3
. (9.240)

Similarly:

ṙ =
∂r

∂θ
θ̇, (9.241)

r̈ =
d

dt

(
∂r

∂θ
θ̇

)
=

d

dt

(
∂r

∂θ

)
θ̇ +

∂r

∂θ
θ̈ =

dθ

dt

∂

∂θ

(
∂r

∂θ

)
θ̇ +

∂r

∂θ
θ̈ (9.242)

=
∂2r

∂θ2
θ̇2 +

∂r

∂θ
θ̈.

By inserting (9.239, 9.240), all quantities depend on θ and r only. For cylin-
drical coordinates it follows correspondingly:

Ż =
∂Z

∂θ
θ̇, (9.243)

Z̈ =
∂2Z

∂θ2
θ̇2 +

∂Z

∂θ
θ̈, (9.244)

∂Ż

∂θ
=
∂2Z

∂θ2
θ̇. (9.245)

All time derivatives have been brought into a form depending on θ and θ̇ which
is given by (9.239).

As a non-trivial example we consider a three-dimensional vortex field called
Torkado [31], see Fig. 9.14. This could also be a description for the dynamics of
the plasma model of galaxies. We concentrate on a streamline in the middle of
the structure which may be described by the analytical approach in cylindrical
coordinates (r, θ, Z):

r(θ) = 0.05 + cos

(
θ

10

)2

, (9.246)

Z(θ) = 2 sin

(
θ

5

)
, (9.247)
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For a plot in cartesian coordinates, the plane polar part is to be transformed
by

X = r cos(θ), (9.248)

Y = r sin(θ). (9.249)

In order to make the analysis not too complicated, we restrict it to the plane
polar parts of the acceleration as given in Eqs. (9.232, 9.233, 9.238). The
orbital quantities r(θ), Z(θ), ∂r/∂θ and ∂Z/∂θ are graphed in Fig. 9.15 in
dependence of θ. These are oscillatory as to be expected from (9.246, 9.247).
The time derivatives of r, θ and Z, calculated with aid of (9.240-9.245), are
essential where r is small due to conservation of angular momentum (Fig. 9.16).
The radial acceleration parts ar, a1r and its sum ar + a1r are presented in
Fig. 9.17, showing that the signs of ar and a1r are different, leading to zero
crossings in the sum of both. The angular part of a1 reflects the well known fact
that for a plane polar system aθ = 0, i.e. there is no angular force component.
This does not hold for a1θ.

The correct handling requires use of Eq. (8.337) of the preceding chapter
for describing the acceleration in 3D cylindrical coordinates. The result from
computer algebra is:

Dv

Dt
=
∂v

∂t
+ (v ·∇) v =

 r̈ − rθ̇2 + ∂ṙ
∂θ θ̇

rθ̈ + (r ∂θ̇∂θ + ∂r
∂θ θ̇)θ̇ + 3ṙθ̇

Z̈ + ∂Ż
∂θ θ̇

 . (9.250)

This can be re-expressed by

Dv

Dt
=

 r̈ − rθ̇2 + r̈
θ̇
θ̇

rθ̈ + (r θ̈
θ̇

+ ∂r
∂θ θ̇)θ̇ + 3ṙθ̇

∂2Z
∂θ2 θ̇

2 + ∂Z
∂θ θ̈ + ∂2Z

∂θ2 θ̈

 (9.251)

=

 2r̈ − rθ̇2

2rθ̈ + 4ṙθ̇
∂2Z
∂θ2 θ̇

2 + (∂Z∂θ + ∂2Z
∂θ2 )θ̈


where the derivatives of Z can be calculated from (9.247). This result is
different from the plane polar case as expected. The three components are
graphed in Fig. 9.18. There is qualitative similarity to Figs. 9.17 for the radial
component, it reflects both extremal points. The θ component surprisingly
vanishes again as for the plane polar system. Obviously there is no coupling to
the Z component that would prevent this. The Z component is antisymmetric
to the two radial peaks, indicating the lower and upper turning points of the
orbit.
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Figure 9.14: Structure of Torkado 3D orbit (vortex) after [31].

Figure 9.15: Angular dependence of r, Z, ∂r/∂θ, ∂r/∂Z.
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Figure 9.16: Scaled angular dependence of dr/dt, dθ/dt, dZ/dt.

Figure 9.17: Angular dependence of radial accelerations.
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Figure 9.18: Angular dependence of acceleration components for full cylindri-
cal coordinates.

9.2.3 New Force Law and Precession

An orbit in fluid dynamics spacetime is influenced by the vacuum according
to the spin connection terms introduced in Eqs. (9.184-9.187). In general the
acceleration a = F/m has a radial and an angular component which in the
case of a fluid dynamics spacetime is expressed by

a =

(
−MG

r2
+ Ω1

01

L

mr2

dr

dθ
+ Ω1

02

L

mr

)
er (9.252)

+

(
Ω2

01

L

mr2

dr

dθ
+ Ω2

02

L

mr

)
eθ

(see note 363(3)). Here we are using the classical limits

r =
α

1 + ε cos(θ)
, (9.253)

dr

dθ
=
εr2

α
sin(θ), (9.254)

ω = θ̇ =
L

mr2
. (9.255)

In the following we present graphical examples for the acceleration (or force)
components. Using the classical limits, the components of (9.252) can be
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expressed either as a function of r or a function of θ. We present both possi-
bilities in Figs. 9.19 and 9.20, blue and green lines. The Newtonian form can
be obtained by setting all spin connection components to zero. According to
Newtonian theory, then there is no angular component of acceleration as can
be seen from from both figures.

For the non-Newtonian case, we use the full form (9.252) for acceleration
with choice of spin connections:

Ω1
01 = 0.2, (9.256)

Ω1
02 = −0.2, (9.257)

Ω2
01 = 0.2, (9.258)

Ω2
02 = −0.2. (9.259)

In this case, both acceleration components are different from zero, denoted by
“P” in Figs. 9.19 and 9.20 (red and purple lines). These components are now
defined only in the range of the elliptic orbit and a bit more negative than in
the Newtonian case denote by “N”. The angular component varies with angle
θ as can seen from Fig. 9.20. The acceleration components are periodic in 2π
as required.

So far we have assumed an elliptic orbit even for the non-Newtonian case.
Actually it is a precessing ellipse as we have found from the solution of the
Lagrange equations obtained from the Lagrangian (9.211). We have assumed
that only Ω1

01 is significantly different from zero as in (9.215). Then we obtain
the equations of motion

θ̈ = −2ṙ θ̇

r
, (9.260)

r̈ =
r3 θ̇2 −GM

(Ω1
01 + 1)

2
r2
, (9.261)

which differ from the Newtonian form by the spin connection in the denomi-
nator of the second equation. These equations have been solved numerically
by using initial conditions of bound orbits. This gives the trajectories θ(t) and
r(t) as graphed in Fig. 9.21. The three-dimensional orbit plot shows that the
orbit is not closed but a precessing ellipse in the plane Z = 0, see Fig. 9.22.
Obviously the existence of one fluid dynamic spin connection term suffices to
result in non-Newtonian orbits. Alternatively, such precessing ellipses were
obtained in UFT 328 by relativistic effects. This was already discussed in
section 4.2.3 of this book.
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Figure 9.19: Acceleration components (Newtonian N and non-Newtonian P)
in dependence of r.

Figure 9.20: Acceleration components (Newtonian N and non-Newtonian P)
in dependence of θ.
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Figure 9.21: Trajectories θ(t) and r(t).

Figure 9.22: Precessing elliptic orbit due to fluid dynamics effects.
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Chapter 10

Unified Field Theory of the
Rainich Space:
Determining Properties of
Elementary Particles

10.1 Introduction

The well known numerical method of approximating differential quotients by
quotients of differences is used in a novel context. This method is commonly
underestimated, wrongly. The method is explained by an ordinary differen-
tial equation first. Then it is demonstrated how this simple method proves
successful for non-linear field equations with chaotic behaviour. Using cer-
tain discrete values of their integration constants, a behaviour comparable
with Mandelbrot sets is obtained. Instead of solving the differential equa-
tions directly, their convergence behaviour is analyzed. As an example the
Einstein-Maxwell equations are investigated, where discrete particle quan-
tities are obtained from a continuous theory, which is possible only by this
method. The special set of integration constants contains values identical
with particle characteristics. Known particle values are confirmed, and un-
known values can be predicted. In this paper, supposed neutrino masses are
presented.

In preceding work of Rainich [32, 33] and, later, Bruchholz [34, 35] the
geometry of electromagnetism has been determined by unifying electrodynam-
ics with Einstein’s theory of general relativity [36]. The Ricci tensor [37] is
constructed from the electromagnetic field in tensor representation. This ge-
ometry is conterminous with the geometry of the V4 of signature 2 in general.
The singularity problem arising from the equations of this geometry is solved
geometrically. The geometric equations are formulated numerically, i.e. as dif-
ference equations. The integration constants are parameters in corresponding
recursion formulae, and take on discrete values. Variation of the parameters
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leads to a characteristic convergence behaviour of the numerical equations.
There are points in the parameter space leading to minimal divergence that
are taken as their physically relevant values. – The physical significance of
these insights and results is obvious.

In section 10.2, the theory of the unified field is explained. In the third
section, the numerical method is described. This is applied in sections 10.5
and 10.6 with the parameters determined in section 10.4. The algorithms
are discussed in the sixth section, and some computational results are given
in section 10.7, in particular for the neutrino masses which have not been
determined by any other theoretical method to date. Section 10.8 draws some
conclusions.

10.2 The Equations

The theory is based on the relativistic tensor equations [34] of Riemannian
(non-Euclidean) geometry (quoted from [38]):

Rik = κ (
1

4
gikFabF

ab − FiaFka) , (10.1)

Fij,k + Fjk,i + Fki,j = 0 , (10.2)

F ia;a = 0 , (10.3)

in which gik are the components of metrics, Rik those of the Ricci tensor and
Fik those of the electromagnetic field tensor. κ is Einstein’s gravitation con-
stant. The partial derivative is denoted by a comma, the covariant derivative
by a semicolon. If we express the field tensor by a vector potential A with

Fik = Ai,k −Ak,i , (10.4)

equation (10.2) is identically fulfilled. Thus, we can base the calculations on
quantities having the character of potentials that are metrics and the electro-
magnetic vector potential.

These equations are known as Einstein-Maxwell equations. The energy-
momentum tensor of electrodynamics is equated to the energy-momentum ten-
sor of Einstein’s theory [36]. In detail, the homogeneous Maxwell equations
are used. Only these fulfill force equilibrium and conservation of energy and
momentum (mathematically expressed by the Bianchi identities, see also ap-
pendix). These equations describe physically the electrovacuum around a par-
ticle and involve geometry described by the Einstein part (equation (10.1))
of the equations. It is the geometry of the V4 of signature 2, also called space-
time, as long as we do not consider constant curvature (see [37]), which is
linearly superimposed with the fields.

These equations and the involved geometry were found by Rainich already
in the year 1924 [32,33]. Therefore, we will call the space-time Rainich space.
Bruchholz [34] derived this geometry independently of Rainich in a different
way traced out by Eisenhart [37], with the same result.
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The geometric equations yield only 10 independent equations for 14 com-
ponents gik, Ai, what means that the geometry respectively the field is not
completely determined. As well, it will be demonstrated that the omnipresent
quantization in physics has nothing to do with this indeterminacy. The quan-
tization is the consequence from chaotic behaviour of the geometric equations,
even also if we override the indeterminacy with additional conditions.

10.3 Explanation of the Numerical Method

For completeness of arguments we repeat in this section what was already
worked out in [38].

In direct numerical solutions of differential equations the differential quo-
tient is replaced by a quotient of finite differences. This leads to recursion rules
on the calculational grid. In the following we will derive a scheme of differences
which is suitable for the type of problems we will solve in section 10.6. We
consider a differential equation of the form

f ′′(x, cν) + F (x, f ′(x), cν) = 0 (10.5)

where F is a function of the derivative of the function f(x) to be found. F
and f depend on a set of constants cν . With difference quotients

∂f

∂x

∣∣∣
xn

=
fn+1 − fn−1

2 ∆x
(10.6)

and for the second derivative

∂2f

∂x2

∣∣∣
xn

=
fn+2 − 2fn + fn−2

(2 ∆x)2
(10.7)

we obtain a recursion formula for the discrete function value of f at xn+2:

fn+2 = 2fn − fn−2 − (2 ∆x)2Fn(cν) (10.8)

or, rewritten,

f(x+2 ∆x) = 2f(x)−f(x−2 ∆x)−(2 ∆x)2F (x−∆x, x, x+∆x, cν) . (10.9)

We have chosen a difference of two grid points for the second derivative
in order to obtain a simple recursion formula. The parameters cν denote the
integration constants of the differential equations and are part of the initial
conditions. The latter are obtained from appropriate approximations of f in
the initial range of x. For real-valued x and cν this iteration formula is able
to behave in a chaotic manner, in dependence of the parameters cν . These re-
sults can be generalized for systems of partial differential equations with many
variables. In definition regions where the functions have diverging solutions,
we obtain a map of the “degree of divergence” which can be graphed in a plane
if we have two parameters c1 and c2 for example. All this is in analogy to the
well known Mandelbrot sets familiar from chaos theory [39,40].
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We shall see from the Einstein-Maxwell equations that different values
of the integration constants (as parameters) lead to a varying divergence be-
haviour. While f immediately diverges in most cases, there are discrete values
of the parameters c where f diverges at a relatively sharply defined x value
which stands for the radius here. (Further details are given in section 10.6.)
These special values of the parameters perform a special set leading to a kind of
“semi-stable” solutions of f . – In practice, this behaviour will be smeared over
due to rounding errors. (Otherwise, we would not find the relevant discrete
values.)

