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Executive Summary 

There exists a fundamental law of duality between electricity and magnetism. The law 
reveals itself by the systematic study and analysis of already known quantities and 
equations. One of the key reasons that deprived humanity from discovering such a 
fundamental law is the heavy usage of usual Vector algebra, which is omnipresent in 
science and lacks many necessary geometrical concepts and perennially thwarts 
realisation of the true nature of reality.


The analysis discovers unknown quantities such as an electric potential and a voltage 
area density which are the dual of electric charge and current area density, respectively. In 
addition, the analysis unravels the mystery of the perennial myth that electric and 
magnetic fields can only be perpendicular i.e. there is only a perpendicular interaction 
between electric and magnetic fields. The analysis shows that there also exists a parallel 
interaction between electric and magnetic fields. The well known Gauss Law and Faraday 
Law, which have been attributed to perpendicular interaction, in actuality pertain to 
parallel interaction.


Furthermore, it is shown that the electric and magnetic fields can have velocities faster 
than light, bringing in aspects of general relativity. The fields rotate/spin with different 
cycles in various interactions and are primary quantities. The electric potential and charge 
are nothing more than spinning spacetime structures.


In addition, it is shown that the length measurement and hence the speed of light is 
affected by the electric and magnetic fields which makes it almost impossible to correctly 
measure the speed of light with currently used methods. The vector velocities of two 
interacting fields result in a ubiquitous scalar speed of light which is Lorentz invariant and 
the rotational/ spinning component.


Furthermore, it is shown that the power density and the energy density inherently 
represent the same concept, but the power density is due to the perpendicular interaction 
while the energy density is due to the parallel interaction. The energy density is not a 
scalar quantity or Lorentz invariant in the truest sense of the word.
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In addition, it is shown that there is an unaccounted power density, firstly due to the 
newly discovered voltage area density and secondly due to the orthogonal complement 
or dual space.


Furthermore, it is shown that there exists a fourth space dimension for equations of 
transformation i.e. equation of unipolar induction and equation of convention, to be valid 
at the same time.


In addition, it is shown that there are additional unaccounted power terms, which are 
always present in reality irrespective of our view.


These are the key reasons that the prevalent theory of electromagnetism cannot 
corroborated with free energy devices and many experimental results and continues to 
plague human collective consciousness.
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1. Law of Duality 

The duality of the Faraday and Ampère-Maxwell law reveals itself when the dual entities, 
i.e. electric field and magnetic field strength or magnetic flux density and dielectric 
displacement, are being employed in the same equation.


Table 1.1

Duality

Electricity Magnetism

Coulomb law Gauss law

Faraday law Ampère-
Maxwell law

V
m2

∇ ⋅ E =
ρ
ϵ0

∇ × E +
∂B
∂ t

= 0

∇ ⋅ H = 0

Vs
m3

∇ × B −
1
c2

∂ E
∂ t

= μ0J
V

m2

A
m2

Table 1.2

Duality

Electricity Magnetism

Yang Male Yin Female

Positive Negative

North pole South pole

Direction of 
movement

Direction of 
movement

Vacuum 
permittivity

Vacuum 
permeability

Voltage Current

Electric field 
strength

Magnetic field 
strength

Magnetic flux 
density or 
Magnetic 
induction

Dielectric 
displacement or 
Electric 
induction

Coulomb law Gauss law

B = μ0H

U

μ0

N ⟶ S

ϵ0

N ⟵ S

As
m2

E
V
m

A

A
m

Vs
m2

+

N S

V
m2

−

Vs
Am

I

As
Vm

D = ϵ0E

∇ ⋅ E =
ρe

ϵ0
∇ ⋅ H = 0

V

A
m2

H
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The vacuum permittivity  converts the electricity into magnetism and vacuum 

permeability  converts the magnetism into electricity. Thus Coulomb law and Gauss law 

keep shuffling between two aspects depending on which aspect is represented in the 
equation.


Coulomb law: 


(1) 	 [1.1]


(2) 	 [1.2]


Gauss law:


(3) 	 [1.3]


(4) 	 [1.4]


Faraday law:


(5) 	 [1.5]


(6) 	 [1.6]


Gauss law Coulomb law

-

Faraday law Ampère-
Maxwell law

Ampère-
Maxwell law Faraday law

Duality

Electricity Magnetism

A
m2

Vs
m3

∇ × H − ϵ0
∂ E
∂ t

= J

∇ × D +
1
c2

∂H
∂ t

= 0

V
m2

As
m3

∇ × E +
∂B
∂ t

= 0

∇ × E + μ0
∂H
∂ t

= 0

∇ ⋅ B = 0 ∇ ⋅ D = ρe

∇ × H −
∂ D
∂ t

= J

Vs
m3

∇ × B − μ0
∂ D
∂ t

= μ0J ∇ × D + ϵ0
∂B
∂ t

= 0

∇ × B −
1
c2

∂ E
∂ t

= μ0J

As
m3

V
m2

A
m2

Vs
m3

As
m3

ϵ0

μ0

∇ ⋅ E =
ρe

ϵ0

∇ ⋅ D = ρe

∇ ⋅ H = 0

∇ ⋅ B = 0

∇ × E +
∂B
∂ t

= 0

∇ × E + μ0
∂H
∂ t

= 0

anil@anilgoel.com Proprietary and Confidential
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(7) 	 [1.7]


(8) 	 [1.8]


Ampère-Maxwell law:


(9) 	 [1.9]


(10) 	 [1.10]


(11) 	 [1.11]


(12) 	 [1.12]


Unipolar induction by Faraday is expressed by 


(13) 	 [1.13]


where  is a velocity of a moving frame or relative velocity between frames.


The dual of equation[1.13] is the equation of convection expressed by


(14) 	 [1.14]


The equations [1.13] and [1.14] together are called equations of transformation. The 
equations of transformation operate simultaneously.


Maxwell’s equations can be derived from the equation of unipolar induction and the 
equation of convection.


∇ × D + ϵ0
∂B
∂ t

= 0

∇ × D +
1
c2

∂H
∂ t

= 0

∇ × H −
∂ D
∂ t

= J

∇ × B −
1
c2

∂ E
∂ t

= μ0J

∇ × H − ϵ0
∂ E
∂ t

= J

∇ × B − μ0
∂ D
∂ t

= μ0J

E = v × B

v

H = − v × D

anil@anilgoel.com Proprietary and Confidential
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Applying the curl on the equation of convection [1.14] gives


(15) 	 [1.15]


According to Vector algebra


(16) 	 [1.16]


Therefore


(17) 	 [1.17]


(18) 	 [1.18]


(19) 	 [1.19]


In Vector algebra, the gradient is usually introduced as a vector not as a tensor (1 form) as 
the components of space coordinates do not change when you convert a vector to a 
tensor in a Cartesian coordinate system. Hence, the dot product of a gradient vector with 
another vector still produces a scalar. However, this little maneuver of avoiding the 
concept of tensor in Vector algebra not only violates the fundamental property of dot 

Table 1.3

Duality

Electricity Magnetism

Vacuum 
permittivity

Vacuum 
permeability

Voltage Current

Electric field 
strength

Magnetic field 
strength

Magnetic flux 
density or 
Magnetic 
induction

Dielectric 
displacement or 
Electric 
induction

Unipolar 
induction

Equation of 
convection

A
m

Vs
m2

U

As
Vm

ϵ0

D = ϵ0E

μ0

As
m2

V
V
m

A
m

E = v × B

E H

A

B = μ0H

V
m

I

Vs
Am

H = − v × D

∇ × H = − ∇ × (v × D)

∇ × (B × C) = B( ∇ ⋅ C) − C( ∇ ⋅ B) + (C ⋅ ∇)B − (B ⋅ ∇)C

∇ × (v × D) = v( ∇ ⋅ D) − D( ∇ ⋅ v) + (D ⋅ ∇)v − (v ⋅ ∇)D

∇ × (v × D) = v( ∇ ⋅ D) − D( ∇ ⋅ v) + D ⋅ ( ∇v) − (v ⋅ ∇)D

∇ × H = − (v( ∇ ⋅ D) − D( ∇ ⋅ v) + D ⋅ ( ∇v) − (v ⋅ ∇)D)
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product, i.e. makes the dot product being non commutative which unnecessarily creates 

confusion, but also has a few side effects, for example the gradient of the velocity  

cannot be defined in the Vector algebra.


(20) 	 [1.20]


(21) 	 [1.21]


In accordance with special relativity, we have to assume that  is a constant. Therefore


(22) 	 	 [1.22]


On substituting equation [1.22] in equation [1.21] gives


(23) 	 [1.23]


The dot product  is defined as a directional derivative in the direction of  and is a 

vector operator.


According to Vector algebra, written in matrix form:


(24) 	 [1.24]


Therefore


(25) 	 [1.25]


(26) 	 [1.26]


∇v

∇ ⋅ v ≠ v ⋅ ∇

∇ ⋅ v =
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z

v

∂vx

∂x
= 0

∂vy

∂y
= 0

∂vz

∂z
= 0

∇ ⋅ v = 0

v ⋅ ∇ v

A ⋅ B = AT B

v ⋅ ∇ = vT ∇

vT = [ ∂x
∂t , ∂y

∂t , ∂z
∂t ]

anil@anilgoel.com Proprietary and Confidential
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(27) 	 	 [1.27]


Therefore


(28) 	 [1.28]


(29) 	 [1.29]


To define the gradient of the velocity , we must look elsewhere. The Vector algebra is 

a stripped down version of Clifford algebra in three dimensions. I will expound on what 
has been stripped in Vector algebra in the next chapter. 


According to Clifford Algebra,


(30) 	 [1.30]


(31) 	 [1.31]


In accordance with special relativity, we have to assume that  is a constant. Therefore 

the curl of the velocity  will be zero.


(32) 	 [1.32]


Therefore, the gradient of the velocity  always vanishes.


∇ =

∂
∂x
∂

∂y
∂
∂z

v ⋅ ∇ = [ ∂x
∂t , ∂y

∂t , ∂z
∂t ]

∂
∂x
∂

∂y
∂
∂z

v ⋅ ∇ =
∂x
∂t

∂
∂x

+
∂y
∂t

∂
∂y

+
∂z
∂t

∂
∂z

=
∂
∂t

+
∂
∂t

+
∂
∂t

=
3

∑
i=1

∂
∂t

∇v

∇v = ∇ ⋅ v + ∇ ∧ v

∇v = ∇ ⋅ v + I ∇ × v

v

∇ × v

∇v = 0 + I0 = 0

∇v

anil@anilgoel.com Proprietary and Confidential
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We need to import the Clifford algebra identity equation [1.32] into the Vector algebra.


On substituting equation [1.23] and [1.32] in equation [1.19] gives


(33) 	 [1.33]


(34) 	 [1.34]


We define the current area density by


(35) 	 [1.35]


On substituting equation [1.35] in equation [1.34] gives


(36) 	 [1.36]


Thus, the equation of convection and the Ampère-Maxwell law equation are two 
expressions of same law.


It is evident from equation [1.34] (the second term on RHS) that the Coulomb law is 
inherent in the equation of convection.