10.4 Determination of the Parameters

Differential equations of the discussed type result with first approximation in
wave equations

�f = 0 . (10.10)

The integration constants from the wave equations are the parameters of the
corresponding recursion formulae, named in section 10.3. It is detailedly ex-
plained in [35] how to compare the wave equations with corresponding Poisson
equations, which have an additional source term. The integration constants of
the wave equations then replace the sources of the Poisson equations. Con-
crete terms for the Einstein-Maxwell equations can be seen in section 10.6.

10.5 The Singularity Problem and its Solution

According to a theorem of Einstein and Pauli [41], analytic solutions of equa-
tions (10.1,10.3,10.4) lead commonly to singularities. There are two types of
singularities. The first type is a singularity inferred by assuming for exam-
ple point masses and point charges in order to simplify the equations so that
analytical solutions are feasible. This is often considered as a deficit when
comparing a calculation with the situation in reality. However, in our cal-
culations, these formal singularities are placed into the inner of the particle
(according to observer’s coordinates) which is not subject of calculation. The
reason is as follows:
The observer uses coordinates in a tangent (asymptotic) space around the
particle (with the singularity). The coordinates of the observer are projected
onto the Rainich space around the particle. We have a physically irrelevant
region where this projection is not possible. The physically irrelevant regions
are “behind” a geometric limit, which is the limit for this projection. Geo-
metric limit means, at least one physical metrical component (explained in
section 10.6) takes on an absolute value of 1. With spherical coordinates, the
formal singularity is at the centre.

The basic idea of calculation is as follows. The equations (10.1,10.3,10.4)
are evaluated on a radial grid from outer to inner and so one approaches the
unknown inner area successively. At a certain radius, the calculation starts to
diverge because the central singularity becomes predominant. It is important
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to notice that this radius of divergence is clearly separated from the central
singularity so a second type of singularity here appears. Eckardt called
the second type a “numerical singularity” [38]. Schmutzer told that the
(formal) singularity is displaced due to the chaos in the recursion formulae 1.
However, also the numerical singularity is always “behind” the geometric limit
and, therefore, in the physically irrelevant region. – So neither the numerical
singularity nor the formal singularity are a problem for geometric equations.
The geometric limit will be revealed to be a boundary at the conjectural par-
ticle radius with numerical simulations according to the Einstein-Maxwell
equations.

The geometric limit is the mathematical reason for the existence of discrete
“semi-stable” (explained in section 10.3) solutions. Here a mix from chaos (see
[35] and previous sections) and marginal-problems is acting. – These discrete
solutions involve discrete values of the integration constants, which are also
called eigenvalues in context with the marginal-problems. We shall see that the
Rainich space is able to produce such eigenvalues, and that the eigenvalues
represent a set identical with the entirety of the particle characteristics.

10.6 Numerical Simulations

In order to gain eigenvalues, one has to do lots of tests, because the particle
quantities are integration constants and have to be inserted into the initial
conditions (for more details see [35]), which are defined for the electrovacuum
around the particle.

As already mentioned, the basis for computations are equa-
tions (10.1,10.3,10.4). For the sake of simplicity, we restrict equations
(10.1,10.3,10.4) to time independence and rotational symmetry. That results,
with spherical coordinates

x1 = r , x2 = ϑ , x3 = ϕ , x4 = jct ,

in 6 independent equations for 8 components with character of a potential,
A3, A4, g11, g12, g22, g33, g34, g44, the other vanish. In order to override the
indeterminacy by the two missing equations, we define

g12 = 0 (and, consequently, g12 = 0) (10.11)

and

g = det|gik| = r4 sin2 ϑ . (10.12)

These conditions are arbitrary, in which the second is taken from the free-field
Minkowski metric. They are in combination leading to reasonable results.
Important to notice: The integration constants do not change with arbitrary
conditions like equations (10.11), (10.12).

The integration constants from equations (10.1,10.3,10.4) result from a se-
ries expansion. The first coefficients of expansion are the input for the simula-
tions and are inserted into the initial conditions [35]. The output is the number

1private information by Ernst Schmutzer, formerly Univ. Jena
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of grid points along the radius until divergence occurs, which is a measure for
the stability of the solution.

The first coefficients (integration constants) are

c1 = − κ m

4π
=⇒ κ m

4π
(10.13)

(mass),

c2 = j
κ s

4πc
=⇒ κ s

4πc
(10.14)

(spin),

c3 = −j µ◦
1
2 Q

4π
=⇒ κ

1
2 µ◦

1
2 Q

4π
(10.15)

(charge), and

c4 = − ε◦
1
2 M

4π
=⇒ κ

1
2 ε◦

1
2 M

4π
(10.16)

(magnetic moment).
As explained, these follow from a comparison of series expansion from the
Einstein-Maxwell equations (homogeneous Maxwell equations) with
the solutions of corresponding inhomogeneous equations, see [35]. The
dimensionless terms after the arrow are taken for computation, and have
positive values. The imaginary unit has been eliminated. The unit radius
(r = 1) corresponds to 10−15m. By this, the initial conditions become, using
T = π

2 − ϑ,

g11 = 1 +
c1
r
− 1

2
(
c3
r

)2 +
( c4r2 )2(1 + cos2 T )

10
, (10.17)

g22 = r2{1 + (
c4
r2

)2(
1

3
cos2 T − 3

10
)} , (10.18)

g33 = r2 cos2 T{1 + (
c4
r2

)2(
cos2 T

15
− 3

10
)} , (10.19)

g44 = 1− c1
r

+
1

2
{(c3
r

)2 + (
c4
r2

)2 sin2 T} , (10.20)

g34 = r cos2 T (
c2
r2
− 1

2

c3c4
r3

) , (10.21)

A3 = r cos2 T
c4
r2

, (10.22)

A4 =
c3
r
. (10.23)

The physically relevant parts of the metrical components are called physical
metric components. These are the complement to unity in equations (10.17-
10.20). Denoting the complements by g(11) etc. the above equations read

g11 = 1 + g(11) , (10.24)

g22 = r2 (1 + g(22)) , (10.25)

g33 = r2 sin2 ϑ (1 + g(33)) , (10.26)

g44 = 1 + g(44) . (10.27)
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The physical metric components have a magnitude of ca 10−40 or smaller at the
unit radius. Since several components contain unities, the physical components
would have no effect due to lack of numerical precision during computation.
Therefore, the actual computation is done with quantities performed from
these physical components, with the consequence that the unity summands in
the equations are eliminated.

We have to insert the values of the integration constants into the modified
initial conditions (with physical components), see program in the data
package (available at the author’s website2). The conversion of physical into
normalized (dimensionless) values and vice versa is described in detail in [35].
Table 10.1 shows some values with radius unit of 10−15m. These examples
allow for convenient conversion.

physical value norm. value

proton mass 1.672 × 10−24g 2.48 × 10−39

electr. mass 0.911 × 10−27g 1.35 × 10−42

~ 1.054 × 10−27cm2g/s 5.20 × 10−40

elem. charge 1.602 × 10−19As 1.95 × 10−21

µB 1.165 × 10−27Vs cm 3.70 × 10−19

Table 10.1: Physical and normalized values for conversion.

Higher moments are missing in the equations because of lack of knowledge,
their influence is estimated to be rather small. In the results section we will
insert known values and values deviating from them, and compare the results.

The algorithm for evaluating the equations requires numerical differentia-
tion. We do this by separating the quantity with highest radius index at the
left-hand side as described in section 10.3. All previously evaluated quantities
are at the right-hand side. These quantities come from equations (10.1) and
(10.3) using (10.4). For example when we calculate spherical shells from out-
side to inside, the new quantity is fm+2,n. In the following difference equations
f stands for any potential-like quantity:

∂f

∂r

∣∣∣
rm,Tn

=
fm−1,n − fm+1,n

2 ∆r
, (10.28)

∂2f

∂r2

∣∣∣
rm,Tn

=
fm+2,n − 2fm,n + fm−2,n

(2 ∆r)2
, (10.29)

∂f

∂T

∣∣∣
rm,Tn

=
fm,n+1 − fm,n−1

2 ∆T
, (10.30)

∂2f

∂T 2

∣∣∣
rm,Tn

=
fm,n+1 − 2fm,n + fm,n−1

∆T 2
. (10.31)

2http://www.bruchholz-acoustics.de/physics/neutrino data.tar.gz
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¿From equation (10.29), and secondarily from equations (10.28), (10.30),
(10.31), we obtain recursion formulae of the kind

fm+2,n = 2fm,n − fm−2,n − (2 ∆r)2Fm,n(cν) , (10.32)

see also section 10.3. The Fm,n are very complex, and contain the non-
linearities of the Einstein-Maxwell equations. Detailed formulae are avail-
able in the Pascal code (see author’s web site above). This method is made
possible by the fact that 2nd derivatives in the tensor equations appear always
linearly. Therefore the doubled difference in equation (10.29) was introduced.

When the program runs, the values of the several components are succes-
sively quantified in one spherical shell after the other. The computation is
done for all components along the inclination (ϑ values) at a given radius, and
along the radius (with all inclination values) from outside to inside step by
step until geometric limits are reached. After starting the procedure, we get
the values as expected from the initial conditions. Suddenly, the values grow
over all limits. At this point geometric limits are reached and the calculation
is stopped.

The step count (number of iterations) up to the first geometric limit of
a metrical component (where the absolute value of the “physical” component
becomes unity) depends on the inserted values of the integration constants.
A relatively coarse grid reflects strong dependencies, however, the referring
values of the integration constants are imprecise. Computations with finer grid
lead to smaller contrast of the step counts, but the values are more precise.

The resulting eigenvalues of the integration constants are obtained where
the step count until divergence is at maximum. Round-off errors have to be
respected because these can be in the order of step count differences for the
formulae.

In order to see the eigenvalues, lots of tests were run with parameters more
and less deviating from reference values. The output parameter (used for the
plots discussed in the results section) is the mentioned step count. In order to
make visible the differences, the step count above a “threshold” is depicted in
resulting figures by a more or less fat “point”.

Though neutrinos are uncharged, one has to use always the full Einstein-
Maxwell equations (with zero charge and magnetic moments) to account for
the inherent non-linearity. Because the information is in the entire field outside
the geometric boundary, one has to do so even if charge and magnetic moment
are zero. Higher moments exist anyway and are included in the calculation.
Only in the (outer) initial conditions (when starting the calculations) they are
neglected.

10.7 Computational Results

10.7.1 Spins, Electric Charges, Magnetic Moments

Tests including parameters different from mass had to be run with an initial
radius close to the conjectural particle radius. Here, the influences of the four
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relevant parameters onto the metric (about 10−40) are comparable.

The best result has been achieved with the free electron, see [35]. The
magnetic moment of the electron arises specially sharply, due to the dominant
influence.

Unfortunately, the mass gets lost in the “noise” from rounding errors. Only
cases with charge and mass together can be made visible in exceptional cases,
see for example [35,42].

10.7.2 Masses

Masses of nuclei

The influence of mass on metrics prevails in a certain distance from the
conjectural particle or nucleus radius, respectively. It proves being possible to
set the remaining parameters to zero. Figs. 10.1 and 10.2 show related tests,
with possible assignment of maxima in the figures to nuclei [42].

It was necessary in the tests according to Figs. 10.1, 10.2 to “pile up” the
data. For this purpose, several test series with slightly different parameters
(mostly initial radius) have been run, and the related step counts (the out-
put) have been added. So the “noise” from rounding errors is successively
suppressed. With 80 bit floating point registers, the rounding error is in the
20th decimal. As well, the relative deviation of difference quotients from re-
lated differential quotients in the first step is roughly 10−20 – that is the limit,
where the onset of chaotic behaviour can be seen. Consequently, simulations
with only 64 bit (double) lead to no meaningful results.

One can see certain patterns in the figures, which could arise from errors
by neglecting other parameters.

Masses of leptons

It is principally possible to deduce the masses of all free particles, if they are
stable to some extent. Since the electron mass is relatively small, one needs an
initial radius of about 4× 10−13 m in order to be able to neglect the influence
of spin, charge, magnetic moment to some extent, see Fig. 10.3 [38]. One step
count maximum (piled) appears fairly correctly at the experimental value,
flanked by adjoining maxima, possibly caused by the neglected parameters.

The success in detecting known masses gives us confidence for trying a pre-
diction of neutrino masses. That implies that neutrinos are stationary parti-
cles, i.e. have rest mass at all. Then they can never reach light speed.

The Particle Data Group [43] commented in the year 2002:
There is now compelling evidence that neutrinos have nonzero mass from the
observation of neutrino flavor change, both from the study of atmospheric
neutrino fluxes by SuperKamiokande, and from the combined study of so-
lar neutrino cross sections by SNO (charged and neutral currents) and Su-
perKamiokande (elastic scattering).