Applying the curl on Faraday’s unipolar induction [1.13] gives


(37) 	 [1.37]


According to Vector algebra [1.16]


	 	 [1.16]


Therefore


(38) 	 [1.38]


(39) 	 [1.39]


(40) 	 [1.40]


∇ × H = − (v( ∇ ⋅ D) − D(0) + D ⋅ (0) −
∂D
∂t )

∇ × H =
∂D
∂t

− v( ∇ ⋅ D)

J = − v( ∇ ⋅ D)

∇ × H =
∂D
∂t

+ J

∇ × E = ∇ × (v × B)

∇ × (B × C) = B( ∇ ⋅ C) − C( ∇ ⋅ B) + (C ⋅ ∇)B − (B ⋅ ∇)C

∇ × (v × B) = v( ∇ ⋅ B) − B( ∇ ⋅ v) + (B ⋅ ∇)v − (v ⋅ ∇)B

∇ × (v × B) = v( ∇ ⋅ B) − B( ∇ ⋅ v) + B ⋅ ( ∇v) − (v ⋅ ∇)B

∇ × E = v( ∇ ⋅ B) − B( ∇ ⋅ v) + B ⋅ ( ∇v) − (v ⋅ ∇)B
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On substituting equation [1.23] and [1.32] in equation [1.40] gives


(41) 	 [1.41]


For special case [1.4]


	 	 [1.4]


On substituting equation [1.4] in equation [1.41] gives


(42)  	 [1.42]


(43) 	 [1.43]


Thus the Faraday law is a special case of Faraday’s unipolar induction unlike the Ampère-
Maxwell law.


∇ × E = v( ∇ ⋅ B) −
∂B
∂t

∇ ⋅ B = 0

∇ × E = 0 −
∂B
∂t

∇ × E +
∂B
∂ t

= 0

Table 1.4

Duality

Electricity Magnetism

Unipolar 
induction

Equation of 
convection

Coulomb law Gauss law

Gauss law Coulomb law

Faraday law Ampère-
Maxwell law

Ampère-
Maxwell law Faraday law

As
m3

A
m2∇ ⋅ H = 0

∇ ⋅ D = ρe

V
m2

∇ × E + μ0
∂H
∂ t

= 0 ∇ × H − ϵ0
∂ E
∂ t

= J

V
m

A
m

Vs
m3

A
m2

E = v × B

∇ × D + ϵ0
∂B
∂ t

= 0
Vs
m3

V
m2

∇ ⋅ B = 0

∇ × E +
∂B
∂ t

= 0 ∇ × H −
∂ D
∂ t

= J

H = − v × D

A
m2

∇ ⋅ E =
ρe

ϵ0

As
m3

∇ × B − μ0
∂ D
∂ t

= μ0J

V
m2
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We know now that the magnetic monopoles do exist in the nature as observed by 
Helmholtz institute and London centre of nanotechnology. The measurement of the 
magnetic monopole is the real problem, not its existence.


By applying the rules of duality, we should be able to theoretically correct the Maxwell 
equations as we have already seen that the dual equation of convection results in the 
Ampère-Maxwell law.


The dual of an elementary electric charge  would be an ELEMENTARY MAGNETIC 

POTENTIAL .


(44) 	 [1.44]


The dual of an electric charge  would be a MAGNETIC POTENTIAL .


(45) 	 [1.45]


where  is the number of elementary electric charge or elementary magnetic potential.


The dual of an electric charge density  would be a MAGNETIC POTENTIAL DENSITY 

.


(46) 	 [1.46]


The dual of an electric current area density  would be a MAGNETIC VOLTAGE AREA 

DENSITY .


(47) 	 [1.47]


Duality

Electricity Magnetism

Vs
m3

∇ × D +
1
c2

∂H
∂ t

= 0
As
m3

∇ × B −
1
c2

∂ E
∂ t

= μ0J

e

h

e (Ampere second ) ⟵ dual ⟶ p (Volt second )

q ϕh

q = ne (Ampere second ) ⟵ dual ⟶ ϕp = np (Volt second )

n

ρe

ρp

ρe ( As
m3 ) ⟵ dual ⟶ ρp ( Vs

m3 )
J

V

J = − v( ∇ ⋅ D)( A
m2 ) ⟵ dual ⟶ V = v( ∇ ⋅ B)( V

m2 )

anil@anilgoel.com Proprietary and Confidential
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The dual of the Coulomb law would be a DUAL COULOMB LAW.


(48) 	 [1.48]


(49) 	 [1.49]


The dual of the Ampère-Maxwell law would be a DUAL AMPÈRE-MAXWELL LAW.


(50) 	 [1.50]


∇ ⋅ E =
ρe

ϵ0
⟵ dual ⟶ ∇ ⋅ H =

ρp

μ0

∇ ⋅ D = ρe ⟵ dual ⟶ ∇ ⋅ B = ρp

∇ × H −
∂ D
∂ t

= J ⟵ dual ⟶ ∇ × E +
∂B
∂ t

= V

Table 1.5

Duality

Electricity Magnetism

Yang Male Yin Female

Positive Negative

North pole South pole

Direction of 
movement

Direction of 
movement

Vacuum 
permittivity

Vacuum 
permeability

Voltage Current

Electric field 
strength

Magnetic field 
strength

Magnetic flux 
density or 
Magnetic 
induction

Dielectric 
displacement or 
Electric 
induction

Elementary 
electric charge

Elementary 
magnetic 
potential 

Electric charge Magnetic 
potential

p

W b = Vs

I
V
m

N ⟶ S

AU

B = μ0H

+

C = As W b = Vs

N

C = As

−

As
Vm

ϕp

V
A
m

ϵ0
Vs
Am

As
m2

H

Vs
m2

D = ϵ0E

q

E

μ0

N ⟵ S

S

e
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Electric charge 
density

Magnetic 
potential 
density

Unipolar 
induction

Equation of 
convection

Coulomb law Dual Coulomb 
law

Dual Coulomb 
law Coulomb law

Electric current 
area density

Magnetic 
voltage area 
density

Dual Ampère-
Maxwell law

Ampère-
Maxwell law

Ampère-
Maxwell law

Dual Ampère-
Maxwell law

Special Case

Dual Gauss law Gauss law

Gauss law Dual Gauss law

Electric current 
area density

Magnetic 
voltage area 
density

Duality

Electricity Magnetism

V = 0

∇ × D + ϵ0
∂B
∂ t

= ϵ0V

V = v( ∇ ⋅ B)

∇ ⋅ B = 0

Vs
m3

∇ ⋅ E = 0

As
m3

As
m3

ρp

V
m

∇ × H −
∂ D
∂ t

= J

V
m2

A
m2

∇ × D +
1
c2

∂H
∂ t

= ϵ0V

∇ ⋅ E =
ρe

ϵ0

V
m2

A
m2

A
m2

J = 0

A
m2

A
m2

A
m

∇ ⋅ B = ρp

∇ ⋅ H = 0

Vs
m3

∇ ⋅ H =
ρp

μ0

∇ × H − ϵ0
∂ E
∂ t

= J

V
m2

As
m3

Vs
m3

As
m3

As
m3

ρe

∇ × E +
∂B
∂ t

= V

∇ × B −
1
c2

∂ E
∂ t

= μ0J

∇ ⋅ D = 0

A
m2

Vs
m3

V
m2

Vs
m3

∇ × E + μ0
∂H
∂ t

= V

E = v × B

V
m2

J = − v( ∇ ⋅ D)

∇ ⋅ D = ρe

V
m2

∇ × B − μ0
∂ D
∂ t

= μ0J

H = − v × D
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As pointed out earlier, the vacuum permittivity  converts the electricity into magnetism 

and the vacuum permeability  converts the magnetism into electricity. Thus Ampère-

Maxwell law and dual Ampère-Maxwell law keep shuffling between two aspects 
depending on which aspect is represented in the equation.


On a closer inspection of the Table 1.5, it seems that the so called electric charge or 
electric monopole is actually a magnetic charge or magnetic monopole.

i) This can be easily ascertained by observing the properties of the so called electric 

charge.


ii) The basic units of so called electric charge  is Ampere Second . The ampere 

is the unit associated with magnetism and the volt is the unit associated with 
electricity.


iii) The so called electric charge repels another electric charge of same polarity and 
attracts the positive charge (positron) with opposite polarity, which is the 
fundamental characteristic of magnetic North and South poles.


The electric charge  produces the so called electric current area density . 

Similarly, the so called magnetic potential or magnetic monopole is actually an electric 

potential or an electric monopole. Thus, magnetic charge  produces magnetic 

current area density and electric potential  produces electric voltage area 

density .


As such it doesn’t matter what an entity is called as long as we know what they really are, 
but it creates unnecessary confusion and is prone to errors for example in the literature, 

Faraday law Dual Faraday 
law

Duality

Electricity Magnetism

∇ × E +
∂B
∂ t

= 0 ∇ × H −
∂ D
∂ t

= 0
V

m2

A
m2

ϵ0

μ0

e (As)

e(As) J ( A
m2 )

e(As)

J ( A
m2 ) p(Vs)

V ( V
m2 )
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usually area is dropped from magnetic current area density  which causes 

confusion as density is commonly related to per unit volume not to per unit area.


In this work, we will use the correct and consistent terminology to avoid any confusion 
and errors which may arise due to wrong terminologies.


J ( A
m2 )

Table 1.6

Duality

Electricity Magnetism

Yang Male Yin Female

Positive Negative

North pole South pole

Direction of 
movement

Direction of 
movement

Vacuum 
permittivity

Vacuum 
permeability

Voltage Current

Electric field 
strength

Magnetic field 
strength

Magnetic flux 
density or 
Magnetic 
induction

Dielectric 
displacement or 
Electric 
induction

Elementary 
electric 
potential 

Elementary 
magnetic 
charge

Electric 
potential

Magnetic 
charge

Electric 
potential 
density

Magnetic 
charge density

Unipolar 
induction

Equation of 
convection

As
Vm

−

V
m

V

E

N

ϕp

Vs
m2

S

B = μ0H

W b = Vs

+

U

μ0

AI

Vs
m3

p

D = ϵ0E

N ⟶ S

Vs
Am

C = As

ρe

A
m

V
m

W b = Vs

ϵ0

As
m3

As
m2

C = As

E = v × B

q

A
m

ρp

H

N ⟵ S

H = − v × D

e
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The vector form of Ohm’s law was generalised by Gustav Kirchhoff and is


(51) 	 [1.51]


Coulomb law Dual Coulomb 
law

Dual Coulomb 
law Coulomb law

Electric voltage 
area density

Magnetic 
current area 
density

Dual Ampère-
Maxwell law

Ampère-
Maxwell law

Ampère-
Maxwell law

Dual Ampère-
Maxwell law

Special Case

Dual Gauss law Gauss law

Gauss law Dual Gauss law

Electric voltage 
area density

Magnetic 
current area 
density

Faraday law Dual Faraday 
law

Duality

Electricity Magnetism

Vs
m3

A
m2

V
m2

As
m3

A
m2

Vs
m3

∇ ⋅ H =
ρp

μ0

As
m3

J = 0

V
m2

V
m2

∇ ⋅ D = 0

∇ × H −
∂ D
∂ t

= J

As
m3

∇ × H − ϵ0
∂ E
∂ t

= J

∇ × H −
∂ D
∂ t

= 0

∇ ⋅ B = ρp

J = − v( ∇ ⋅ D)

V
m2

V = v( ∇ ⋅ B)

∇ ⋅ E = 0
A

m2∇ ⋅ H = 0

As
m3

Vs
m3

V
m2

A
m2

A
m2

A
m2

∇ × B −
1
c2

∂ E
∂ t

= μ0J

∇ × B − μ0
∂ D
∂ t

= μ0J

∇ × E + μ0
∂H
∂ t

= V

∇ × D + ϵ0
∂B
∂ t

= ϵ0V

∇ ⋅ B = 0

V
m2

∇ × E +
∂B
∂ t

= 0

A
m2

V = 0

∇ ⋅ E =
ρe

ϵ0

∇ ⋅ D = ρe

V
m2

Vs
m3

∇ × E +
∂B
∂ t

= V

∇ × D +
1
c2

∂H
∂ t

= ϵ0V

J = σE
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where  (sigma) is a material-dependent parameter called the conductivity which is 

generally a tensor. In most cases,  is assumed to be a scalar quantity.


For vacuum


(52) 	 [1.52]


(53) 	 [1.53]


where  is vacuum conductivity.


On substituting equation [1.52] with equation [1.53] gives


(54) 	 [1.54]


(55) 	 [1.55]


where  is the ANGULAR FREQUENCY OF OUTWARD SPIRALLING ELECTRIC  

INDUCTION in free space as observed in the skin effect in the copper cable.


The dual of the skin effect would be a contraction, a CORE EFFECT.


(56) 	 [1.56]


The dual of a vacuum conductivity would be a vacuum POTENTIATIVITY.


(57) 	 [1.57]


The dual of Ohm’s law [1.53] would be the DUAL OHM’S LAW i.e. ELECTRIC VOLTAGE 

AREA DENSITY IS PROPORTIONAL TO THE MAGNETIC FIELD STRENGTH.


(58) 	 [1.58]


σ

σ

D = ϵ0E

J = σ0E

σ0

J =
σ0

ϵ0
D

J = ωpD

ωp =
σ0

ϵ0

Skin ef fect ⟵ dual ⟶ Core ef fect

σ0 ( A
Vm ) ⟵ dual ⟶ η0 ( V

Am )

J = σ0E ( A
m2 ) ⟵ dual ⟶ V = η0H ( V

m2 )
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(59) 	 [1.59]


(60) 	 [1.60]


On substituting equation [1.60] in equation [1.59] gives


(61) 	 [1.61]


(62) 	 [1.62]


where , is the ANGULAR FREQUENCY OF AN INWARD SPIRALLING 

MAGNETIC INDUCTION in free space, as observed in the core effect in the fibre optic 
cable.


Thus, the dual of the angular frequency of an outward spiralling electric induction is the 
angular frequency of an inward spiralling magnetic potential.


(63) 	 [1.63]


(64) 	 [1.64]


(65) 	 [1.65]


On multiplying equation [1.64] with [1.65] gives


(66) 	 [1.66]


(67) 	 [1.67]


(68) 	 [1.68]


V = η0H

B = μ0H

V =
η0

μ0
B

V = ωeB

ωe =
η0

μ0

ωp =
σ0

ϵ0 ( 1
s ) ⟵ dual ⟶ ωe =

η0

μ0 ( 1
s )

ωp =
σ0

ϵ0

ωe =
η0

μ0

ωpωe =
σ0η0

ϵ0μ0

ωpωe = c2 σ0η0

ωpωe = c2 κeκh
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where


(69) , is the ELECTRIC WAVE NUMBER	 [1.69]


(70) , is the MAGNETIC WAVE NUMBER	 [1.70]


Therefore


(71) 	 [1.71]


(72) 	 [1.72]


where 


(73) 	 [1.73]


(74) 	 [1.74]


where and  are constants.


Substituting equation [1.55] in Ampère-Maxwell law gives


(75) 	 [1.75]


(76) 	 [1.76]


(77) 	 [1.77]


(78) 	 [1.78]


κp ∝ σp

κe ∝ ηe

σp ∝
1
λp

ηe ∝
1
λe

κpκe = κ 2
0

ωpωe = ω2
0

κ0( 1
m ) ω0( 1

s )

∇ × H =
∂D
∂t

+ ωpD

∇ × H = ϵ0 ( ∂E
∂t

+ ωpE)
∇ × B = ϵ0μ0 ( ∂E

∂t
+ ωpE)

∇ × B =
1
c2 ( ∂E

∂t
+ ωpE)
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Substituting equation [1.62] in Faraday law gives


(79) 	 [1.79]


(80) 	 [1.80]


(81) 	 [1.81]


(82) 	 [1.82]


∇ × E = −
∂B
∂t

+ ωeB

∇ × E = − μ0 ( ∂H
∂t

− ωeH)
∇ × D = − ϵ0μ0 ( ∂H

∂t
− ωeH)

∇ × D = −
1
c2 ( ∂H

∂t
− ωeH)

Table 1.7

Duality

Electricity Magnetism

Yang Male Yin Female

Positive Negative

North pole South pole

Direction of 
movement

Direction of 
movement

Vacuum 
permittivity

Vacuum 
permeability

Vacuum 
conductivity

Vacuum 
potentivity

Vacuum angular 
frequency for 
Electric 
induction

Vacuum angular 
frequency for 
Magnetic 
induction

Voltage Current

Electric field 
strength

Magnetic field 
strength

−

ωp =
σ0

ϵ0

+

N ⟶ S

As
Vm

V
Am

A

E

N ⟵ S

S

U V

1
s

V
m

1
s

Vs
Am

ωe =
η0

μ0

ϵ0

A
Vm

I

H

σ0 η0

A
m

N

μ0
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Magnetic flux 
density or 
Magnetic 
induction

Dielectric 
displacement or 
Electric 
induction

Elementary 
electric 
potential 

Elementary 
magnetic 
charge

Electric 
potential

Magnetic 
charge

Electric 
potential 
density

Magnetic 
charge density

Unipolar 
induction

Equation of 
convection

Coulomb law Dual Coulomb 
law

Dual Coulomb 
law Coulomb law

Electric voltage 
area density

Magnetic 
current area 
density

Dual ohms law Ohms law

Dual Ampère-
Maxwell law

Ampère-
Maxwell law

Duality

Electricity Magnetism

W b = Vs

As
m3

∇ × H = ϵ0 ( ∂E
∂t

+ ωpE)

∇ ⋅ H =
ρp

μ0

A
m2

∇ × E = −
∂B
∂t

+ ωeB

∇ ⋅ B = ρp

A
m2

Vs
m2

V
m

A
m2

∇ × H =
∂D
∂t

+ ωpD

∇ × E = − μ0 ( ∂H
∂t

− ωeH)

ϕp

∇ × D = −
1
c2 ( ∂H

∂t
− ωeH)∇ × B =

1
c2 ( ∂E

∂t
+ ωpE)

∇ ⋅ E =
ρe

ϵ0

C = As

V
m2

V
m2

V
m2

ρp

J = − v( ∇ ⋅ D)

V = η0H

∇ ⋅ D = ρe

V
m2

C = As

As
m3

J = ωpD

As
m3

p

J = σ0E

V = ωeB

ρe

∇ × D +
1
c2

∂H
∂ t

= − ϵ0V

Vs
m3

Vs
m3

V
m2

e

Vs
m3

∇ × E +
∂B
∂ t

= V ∇ × H −
∂ D
∂ t

= J

A
m2

V = v( ∇ ⋅ B)

Vs
m3

H = − v × D
A
m

E = v × B

As
m3

W b = Vs

A
m2

B = μ0H
As
m2

q

∇ × B −
1
c2

∂ E
∂ t

= μ0J

D = ϵ0E
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The comprehensive table of duality is fully symmetric in all respect wherein


i) The Ampere changes into Volt or vice versa.





ii) The charge changes into potential or vice versa.





iii) The current changes into potential or vice versa.





iv) The sign change in the equations are due to the fact that the electric potential 
propagates from positive potential to negative or less positive electric potential 
whereas the magnetic current propagates from negative magnetic charge to 
positive or less negative magnetic charge i.e. south magnetic pole to north 
magnetic pole.





Special Case

Dual Gauss law Gauss law

Gauss law Dual Gauss law

Electric voltage 
area density

Magnetic 
current area 
density

Faraday law Dual Faraday 
law

Duality

Electricity Magnetism

As
m3

A
m2

∇ ⋅ H = 0

J = 0

∇ ⋅ B = 0

∇ ⋅ E = 0

∇ × H −
∂ D
∂ t

= 0

∇ ⋅ D = 0

A
m2

V
m2

V = 0
V

m2

Vs
m3

∇ × E +
∂B
∂ t

= 0

A
m2

V
m2

Ampere ⟷ Volt

Charge ⟷ Potential

Current ⟷ Voltage

+ ⟶ Electric Potential ⟶ −
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Before further analysis, we need to get the right tool for the right job or at least to know 
which tools are missing from our popular mathematical tool box i.e. Vector algebra. We all 
know or at least we can imagine if we haven’t experienced, what it is like to unscrew a 
star headed screw with slotted screwdriver or draw a circle without a compass. 

N ⟵ Magnetic Current ⟵ S
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2. Mathematical Tool Box 
The original Maxwell equations were originally formulated in Quaternions algebra. The 

four well known Maxwell equations in Vector algebra are actually the Maxwell-Heaviside 

equations which lost lots of details and important aspects entailed in the original Maxwell 
equations at the expense of slight easiness of calculation and understanding.


It is important to understand and acknowledge the limitation of our mathematical tool box 
which lacks a few absolutely necessary tools i.e. Vector algebra lacks certain necessary 
geometrical concepts. For example, in Vector algebra, electromagnetic waves can only be 
transverse, which means that the electric field vector is always perpendicular to the 
magnetic field vector, and the curl of the fields is perpendicular to the fields themselves.


(1) 	 [2.1]


(2) 	 [2.2]


It has been known for more than a hundred years that the curl of a vector field and the 
field itself need not be perpendicular to one another. However, they can also be parallel.


In fact, towards the end of the nineteenth century, the Italian mathematician Eugenio 
Beltrami successfully developed a system of equations for the description of 
hydrodynamic flow, in which the curl of a vector is proportional to the vector itself.


∇ × E ⊥ E

∇ × B ⊥ B
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This geometric aspect can better be understood and easily visualised in Clifford/ 
Geometric algebra, which is an algebrification of geometry and a geometrification of 
algebra at the same time. The Clifford algebra is the algebra of the physical space and 
subspaces on the real field. It provides a unified view of things. The popular Vector 
algebra is a stripped down version of Clifford algebra in three dimensions. The Clifford 
algebra is not complicated, it is only a few small steps beyond the Vector algebra. In 
addition, it extends easily into any number of dimensions with the same formalism, and 
elegantly unifies all Vector algebra systems under one roof.
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In Clifford algebra, a scalar can be visualised as an ideal point in space, which has no 
geometric extent. A vector can be visualised as a line segment, which has length and 
orientation. A bivector can be visualised as a patch of flat surface, which has area and 
orientation. A trivector can be visualised as a piece of three-dimensional space, which 
has a volume and an orientation.


Each object has a grade, according to how many dimensions are involved in its geometric 
extent. Therefore, Clifford algebra is a graded algebra. The situation is summarised in the 
following Table 2.1.


Two vectors  and  that are not collinear span a plane can be combined as . The 

operation  is called the outer (or wedge) product, and two vectors combined by  are 

called a bivector. The side on which the rotation of  toward  is anticlockwise, i.e., a 

positive rotation, is defined to be the front side, and the magnitude of bivector  is 

defined to be the area of the parallelogram defined by  and . 


Table 2.1

Object Visualisation Geometric Extent Grade

Scalar Point No Geometric Extent 0

Vector Line Segment Extent in 1 Direction 1

Bivector Patch of Surface Extent in 2 Directions 2

Trivector Piece of Volume/ Space Extent in 3 Directions 3

A B A ∧ B
∧ ∧

A B
A ∧ B

A B
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Non-coplanar vectors ,  and  span a 3D volume, which we denote by . 

Three vectors combined by  are called a trivector. As a geometric figure, it represents 

the entire space, but its sign is defined to be positive if ,  and  are a right-handed 

system and negative if they are left-handed. The magnitude of trivector  is 

defined by the volume of the parallelepiped defined by ,  and . 


The orthogonal complement or dual of the plane specified by bivector  is a line 

orthogonal to it. The dual is defined to be a vector  orthogonal to plane 

 and by virtue of this to both  and  which lies in the plane , having the 

same magnitude as .


The orthogonal complement or dual of the space specified by trivector  is the 

origin (a scalar). The dual is defined to be a scalar  that has the same 

magnitude as .