The neutrino has the advantage of being electromagnetically neutral. As
well, the spin does not perceptibly influence other components of metrics than
those for the spin itself. So we can unscrupulously neglect the spin, and search
for quite tiny masses.
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Quoting the Particle Data Group (in 2002) again [43]:
Mass3 m < 3 eV.
Interpretation of tritium beta decay experiments is complicated by anomalies
near the endpoint, and the limits are not without ambiguity.
Newer experiments re-verify this ambiguity, just providing multiple mass
bounds.

Ten plausible maxima have been found in our calculations for the electron
neutrino, see Figs. 10.4, 10.5, 10.6, 10.7, 10.8, (quoted from [38]) and the sup-
plementary data. Obtained values are 0.068 eV, 0.095 eV, 0.155 eV, 0.25 eV,
0.31 eV, 0.39 eV, 0.56 eV, 1.63 eV, 2.88 eV, 5.7 eV. Smaller values are less con-
vincing.

The mentioned ambiguity gets along with the fact that multiple mass values
have been detected. It could be possible that the set of values is reduced by
computation with spin. The precision with 80 bit registers is not sufficient
for such calculations. However, it could well be possible interpreting some
values as composites from smaller values. Here we could have comparable
circumstances like in nuclei so that there is no reason for the assumption that
only one value can exist. This conclusion is supported by multiple experimental
mass bound values.

Many mass values are integer multiples of ∼ 0.08 eV, within the tolerances
of the method. At the place of this value there is a hole in the figure, flanked
by maxima at 0.068 eV and 0.095 eV. This could be:
1) a methodical error, or an effect of overdriving, known from electrical engi-
neering,
2) both values are a kind of basic values, where the other values are composites
from.
Other interpretations cannot be precluded.

10.8 Conclusion

It has been shown in this paper that the singularity problem is irrelevant for
geometric equations, just for those of the Rainich space, the known Einstein-
Maxwell equations. So these equations can be numerically solved. Even
more, the discrete values of particle quantities, for example neutrino masses,
can be predicted by numerical calculations based on Einstein-Maxwell the-
ory. Starting from a finite difference scheme for differential equations, chaos
properties of these equations were investigated in dependence of parameters
being integration constants of the theory.

The resulting masses for supposed electron neutrinos come out to lie in
the range being known by experiments. This is probably the first time that
neutrino masses are predicted by a theory based on first principles.
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masses according to the described numerical method. Also, he reported the
state of experimental neutrino research.

Appendix: Basic Formulae of General Relativity

The tensor calculus is a lot more clear than conventional vector analysis so
that the formalism of the general theory of relativity [36] is reduced to few
formulae:
The Bianchi identities [37]

(Rki −
1

2
Rδki );k = 0

are always fulfilled by

Rik = 0 .

Therefore, only 6 independent equations exist for 10 components gik . If we
set (Einstein and Grossmann [36])

Rik −
1

2
Rgik = −κTik ,

the divergences of the energy tensor must vanish

T ki ;k = 0 ,

as dictated by nature. For the variables in the energy tensor, separate condi-
tions follow, which do not take the place of the lacking conditions in metrics.

The divergences of the energy tensor of distributed mass

T ik = σ
dxi

ds

dxk

ds

with the mass density σ are

T ik;k = σki

with the (space-like) curvature vector k. One can see the equivalence prin-
ciple [36] in the curvature vector, because the curvature vector consists of
accelerated motion and the gravitational field. - Since the curvature vector of
any time-like curve in space-time is different from zero in general, σ must be
zero everywhere. Distributed mass does not exist.

There is an exception when we start from discrete masses (which can only
be integration constants). The force onto a body with the mass m then were

Ki = mki .

For force equilibrium it must be ki = 0 . That results in four equations of
motion. The curve described by the body in space-time is a geodesic.
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The electromagnetic energy tensor (Lorentz, see Einstein [36])

Tik = FiaFk
a − 1

4
gikFabF

ab

would result in a force density (Lorentz force)

T ik;k = F iaS
a ,

i. e. S must be zero. That means, there are no distributed charges and currents.
Discrete charges are analogous to discrete masses. Equations of motions result
together with the mass (the curves are no geodesics then).

From this we see:
1) Complete determinacy is not given.
2) There are no distributed charges and masses (sources).
3) Only the electromagnetic energy tensor is applicable in Einstein’s gravi-
tational equation.
4) In order to calculate fields (gravitational and electromagnetic), we have to
deal with integration constants instead of sources.

Figure 10.1: Tests for nuclei with mass numbers up to 8. Initial radius 4, 400
values, 4 times piled (1600 tests).

Figure 10.2: Tests for nuclei with mass numbers from 8 to 16. Initial radius
5, 400 values, 5 times piled (2000 tests).
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Figure 10.3: Tests for the free electron. Initial radius 400, 51 values, 9 times
piled (459 tests).

Figure 10.4: Tests for the electron neutrino, masses < 0.11 eV. Initial radius
5, 100 values, 9 times piled (900 tests).

Figure 10.5: Tests for the electron neutrino, masses < 0.4 eV. Initial radius 5,
100 values, 9 times piled (900 tests).
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Figure 10.6: Tests for the electron neutrino, masses < 1 eV. Initial radius 5,
99 values, 9 times piled (891 tests).

Figure 10.7: Tests for the electron neutrino, masses < 4 eV. Initial radius 5,
99 values, 9 times piled (891 tests).
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Figure 10.8: Tests for the electron neutrino, masses < 11 eV. Initial radius 5,
100 values, 9 times piled (900 tests).
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Chapter 11

Kirchhoff’s Law of Thermal
Emission and its
Consequences for
Astronomy, Astrophysics
and Cosmology

11.1 Introduction

Kirchhoff’s Law of Thermal Emission is a pillar of modern physics. In assum-
ing its validity Max Planck went on to obtain his famous equation for thermal
spectra, wherein he introduced the quantum of action. Quantum mechanics
was then born, and the theoretical physics of thermal emission and beyond,
fixed to universality of Planck’s equation. By this universality, Planck’s equa-
tion has been widely applied in physics and astronomy. Astronomers report
the temperature of the Sun’s photosphere at ≈5,800 K by means of Planck’s
equation. Cosmologists insist that there is an isotropic Cosmic Microwave
Background Radiation pervading the universe, left over from a big bang cre-
ation event, having a blackbody spectrum (i.e. a planckian distribution of
frequencies) at a temperature of ≈2.725 K. Astronomy and astrophysics apply
universality of Planck’s equation everywhere.

Planck’s equation is his answer to the riddle of ‘blackbody radiation’, be-
cause it was upon black materials such as lampblack (i.e. soot) that Kirchhoff
constructed his Law. Nonetheless, Kirchhoff permitted his Law to encompass
not just black materials such as soot, but any opaque solid material. Planck’s
equation similarly came to hold within its ambit a vast array of solid materials
other than carbon, gases, gaseous plasmas, quark-gluon plasmas, and various
clouds of exotic particles that existed, according to big bang cosmology, in the
first 400,000 years of the big bang universe, which created itself from noth-
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ing [44]. According to this theory, time, being a component of the Universe,
did not exist before the big bang, because nothing existed before the big bang.
The big bang delivered existence itself. Cosmology therefore ‘counts time’
from zero at the big bang.

Yet Planck’s equation remains without a firm connexion to physical pro-
cesses, for its ætiology is largely unknown. As Robitaille [45] has emphasised,

“In processes where light is emitted, there are five aspects to
consider: 1) the physical setting, 2) separate energy levels created
in this setting, 3) a transition species which will make use of these
energy levels, 4) the production of a photon, and 5) an equation.
For instance, for Lyman-α radiation these correspond to 1) the
hydrogen atom, 2) the two electronic orbitals involved in the tran-
sition, principle quantum numbers N=2 and N=1, 3) the electron
as the transition species, 4) the Lyman-α emission at 1216Å, and
5) the Rydberg formula. Alternatively, in speaking of the proton
nuclear magnetic resonance line from water, these correspond to
1) the hydrogen atoms of the water molecules placed in a magnetic
field, 2) the hydrogen nuclear spin up or spin down states, 3) the
hydrogen nuclear spin as a transition species, 4) the hydrogen line
at 4.85 ppm, and 5) the Larmor equation. Analogous entries can
be made for any spectroscopic process in physics, with the exception
of blackbody radiation. In that case, only the 4th and 5th entries
are known: 4) the nature of the light and 5) Planck’s equation.”

The fundamental physics of thermal emission was established by the Scot-
tish experimental physicist Balfour Stewart, who, in 1858, published the Law
of Equivalence (i.e. Stewart’s Law), which states that at thermal equilibrium
radiative emission equals radiative absorption:

“The absorption of a plate equals its radiation, and that for
every description of heat.” [46, §19]

“That the absorption of a particle is equal to its radiation, and
that for every description of heat.” [46, §33]

Thus, at thermal equilibrium, the thermal energy absorbed by a material is
equal to the thermal energy it emits.

In 1859, Kirchhoff [47] published his Law of Thermal Emission, which incor-
porated Stewart’s Law. Although Kirchhoff was well aware of Stewart’s work
and publications, he did not cite him. This led to some acrimony between the
two scientists. Moreover, Kirchhoff, using theory alone, went well beyond ex-
perimental findings, for Kirchhoff attributed to all opaque solids the universal
property of ‘blackbody radiation’; the radiation being dependent only upon
the emitter’s temperature, at thermal equilibrium. Kirchhoff thereby made all
opaque solid materials blackbodies. It is this property that Planck embraced
and which became a canon of theoretical physics, in the form of his equa-
tion for thermal spectra. Astronomy and cosmology subsequently did away
with opaque solids and enclosures in order to admit free and bound gases and
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clouds of exotic particles into the blackbody fold, and finally became lax with
the requirement of thermal equilibrium. In these ways cosmology has built its
theoretical basis, not just upon Einstein’s General Theory of Relativity, but
even more so upon thermal emission. Without Kirchhoff’s Law of Thermal
Emission and universality of Planck’s equation cosmology and astronomy are
without firm foundations. It is therefore essential to ensure that the physics of
thermal emission is correctly employed. Unfortunately, cosmology and astron-
omy have failed to do so, violating the physics of thermal emission at every
turn, invoking ad hoc unrealistic processes and a swag of new particles ad
arbitrium in their endeavours to shore up a theory that has become another
canon to be maintained despite the evidence.

11.2 Kirchhoff’s Law of Thermal Emission
(Blackbody Radiation)

One is hard-pressed to find the correct statement of Kirchhoff’s Law of Thermal
Emission in textbooks and scientific papers. The best source of Kirchhoff’s
Law of Thermal Emission is Kirchhoff himself [48, §16]:

“If a space be entirely surrounded by bodies of the same tem-
perature, so that no rays can penetrate through them, every pencil
in the interior of the space must be so constituted, in regard to its
quality and intensity, as if it had proceeded from a perfectly black
body of the same temperature, and must therefore be independent
of the form and nature of the bodies, being determined by the tem-
perature alone . . . In the interior therefore of an opake red-hot body
of any temperature, the illumination is always the same, whatever
be the constitution of the body in other respects.”

Fig. 11.1 depicts three hollow enclosures: a box made of granite, a sphere
made of carbon, and a pyramid made of highly polished silver. If a small hole
be made in each so that the radiation within can be sampled from outside
when all three cavities are at the same temperature, according to Kirchhoff,
the radiation is the same from all three cavities, as if they were all made of
carbon or lined with soot, since the nature and form of the cavity walls is
irrelevant to the radiation field within them.

The setting of Kirchhoff’s Law of Thermal Emission is an opaque solid cav-
ity at thermal equilibrium. Planck’s equation for thermal spectra was forged
upon this setting. For Kirchhoff and Planck the nature and form of an arbi-
trary cavity at thermal equilibrium is irrelevant to the radiation it contains.
Their cavities all behave as if they were lined with lampblack at the same tem-
perature. Thus, all thermally equilibrated cavity radiation is black, even the
theoretical cavity made from a perfect reflector. This is the essential feature of
Kirchhoff’s Law and the basis for universality of Planck’s equation. The only
restriction on cavity form is that it must be large enough so that the effects of
diffraction are unimportant. In addition, when conduction or convection are
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Figure 11.1: Hollow objects: a granite box, a carbon sphere, and a highly polished
silver pyramid. By Kirchhoff’s Law of Thermal Emission, when all three cavities are
at the same temperature, the radiation field within them is always the same: that of
blackbody radiation: irrespective of the nature and form of the cavity, as if all were
made of carbon.

present, materials responding under their influence cannot ever be blackbod-
ies [49, 50]. A blackbody can maintain thermal equilibrium only by radiative
means.

“For the heat of the body depends only on heat radiation, since,
on account of the uniformity in temperature, no conduction of heat
takes place.” [50]

To these cavities arcanum Kirchhoff attached what he thought to be a
profound physical property: that the (black) radiation therein is a function
of only temperature and frequency. This relation subsumes Stewart’s Law of
Equivalence.

“The ratio between the emissive power and the absorptive power
is the same for all bodies at the same temperature . . . ” [48, §3]

Kirchhoff rendered this relation mathematically as,

E

A
= e, (1)

where he called E ‘emissive power’, A ‘absorptive power’, and e is an unknown
universal function of only temperature T and frequency ν, for all cavities
constucted from opaque solid materials, irrespective of their nature and form.
Finally he set A = 1 so that E = e acquires the mysterious property of
universality, because neither E nor e are unity. The elucidation of the universal
function e Kirchhoff believed to be of great scientific importance. It was Planck
who finally gave e a definite form. However, when A = 0 Kirchhoff’s universal
function is undefined, and his terminology is otherwise confounding. In modern
notation Kirchhoff’s ‘universal function’ is given by,

Eν
αν

= f (T, ν) , (2)

where Eν is emissive power, αν is the unitless absorptivity, and e = f (T, ν)
[49].
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In 1901 Max Planck [53] adduced his equation for blackbody radiation. He
elaborated on it in his book in 1914 [50]. The spectral density u of radiation
is given by [50]:

u =
8πhν3

c3
1

ehν/kT − 1
, (3)

where c is the speed of light, T the temperature, ν the frequency, h Planck’s
constant, and k Boltzmann’s constant; all being quantities independent of the
nature and form of the cavity.