A B C A ∧ B ∧ C
∧

A B C
A ∧ B ∧ C

A B C

A ∧ B
(A ∧ B) * C

A ∧ B A B A ∧ B

A ∧ B

A ∧ B ∧ C
(A ∧ B ∧ C) * α

A ∧ B ∧ C

Table 2.2

Dimension n=2
Blade Blade

Scalar Grade = 0 Grade = 0

Vector Grade = 1 Grade = 1

Bivector Grade = 2 Grade = 2 Pseudo scalar I2

Table 2.3

Dimension n=3
Blade Blade

Scalar Grade = 0 Grade = 0

Vector Grade = 1 Grade = 1

Bivector Grade = 2 Grade = 2 Pseudo vector

Trivector Grade = 3 Grade = 3 Pseudo scalar I3
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In  dimensions, the dual of a blade (a general term for a geometric object in Clifford 

algebra) of grade g is a blade of  and vice versa as shown in Tables 2.2, 2.3 and 

2.4.


The dual of a scalar is always a pseudo scalar. In three dimensions, the familiar “triple 

scalar product”  produces a pseudo scalar. It’s called pseudo because if you 

look at it in a mirror, it changes sign. This stands in contrast to an ordinary non-pseudo 
scalar, such as the number of marbles, which is unaffected by a reflection.


In three and four dimensions, it converts a vector to a certain “corresponding” pseudo 

vector aka axial vector. The familiar cross product  produces a pseudo vector aka 

axial vector.


The dual specifies the orthogonal complement of the direct representation, it 

represents the vector product or scalar triple product of the Vector algebra.


(3) 	 [2.3]


Table 2.4

Dimension n=4
Blade Blade

Scalar Grade = 0 Grade = 0

Vector Grade = 1 Grade = 1

Bivector Grade = 2 Grade = 2

Trivector Grade = 3 Grade = 3 Pseudo vector

Quadvector Grade = 4 Grade = 4 Pseudo scalar   I4

n

(n − g)

A ⋅ B × C

A × B

Table 2.5

Pseudo Scalar Comparison

Bivector Grade = 2

Trivector Grade = 3

Quadvector Grade = 4

I3A = AI3I 2
3 = − 1

I4n = 4

I 2
2 = − 1

I 2
4 = − 1

I2

n = 3 I3

I4A = − AI4

n = 2 I2A = − AI2

( . . . )*

(A ∧ B) * = A × B
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(4) 	 [2.4]


The dual representation of a field, i.e., the orthogonal complement of the direct 
representation, corresponds to the vector product or curl of a field of the Vector algebra.


(5) 	 [2.5]


(6) 	 [2.6]


The number of linear subspaces contained in a space depends on the number of 
dimensions involved as shown in the Figure 2.4which takes the form of Pascal’s triangle. 

On each row, the total number of components is  and contains the coefficients of the 

expanded binomial , and the power of  represents the grade of the subspace.


Like a complex number, which is the sum of the real part and so called the imaginary part 
which actually represents a rotation, a Clif is the sum of blades of various grades as 

(A ∧ B ∧ C) * = A ⋅ B × C

( ∇ ∧ E) * = ∇ × E ⟶ ∇ ∧ E = I ∇ × E

( ∇ ∧ B) * = ∇ × B ⟶ ∇ ∧ B = I ∇ × B

2n

(1 + x)n x

anil@anilgoel.com Proprietary and Confidential

20

21

22

23

24

25

26

1
scalar

1
scalar

1
scalar

1
scalar

1
scalar

1
scalar

1
scalar

2
vector

1
vector

3
vector

4
vector

5
vector

6
vector

1
bivector

3
bivector

6
bivector

10
bivector

15
bivector

1
trivector

4
trivector

10
trivector

20
trivector

1
quintvector

6
quintvector

1
quadvector

5
quadvector

15
quadvector

1
sexvector

Cl4

Cl4

n=0

n=1

n=2

n=3

n=4

n=5

n=6

2D

Pascal’s Triangle

Figure 2.4

mailto:anil@anilgoel.com


RA-DIANT Page  of 30 160

shown in Table 2.6. In the literature, the Clif is called a multivector, but this term is 
misleading and may cause confusion and errors.


Similar to multiplication of complex numbers, any geometric object in Clifford algebra can 
be multiplied with any other object. The geometric product of two vectors (grade=1 only) 
gives only two terms, a scalar term and a bivector term (assuming the bivector term is 
nonzero). The geometric product of a vector and a bivector has two terms, a vector term 
and a trivector term. The geometric product of two bivectors (grade=2 only) has three 
terms, a scalar term, a bivector term and a quadvector term. The geometric product is not 
commutative.


The geometric product of two vectors is


(7) 	 [2.7]


(8) 	 [2.8]


(9) 	 [2.9]


The equation [2.8] is the dot product, inner product, or scalar product from the Vector 

algebra where where  and  are ordinary grade =1 vectors. The grade of the dot 

product is zero i.e. the grade of the dot product is .


(10) 	 [2.10]


where  and  have 


(11) 	 [2.11]


Table 2.6

Dimensions Clif

C = scalar + vector + bivector + t r ivector + qua dvector

C = scalar + vector + bivector

n = 4

C = scalar + vector + bivector + t r ivectorn = 3

n = 2

AB = ⟨A ⋅ B⟩0 + ⟨A ∧ B⟩2

⟨A ⋅ B⟩0 = scalar

⟨A ∧ B⟩2 = bivector

A B

|grade A − grade B |

⟨A ⋅ B⟩0 =
AB + BA

2

A B grade = 1

⟨A ∧ B⟩2 =
AB − BA

2
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where  and  have  

The geometric product of a vector and a bivector is


(12) 	 [2.12]


(13) 	 [2.13]


(14) 	 [2.14]


The equation [2.13] is called the contraction. It generalises the dot product. There are 
multiple contractions possible between two higher grade objects and the highest 
contraction is the lowest-grade piece of the geometric product.


(15) 	 [2.15]


(16) 	 [2.16]


The signs in equation [2.15] and [2.16] are the opposite way round to the case of two 
vectors in equation [2.10] and [2.11] respectively.


The geometric product of a vector with a blade of grade  is


(17) 	 [2.17]


(18) 	 [2.18]


(19) 	 [2.19]


The symmetries of inner/ dot products and outer/ wedge product alternate for the odd or 

even grade blade .


A B grade ≤ 1

A⟨B⟩2 = ⟨A ⋅ B⟩1 + ⟨A ∧ B⟩3

⟨A ⋅ B⟩1 = vector

⟨A ∧ B⟩3 = tr ivector

⟨A ⋅ ⟨B⟩2⟩1 =
AB − BA

2

⟨A ∧ ⟨B⟩2⟩3 =
AB + BA

2

r

A⟨B⟩r = ⟨A ⋅ ⟨B⟩r⟩(r−1) + ⟨A ∧ ⟨B⟩r⟩(r+1)

⟨A ⋅ ⟨B⟩r⟩(r−1) =
AB + (−1)r−1BA

2

⟨A ∧ ⟨B⟩r⟩(r+1) =
AB − (−1)r+1BA

2

⟨B⟩r
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The geometric product of two bivectors is


(20) 	 [2.20]


(21) 	 [2.21]


(22) 	 [2.22]


(23) 	 [2.23]


The equation [2.21] represents the contraction. The quadvector vanishes in three 
dimensions and represents a pseudo scalar in four dimensions.


The geometric product of two trivectors is


(24) 	 [2.24]


(25)  	 [2.25]


(26) 	 [2.26]


(27) 	 [2.27]


(28) 	 [2.28]


The equation [2.25] represents the contraction. The quadvector vanishes in three 
dimensions and represents a pseudo scalar in four dimensions. The sextvector vanishes 
in both three and four dimensions.


On multiplying an object of grade  by an object of grade  , the geometric 

product contains  terms of grades starting from  with an increment by  

until . There are r terms of inner/ dot products and one term of outer/ wedge 

product.


(29) 	 [2.29]


⟨A⟩2⟨B⟩2 = ⟨A ⋅ ⋅ B⟩0 + ⟨A ⋅ B⟩2 + ⟨A ∧ B⟩4

⟨A ⋅ ⋅ B⟩0 = scalar

⟨A ⋅ B⟩2 = bivector

⟨A ∧ B⟩4 = quadvector

⟨A⟩3⟨B⟩3 = ⟨A ⋅ ⋅ ⋅ B⟩0 + ⟨A ⋅ ⋅ B⟩2 + ⟨A ⋅ B⟩4 + ⟨A ∧ B⟩6

⟨A ⋅ ⋅ ⋅ B⟩0 = scalar

⟨A ⋅ ⋅ B⟩2 = bivector

⟨A ⋅ B⟩4 = quadvector

⟨A ∧ B⟩6 = sext vector

r s (s ≥ r)

(r + 1) |s − r | 2

|s + r |

⟨A⟩r⟨B⟩s = ⟨A (rdot) B⟩|s−r|+ . . . + ⟨A ⋅ ⋅ B⟩|s+r−4|

+⟨A ⋅ B⟩|s+r−2| + ⟨A ∧ B⟩|s+r|
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The definite symmetry (or antisymmetry) of each grade , where  

, is represented by .


The Clifford algebra is amazingly elegant in handling rotations. It emphasises the plane of 
rotation rather than the axis of rotation and works equally well in any number of 
dimensions. The plane of rotation seems more natural than an axis of rotation. For 
example, if you are sitting in an aircraft, you can see the plane of rotation for yaw-wise 
rotations spread out in front of you, running left/right. It is somewhat less natural to 
visualise the vertical axis (even though the two representations are technically equivalent 
in three dimensions).


In Clifford algebra a rotation is represented by the geometric product of two vectors 
which is Lorentz-invariant. The exact choice of vectors doesn’t matter; there are many 
different pairs of vectors that specify the same rotation. The plane containing the two 
vectors is the plane of rotation, and the angle between the two vectors is half the angle of 
rotation. The half angle has a deep physical significance and avoids any singularities. The 
rotation is expressed by


(30) 	 [2.30]


where  is the unrotated vector,  is a vector that is rotated relative to  by an angle ,  

is a rotor with rotor angle  and  is the reverse of . The reverse is a generalisation of 

the notion of the complex conjugate.


Compound rotations are represented by a product of rotors in the obvious way. For 

example, if you carry out a rotation described by rotor  and then follow it by another 

rotation described by rotor , the overall rotation composed of the two rotations is 

specified by the rotor  by multiplying the two rotors, in order


(31) 	 [2.31]


The rotor can also be expressed in exponential form


(32) 	 [2.32]


⟨ . . . ⟩|s+r−2t|

t = 0, 1, . . . , r (−1)
r(r − 1)

2 (−1)
s(s − 1)

2 (−1)
(r + s − 2t)(r + s − 2t − 1)

2

x′ = R∼xR

x x′ x θ R
θ
2

R∼ R

R1

R2

R12

R12 = R1R2

R(
θ
2

) = cos(
θ
2

) + e1e2sin(
θ
2

)
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(33) 	 [2.33]


where  and  are orthonormal basis vectors.


There is a two-to-one relationship between rotors and rotations. Any given rotation can be 

represented by two inequivalent rotors i.e.  and . If something rotates by  radians 

in any plane, it gets back the same attitude, but the rotor picks up a minus sign. It must 

rotate  radians to get back the original rotor. This is known as spinors. This is can be 

experienced first hand by the Dirac string trick or/ and the Philippine wine-glass trick.


A Clif consisting of terms of odd grades is called an odd Clif, and a Clif consisting of 
terms of even grades including grade zero i.e. scalar, is called an even Clif. It is easily 
seen that the product of two even Clifs and the product of two odd Clifs are even Clifs, 
and the product of even and odd Clifs is an odd Clif. The sums and scalar multiples of 
even Clifs are even Clifs and their products are also even Clifs. This means that the set of 
even Clifs forms by itself a closed algebra i.e. an even sub algebra of the Clifford algebra.