Furthermore, Planck [50, §10], contrary to Kirchhoff’s thesis and the exper-
imental facts, permitted even transmissive solids to be blackbodies, by means
of their ‘thickness’:

“. . . the blackbody must have a certain minimum thickness de-
pending on its absorbing power, in order to insure that the rays
after passing into the body shall not be able to leave it again at a
different point of the surface. The more absorbing a body is, the
smaller the value of this minimum thickness, while in the case of
bodies with vanishingly small absorbing power only a layer of infi-
nite thickness may be regarded as black.”

Yet the absorptivity of any material is not a function of thickness. Kirchhoff
[48, §2] argued that only the surfaces of materials absorb and emit radiation:

“This investigation will be much simplified if we imagine the
enclosure to be composed, wholly or in great part, of bodies which,
for infinitely small thickness, completely absorb all rays which fall
upon them.”

Physically speaking, there can be no narrower layer of a material than an
atomic layer. In pure geometry a surface has no thickness at all because a
geometric surface is 2-dimensional. Purely geometric surfaces cannot absorb
or emit radiation, because they are not physical. Moreover, real materials are
not all black, not because they are not sufficiently thick, but because they
possess reflection, which occurs at their surfaces. This includes the ‘perfect
reflector’, which can only reflect, as its absorbing and emitting powers are
naught. The perfect absorber (i.e. a blackbody) is opaque and absorbs all
incident radiation at its surface because its reflective power is naught.

There has never been a theoretical or experimental proof of Kirchhoff’s
Law of Thermal Emission. Kirchhoff formulated his Law from theorising alone.
Planck’s theoretical proof of Kirchhoff’s Law does not hold because, ironically,
he violated the physics of thermal emission and of optics [49]. Moreover, there
has always been ample experimental evidence that Kirchhoff’s Law is false,
since if it was true, then resonant cavities would not exist because all cavities
at thermal equilibrium would be blackbodies, incapable of producing standing
waves. Conversely, if standing waves are present within a cavity, the radiation
is not black. Resonant devices and associated microwave technologies attest
to the falsity of Kirchhoff’s Law.

Although the details of the mechanism of thermal emission are unknown,
as already pointed out in §1 above, it is known that thermal emission requires

331



11.2. KIRCHHOFF’S LAW OF THERMAL EMISSION (BLACKBODY . . .

a lattice [54]. Only condensed matter possesses a lattice. Gases do not have
a lattice structure. Consequently, gases do not emit a planckian spectrum.
Gases emit generally in narrow bands, as shown for hydrogen gas in Fig. 11.2.

Figure 11.2: The spectrum of hydrogen gas is not continuous. Gases do not possess
a lattice.

The blackbody spectrum is a continuous spectrum. Astronomy and cos-
mology nonetheless invoke blackbody spectra for the Sun and stars modelled
as balls of hot gaseous plasma, and for the so-called ‘Cosmic Microwave Back-
ground’ (CMB). Statistical mechanics treats a ‘photon gas’ within a thermally
equilibrated cavity as a blackbody spectrum, by assuming a priori that the
material nature of the enclosure is irrelevant [55, §9.2]. This necessarily leads
to universality of Planck’s equation by the logical fallacy of petitio principii. A
general equation for thermal spectra must account for the material nature of
the enclosure. Physics has not ascertained such an equation. Planck’s equation
strictly pertains only to a blackbody in the setting of thermally equilibrated
cavities. Otherwise, any temperature obtained from Planck’s equation is, in
general, uncertain.

When investigating cavity radiation Kirchhoff and Planck permitted all
the energy in the walls thereof to be available to thermal emission. Pumping
heat into these walls causes them to increase their temperature and this heat
Kirchhoff and Planck made immediately available to exchange with the cavity
radiation. In doing so they instantly made all cavities black because soot es-
sentially has this property. Moreover, this is the reason why their cavities are
independent of the nature of the walls. At thermal equilibrium the radiation
density of any cavity is the same as if the cavity was made of or lined with car-
bon. The only difference between the views of Kirchhoff and Planck is that the
latter permitted cavities made from transmissive solids, subject to ‘thickness’,
whereas the former maintained that only the surface of an opaque solid emits
and absorbs thermal radiation; a physical ‘surface’ being very thin. Planck’s
‘thickness’ argument has no basis in physical reality, as the experiments of
Stewart and Kirchhoff himself attest. Indeed, to this day there is no evidence
whatsoever for Planck’s ‘thickness’ hypothesis. Transmissive materials are not
black, not because they are not very thick, or ‘infinitely thick’, but because
they have low emissivity. In the case of the perfect reflector, it cannot produce
blackbody cavity radiation because it has an emissivity of zero - it cannot emit
any thermal radiation within a cavity of otherwise. Radiation from a perfect
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reflector is entirely reflected radiation. In relation to the ‘Cosmic Microwave
Background Radiation’ which he calls “a diffuse background of radio static
left over from near the beginning of the universe”, Weinberg [56] repeats the
fundamental error in the usual fashion:

“Inside a box with opaque walls, the intensity of the radio noise
at any given wavelength depends only on the temperature of the
walls - the higher the temperature, the more intense the static.”

Real materials possess reflectivity. By failing to understand reflectivity,
thereby neglecting it entirely, Kirchhoff and Planck incorrectly made all cav-
ities black. If ρ is reflectivity and ε is emissivity, then for opaque materials
ε + ρ = 1: the total thermal energy issuing from a material surface is a com-
bination of that which is emitted and that which is reflected. A receiver of
this radiation cannot discern which part is due to emission and which due to
reflection, without knowing beforehand the nature of the material involved. In
the case of a blackbody, ρ = 0, so its emissivity is 1. In the case of a perfect
reflector, ρ = 1, so its emissivity is 0. All other opaque materials lie within
the given range subject to the constraint ε + ρ = 1. When heat is injected
into the walls of an arbitrary cavity, the temperature of the walls rises, but
not all of this energy is convertible to the thermal radiation field. In general,
there is always energy within the walls of a thermally equilibrated cavity that
is not available to exchange with the emission field inside the cavity. Ener-
getic degrees of freedom exist within the walls which are not coupled to one
another. Consequently, the radiation field within an arbitrary thermally equi-
librated cavity does not report the true temperature of the cavity walls; only
an apparent temperature. Nuclear Magnetic Resonance (NMR) and Magnetic
Resonance Imaging (MRI) are thermal processes. For this very reason Felix
Bloch called T1 the ‘thermal relaxation constant’. Nonetheless, physics since
Bloch has forgotten this, and astronomy and cosmology have never realised
this. Robitaille [57] has made the fact stark - if Kirchhoff’s Law of Ther-
mal Emission is true, then MRI would be impossible. But MRI exists and is
used in medicine every day. NMR and MRI are facilitated by means of spin-
lattice relaxation, from which it follows that there is energy within the walls
of an arbitrary cavity that is not available to thermal emission. The clinical
existence of MRI is proof alone that Kirchhoff’s Law of Thermal Emission
has always been false. Consequently, Planck’s equation is not universal. But
without Kirchhoff’s ‘Law’, and hence the universality of Planck’s equation,
big bang cosmology is invalidated in one stroke, without any need to consider
the mathematical obfuscations of Einstein’s General Theory of Relativity. Big
bang cosmology is a product entire of General Relativity. It follows that Ein-
stein’s is a theory built upon sand. The properties of energy are the downfall
of the General Theory of Relativity, for not only does it, in one way or another,
invoke violations of the physics of thermal emission, it also violates the usual
conservation of energy and momentum for a closed system [58–60]; thereby
in conflict with a vast array of experiments. Moreover, Robitaille [61, 62] has
proven by means of a simple experiment that Kirchhoff’s Law of Thermal
Emission is certainly false.
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Thermal spectra do not in general reveal the temperature of the emitter
[49]. Only in the case of a known black solid, such as soot or graphite, at
thermal equilibrium within a cavity, is the temperature certain. All other
temperatures extracted from thermal spectra are uncertain - they are only
apparent temperatures. The Sun is a case in point. Solar scientists report
that the photosphere has a temperature of about 5,800 K [63], from the Sun’s
‘blackbody spectrum’. But the Sun is not within an enclosure and is not
in thermal equilibrium with an enclosure. Although the solar spectrum has
a planckian distribution, it is not a blackbody spectrum. The temperature
extracted from the solar spectrum is therefore only apparent. To appear to
have a temperature of 5,800 K, the photosphere must be hotter than 5,800 K
because it must have a temperature high enough to look like a true blackbody
at 5,800 K. Only if the photosphere is composed of a solid black material, such
as graphite, is a temperature of 5,800 K absolute. Since the photosphere is
not graphite, it is not at 5,800 K. Moreover, according to the standard solar
model, the Sun is a ball of hot gaseous plasma, in which case it does not have a
lattice structure and is therefore unable to emit a planckian spectrum. Yet the
solar spectrum is continuous, mimicking a blackbody at 5,800 K. The sprectra
for several stars are illustrated in Fig. 11.3.

Figure 11.3: The spectra of three stars. Note that they are continuous and follow a
planckian distribution. The temperatures are not real, only apparent, because stars
are not blackbodies and are not at thermal equilibrium within an enclosure.

The conclusion is that the Sun is not gaseous - it must be condensed mat-
ter. The gaseous model of the Sun is an example of the misapplication of
Kirchhoff’s Law of Thermal Emission, even if the Law be true, and misinter-
pretation of its thermal spectrum, by the incorrect assumption of universality
of Planck’s equation. To mimic a blackbody at 5,800 K the Sun must have
an emission mechanism similar to graphite - at the very least it must possess
a lattice structure. Only condensed matter possesses a lattice. Matter that
is not condensed cannot emit a planckian spectrum. Robitaille [45,51,52] has
argued cogently that the Sun is condensed matter, most likely liquid metallic
hydrogen. Liquid metallic hydrogen has a hexagonal-planar structure similar
to graphite. This structure accounts very well for the observational evidence

334



CHAPTER 11. KIRCHHOFF’S LAW OF THERMAL EMISSION AND . . .

from the Sun. Different star types have different lattice structures.

By means of microwave ovens in the home and submarine radio communi-
cations it is well known that water is a good absorber of microwaves. It is also
well known from the laboratory that a good absorber is a good emitter, and
at the same frequencies. Thus, water is a good emitter of microwaves. Ap-
proximately 70% of the Earth’s surface is covered by water. This water is not
microwave silent. It is in steady state with the atmosphere. Microwave emis-
sions from the oceans are scattered by the atmosphere, producing an isotropic
microwave bath therein. It therefore does not matter from which direction or
at what time of day or of season, when sampled from the ground, this mi-
crowave signal is present and robust. Water is condensed matter. As with all
liquids, it has a fleeting lattice. In the case of water there are two bonds: (1)
the hydroxyl bond, (2) the hydrogen bond. The strengths of these two bonds
are not the same. The hydrogen bond has a force constant that is ≈100 times
weaker than the hydroxyl bond. Fig. 11.4 depicts the fleeting lattice of wa-
ter. Each water molecule forms four hydrogen bonds with surrounding water
molecules, in the essentially linear subunits, O-H· · ·O, schematically depicted
in Fig. 11.4.

Figure 11.4: The water lattice. Each water molecule acts to accept and donate
four hydrogen bonds. The subunit O-H· · ·O is essentially linear. Reproduced from
Robitaille [75], with permission.

The energy in the hydroxyl bond is not available to microwave emission,
whereas the hydrogen bond, acting as an oscillator, is responsible for mi-
crowave emissions from water [75, 76]. The water dimer is depicted in Fig.
11.5.

Water is an example of energetic degrees of freedom being uncoupled. Since
the hydrogen bonds form a lattice, water emits microwaves in a planckian
distribution. From this spectrum a Wein’s temperature can be mathematically
extracted. However, most of the water’s energy is contained in the microwave
inaccessible hydroxyl bond. If E1 is the energy in the hydroxyl bond, E2 the
energy in the hydrogen bond, k1 and k2 the respective bond force constants,
then the ratio of the energies, and hence of the temperatures, is equal to the
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Figure 11.5: Schematic representation of the trans-linear water dimer. The subunit
O-H· · ·O is essentially linear. Reproduced from Robitaille [75], with permission.

ratio of the force constants [75,76]:

E1

E2
=
T1

T2
=
k1

k2
. (4)

Since it is known that k1/k2 = 100 [75], and if the mean temperature of the
oceans is ≈300 K, then,

T2 ≈
300K

100
≈ 3K.

“Consequently, a mechanism for creating isotropy from an
anisotropic ocean signal is indeed present for the oceanic ≈3 K
Earth Microwave Background.” [75]

Hence, the spectrum from the hydrogen bond does not report the tem-
perature of the body of water emitting microwaves. This temperature is only
an apparent temperature - it is not the temperature of anything; illustrating
the fact that Planck’s equation is not universal. The consequences of this
for cosmology are dire, for it was from the ground, in 1964, that Penzias and
Wilson [77] detected what has since been dubbed the Cosmic Microwave Back-
ground (CMB) radiation. They assigned an absolute temperature of 3.5 ± 1
K to their residual signal. In assigning an absolute temperature they violated
the physics of thermal emission because they knew nothing of the source of the
signal. Only from a known black solid at thermal equilibrium can an absolute
temperature be assigned with certainty. Temperatures extracted from spectra
of unknown sources are uncertain, since the source might not be black, near
black, or in thermal equilibrium.

11.3 The ‘Cosmic Microwave Background’

Cosmology asserts that there is an isotropic cosmic microwave signal (CMB)
pervading the Universe and that it has the profile of a blackbody spectrum at
an absolute temperature of ≈2.725 K, produced by a big bang creation event:

“According to the big bang theory, the universe was in thermal
equilibrium during its early stages. A searing light pervaded all
locations and traveled in all directions, with the characteristics of
a blackbody at very high temperature.” [64]
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It is said to be the thermal remnant of a big bang creation event, “the fading
archive of the Universe’s fiery beginning billions of years ago” [63], “an all-
pervasive hum of radiation with a temperature equivalent of a little more than
3 degrees Kelvin (three degrees above absolute zero) . . . a faded snapshot of
the universe as it was some three hundred thousand years after the big bang”
[64]. Cosmology claims to be able to reconstruct its big bang universe right
back to the tender age of 10−43 seconds [63]. Between this ‘time’ and some
380,000 years after creation ex nihilo, the big bang universe was occupied
only by particle-exotica such as neutrinos, quarks, gluons, leptons, atomic
nuclei, and photons (i.e. electromagnetic radiation) [56, 63, 65]. To invoke
the thermal equilibrium requirement of Kirchhoff’s Law of Thermal Emission
and Planck’s equation, it is merely claimed that these primæval particles were
in thermal equilibrium: “According to big bang theory, the universe was in
thermal equilibrium during its early stages.” [64]. No explanation is given as
to how thermal equilibrium was achieved, bearing in mind that cosmology also
asserts that “At the big bang itself, the universe is thought to have had zero size,
and so to have been infinitely hot” [66]. Since temperature is a manifestation
of the kinetic energy, and hence the speed, of particles other than photons
(i.e. particles that, according to cosmologists, have ‘rest mass’), one can only
wonder how fast these particles must have been moving in order to be ‘infinitely
hot’, all the while occupying and speeding through zero volume, at thermal
equilibrium! That which has zero size has no volume and hence cannot contain
mass or have a temperature. According to the physicists and the chemists,
temperature is the motion of atoms or molecules. The more energy imparted
to the atoms or molecules the faster they move about and so the higher the
temperature. In the case of a solid the atoms or molecules vibrate about their
equilibrium positions in a lattice structure and this vibration increases with
increased temperature. Pauling [67] conveys this:

“As the temperature rises, the molecules become more and more
agitated; each one bounds back and forth more and more vigorously
in the little space left for it by its neighbours, and each one strikes
its neighbours more and more strongly as it rebounds from them.”

Increased energy causes atoms or molecules of a solid to break down the
long range order of its lattice structure to form a liquid or gas. Liquids have
short range order, or long range disorder. Gases have a great molecular or
atomic disorder. In the case of an ideal gas its temperature is proportional to
the mean kinetic energy of its molecules [55,68,69]:

3

2
kT =

1

2
m
〈
v2
〉
,

where
〈
v2
〉

is the mean squared molecular speed, m the molecular mass, and k
is Boltzmann’s constant. But that which has zero size has no space for atoms
or molecules to exist in or for them to move about in. And just how fast must
atoms and molecules be moving about to be infinitely hot? Nothing can have
zero size and infinite hotness. Nonetheless, according to Misner, Thorne and
Wheeler [70],
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“One crucial assumption underlies the standard hot big-bang
model: that the universe ‘began’ in a state of rapid expansion from
a very nearly homogeneous, isotropic condition of infinite (or near
infinite) density and pressure.”

Just how close to infinite must one get to be “near infinite”? Infinite
and ‘near infinite’ density and pressure are no more meaningful than infinite
hotness of zero size.

At the age of ≈380,000 years, called the ‘time of decoupling’ or the ‘time of
recombination’, the supposed expanding universe became transparent to radi-
ation, thereby setting free the CMB. Continued expansion of the ‘spacetime’
of this universe effectively stretched the wavelength of its CMB, reducing its
‘temperature’:

“. . . the ‘hot big bang model.’ This assumes that the universe
is described by a Friedmann model, right back to the big bang. In
such models one finds that as the universe expands, any matter or
radiation in it gets cooler.” [66]

However, since thermal spectra can only be produced by condensed mat-
ter, it is impossible for a blackbody spectrum to be produced by the exotic
non-condensed matter of which the Universe was then only supposedly com-
prised. Cosmology however, to bring matter that is not condensed into the fold
of blackbody radiation, simply and incorrectly asserts that “Blackbody radia-
tion arises whenever particles collide with each other very rapidly in thermal
equilibrium” [64]. Weinberg [56] asserts that “Any sort of body at any temper-
ature above absolute zero will always emit radio noise, produced by the thermal
motion of electrons within the body”. Soot and graphite are blackbodies. Any-
thing that produces a blackbody spectrum must have a structure similar to
that of soot or graphite. Particle collisions do not fall within the necessary
structural character. Anything that produces a planckian spectrum must pos-
sess a lattice [54]. Free particles do not have lattice structure, neither do
thermal electrons. Particles colliding “with each other very rapidly in thermal
equilibrium” do not produce a continuous spectrum, let alone a planckian one.

Penzias and Wilson [77] discovered that the residual signal in their an-
tenna did not vary with the time of day, the direction of their antenna, or
with the seasons. In the same issue of the journal that published their find-
ings, in the pages immediately before their paper, the theoretical cosmologists
Dicke, Peebles, Roll and Wilkinson [78], assigned the signal to the Cosmos,
as the remnant of a big bang creation event, to accord with the Friedmann-
Robertson-Walker metric obtained as a cosmological solution to a certain set
of Einstein’s General Theory of Relativity field equations. They too insisted
that the spectrum is that of a blackbody, so that the temperature extracted
from it is absolute. But Earth takes its atmosphere and its oceans with it as
it orbits the Sun and rotates on its axis. From the ground, the microwave
emissions from the oceans, scattered to isotropy in the atmosphere by the at-
mosphere [82, 83] are independent of time of day, of seasons, and of antenna
direction, just as Penzias and Wilson reported. Shown in Fig. 11.6 is Earth.
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Approximately 70% of the surface of Earth is covered by water. The oceans
are not microwave silent.

Figure 11.6: Approximately 70% of the surface of Earth is covered by water. This
water is not microwave silent. That COBE did not report any microwave interference
from Earth is precisely because Earth is the source of the signal, from its oceans.

Penzias and Wilson in fact sampled the microwave emissions of the oceans,
present isotropically in the atmosphere due to atmospheric scattering, but
eventually came to believe that this signal has a cosmic origin, because they
did not realise that the source of their signal was proximal. The signal is not
of cosmic origin. Subsequent detection of the ‘CMB’ monopole signal by the
Earth orbiting COBE satellite, at an altitude of ≈900 km, reaffirmed that
the signal is the oceanic microwave emission profile, even though the COBE
Team also assigned it to the Cosmos, on the basis of big bang predilection
and concomitant oversight of the nature of oceanic water. The immediate
consequence of this is that big bang cosmology is again invalidated.

The CMB is mathematically modelled by means of an infinite series of
spherical harmonics. The first term in the series is the monopole signal, the
second is the dipole signal, after which come the quadrupole, the hexadecapole,
and so on in the multipoles. This mathematical model, ipso facto, does not
fix the same physical causation to each component of the infinite series. The
existence of the dipole signal does not mean that the ‘CMB’ monopole signal
detected by COBE-FIRAS must exist throughout the Universe. The dipole
signal is, according to cosmology, on its assumptions for the CMB monopole,
due to a Doppler effect associated with motion of the local galactic group
through the CMB.

“If the Earth is moving, however, there is a smooth variation
in temperature across the sky, because of the Doppler effect. In
the direction in which the Earth is moving, the cosmic background
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looks warmer; in the direction of recession, cooler. . . . The amount
of warming and cooling is proportional to the speed of motion com-
pared to the speed of light, and the direction of the dipole lines
up with the direction of motion. . . . the sky was warmest in the
direction of Leo and coolest in the direction of Aquarius, which
means that the Earth was moving toward the former and away from
the latter. That is not the direction in which the Galaxy rotates.
. . . Not only is the entire Galaxy rotating, as it should be, but, un-
expectedly, it is also moving through space. And it is moving very
fast - six hundred kilometers a second, or more than a million miles
an hour. . . . while Earth and the Solar System are moving toward
Leo at about 350 kilometers per second - more than ten times the
velocity of the Earth going around the Sun - the Milky Way galaxy
is traveling about 600 kilometers per second. . . . And the Milky
Way is not alone in its extreme velocity. About a dozen neighbor-
ing galaxies - the Local Group - are also moving presumably under
the influence of the distant unseen structure.” [64]

The dipole signal is not isotropic, and had been detected by instruments
aboard balloons, planes and rockets, before COBE. The Soviet Relikt-1 satel-
lite, for instance, detected the dipole signal [79]; COBE confirmed the finding,
and from its measurements its ‘temperature’ at 3.353±0.024 mK in the direc-
tion (l, b) = (264.26o ± 0.33o, 48.22o ± 0.13o) galactic longitude and latitude.
Since Earth is in fact the source of the strong monopole signal detected by
COBE-FIRAS, cosmology’s mathematical model of the CMB bears no rela-
tion to reality, despite the existence of the dipole signal. The cause of the
dipole signal must lie elsewhere [84]. Merely aligning it to a component of the
mathematical model does not make its ultimate ætiology the same, explicitly
or implicitly, as the strong monopole detected very near Earth. Cosmology’s
mathematical model simply reflects the assumptions by which it was con-
structed. Nothing in the mathematical model compels the assumptions for it
to be true.

11.4 The Cosmic Background Explorer satel-
lite

On November 18, 1989, the Cosmic Background Explorer satellite (COBE)
was launched, commissioned to survey cosmic microwaves and infrared signals
at an altitude of ≈900 km above Earth. It carried two instruments for mi-
crowave purpose; (1) the Far Infrared Absolute Spectrophotometer (FIRAS),
(2) the Differential Microwave Radiometers (DMR). FIRAS was to sample the
CMB monopole signal and DMR primordial anisotropies in the CMB. Both
instruments returned data for the dipole signal. Fig. 11.7 is a schematic of
COBE-FIRAS.

“FIRAS was designed to function as a differential radiometer,
wherein the sky signal could be nulled by the reference horn Ical.”
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Figure 11.7: Salient components of FIRAS: Sky horn, reference horn,
Ical (2 thermometers), and Xcal (3 thermometers) (Ical = Internal cali-
brator, Xcal = External calibrator). From [81], courtesy of NASA and

the COBE Science Working Group. Accessed online 16th August 2017,
https://lambda.gsfc.nasa.gov/product/cobe/firas exsupv4.cfm

[82]

The CMB monopole temperature was reported by FIRAS as 2.725±0.001
K [80] over a blackbody spectrum. The signal to noise for the monopole was
so great that the error bars on the graph of the spectrum are some 400 times
smaller than the width of the line used to draw the graph, shown in Fig. 11.8.

The COBE Team reported that the satellite’s shield covered the frequency
range 30 GHz to 3,000 GHz, although FIRAS sampled principally in the 30-600
GHz range. This is a 100-fold shield frequency range. But no such broadband
shield exists. Moreover, a shield to intercept extraneous microwaves must be
specially designed. Examination of the COBE shield design [88] reveals that
no measures were specially taken for microwaves. COBE’s shield was not able
to prevent microwave diffraction over its shield. Indeed, the COBE-FIRAS
Team reported that they detected unexpectedly higher intensity at the lower
frequencies and unexpectedly lower intensity at the higher frequencies [80].
This is precisely the effect expected however due to microwave diffraction over
the shield.

The COBE Team did not report any microwave interference from Earth.
This attests to the Earth being the actual source of the signal [82,83].

Since the COBE shield was helpless before microwave diffraction over its
perimeter, microwave emission originating from the oceans below it, scattered
to isotropy by Earth’s atmosphere, were able to freely diffract over the shield
and into the FIRAS horn. Bearing in mind that the signal to noise for FIRAS
was enormous, the source of the signal must be proximal. Since the ≈2.725
K monopole signal is so powerful, any satellite located anywhere should, with
a suitable detector, find no less signal to noise power. Yet no cosmological
satellite far beyond the confines of Earth reported detection of the ≈2.725 K
CMB monopole signal. Without the CMB monople signal beyond the confines
of Earth, all arguments for its existence and its supposed anisotropies have no
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Figure 11.8: The planckian spectrum of the CMB monopole signal reported by
COBE-FIRAS. FIRAS was sensitive not directly to the sky but to the difference
between the sky and the FIRAS external calibrator, xcal. Hence, this spectrum
is that of the external calibrator, matched to the sky. Although data was initially
reported by the FIRAS Team for < 2cm−1, this data was subsequently dropped from
the plot, without explanation, and the frequency axis was offset to the left. Figure
courtesy of NASA and the COBE Science Working Group. Accessed online 11th

August 2017, https://lambda.gsfc.nasa.gov/product/cobe/cobe image table.cfm

scientific merit. There can be no doubt that the ≈2.725 K monopole signal
has its origin on Earth [82].