In fact, the Complex numbers are even a sub algebra of Clifford algebra in two 
dimensions, containing just scalars and bivectors. Similarly, the Quaternions, which are a 

higher dimensional generalisation of the complex numbers, are an even sub algebra of 
Clifford algebra in three dimensions, containing just scalars and bivectors. The reason, we 
are not able to immediately recognise it, is because the real even subspaces i.e. bivectors 
have also been complexified. This means that the two dimensions of the bivectors have 
combined into one single dimension. Whenever we complexity things, we loose degree of  
transparency and understanding. This is the reason why most of the people are still 
unaware that the imaginary part of complex number represents rotation and made the 
Quaternions algebra very difficult to understand. The Dirac algebra is nothing but the 
Clifford algebra with complexification in spacetime. The Pauli algebra is the even sub 
algebra of the Dirac algebra. The quaternion algebra can also be seen as the even 
subalgebra of the Pauli algebra. The complex numbers can also be seen as the even 
subalgebra of the quaternions.


In addition, the Clifford algebra resolves the apparent chirality (handedness) in 
electromagnetism i.e. the right-hand rule for electric generators, and the left-hand rule for 

R(
θ
2

) = e
θ
2 e1e2

e1 e2

R −R 2π

4π
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electric motors. The cross product is not preserved under reflection, and thus it 
introduces a fake chirality in electromagnetism. It is an artifact of the mathematics used to 
describe the world, not a property of the world itself.


Thus, the Vector algebra lacks few important concepts which are essential for our 
analysis, visualisation and correct geometrical interpretation, namely

i) Bivector, Trivector and so on

ii) Orthogonal complement or Dual space

iii) Clif

iv) Geometric product

v) Rotations


It can be easily visualised from Figure 2.3 that a vector can be parallel to a bivector of 
which it is a part.


(34) 	 [2.34]


(35) 	 [2.35]


Therefore it is possible that


(36) 	 [2.36]


(37) 	 [2.37]


The Beltrami condition uses the original interpretation of direct representation of a curl of 
a field from the Clifford algebra and imports it into the Vector algebra i.e. applies it to the 
indirect representation of a curl of a field. Such solutions of the Maxwell-Heaviside 

equations are called the Beltrami solutions.


(38) 	 [2.38]


Therefore


(39) 	 [2.39]


(40) 	 [2.40]


A ∧ B ∥ A

A ∧ B ∥ B

∇ ∧ E ∥ E

∇ ∧ B ∥ B

∇ ∧ E ∥ E ⟶ ∇ ∧ E = ωpE ⟶ ∇ × E = κpE

∇ ⋅ E = 0

∇ ∧ B ∥ B ⟶ ∇ ∧ B = − ωeB ⟶ ∇ × B = − κeB
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Therefore


(41) 	 [2.41]


The  is the rotation of vector  and  is the rotation of vector . In the process of 

applying the direct representation curl of the field from the Clifford algebra into the Vector 

algebra,  was appropriately changed to .


In the Clifford algebra literature, the electric field is represented by a vector , whereas 

the magnetic flux density is represented by a bivector  to derive the Maxwell 

equations using the Lorentz force, which encompass Faraday’s unipolar induction. 


Thus, the electric field vector  has an orthogonal complement or dual, being a bivector 

, and the magnetic flux density  has an orthogonal complement or dual, being a 

vector . Thus, both the electric field  and the magnetic flux density  are either 

vectors in their true/direct representation and their orthogonal complement, or are dual 

bivectors  and , respectively, or vice versa.


Figure 2.5 shows that the two vectors ,  and the two bivectors ,  can be 

perpendicular and parallel at same time due to cross interaction between orthogonal 
complements or dual spaces.


∇ ⋅ B = 0

ωp E ωe B

ω κ

E
⟨B⟩2

E
⟨E⟩2 ⟨B⟩2

B E B

⟨E⟩2 ⟨B⟩2

E B ⟨E⟩2 ⟨B⟩2
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❬E❭2

E

⟨B⟩2

B

❬B
❭2

Orthogonal Complement or Dual Space

Figure 2.5
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In standard notations, the electric field vector  is represented by the electric field 

strength  and the magnetic field vector  is represented by the magnetic field strength 

. The electric field bivector  is represented by the magnetic flux density  and the 

magnetic field bivector is  is represented by the dielectric displacement .


(42) 	 [2.42]


(43) 	 [2.43]


Table 2.7-1

Penpendicular Interaction Dual Parallel Interaction

B ⊥ ⟨B⟩2 B ∥ ⟨E⟩2

E ∥ ⟨B⟩2E ⊥ ⟨E⟩2

E
E B

H ⟨E⟩2 B

⟨B⟩2 D

E ≡ E
⟨E⟩2 ≡ ⟨B⟩2

B ≡ H
⟨B⟩2 ≡ ⟨D⟩2
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H

❬D
❭2E

⟨B⟩2

❬B❭2

Orthogonal Complement or Dual Space

Figure 2.6

mailto:anil@anilgoel.com


RA-DIANT Page  of 38 160

Table 2.8

Standard Notations

Penpendicular Interaction Dual Parallel Interaction

H ∥ ⟨B⟩2⟨B⟩2 ⊥ ⟨D⟩2

E ∥ ⟨D⟩2E ⊥ H
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E❬D
❭2

❬B❭2

H

⟨B⟩2

Parallel Interaction

Figure 2.8

E

⟨ ⟩2

H

❬B❭2

❬D
❭2

Perpendicular Interaction

Figure 2.7
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As we are aware that in the Vector algebra, both the magnetic flux density  and the 

dielectric displacement  are also vectors and the equations of transformation, i.e., the 

unipolar induction by Faraday/ the Faraday law and the equation of convection/ the 
Ampère-Maxwell law, are valid at the same time.


	 	 [1.13]


	 	 [1.14]


The equations {1.13] and [1.14] can only be possible if  and   as shown in 

Figure 2.10.


B
D

E = v × B ⟶ v ⊥ E ⊥ B

H = − v × D ⟶ v ⊥ H ⊥ D

E ∥ D H ∥ B
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D 

V 

Fragmented Equations of Transformation

Figure 2.9

E 
D 

B H 

V 

Unified Equations of Transformation

Figure 2.9
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It is evident from Figure 2.10 that parallel interaction is inherent in the Vector algebra, 
even though the existence of parallel interaction has always been denied. As we will see 
later, the well known energy density formulation in the Vector algebra unquestionably 
confirms the existence of parallel interaction.


(44) 	 [2.44]


(45) 	 [2.45]


As the equations of transformation, i.e., the unipolar induction by Faraday and the 
equation of convection, are applicable to both perpendicular and parallel interaction, this 
implies that even the parallel interaction is a transverse wave like perpendicular 
interaction. The parallel interaction is not a longitudinal wave.


The magnetic flux density  and the dielectric displacement  are usually treated as 

bivectors both in spacetime and in three dimensions with separate time dimension, which 
is an even sub algebra of spacetime algebra. This results in zero energy density as we will 
discover this in our analysis. An easy and correct method to decipher the grade of the 
geometric object is to count the number of dimensions including the time dimension 

contained in the unit of the object. We always considered velocity  as vector, but it is a 

bivector which has a rotation. Like the curvature of the earth, we do not feel or observe 
the rotation when we drive our cars but it is always present in reality irrespective of our 
feeling or observation. This is particularly important in understanding various field 
velocities in our analysis. The grade of the electric and magnetic objects are summarised 
in the following Table 2.10.


E ⋅ D ≠ 0
E × D = 0

H ⋅ B ≠ 0
H × B = 0

B D

v

Table 2.10

Duality

Electricity Magnetism

Electric 
field 
strength

Vector
Magnetic 
field 
strength

Vector
A
m

E H
V
m
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The standard electromagnetism in Vector algebra with separate time dimension neither 
has a concept of dual space nor distinguishes between the vector and the bivector. It 

completely ignores  of the reality, i.e. dual parallel interaction. It is akin to working 

with one eye which on top is colour blind. It has been distorting reality and perennially 

denying the existence of dual parallel interaction, i.e.  and . 

Magnetic 
flux density 
or 
Magnetic 
induction

Bivector in 
3 

dimensions 
and 

Trivector 
in 4 

dimensions

Dielectric 
displaceme
nt or 
Electric 
induction

Bivector in 
3 

dimensions 
and 

Trivector 
in 4 

dimensions

Elementary 
electric 
potential 

Scalar in 3 
dimensions 

and 

Vector in 4 
dimensions

Elementary 
magnetic 
charge

Scalar in 3 
dimensions 

and

Vector in 4 
dimensions 

Electric 
potential

Scalar in 3 
dimensions 

and 

Vector in 4 
dimensions

Magnetic 
charge

Scalar in 3 
dimensions 

and

Vector in 4 
dimensions 

Electric 
voltage 
area 
density

Bivector

Magnetic 
current 
area 
density

Bivector

Velocity of 
electric 
field 

Vector in 3 
dimensions 

and 

Bivector in 

4 
dimensions

 Velocity of 
magnetic 
field 

Vector in 3 
dimensions 

and 

Bivector in 

4 
dimensions

Duality

Electricity Magnetism

As
m2

W b = Vs C = As

C = As

V
m2

q

m
s vH

DB

A
m2

W b = Vsϕp

J

ep

V

m
s

Vs
m2

vE

50 %

E ∥ ⟨D⟩2 H ∥ ⟨B⟩2
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3. Dual Parallel Interaction 
The Helmholtz style equations can be derived by applying the Beltrami conditions of 
direct representation of a field, i.e dual space in Vector algebra. The Beltrami conditions 
[2.38] to [2.41] for vacuum are


	 	 [2.38]


	 	 [2.39]


	 	 [2.40]


	 	 [2.41]


The equation [2.41] is known as Gauss law. This is not a special case as postulated 
before but inherent in the dual parallel interaction. The equation [2.39] can be seen as the 

DUAL GAUSS LAW.


On applying the curl operator twice to equation [2.38] and equation [2.40] gives


(1) 	 [3.1]


(2) 	 [3.2]


These are similar to Trkalian equations, except that the wave number is corresponding to 
the wave length of the field.


On using vector calculus Identity gives


(3) 	 [3.3]


(4) 	 [3.4]


On substituting equation [2.38] in equation [3.3] gives


(5) 	 [3.5]


∇ × E = κpE

∇ ⋅ E = 0

∇ × B = − κeB

∇ ⋅ B = 0

∇ × ∇ × E = κp∇ × E = κ2
p E

∇ × ∇ × B = − κe∇ × B = κ2
e B

∇ × ∇ × E = ∇( ∇ ⋅ E) − ∇2E = κ2
p E

∇ × ∇ × B = ∇( ∇ ⋅ B) − ∇2B = κ2
e B

∇2E + κ2
p E = 0
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On substituting equation [2.40] in equation [3.4] gives


(6) 	 [3.6]


The equations [3.5] and [3.6] are similar to Helmholtz equations, except the wave number 
is corresponding to the field.


According to Beltrami condition/ Gauss law [2.39] and [2.41], the divergences of the  

and  fields are always zero in the dual parallel interaction.


Therefore


(7) 	 [3.7]


(8) 	 [3.8]


The dual Ampere Maxwell law [1.50] becomes


	 	 [1.50]


(9) 	 [3.9]


(10) 	 [3.10]


The equation [3.9] is known as Faraday’s law. This is not a special case as postulated 
before but inherent in the dual space.


The Ampere Maxwell law [1.9] becomes


	 	 [1.9]


(11) 	 [3.11]


∇2B + κ2
e B = 0

E
B

J = − v( ∇ ⋅ D) = 0

V = v( ∇ ⋅ B) = 0

∇ × E +
∂B
∂ t

= V

∇ × E +
∂B
∂t

= 0

∇ × E = − μ0
∂H
∂t

∇ × H −
∂ D
∂ t

= J

∇ × H −
∂D
∂t

= 0
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(12) 	 [3.12]


The equation [3.11] in the dual space can be seen as the DUAL FARADAY LAW. 


∇ × H = ϵ0
∂E
∂t

Table 3.1

Duality

Electricity Magnetism

Yang Male Yin Female

Positive Negative

North pole South pole

Direction of 
movement

Direction of 
movement

Vacuum 
permittivity

Vacuum 
permeability

Vacuum 
conductivity

Vacuum 
potentivity

Vacuum angular 
frequency for 
Electric 
induction

Vacuum angular 
frequency for 
Magnetic 
induction

Voltage Current

Electric field 
strength

Magnetic field 
strength

Magnetic flux 
density or 
Magnetic 
induction

Dielectric 
displacement or 
Electric 
induction

Elementary 
electric 
potential 

Elementary 
magnetic 
charge

Electric 
potential

Magnetic 
charge

Electric 
potential 
density

Magnetic 
charge density

C = As

p

1
s

q

C = As

ρp

V
m

ϵ0

V
Am

W b = Vs

e

Vs
m3

As
Vm

σ0

N ⟶ S

1
s

−

Vs
Am

U A

A
Vm

Vs
m2

As
m2

+

S

V

η0

W b = Vs

μ0

A
m

ωp =
σ0

ϵ0
ωe =

η0

μ0

D = ϵ0E

As
m3

N

B = μ0H

I

N ⟵ S

E

ϕp

H

ρe
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Unipolar 
induction

Equation of 
convection

Perpendicular Interaction

Coulomb law Dual Coulomb 
law

Dual Coulomb 
law Coulomb law

Electric voltage 
area density

Magnetic 
current area 
density

Dual ohms law Ohms law

Dual Ampère-
Maxwell law

Ampère-
Maxwell law

Dual Parallel Interaction

Dual Gauss law Gauss law

Gauss law Dual Gauss law

Duality

Electricity Magnetism

A
m2

V = v( ∇ ⋅ B)

∇ × H =
∂D
∂t

+ ωpD

∇ ⋅ E = 0

Vs
m3

∇ × B =
1
c2 ( ∂E

∂t
+ ωpE)

∇ × H = ϵ0 ( ∂E
∂t

+ ωpE)

∇ ⋅ B = 0

∇ ⋅ E =
ρe

ϵ0

∇ ⋅ D = 0

V
m2

J = ωpD

As
m3

Vs
m3

V = ωeB

V
m

A
m2

∇ ⋅ B = ρp

A
m2

∇ × H −
∂ D
∂ t

= J

∇ × E = − μ0 ( ∂H
∂t

− ωeH)

∇ ⋅ D = ρe

∇ ⋅ H = 0

J = σ0E

∇ × D = −
1
c2 ( ∂H

∂t
− ωeH)

As
m3

∇ × E = −
∂B
∂t

+ ωeB

J = − v( ∇ ⋅ D)

V
m2

V = η0H

V
m2

A
m

∇ × D +
1
c2

∂H
∂ t

= − ϵ0V

A
m2

V
m2

As
m3

Vs
m3

∇ × E +
∂B
∂ t

= V

∇ ⋅ H =
ρp

μ0

H = − v × DE = v × B

∇ × B −
1
c2

∂ E
∂ t

= μ0J

V
m2

A
m2

A
m2

V
m2

As
m3

Vs
m3
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Electric voltage 
area density

Magnetic 
current area 
density

Faraday law Dual Faraday 
law

Duality

Electricity Magnetism

A
m2

V
m2V = 0

∇ × H −
∂ D
∂ t

= 0
A

m2
∇ × E +

∂B
∂ t

= 0

J = 0

V
m2
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4. Wave Equations 
Applying the curl to the Faraday law [1.80] gives 


	 	 [1.80]


(1) 	 [4.1]


(2) 	 [4.2]


On substituting Ampère-Maxwell law [1.76] gives


	 	 [1.76]


(3) 	 [4.3]


(4) 	 [4.4]


(5) 	 [4.5]


The angular frequency  of outward spiralling electric induction for a medium is always 

constant, for example, in vacuum or in any metal.


Therefore


(6) 	 [4.6]


∇ × E = − μ0 ( ∂H
∂t

− ωeH)
∇ × ∇ × E = − μ0∇ × ( ∂H

∂t
− ωeH)

∇ × ∇ × E = − μ0 ( ∂
∂t

( ∇ × H) − ωe( ∇ × H))

∇ × H = ϵ0 ( ∂E
∂t

+ ωpE)

∇ × ∇ × E = − μ0ϵ0 ( ∂
∂t ( ∂E

∂t
+ ωpE) − ωe ( ∂E

∂t
+ ωpE))

∇ × ∇ × E = −
1
c2 ( ∂

∂t ( ∂E
∂t

+ ωpE) − ωe ( ∂E
∂t

+ ωpE))

∇ × ∇ × E = −
1
c2 ( ∂2E

∂t2
+ ωp

∂E
∂t

+ E
∂ωp

∂t
− ωe

∂E
∂t

− ωeωpE)
ωh

∂ωp

∂t
= 0
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On substituting the equation [4.6] in equation [4.5] gives 


(7) 	 [4.7]


(8) 	 [4.8]


According to Clifford Algebra


(9) 	 [4.9]


(10) 	 [4.10]


(11) 	 [4.11]


The gradient of the divergence always vanishes. 


The gradient of the divergence cannot be defined in the Vector algebra because it is the 
side effect of defining the gradient as a vector. We must correct this error by importing the 

Clifford algebra identity equation [4.11] into the Vector algebra, therefore  

always vanishes not just in parallel interaction where  but also in perpendicular 

interaction where .


On substituting equation [4.11] into equation [4.8] gives


(12) 	 [4.12]


(13) 	 [4.13]


(14)  	 [4.14]


∇ × ∇ × E = −
1
c2 ( ∂2E

∂t2
+ ωp

∂E
∂t

− ωe
∂E
∂t

− ωeωpE)

∇( ∇ ⋅ E) − ∇2E = −
1
c2 ( ∂2E

∂t2
+ ωp

∂E
∂t

− ωe
∂E
∂t

− ωeωpE)

∇( ∇ ⋅ E) = ∇ ⋅ ( ∇ ⋅ E) + ∇ ∧ ( ∇ ⋅ E)

∇( ∇ ⋅ E) = ∇ ⋅ ( ∇ ⋅ E) + I ∇ × ( ∇ ⋅ E)

∇( ∇ ⋅ E) = 0 + I0 = 0

∇( ∇ ⋅ E)

∇ ⋅ E = 0

∇ ⋅ E ≠ 0

∇2E =
1
c2 ( ∂2E

∂t2
+ ωp

∂E
∂t

− ωe
∂E
∂t

− ωeωpE)
1
c2 ( ∂2E

∂t2
+ ωp

∂E
∂t

− ωe
∂E
∂t

− ωeωpE) − ∇2E = 0

1
c2 ( ∂2E

∂t2
+ ωp

∂E
∂t

− ωe
∂E
∂t

− ω2
0 E) − ∇2E = 0
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(15) 	 [4.15]


(16) 	 [4.16]


According to equation [1.55]


	 	 [1.55]


On substituting [1.55] into equation [4.16] gives


(17) 	 [4.17]


Although the equations [4.15], [4.16] and [4.17] look similar, they represent different 
geometric objects, namely vector, trivector/ bivector and bivector respectively.


For the static case, equation [4.15] becomes


(18) 	 [4.18]


(19) 	 [4.19]


(20) 	 [4.20]


(21) 	 [4.21]


Similarly


(22) 	 [4.22]


(23) 	 [4.23]


□ E +
1
c2 (ωp

∂E
∂t

− ωe
∂E
∂t

− ω2
0 E) = 0

□ D +
1
c2 (ωp

∂D
∂t

− ωe
∂D
∂t

− ω2
0 D) = 0

D =
J

ωp

□ J +
1
c2 (ωp

∂J
∂t

− ωe
∂J
∂t

− ω2
0 J) = 0

1
c2 (−ω2

0 E) − ∇2E = 0

1
c2 (−c2κ 2

0 E) − ∇2E = 0

−κ 2
0 E − ∇2E = 0

∇2E + κ 2
0 E = 0

∇2D + κ 2
0 D = 0

∇2J + κ 2
0 J = 0
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The equations [4.21] and [4.22] are known as Helmholtz equations. Although these 
equations look similar, they represent different geometric objects, namely vector, and 
trivector/ bivector. The equation [4.22] is a new addition to the Helmholtz equations.


On applying the curl to the Ampère-Maxwell law [1.76] gives


	 	 [1.76]


(24) 	 [4.24]


(25) 	 [4.25]


On substituting Faraday’s law into equation [1.80] gives


	 	 [1.80]


(26) 	 [4.26]


(27) 	 [4.27]


The angular frequency  of inward spiralling magnetic induction for a medium is always 

constant, for example in vacuum or in any metal.


Therefore


(28) 	 [4.28]


On substituting the equation [4.28] in equation [4.27] gives


∇ × H = ϵ0 ( ∂E
∂t

+ ωpE)
∇ × ∇ × H = ϵ0∇ × ( ∂E

∂t
+ ωpE)

∇ × ∇ × H = ϵ0 ( ∂
∂t

( ∇ × E) + ωp( ∇ × E))

∇ × E = − μ0 ( ∂H
∂t

− ωeH)

∇ × ∇ × H = −
1
c2 ( ∂

∂t ( ∂H
∂t

− ωeH) + ωp ( ∂H
∂t

− ωeH))

∇ × ∇ × H = −
1
c2 ( ∂2H

∂t2
− ωe

∂H
∂t

− H
∂ωe

∂t
+ ωp

∂H
∂t

− ω2
0 H)

ωh

∂ωe

∂t
= 0
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(29) 	 [4.29]


(30) 	 [4.30]


According to Clifford algebra


(31) 	 [4.31]


(32) 	 [4.32]


(33) 	 [4.33]


The gradient of a divergence always vanishes. 


The gradient of a divergence cannot be defined in the Vector algebra because it is the 
side effect of defining the gradient as a vector. We must correct this error by applying the 

Clifford algebra identity equation [4.33] into Vector algebra, therefore  always 

vanishes not just in parallel interaction where  but also in perpendicular 

interaction where . 


On substituting equation [4.33] into equation [4.30] gives


(34) 	 [4.34]


(35) 	 [4.35]


(36) 	 [4.36]


∇ × ∇ × H = −
1
c2 ( ∂2H

∂t2
− ωe

∂H
∂t

+ ωp
∂H
∂t

− ω2
0 H)

∇( ∇ ⋅ H) − ∇2H = −
1
c2 ( ∂2H

∂t2
− ωe

∂H
∂t

+ ωp
∂H
∂t

− ω2
0 H)

∇( ∇ ⋅ H) = ∇ ⋅ ( ∇ ⋅ H) + ∇ ∧ ( ∇ ⋅ H)

∇( ∇ ⋅ H) = ∇ ⋅ ( ∇ ⋅ H) + I ∇ × ( ∇ ⋅ H)

∇( ∇ ⋅ H) = 0 + I0

∇( ∇ ⋅ H)

∇ ⋅ H = 0

∇ ⋅ H ≠ 0

∇2H =
1
c2 ( ∂2H

∂t2
− ωe

∂H
∂t

+ ωp
∂H
∂t

− ω2
0 H)

1
c2 ( ∂2H

∂t2
− ωe

∂H
∂t

+ ωp
∂H
∂t

− ω2
0 H) − ∇2H = 0

□ H +
1
c2 (ωp

∂H
∂t

− ωe
∂H
∂t

− ω2
0 H) = 0
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(37) 	 [4.37]


According to equation [1.62]


	 	 [1.62]


On substituting [1.65] into equation [4.37] gives


(38) 	 [4.38]


Although equations [4.36], [4.37] and [4.38] look similar, they represent different geometric 
objects namely vector, trivector/ bivector and bivector respectively.


For the static case, the above equation becomes


(39) 	 [4.39]


(40) 	 [4.40]


(41) 	 [4.41]


Although equations [4.39], [4.40] and [4.41] look similar, they represent different geometric 
objects namely vector, trivector/ bivector and bivector respectively.