The COBE-FIRAS Team reported a set of three interferograms, obtained
in-flight, in a single image (Fig. 11.9). The top trace had the Internal Cal-
ibrator (ICAL) set at 2.759 K and compared to the sky. The trace seems
to contain only small deviations from the horizontal and is reported as “near
null”. The second trace has ICAL set at 2.771 K and compared to the sky. It
contains significant vertical displacement and is reported as “off null”. The
third and final trace has ICAL set at 2.759 K and the External Calibrator
(XCAL) set at 2.750 K and contains a significant vertical displacement. De-
spite reporting a “near null” at 2.759 K the FIRAS team ultimately reported
a ‘CMB’ temperature of 2.725 K. However, Robitaille [82] has pointed out that
the top and bottom traces are not drawn to the same scale. This is evident
from the noise power in the traces. The noise power should be the same for
all three traces. It is most clearly evident in the middle trace as it is the jitter
in the baseline of the trace. For the top and bottom traces to appear on the
same scale as the middle trace, so that the jitter is of the same amplitude,
they must be amplified by a factor between 3 and 5. The result is that the
“near null” report is far from near null. The top and bottom traces have
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Figure 11.9: Interferograms obtained in flight with FIRAS. The top and
bottom traces are not on the same scale as the middle trace. The traces
are deceptive. From Mather et al. (1990) [87], courtesy of NASA and

the COBE Science Working Group. Accessed online 16th August 2017,
https://lambda.gsfc.nasa.gov/product/cobe/firas exsupv4.cfm

had their amplitudes suppressed, apparently to give the false impression that
a ‘near null’ was obtained. These traces are deceptive [85]. Moreover, the
spectral precision reported by the FIRAS Team is well beyond the capacity of
the instrumentation that was on COBE:

“Finally, in 2002, Fixsen and Mather advance that ‘the mea-
sured deviation from this spectrum are 50 parts per million (PPM,
rms) of the peak brightness of the CMBR spectrum, within the un-
certainty of the measurement’. Using technology established in the
1970’s, the FIRAS team reported a spectral precision well beyond
that commonly achievable today in the best radiometry laboratories
of the world.” [82]

The reported a null at 2.759 K is 34 mK above the reported sky temper-
ature, 2.725 ± 0.001 K. Null should ideally occur at the sky temperature.
Owing to 18 mK error in the thermometers, ≈3 mK temperature drift, 5 mK
error in the sky horn Xcal, and 4 mK error in Ical, Robitaille determines an
overall error bar of ≈64 mK in the microwave background. Yet the FIRAS
team reported only ≈1 mK. Errors were evidently dumped into the calibration
files. And as Robitaille [82] observes, “a 1 mK error does not properly reflect
the experimental state of the spectrometer”. Moreover, the FIRAS team’s cal-
ibration procedures produced calculated Ical emissivities great than 1.3 at the
higher frequencies; but the theoretical maximum for emissivity is exactly 1 by
definition.
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FIRAS was unable to obtain proper nulls, despite the FIRAS team’s reports
that they obtained “the most perfect blackbody spectrum ever measured” [89]:

“It is sometimes stated that this is the most perfect blackbody
spectrum ever measured, but the measurement is actually the dif-
ference between the sky and the calibrator.” [89]

Robitaille [82] expresses the relationship thus:

(Sky - Ical) - (Xcal - Ical) = (Sky - Xcal).

It is clear from this relation that the effects of Ical and instrumental factors
should be negligible: but that is not what the FIRAS team found. It is also
clear that if Xcal matches the sky a null will result. Xcal is assumed an ideal
blackbody spectrum and so the sky would also be an ideal blackbody spectrum
in the event of a null. The FIRAS team assumed from the outset that the sky is
as an ideal blackbody. Note that if the calibration obtained with Xcal in place
is dominated by leakage of sky signal into the horn then a perfect blackbody
spectrum would result because the sky would then be compared with itself.
Robitaille [82] has shown that there was significant sky leakage into the horn
during calibration with Xcal.

Unable to obtain a proper null, the FIRAS team blamed instrument prob-
lems and the calibrations, but never entertained the possibility that the sky,
owing to emissions originating from the Earth diffracting over the RF shield,
was not behaving as a blackbody, as they assumed. Fixen et al [81] remarked:
“However, the measured emission is higher than predicted, particularly at the
lowest frequencies; at the very frequencies at which diffraction of photons from
Earth would be a maximum over the RF shield. In addition, all data when
the Earth illuminated the instrument were rejected outright, thereby removing
any effect of earthshine that might well assign the microwave background to
the oceans.

“In the end, the FIRAS team transfers the error from the spec-
trum of interest into the calibration file . . . Using this approach it
would be possible, in principle, to attain no deviations whatever
from the perfect theoretical blackbody. Given enough degrees of free-
dom and computing power, errors begin to lose physical meaning.
The calibration file became a repository for everything that did not
work for FIRAS” [82]

To extract the cosmic microwave anisotropies thought by cosmology to be
lurking beneath the CMB monopole signal, COBE-DMR had to contend with
the presence of the microwave monopole, the dipole, and the galactic fore-
ground which is ≈1000 times stronger than the signal sought (the galactic
contamination is in mK). This is a dynamic range problem, similar to water
suppression in biological proton Nuclear Magnetic Resonance (NMR). For in-
stance, a biochemical compound of interest is often dissolved in water, in the
aqueous cytosol of a cell. Water is ≈110 molar in protons. A compound of
interest might be ≈1 - 100 millimolar. A best case scenario is then an ≈1,000
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fold required water signal removal. In biological proton NMR, water sup-
pression can be 100,000 or more. To achieve suppression of water resonances
that swamp the resonance of the dissolved compound of interest, various tech-
niques have been developed, either physically, as in specialised spin excitation,
or biochemically through substitution. One example of how this is achieved is
sufficient to make the point: Biochemical substitution involves removal of most
of the water protons by substituting deuterium oxide (D2O) using a process
called lyopholisation, where the sample is repeatedly frozen then sublimated
under vacuum. The water solvent is then replaced by D2O, which has a nu-
clear magnetic resonance far from water, thereby revealing the resonance of
the compound of interest at the relevant frequency. This is an example of
modification of the sample in order to secure the signal of a compound that
has a resonance that lies below that of the aqueous solvent. An example of
this process is depicted in Fig. 11.10.

The cosmological satellites attempting to extract anisotropies from the
CMB are even worse off than the example of Fig. 11.10, because the hy-
pothesised anisotropies are, analogously, located directly beneath the water
resonance. Thus, as Robitaille [90] has emphasised, laboratory experience at-
tests that it is impossible to extract a signal ≈1000 times weaker than the
enveloping noise without being able to manipulate the source of the signal
or without a priori knowledge of the nature of the signal source; neither of
which were available to COBE-DMR. George Smoot, the principal investigator
for COBE-DMR, related that to extract the weak multipoles, which he called
“wrinkles in the fabric of time” [64], by computer data-processing, required
first the removal of the 2.725 K monopole, the dipole, the galactic foreground,
and then the quadrupole. He puzzled over why the multipoles did not ap-
pear until the quadrupole was finally removed by computer data-processing
methods, since the raw data contained no systematic signal variations:

“We were confident that the quadrupole was a real cosmic sig-
nal. . . . By late January and early February, the results were begin-
ning to gel, but they still did not quite make sense. I tried all kinds
of different approaches, plotting data in every format I could think
of, including upside down and backwards, just to try a new perspec-
tive and hoping for a breakthrough. Then I thought, why not throw
out the quadrupole - the thing I’d been searching for all those years
- and see if nature had put anything else there. . . . Why, I puzzled,
did I have to remove the quadrupole to see the wrinkles?” [64].

Robitaille’s [82] answer is simple:

“However, when Smoot and his colleagues imposed a systematic
removal of signal, they produced a systematic remnant. In essence,
the act of removing the quadrupole created the multipoles and the
associated systematic anisotropies. . . . these findings have no rele-
vance to cosmology and are purely an artifact of signal processing.”

Smoot’s “wrinkles in the fabric of time” are nothing more than consis-
tent residual ghost signals produced by his computer data-processing. The
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Figure 11.10: Proton nuclear magnetic resonance (NMR) spectra acquired from a
0.1 M solution of 0.1 M N-benzoyl-L-arginine ethyl ester hydrochloride in water (A,
B). The spectrum is shown in full scale (A). In (B) the vertical axis has been expanded
by a factor of 100, such that the resonance lines from the N-benzoyl-L-arginine ethyl
ester can be visualized. A 1H-NMR spectrum acquired from 0.1 M N-benzoyl-L-
arginine ethyl ester hydrochloride in deuterium oxide (D2O) is also displayed (C).
Spectra display only the central region of interest (4.0-5.5 ppm). Acquisition param-
eters are as follows: frequency of observation 400.1324008 MHz, sweep width 32,768
Hz, receiver gain 20, and repetition time 5 seconds. The sample dissolved in D2O (C)
was acquired first using a single acquisition and a 90 degree nutation. A field lock
was obtained on the solvent. This was used in adjusting the feld homogeneity for
both samples. For (A) and (B), 20 acquisitions were utilized to enable phase cycling
of the transmitter and receiver. In this case, the nutation angle had to be much less
than 90 degrees in order not to destroy the preamplifer. A field lock could not be
achieved since D2O was not present in the sample. These slight differences in acqui-
sition parameters and experimental conditions make no difference to the discussion
in the text relative to problems of dynamic range. Figure and caption reproduced
from [90] with permission.

appearance of such systematic ghost signals throughout an image when com-
puter data-processing large contaminating signals is very well known in medical
imaging, an example of which is Fig. 11.11.

“Apparent anisotropy must not be generated by processing” [82,90]. This is
not to say that the sky is not anisotropic, since the microwave contamination is
anisotropic, but that the anisotropies reported by COBE-DMR are not present
in the sky, rather only as self-induced artifacts of computer data-processing,
mistaken for signal.
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Figure 11.11: Ultra High Field 8 Tesla MRI image of an 18 cm ball of mineral
oil acquired using a 3-dimentional acquisition. A) Axial slice representing a region
contained within the physical space occupied by the 18 cm mineral oil ball. (B)
Axial slice through a region located outside the physical space occupied by the ball.
Note that the image displayed in (B) should be entirely devoid of signal. The severe
image processing artifacts contained in (B) are a manifestation that the processing of
powerful signals can result in the generation of weak spurious ghost signals. Figure
and caption reproduced from [90] with permission.

11.5 The Wilkinson Microwave Anisotropy
Probe satellite

The Wilkinson Microwave Anisotropy Probe (WMAP) sampled the sky from
the 2nd Lagrange Point (L2), 1.5 million kilometres from Earth, depicted in
Fig. 11.12.

Figure 11.12: The Lagrange points and the location of WMAP at L2. Reproduced
from [84] with permission.

WMAP did not measure absolute intensity of any microwave signal because
it was strictly a differential instrument: It operated by measuring the signal
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difference between input antennae. All data was therefore ‘difference data’.
Signal from the sky was sampled by two receivers and the difference contin-
ually monitored. The pseudo-correlation radiometers of WMAP are shown
schematically in Fig. 11.13. Signal from different parts of the sky enter the
two sky horns. These signals are subtracted by the instrument so that any
signal that is common to each sky horn vanishes in the output data. What
is left is difference data. Any differences that persist represent anisotropies.
Thus, if the CMB monopole signal is present at L2, it is subtracted out imme-
diately by the instrument. WMAP, by its differential operation, was totally
blind at L2 to the presence or absence of the strong monopole signal detected
by COBE-FIRAS near Earth. In the case of the dipole signal, since it is
anisotropic, it appears in the difference data of WMAP. The WMAP Team
reported detection of the dipole signal at L2. Because the dipole signal is
noise in relation to the sought after anisotropies of the assumed CMB, it had
to be removed. Removal of the dipole signal was done by computer data-
processing because it cannot be subtracted out instrumentally. In addition
to the dipole, anisotropic signals from the galactic foreground, and numerous
points sources of microwaves, both galactic and extragalactic, also had to be
removed by computer data-processing. Thus, everything depended on com-
puter data-processing after differencing of the sky horns, whether or not the
CMB monopole signal even existed at L2.

Figure 11.13: Partial schematic representation of the WMAP pseudo-correlation
differential radiometers [91]. The signal from each horn first travels to an orthomode
transducer (OMT) wherein two orthogonal outputs are produced, one for each ra-
diometer. One output from the OMT travels to the 180o hybrid tee before entering
the phase-matched leg of the radiometer. The signal from each horn was compared
directly to its paired counterpart. The satellite did not make use of internal ref-
erence loads and could not operate in absolute mode. (Reproduced from [84] with
permission.)

WMAP sampled at five frequencies: K ≡ 23GHz, Ka ≡ 33GHz, Q ≡
41GHz, V ≡ 61GHz, W ≡ 94GHz, shown in Fig. 11.14. The red-coloured
irregular horizontal band dominating each of the images is due to the galactic
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foreground, which constitutes noise that must be removed, by computer data-
processing.