□ B +
1
c2 (ωp

∂B
∂t

− ωe
∂B
∂t

− ω2
0 B) = 0

B =
V
ωe

□ V +
1
c2 (ωp

∂V
∂t

− ωe
∂V
∂t

− ω2
0 V) = 0

∇2H + κ 2
0 H = 0

∇2B + κ 2
0 B = 0

∇2V + κ 2
0 V = 0

Table 4.1

Duality

Electricity Magnetism

Perpendicular Interaction

Wave equation

□ D +
1
c2 (ωp

∂D
∂t

− ωe
∂D
∂t

− ω2
0 D) = 0□ B +

1
c2 (ωp

∂B
∂t

− ωe
∂B
∂t

− ω2
0 B) = 0

□ J +
1
c2 (ωp

∂J
∂t

− ωe
∂J
∂t

− ω2
0 J) = 0□ V +

1
c2 (ωp

∂V
∂t

− ωe
∂V
∂t

− ω2
0 V) = 0

□ E +
1
c2 (ωp

∂E
∂t

− ωe
∂E
∂t

− ω2
0 E) = 0 □ H +

1
c2 (ωp

∂H
∂t

− ωe
∂H
∂t

− ω2
0 H) = 0

anil@anilgoel.com Proprietary and Confidential

mailto:anil@anilgoel.com


RA-DIANT Page  of 53 160

4.1. Conductors 
For a Conductor, for example a metal,


(42) 	 [4.42]


Therefore


(43) 	 [4.43]


(44) 	 [4.44]


On substituting equation [4.43] and [4.44] in wave equation [4.14] gives


(45) 	 [4.45]


(46) 	 [4.46]


(47) 	 [4.47]


Similarly


(48) 	 [4.48]


Spatial equation 
(Helmholtz equation)

Spatial equation 
(Helmholtz equation)

Duality

Electricity Magnetism

∇2E + κ 2
0 E = 0

∇2V + κ 2
0 V = 0 ∇2 J + κ 2

0 J = 0

∇2B + κ 2
0 B = 0 ∇2D + κ 2

0 D = 0

∇2H + κ 2
0 H = 0

ηe ≈ 0 ⟶ κe ≈ 0 ⟶ ωe ≈ 0

ω0 = ωpωe ≈ 0

ωe
∂E
∂t

≈ 0

1
c2 ( ∂2E

∂t2
+ ωp

∂E
∂t ) − ∇2E = 0

1
c2 ( ∂2D

∂t2
+ ωp

∂D
∂t ) − ∇2D = 0

1
c2 ( ∂2J

∂t2
+ ωp

∂J
∂t ) − ∇2J = 0

1
c2 ( ∂2H

∂t2
+ ωp

∂H
∂t ) − ∇2H = 0
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(49) 	 [4.49]


(50) 	 [4.50]


4.2. Non Conductors 
For a Non Conductor, for example air,


(51) 	 [4.51]


Therefore


(52) 	 [4.52]


(53) 	 [4.53]


On substituting equation [4.52] and [4.53] in wave equation [4.14] gives


(54) 	 [4.54]


(55) 	 [4.55]


(56) 	 [4.56]


1
c2 ( ∂2B

∂t2
+ ωp

∂B
∂t ) − ∇2B = 0

1
c2 ( ∂2V

∂t2
+ ωp

∂V
∂t ) − ∇2V = 0

σp ≈ 0 ⟶ κp ≈ 0 ⟶ ωp ≈ 0

ω0 = ωpωe ≈ 0

ωp
∂E
∂t

≈ 0

1
c2 ( ∂2E

∂t2
− ωe

∂E
∂t ) − ∇2E = 0

1
c2 ( ∂2D

∂t2
− ωe

∂D
∂t ) − ∇2D = 0

1
c2 ( ∂2J

∂t2
− ωe

∂J
∂t ) − ∇2J = 0
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Similarly


(57) 	 [4.57]


(58) 	 [4.58]


(59) 	 [4.59]


1
c2 ( ∂2H

∂t2
− ωe

∂H
∂t ) − ∇2H = 0

1
c2 ( ∂2B

∂t2
− ωe

∂B
∂t ) − ∇2B = 0

1
c2 ( ∂2V

∂t2
− ωe

∂V
∂t ) − ∇2V = 0

Table 4.2

Duality

Electricity Magnetism

Perpendicular Interaction

Wave equation

Spatial equation 
(Helmholtz equation)

Spatial equation 
(Helmholtz equation)

Perpendicular Interaction - Conductor

Wave equation Wave equation
1
c2 ( ∂2E

∂t2
+ ωp

∂E
∂t ) − ∇2E = 0

1
c2 ( ∂2D

∂t2
+ ωp

∂D
∂t ) − ∇2D = 0

∇2V + κ 2
0 V = 0 ∇2 J + κ 2

0 J = 0

1
c2 ( ∂2B

∂t2
+ ωp

∂B
∂t ) − ∇2B = 0

□ H +
1
c2 (ωp

∂H
∂t

− ωe
∂H
∂t

− ω2
0 H) = 0

∇2H + κ 2
0 H = 0

□ E +
1
c2 (ωp

∂E
∂t

− ωe
∂E
∂t

− ω2
0 E) = 0

□ J +
1
c2 (ωp

∂J
∂t

− ωe
∂J
∂t

− ω2
0 J) = 0

1
c2 ( ∂2H

∂t2
+ ωp

∂H
∂t ) − ∇2H = 0

1
c2 ( ∂2V

∂t2
+ ωp

∂V
∂t ) − ∇2V = 0

∇2D + κ 2
0 D = 0

□ B +
1
c2 (ωp

∂B
∂t

− ωe
∂B
∂t

− ω2
0 B) = 0 □ D +

1
c2 (ωp

∂D
∂t

− ωe
∂D
∂t

− ω2
0 D) = 0

∇2B + κ 2
0 B = 0

□ V +
1
c2 (ωp

∂V
∂t

− ωe
∂V
∂t

− ω2
0 V) = 0

∇2E + κ 2
0 E = 0

1
c2 ( ∂2J

∂t2
+ ωp

∂J
∂t ) − ∇2 J = 0
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Perpendicular Interaction - Non Conductor

Wave equation Wave equation 

Duality

Electricity Magnetism

1
c2 ( ∂2V

∂t2
− ωe

∂V
∂t ) − ∇2V = 0

1
c2 ( ∂2J

∂t2
− ωe

∂J
∂t ) − ∇2J = 0

1
c2 ( ∂2E

∂t2
− ωe

∂E
∂t ) − ∇2E = 0

1
c2 ( ∂2B

∂t2
− ωe

∂B
∂t ) − ∇2B = 0

1
c2 ( ∂2B

∂t2
− ωe

∂B
∂t ) − ∇2B = 0

1
c2 ( ∂2H

∂t2
− ωe

∂H
∂t ) − ∇2H = 0
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5. Dual Wave Equations 
The Faraday law [3.10] is


	 	 [3.10]


Applying the curl to Faraday’s law [3.10] gives


(1) 	 [5.1]


(2) 	 [5.2]


On substituting the dual Faraday law [3.12] into equation [5.2] gives


	 	 [3.12]


(3) 	 [5.3]


(4) 	 [5.4]


On substituting equation [3.1] in equation [5.4] gives


	 	 [3.1]


(5) 	 [5.5]


(6) 	 [5.6]


(7) 	 [5.7]


∇ × E = − μ0
∂H
∂t

∇ × ∇ × E = − μ0∇ ×
∂H
∂t

∇ × ∇ × E = − μ0
∂
∂t

( ∇ × H)

∇ × H = ϵ0
∂E
∂t

∇ × ∇ × E = − μ0ϵ0
∂
∂t

∂E
∂t

∇ × ∇ × E = −
1
c2

∂2E
∂t2

∇ × ∇ × E = κp∇ × E = κ2
p E

κ2
p E = −

1
c2

∂2E
∂t2

∂2E
∂t2

+ c2κ2
p E = 0

∂2E
∂t2

+ ω2
p E = 0
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(8) 	 [5.8]


(9) 	 [5.9]


These are known as Beltrami Wave Equations. They can be seen as DUAL WAVE 

EQUATIONS.


For the static case, the equation [5.7] becomes


(10) 	 [5.10]


Since  is not zero in general, therefore


(11) 	 [5.11]


On applying the curl to dual Faraday law [3.12] gives


(12) 	 [5.12]


(13) 	 [5.13]


On substituting equation [3.10] into equation [5.13] gives


(14) 	 [5.14]


(15) 	 [5.15]


(16) 	 [5.16]


On substituting equation [3.2] in equation [5.26] gives


	 	 [3.2]


∂2D
∂t2

+ ω2
p D = 0

J = 0

ω2
p E = 0

E

ωp = 0

∇ × ∇ × H = ϵ0∇ ×
∂E
∂t

∇ × ∇ × H = ϵ0
∂
∂t

( ∇ × E)

∇ × ∇ × H = −
1
c2

∂
∂t

∂H
∂t

∇ × ∇ × H = −
1
c2

∂2H
∂t2

∇ × ∇ × B = −
1
c2

∂2B
∂t2

∇ × ∇ × B = − κe∇ × B = κ2
e B
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(17) 	 [5.17]


(18) 	 [5.18]


(19) 	 [5.19]


(20) 	 [5.20]


(21) 	 [5.21]


For the static case, the equation [5.19] becomes


(22) 	 [5.22]


Since  is not zero in general, therefore


(23) 	 [5.23]


κ2
e B = −

1
c2

∂2B
∂t2

∂2B
∂t2

+ c2κ2
e B = 0

∂2B
∂t2

+ ω2
e B = 0

∂2H
∂t2

+ ω2
e H = 0

V = 0

ω2
e B = 0

B

ωe = 0

Table 5.1

Duality

Electricity Magentism

Perpendicular Interaction

Wave equation

Spatial equation 
(Helmholtz equation)

Spatial equation 
(Helmholtz equation)

□ J +
1
c2 (ωp

∂J
∂t

− ωe
∂J
∂t

− ω2
0 J) = 0□ V +

1
c2 (ωp

∂V
∂t

− ωe
∂V
∂t

− ω2
0 V) = 0

∇2D + κ 2
0 D = 0

□ E +
1
c2 (ωp

∂E
∂t

− ωe
∂E
∂t

− ω2
0 E) = 0

□ B +
1
c2 (ωp

∂B
∂t

− ωe
∂B
∂t

− ω2
0 B) = 0

∇2V + κ 2
0 V = 0 ∇2 J + κ 2

0 J = 0

∇2H + κ 2
0 H = 0

□ H +
1
c2 (ωp

∂H
∂t

− ωe
∂H
∂t

− ω2
0 H) = 0

□ D +
1
c2 (ωp

∂D
∂t

− ωe
∂D
∂t

− ω2
0 D) = 0

∇2B + κ 2
0 B = 0

∇2E + κ 2
0 E = 0
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5.1. Conductors 
For a conductor, for example a metal [4.42]


	 	 [4.42]


Therefore


(24) 	 [5.24]


(25) 	 [5.25]


(26) 	 [5.26]


The dual wave equations for  and  fields remain unchanged.


(27) 	 [5.27]


(28) 	 [5.28]


Dual Parallel Interaction

Dual wave equation 
(Beltrami equation)

Dual wave equation 
(Beltrami equation)

Dual spatial equation 
(No wave)

Dual spatial equation 
(No wave)

Duality

Electricity Magentism

ωp = ωe = 0

∂2E
∂t2

+ ω2
p E = 0

V = 0

ωp = ωe = 0

∂2D
∂t2

+ ω2
p D = 0

J = 0

∂2B
∂t2

+ ω2
e B = 0

∂2H
∂t2

+ ω2
e H = 0

ηe ≈ 0 ⟶ κe ≈ 0 ⟶ ωe ≈ 0

∂2E
∂t2

+ ω2
p E = 0

∂2D
∂t2

+ ω2
p D = 0

J = 0

E D

∂2H
∂t2

= 0

∂2B
∂t2

= 0
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(29) 	 [5.29]


The dual equations [5.27] to [5.29] mean that  and  fields are at an inflection point i.e. 

either at maxima or minima states in the conductor.