Figure 11.14: The five frequency bands observed by the WMAP satellite. Images
correspond to 23 GHz (K band, upper left), 33 GHz (Ka band, upper right), 41
GHz (Q band, middle left), 61 GHz (V band, middle right), and 94 GHz (W band,
bottom). Reprinted portion of Fig. 2 from [92] with permission from Tegmark, M.,
de Oliveira-Costa, A., Hamilton, A.J.S. Copyright (2003) by the American Physical
Society.

WMAP essentially had to look through the galactic noise (peer through
the galaxy), which is all over the sky, with the highest intensity in the galactic
plane as revealed in Fig. 11.14. This is the very same dynamic range problem
that COBE-DMR had to contend with. Like Smoot’s DMR Team, the WMAP
Team had no means to physically or chemically manipulate any microwave
anisotropy source and no a priori knowledge of the nature of such sources it
sought to identify. Consequently, the WMAP Team also could not zero the
galactic foreground.

Notwithstanding the impossibility to do so, the WMAP Team, just as the
COBE-DMR Team, claimed to have successfully removed the galactic fore-
ground noise from its all-sky anisotropy map. In its attempt to do so the
WMAP Team took each all-sky image it had obtained for each of the five fre-
quencies sampled (Fig. 11.14) and divided them into the same twelve sections,
shown in Fig. 11.15.

Each region was then processed by a linear combination of each frequency
image obtained for that same region. For instance, region 0 was fully con-
structed by a linear combination of region 0 from each frequency image, by
means of assigning a weighting to region 0 in each frequency image; and so
on for all regions. The Integrated Linear Combination (ILC) coefficients and
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Figure 11.15: The 12 regions used to generate the ILC maps for year 3 average
data; from Hinshaw et. al. [96]. Reproduced with permission of D. Spergel.

weightings are listed in Table 11.1.

Region K-band Ka-band Q-band V-band W-band
0 0.1559 -0.8880 0.0297 2.0446 -0.3423
1 -0.0862 -0.4737 0.7809 0.7631 0.0159
2 0.0385 -0.4543 -0.1173 1.7245 -0.1887
3 -0.0807 0.0230 -0.3483 1.3943 0.0118
4 -0.0781 0.0816 -0.3991 0.9667 0.4289
5 0.1839 -0.7466 -0.3923 2.4184 -0.4635
6 -0.0910 0.1644 -0.4983 0.9821 0.4428
7 0.0718 -0.4792 -0.2503 1.9406 -0.2829
8 0.1829 -0.5618 -0.8002 2.8462 -0.6674
9 -0.0250 -0.3195 -0.0728 1.4570 -0.0397
10 0.1740 -0.9532 0.0073 2.7037 -0.9318
11 0.2412 -1.0328 -0.2142 2.5579 -0.5521

Table 11.1: ILC weights by regions. ILC coefficients used in the analysis of 3-year
data by the WMAP team. This table corresponds to Table 5 in Hinshaw et. al. [96].

Note that the V-band in Table 11.1 was given a favoured weighting. There
is no scientific basis for this. Weighting of the V-band was entirely arbitrary.
Any band can be favoured ad arbitrium. Moreover, claiming that the large
galactic foreground signal can be removed, despite absence of access to sig-
nal source or a priori knowledge of it, the WMAP Team produced Integrated
Linear Combination (ILC) images, effectively assuming, without any scien-
tific basis, that the galactic foreground signal is frequency dependent and the
sought after underlying anisotropies frequency independent.

Numerical coefficients used by the WMAP team to process each section of
their final image, vary by more than 100%.

“The WMAP team invokes completely different linear combi-
nations of data to process adjacent regions of the galactic plane.
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. . . The coefficients for section 4, correspond to −0.0781, 0.0816,
−0.3991, 0.9667, and 0.4289 for K, Ka, Q, V, and W bands, re-
spectively. In sharp contrast, the coefficients for section 5 corre-
spond to 0.1839, −0.7466, −0.3923, 2.4184, and −0.4635, for these
bands. The WMAP team alters the ILC weights by regions, used
in galactic signal removal, by more than 100% for the fourth coef-
ficient, despite the adjacent locations of these sections.” [84]

The ILC coefficients were nothing more than a means to add and subtract
data in order to obtain a desired result. “The sole driving force for altering the
weight of these coefficients lies in the need to zero the foreground. The selec-
tion of individual coefficients is without scientific basis, with the only apparent
goal being the attainment of a null point” [84]. To any favoured frequency
band there corresponds a particular set of ILC maps, and so different sets of
cosmological constants would result depending upon the band emphasised; as
products of data processing. Clearly, “The requirement that the signals of in-
terest are frequency independent cannot be met, and has certainly never been
proven” [84], and “There is no single map of the anisotropy, since all maps
are equally valid, provided coefficients sum to 1 ” [84], which is precisely the
condition set by the WMAP Team. Consequently: “There is no unique so-
lution and therefore each map is indistinguishable from noise. There are no
findings relative to anisotropy, since there are no features in the maps which
could guide astrophysics relative to the true solution” [84]. Since there is no
unique map, none of the maps have any real meaning. Any number of differ-
ent anisotropy maps can be generated by simply altering the ILC coefficients
ad libitum. WMAP has no unique all-sky anisotropy map. Indeed, Tegmark
et. al. [92] generated a different all-sky anisotropy map from the WMAP
database by allowing the coefficient weightings to depend upon angular scale
and on distance to the galactic plane. Consequently, the all-sky anisotropy
maps presented by the WMAP Team and Tegmark et. al. have no scientific
merit.

The galactic foreground is of the order of mK, whereas the desired
anisotropies are of the order of µK. Note in Table 11.1 that many of the
ILC coefficients were assigned negative values. Physically this corresponds to
negative temperatures for the galactic foreground, thereby making the sought
after CMB anisotropies hotter than the galactic foreground, when the sup-
posed anisotropies are colder than the galactic foreground, requiring therefore
that the galactic foreground contamination be removed in the first place.

The most important determinant of image quality is signal to noise. High
signal to noise can permit some signal sacrifice to enhance contrast and res-
olution. Without high signal to noise, contrast and resolution will always be
poor. Medicine is the most exacting field of imaging science and technology.
An example from medicine illustrates the utmost importance of signal to noise
for image quality. Fig. 11.16 is an image of a sagittal section of a human brain
using a 1.5 Tesla MRI scanner, operating at the uppermost limit of its capacity.
“The resolution is high (matrix size = 512 × 512) and the slice thickness is
thin (2 mm). At the same time, the nutation angle, echo times, and repetition
times are all suboptimal. As a result, this image is of extremely poor clinical
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quality. The contrast between grey and white matter has disappeared and the
signal to noise is ≈5 ” [84].

Figure 11.16: Section (490 × 327) of a high resolution sagittal image of the human
head acquired at 1.5 Tesla. Acquisition parameters are as follows: acquisition se-
quence = gradient recalled echo, matrix size = 512 × 512, slice thickness = 2 mm,
feld of view 20 cm × 20 cm, repetition time = 750 msec, echo time = 17 msec,
and nutation angle = 45 degrees. Figure and caption reproduced from [93] with
permission.

Compare Fig. 11.16 with Fig. 11.17. Fig. 11.17 was acquired with the
first Ultra-High Field MRI scanner [93–95], operating at a field strength of 8
Tesla. The image in Fig. 11.17 has phenomenal contrast; the delineation of
grey and white matter and the appearance of vasculature is spectacular. This
image was acquired with a much larger image resolution (matrix size = 2,000
× 2,000) while maintaining nearly the same parameters as for Fig. 11.16.
Despite its higher resolution, the image in Fig. 11.17 has a signal to noise
of ≈20. Although it took longer to acquire, due to increased phase encoding
steps, the time per pixel is less than that for Fig. 11.16. “Clearly, signal to
noise can purchase both contrast and resolution” [84].

WMAP images however have a maximum signal to noise that barely ex-
ceeds 1. Consequently, “WMAP is unable to confirm that the ‘anisotropic
signal’ observed at any given point is not noise. The act of attributing signal
characteristics to noise does not in itself create signal. . . . WMAP images do
not meet accepted standards in medical imaging research” [84].

In the absence of high signal to noise, the only indicative feature of images
is reproducibility. However, WMAP images cannot evidently be reproduced,
since the WMAP team not only selectively weighted the V-band, but varied
all ILC coefficients from year to year, for the central region of its images,
and also averaged images for a 3-year data image which differs significantly
from the first year image. There was no stability on a year-to-year basis let
alone on cosmological time scales (which can never be realised). Moreover, the
WMAP team’s difference images are between year 1 and the averaged 3 year,
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Figure 11.17: Section (1139 × 758) of a high resolution sagittal image of the human
head acquired at 8 Tesla. Acquisition parameters are as follows: acquisition sequence
= gradient recalled echo, matrix size = 2,000 × 2,000, slice thickness = 2 mm, feld
of view 20 cm 4 × 4 20 cm, repetition time = 750 msec, echo time = 17 msec, and
nutation angle = 17 degrees. This image corresponds to Figure 3A in Robitaille
P.M.L., Abduljalil A.M., Kangarlu A., Ultra high resolution imaging of the human
head at 8 Tesla: 2K×2K for Y2K. J Comp. Assist. Tomogr., 2000, v. 24, 2-
7. Caption reproduced from [84], with permissions. Pressaging danger to science,
Wolters Kluwer, the publisher of J Comp. Assist. Tomogr., charged $130.40 AUD
for permission to reproduce this image.

the latter containing the year 1 image itself, not between images year to year.
Fig. 11.18 depicts comparative images; “the difference images are shown with
reduced resolution contrary to established practices in imaging science” [84].

WMAP has no unique map. The final all-sky map presented by the WMAP
Team is entirely arbitrary. Merely by adjusting the ILC coefficients entirely
different WMAP maps can be produced. Any number of such different maps
can be produced in this way. That Tegmark et al. [92] produced a different
map from WMAP ‘data’, reinforces the fact that none of these anisotropy
maps are distinguishable from noise.

Attempts to establish stablity in the all-sky anisotropy maps are futile
because they must be stable on cosmological time scales, not merely on an
averaged 3-year basis. Cosmological time scales are not available to cosmol-
ogists, and so claims of image stability are meaningless. Even so, WMAP
images are not even stable on a yearly basis. The galactic foreground and the
point sources are inherently unstable. This is clearly demonstrated in the year
1 and year 3 WMAP all-sky images [83, 90]. The 3-year average constitutes
an inappropriate attempt to smooth the image. The ‘cleaning’ of the maps
is ad hoc because the WMAP team cannot know the extent to which galactic
signals must be removed from each channel. It is simply impossible for the
active and unstable galactic foreground to be zeroed. As stated above, the
3-year average ILC image differs significantly from the first-year ILC image,
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Figure 11.18: Comparison of 3-year average data with year-1 data through difference
for the K, Ka, Q, V, and W bands of the WMAP satellite. The WMAP Team presents
the difference images with reduced resolution contrary to established practices in
imaging science. From [96] (Fig. 3) with permission from D. Spergel.

shown in Fig. 11.19.
Note that the difference images in Figs. 11.18 and 11.19 are presented

by the WMAP Team at lower resolution than the 1-year map and the 3-year
average map, contrary to standards and practice in imaging science. The
lower resolution of the difference maps hides differences in the two maps that
were differenced. Moreover, the WMAP Team varied the ILC coefficients from
year to year. For example, in the 1-year map the region 0 was given the ILC
coefficients K = 0.109, Ka = -0.684, Q = -0.096, V = 1.921, W = -0.250,
whilst the 3-year average map was assigned the corresponding values (0.1559,
-0.8880, 0.0297, 2.0446, -0.3423), as shown in Table 11.1, also bearing in mind
that the 1-year map is itself a component of the 3-year average map. Note
that the K-band was changed by nearly 50% and that the Q-band changed
sign and decreased in magnitude by a factor of 3.

The vagarious methods employed by the WMAP Team to produce all-sky1

anisotropy maps attest that there are in fact no CMB anisotropies anywhere.
The notion that the ≈2.725 K monopole pervades the Universe as a thermal
remnant of a big bang creation ex nihilo, is due to theory that violates the

1‘All-sky’ means that the entire galactic plane is included.
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Figure 11.19: Comparison of the 3-year average ILC map with the year-1 ILC
map. Note that the difference images are shown at reduced resolution contrary to
established practices in imaging science. This figure corresponds to Fig. 9 in Hinshaw
et. al. [96]. Reproduced with permission of D. Spergel.

physics of thermal emission and thermodynamics. Kirchhoff’s Law of Thermal
Emission is false and Planck’s equation for thermal spectra is not universal.
One cannot assign an absolute temperature to the microwave signals detected
from the ground by Penzias and Wilson and by COBE-FIRAS in Earth orbit.
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In any event the ≈2.725 K monopole signal has its source in the oceans of
Earth and does not reach to L2.

11.6 The Planck Satellite

The European Space Agency’s Planck satellite, as with NASA’s WMAP,
was located at L2. It carried two instuments for determination of CMB
anisotropies; the Low Frequency Instrument (LFI) and the High Frequency
Instrument (HFI). The HFI was limited to anisotropy survey as it was not
capable of detection of a CMB monopole:

“Planck cannot measure accurately the monopole (uniform part
of the emission) because many sources contribute (telescope, horns,
filters, . . . ” [97]

Since COBE-FIRAS reported an enormous signal to noise, Planck HFI would
have experienced the same, so the impact of spurious signals from telescope,
horns, filters, etc. on Planck would be of little concern.

The LFI however was able to operate in both differential and absolute
mode because it carried two onboard 4 K blackbody reference loads. In this
regard it was similar to COBE-FIRAS which carried a blackbody calibrator.
In differential mode the LFI functioned like WMAP and COBE-DMR, in order
to survey anisotropies. Fig. 11.20 is a schematic of the Planck LFI differential
radiometers.

In absolute mode the LFI could compare the sky directly with its reference
loads and thereby ascertain the presence of an ≈2.725 K monople signal L2.
But the Planck Team has never reported detection of the CMB monopole
signal at L2. In fact, the Planck Team utilised the COBE-FIRAS strong
monopole signal as its reference base:

“The CMB is given by a perfect blackbody with only a single
spectral parameter, namely the CMB temperature. We adopt a
mean value of Tcmb = 2:7255 ±0:0006K (Fixsen 2009), and note
that the uncertainty in this value is sufficiently small to justify its
use as a delta function prior.”

The temperature reported in this passage from the Planck Team is that de-
tected by COBE-FIRAS ≈900 km from Earth. It is a scientific fact that the
≈2.725 K monopole signal has never been detected beyond ≈900 km of Earth.
Without this monopole signal beyond Earth, all claims for the ‘CMB’ and its
anisotropies have no scientific merit: just wishful thinking.

The reference loads of the LFI had to be kept at the temperature 4 K. There
was no direct means on the LFI to do so. The shield of the HFI however was
cooled cryogenically to 4 K. To ensure operational temperature of the reference
loads of the LFI, the Planck Team attached the them directly to the HFI shield
by means of steel screws and washers:

“stainless steel (AISI304) thermal washers, . . . interposed be-
tween the loads and the interface points to the HFI. . . . These are
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Figure 11.20: Partial schematic representation of the PLANCK LFI pseudo-
correlation differential radiometers. Prior to entering each radiometer, the signal
from each sky horn travels to an orthomode transducer (OMT) where two orthogo-
nal linearly polarized signals are produced. Each of these signals is then compared
directly to a reference load maintained at 4 K. Unlike WMAP, PLANCK can operate
both in absolute and differential mode. In absolute mode, PLANCK will be able to
directly compare the amplitude signal observed from the sky with that produced
by the reference loads. Importantly, in order to maintain a minimal knee frequency
PLANCK assumes that the differences between the sky and reference signals will be
small. Figure and caption reproduced from [84] with permission.

small cylinders (typically 5 mm long, 1 mm wall thickness) whose
dimensions are optimized to dump temperature fluctuations in or-
der to meet requirements, . . . screws (mounted on the HFI), . . . The
optimization of the thermal washers allowed to increase the damp-
ing factor, . . . Cases, supported by an Al structure, are mounted on
the HFI using Stainless Steel thermal decouplers (washers), which
allows to carefully control the thermal behavior,. . . Thermal inter-
face is dominated by conduction through thermal washers,. . . Metal
parts are assembled using Stainless Steel screws at high torque, to
make thermal contact as close as possible to an ideal value.” [98,99]

Although this method ensured that the reference loads maintained a tem-
perature of ≈4 K, they did so by conduction, not by thermal emission and
absorption. The conduction paths introduced by the steel attachments be-
tween the reference loads and the HFI shield ensured that the reference loads
could never be blackbodies. The error permitted heat to be shunted directly
from the reference loads to the HFI shield by conduction so that the reference
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loads emitted few or no photons to the reference horns, making the reference
loads appear to the reference horns to have a temperature of ≈ 0 K. In at-
taching the reference loads to the HFI shield by steel screws and washers the
Planck Team overlooked the basic physics of thermal emission and heat trans-
fer relating to blackbodies. It thereby became impossible for the LFI to work
even before it left the launching pad. Fig. 11.21 is a schematic of the 4 K
reference loads and their attachment to the HFI shield.

Figure 11.21: Schematic representation of a Planck LFI reference load. Each load is
comprised of a reference horn (upper section) and a target (middle section) separated
by a 1.5 mm gap. The targets are constructed from molded Eccosorb (CR-110 or 117)
absorber, surrounded by an aluminum casing which acts to preserve thermodynamic
steady state within each unit, using conduction. Heat is allowed to flow out of the
target casing through a conductive path directly into the 4 K shield of the HFI
(represented by the hatched area in the lower section). This path is provided by
stainless steel cylindrical washers and screws. By providing a conductive path out
of the target, the Planck LFI team created a situation wherein a Type-8 error is
introduced [100]. By itself, the design ensured that the targets could not operate as
≈4 K blackbody reference loads. Figure reproduced from [99] with permission.

The Planck Team reported testing of the 4 K reference loads before launch.
The reference loads produced internal standing waves, as the Planck LFI
return-loss traces prove (Fig. 11.22). In other words the reference loads
responded as resonant cavities, not as blackbodies. Standing waves are not
thermal processes. Thus, once again, the 4 K loads were never blackbodies.
Blackbodies do not produce standing waves. Consequently, a blackbody refer-
ence load must not produce standing waves. The presence of standing waves
is proof sufficient that the Planck LFI reference loads were never able to func-
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tion as blackbodies even if they were not attached by conduction paths to the
HFI shield. Note the significant resonances in Fig. 11.22, as low as -50dB at
some frequencies. If the target was black, these resonances would not have
appeared.

Figure 11.22: A network analyzer tracing for a 30 GHz reference target system,
as provided by the Planck LFI team [98]. This particular tracing was extracted
from Fig. 26 in [98] in order to better visualize its features. Note the presence
of significant resonances on this tracing, indicating the existence of standing waves
within the horn-target system. It is well known, based on elementary considerations
in electromagnetics [74], that cavities, waveguides, and enclosures, at microwave
frequencies, can sustain standing waves in a manner depending on their size and
geometry (see [74] and references therein). This problem is particularly important
when the dimensions of the target approach the wavelengths of interest. In this case,
30 GHz corresponds to a wavelength of ≈1 cm in vacuum. The target casings are 3:3
× 3:3 × (≈ 2) cm (see Table 1 and Fig. 12 in [98]). The presence of such resonances
in the ≈4 K reference loads, demonstrates unambiguously that the targets are not
black. In fact, the targets are still acting as resonant devices [74]. For a blackbody
to exist, all such resonances must be suppressed (i.e. as ideally seen by a constant
-50 dB tracing across the spectral range). In this case however, and when combined
with the data in Fig. 11.22, it appears that approximately -15 to -20 dB of return
loss can be accounted for by leakage from the 1.5 mm gap. Then, between -20 to
-25 dB of return loss can be attributed, at certain frequencies, to the existence of
resonance features. Note that 29 GHz gives a wavelength of ≈1.03 cm in vacuum,
and perhaps a little more in Eccosorb (see [100] and references therein). As such,
the resonances at 28.5-29.2 GHz correspond almost exactly to 3 wavelengths in a
square 3.3 cm enclosure. Figure reproduced from [98] with permission of the IOP
and L. Valenziano on behalf of the authors and the Planck LFI consortium. Caption
reproduced from [99] with permission.

The Planck Team’s own computational analyses of the 4 K reference loads
revealed that microwave radiation could not be contained within the reference
load casing. Microwave radiation leaked out everywhere. The computational
analysis reported by the Planck Team, of field distributions both inside and
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around the targets, during testing with microwave radiation, clearly reveals
microwave flowing freely throughout the space in front and around the target.
This is particularly evident in the left frame of Fig. 11.23. The computational

Figure 11.23: Computational determination of the E-field distribution at 70 GHz
for a horn-target assembly as reproduced from Fig. 10 in [98]. White areas repre-
sent perfect conductors, whereas regions of increased brightness depict more intense
fields [98]. The left panel corresponds to PHI = 90 while the right panel to PHI =
0. Further details are available in [98]. Note how the target is unable to localize
microwave energy. Leakage of radiation beyond the 1.5 mm gap separating the horn
and the target is evident, especially in the right panel. If leakage appears to be less
intense in the left panel (examine the left edge of the casing), it is because the horn
dimension in this cut is substantially smaller than the target. Nonetheless, some
restriction of radiation is visible on the left edge of the casing in the left panel. This
acts to confirm that none of the other edges are able to confine the radiation. Note
also that the section of CR-117 absorber below the pyramid is actually acting to
reflect rather than absorb the radiation. This is especially evident in the left panel
(note red area beneath the central pyramid (see [98] for more detail). From these
calculations, it is apparent that the Planck LFI targets at 70 GHz are not black,
enabling dissipation of energy well beyond the horn-target assembly. Unfortunately,
the Planck team does not display corresponding results at 30 and 44 GHz. Repro-
duced from [98] with permission of the IOP and L.Valenziano on behalf of the authors
and the Planck LFI consortium. Caption reproduced from [99] with permission.

analyses provide unambiguous evidence that the return-loss measurements far
overstate the performance of the reference loads when attempting to evaluate
emissivity. The LFI Team did not correctly evaluate the emissivity of the 4 K
reference loads.

“Indeed, Valenziano et al. [98] do not even provide the estimated
emissivity of their targets. By itself, this constitutes an implicit
indication that these values cannot be properly determined, with
such methods, as I previously stated.” [99]

Notwithstanding, the Planck Team assumed that in making their return-
loss measurements, no leakage into the gap could take place, even though such
leakage is evident in their own calculations, as shown in Fig. 11.23. They
further assumed, contrary to their own return-loss measurements, as shown
in Fig. 11.22, that the reference load casings could not support any standing
waves.
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The LFI consortium has demonstrated a major deficiency in knowledge
of, and violation of, even the fundamental principles of thermodynamics by
permitting the 4 K reference loads to be perfect conductors:

“the 70 GHz loads are assumed to be perfect thermal conductors,
due to their small thickness and mass.” [98]

This issue has been examined in fine detail in [100].
It is curious that the Planck Team maintains that one can take the 70

GHz map from the LFI and compare it to the 100 GHz map from the HFI,
two completely different instruments, and see at high galactic latitude the
same anisotropies, bearing in mind that the LFI did not even work. It is
also interesting to note that the Planck Team reported better than expected
performance from the LFI. The reason for this unexpected better performance
is that the 4 K reference loads appeared as ≈ O K reference loads because
their emission profiles were drastically compromised by conduction to the HFI
shield. Table 11.2 summarises the logical possibilities.

Expected performance of the Planck LFI receivers
Sky Temperature ≈3 K Sky Temperature ≈0 K

Reference ≈4 K As expected Poor
Reference ≈0 K Poor Better than expected

Table 11.2: All logical possibilities for performance of the LFI. Adapted from [99].

In any event, the fatal flaws in the design of the Planck instruments do
not circumvent the fact that the strong monopole signal detected by COBE-
FIRAS does not exist at L2. The evidence that the strong monopole signal
detected by COBE-FIRAS is overwhelming [75, 76, 82, 83, 90]. Ironically, the
failure of the LFI produced certain evidence that the strong monopole detected
by COBE-FIRAS does not exist at L2.

Planck is but one of three satellites that have allegedly detected ‘CMB’
anisotropies. All these satellites must agree, if their anisotropies are real. They
do not agree. The alleged anisotropies are not stable. This has been proven by
WMAP. WMAP has no unique map. The final all-sky map presented by the
WMAP Team is entirely arbitrary. Tegmark produced a different map from
the WMAP ‘data’, reinforcing the fact that none of these maps are anything
but noise. WMAP ILC coefficients vary from year to year, by as much as 100%,
and in adjacent sections of the images. Since there is no unique anisotropy
map, and no means to assign meaning to any particular such map, the maps
are indistinguishable from noise. Consequently the alleged ‘CMB’ anisotropies
have no meaning. COBE-DMR did not detect ‘CMB’ anisotropies either.
Arbitrarily removing the quadrupole from nothing but noise certainly produces
data-processing artifacts. Changing instrument from COBE to WMAP to
Planck does not make the galactic foreground, point sources, or the alleged
‘CMB’ anisotropies, become stable. It is the galactic foreground and the point
sources that are inherently unstable. This is clearly demonstrated in the year
1 and year 3 WMAP all-sky images, and another reason why there is no
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unique map. Moreover, COBE, WMAP and Planck suffer from the same
insurmountable problem - they must peer through the galactic foreground
in order to find their alleged anisotropies. However, galactic foreground is
noise as far as the ‘anisotropies’ are concerned, and must be removed, by
data-processing. Similarly, the dipole signal must be removed, again by data-
processing. The best radiometric laboratories on Earth today cannot achieve
what the ‘CMB’ anisotropy satellites claim to have achieved in space, because
it is known to be impossible under the conditions experienced by the CMB
satellites. Moreover, stability must be determined on a cosmological time scale.
None of the CMB satellites have any possibility of determining anisotropy on
a cosmological time scale.

Ultimately, the assignment of an absolute temperature to the strong mono-
pole signal from Earth is a violation of the laws of thermal emission, even if
Kirchhoff’s Law of Thermal Emission was true. The strong monopole signal
from Earth is not the temperature of anything: it is an apparent temperature,
due to the oceans on Earth. There can be no CMB without Kirchhoff’s Law
of Thermal Emission and universality of Planck’s equation for thermal spec-
tra. However, Kirchhoff’s Law is certainly false; hence Planck’s equation for
thermal spectra is not universal. Consequently, big bang cosmology and its
fiery CMB have no scientific basis.
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