5.2. Non Conductors 
For a Non Conductor, for example air [4.51]


	 	 [4.51]


Therefore


(30) 	 [5.30]


(31) 	 [5.31]


(32) 	 [5.32]


The dual equations [5.30] to [5.32] means that  and  fields are at an inflection point i.e. 

either at maxima or minima states in the non conductor.


(33) 	 [5.33]


(34) 	 [5.34]


(35) 	 [5.35]


The dual wave equations for  and  fields remain unchanged.


V = 0

H B

σp ≈ 0 ⟶ κp ≈ 0 ⟶ ωp ≈ 0

∂2E
∂t2

= 0

∂2D
∂t2

= 0

J = 0

E D

∂2H
∂t2

+ ω2
e H = 0

∂2B
∂t2

+ ω2
e B = 0

V = 0

H B
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Table 5.2

Duality

Electricity Magnetism

Perpendicular Interaction - Conductor

Wave equation Wave equation

Perpendicular Interaction - Non Conductor

Wave equation Wave equation

Dual Parallel Interaction - Conductor

Dual wave equation - 
Remains unchanged - 
Harmonic

Dual wave equation - 
Linear

State of Infection Remains unchanged - 
Harmonic 

Dual Parallel Interaction - Non Conductor

Dual wave equation - 
Linear

Dual wave equation - 
Remains unchanged - 
Harmonic

Remains unchanged - 
Harmonic State of Inflection

1
c2 ( ∂2H

∂t2
+ ωe

∂H
∂t ) − ∇2H = 0

1
c2 ( ∂2H

∂t2
− ωp

∂H
∂t ) − ∇2H = 0

∂2E
∂t2

+ ω2
p E = 0

1
c2 ( ∂2D

∂t2
− ωp

∂D
∂t ) − ∇2D = 0

∂2B
∂t2

+ ω2
e B = 0

J = 0

J = 0

1
c2 ( ∂2B

∂t2
− ωp

∂B
∂t ) − ∇2B = 0

1
c2 ( ∂2V

∂t2
+ ωe

∂V
∂t ) − ∇2V = 0

V = 0

∂2B
∂t2

= 0

1
c2 ( ∂2E

∂t2
+ ωe

∂E
∂t ) − ∇2E = 0

∂2H
∂t2

= 0

1
c2 ( ∂2V

∂t2
− ωp

∂V
∂t ) − ∇2V = 0

∂2D
∂t2

+ ω2
p D = 0

∂2H
∂t2

+ ω2
e H = 0

∂2D
∂t2

= 0

V = 0

1
c2 ( ∂2J

∂t2
− ωp

∂J
∂t ) − ∇2J = 0

1
c2 ( ∂2J

∂t2
+ ωe

∂J
∂t ) − ∇2 J = 0

1
c2 ( ∂2D

∂t2
+ ωe

∂D
∂t ) − ∇2D = 0

1
c2 ( ∂2B

∂t2
+ ωe

∂B
∂t ) − ∇2B = 0

∂2E
∂t2

= 0

1
c2 ( ∂2E

∂t2
− ωp

∂E
∂t ) − ∇2E = 0
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6. Wave Velocity 
The time derivatives of a field can be rewritten as


(1) 	 [6.1]


(2) 	 [6.2]


In accordance with special relativity, we have to assume that  is a constant. Therefore


(3) 	 [6.3]


On substituting equation [6.3] in equation [6.2] gives 


(4) 	 [6.4]


(5) 	 [6.5]


Similarly


(6) 	 [6.6]


(7) 	 [6.7]


∂E
∂t

=
∂E
∂r

∂r
∂t

= v
∂E
∂r

∂2E
∂t2

= v ( ∂2E
∂r2

∂r
∂t ) +

∂E
∂r

∂v
∂t

= v ( ∂2E
∂r2

v) +
∂E
∂r

∂v
∂t

= v2 ( ∂2E
∂r2 ) +

∂E
∂r

∂v
∂t

v

∂v
∂t

= 0

∂2E
∂t2

= v2 ∂2E
∂r2

∇2E =
∂2E
∂r2

∂H
∂t

= v
∂H
∂r

∂2H
∂t2

= v2 ∂2H
∂r2
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(8) 	 [6.8]


(9) 	 [6.9]


(10) 	 [6.10]


(11) 	 [6.11]


(12) 	 [6.12]


(13) 	 [6.13]


(14) 	 [6.14]


Consider both an decay and growth exponential approach for vectors


(15) 	 [6.15]


(16) 	 [6.16]


(17) 	 [6.17]


(18) 	 [6.18]


∇2H =
∂2H
∂r2

∂D
∂t

= v
∂D
∂r

∂2D
∂t2

= v2 ∂2D
∂r2

∇2D =
∂2D
∂r2

∂B
∂t

= v
∂B
∂r

∂2B
∂t2

= v2 ∂2B
∂r2

∇2B =
∂2B
∂r2

E = E0 e−κp⋅r

∂E
∂r

= − κpE0 e−κp⋅r

= − κpE

∂2E
∂r2

= κ2
p E0 e−κp⋅r

= κ2
p E

H = H0 e−κe⋅r
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(19) 	 [6.19]


(20) 	 [6.20]


(21) 	 [6.21]


(22) 	 [6.22]


(23) 	 [6.23]


(24) 	 [6.24]


(25) 	 [6.25]


(26) 	 [6.26]


Consider a harmonic approach for bivectors


(27) 	 [6.27]


(28) 	 [6.28]


∂H
∂r

= − κeH0 e−κe⋅r

= − κeH

∂2H
∂r2

= κ2
e H0 e−κe⋅r

= κ2
e H

E = E0 eκp⋅r

∂E
∂r

= κpE0 eκp⋅r

= κpE

∂2E
∂r2

= κ2
p E0 eκp⋅r

= κ2
p E

H = H0 eκe⋅r

∂H
∂r

= κeH0 eκe⋅r

= κeH

∂2H
∂r2

= κ2
e H0 eκe⋅r

= κ2
e H

D = D0 eiκp⋅r

∂D
∂r

= iκpD0 eiκp⋅r

= iκpD

anil@anilgoel.com Proprietary and Confidential

mailto:anil@anilgoel.com


RA-DIANT Page  of 66 160

(29) 	 [6.29]


(30) 	 [6.30]


The minus sign in the exponent signifies that  and  fields rotates in opposite direction.


(31) 	 [6.31]


(32) 	 [6.32]


6.1. Conductors 
The wave equation for the electric field in the conductor [4.45] is


	 	 [4.45]


On substituting equation [6.1], [6.4] and [6.5] in equation [4.45] gives


(33) 	 [6.33]


The velocity  in equation [6.33] represents the velocity of the electric field in the 

conductor , therefore


∂2D
∂r2

= i2κ2
p D0 eiκp⋅r

= i2κ2
p D

= − κ2
p D

B = B0 e−iκe⋅r

D B

∂B
∂r

= − iκeB0 e−iκe⋅r

= − iκeB

∂2B
∂r2

= i2κ2
e D0 e−iκe⋅r

= i2κ2
e B

= − κ2
e B

1
c2 ( ∂2E

∂t2
+ ωp

∂E
∂t ) − ∇2E = 0

1
c2 (v2 ∂2E

∂r2
+ ωpv

∂E
∂r ) −

∂2E
∂r2

= 0

v
vEc
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(34) 	 [6.34]


On substituting equations [6.16], [6.17] (decaying approach) in equation [6.34] gives


(35) 	 [6.35]


(36) 	 [6.36]


(37) 	 [6.37]


(38) 	 [6.38][6.32]


(39) 	 [6.39]


Therefore


(40) 	 [6.40]


The multiplier of the speed of light in the two roots the of equation [6.33] are in the golden 

ratio i.e. . 


Thus, an electric field strength  wave decays rapidly with 1.618 times speed of light in 

the conductor.


1
c2 (v2

Ec
∂2E
∂r2

+ ωpvEc
∂E
∂r ) −

∂2E
∂r2

= 0

v2
Ec(κ

2
p E) + ωpvEc(−κpE) − c2(κ2

p E) = 0

κ2
p v2

Ec − cκ2
p vEc − c2κ2

p = 0

v2
Ec − cvEc − c2 = 0

vEc =
c ± (−c)2 + 4c2

2

=
c ± 5c2

2

=
c ± 5c

2

=
1 ± 5

2
c

vEc(decay) = 1.618c, − 0.618c

vEc(decay) = 1.618c

1
1.618

= 0.618

E
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On substituting equations [6.22], [6.23] (growth approach) in equation [6.34] gives


(41) 	 [6.41]


(42) 	 [6.42]


(43) 	 [6.43]


(44) 	 [6.44]


(45) 	 [6.45]


Therefore


(46) 	 [6.46]


Thus, an electric field strength  wave grows slowly with 0.618 times speed of light in the 

conductor.


The wave equation for the electric displacement in the conductor [4.46] is


	 	 [4.46]


On substituting equation [6.9], [6.10] and [6.11] in equation [4.46] gives


(47) 	 [6.47]


v2
Ec(κ

2
p E) + ωpvEc(κpE) − c2(κ2

p E) = 0

κ2
p v2

Ec + cκ2
p vEc − c2κ2

p = 0

v2
Ec + cvEc − c2 = 0

vEc =
−c ± c2 + 4c2

2

=
−c ± 5c2

2

=
−c ± 5c

2

=
−1 ± 5

2
c

vEc(growth) = − 1.618c, 0.618c

vEc(growth) = 0.618c

E

1
c2 ( ∂2D

∂t2
+ ωp

∂D
∂t ) − ∇2D = 0

1
c2 (v2 ∂2D

∂r2
+ ωpv

∂D
∂r ) −

∂2D
∂r2

= 0
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The velocity  in equation [6.47] represents the velocity of the electric displacement field 

in the conductor , therefore


(48) 	 [6.48]


On substituting equation [6.22], [6.23] (harmonic approach) in equation [6.48] gives


(49) 	 [6.49]


(50) 	 [6.50]


(51) 	 [6.51]


(52) 	 [6.52]


(53) 	 [6.53]


Therefore


(54) 	 [6.54]


(55) 	 [6.55]


(56) 	 [6.56]


v
vDc

1
c2 (v2

Dc
∂2D
∂r2

+ ωpvDc
∂D
∂r ) −

∂2D
∂r2

= 0

v2
Dc(−κ2

h D) + ωpvDc(iκpD) − c2(−κ2
p D) = 0

−κ2
p v2

Dc + icκ2
p vDc + c2κ2

p = 0

v2
Dc − icvDc − c2 = 0

vDc =
ic ± (−ic)2 + 4c2

2

=
ic ± −c2 + 4c2

2

=
ic ± 3c2

2

=
i ± 3

2
c

vDc = (0.866 + 0.5i)c, (−0.866 + 0.5i)c

vDc = (0.866 + 0.5i)c

vDc = (cos
π
6

+ i sin
π
6 ) c

vDc = c e
π
6 i
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(57) 	 [6.57]


Similarly


(58) 	 [6.58]


The electric induction field  and Current area density field  rotate harmonically with 

rotor angle of  with the speed of light. This implies that the  and  fields wave number 

and hence their wave length shortens by a factor of 3 in the conductors. This is the 
precise reason for adopting the 3 phase AC electric power system where each phase lags 

.


The wave equation for the magnetic field strength in the conductor [4.48] is 


	 	 [4.48]


On substituting equation [6.6], [6.7] and [6.8] in equation [4.48] gives


(59) 	 [6.59]


The velocity  in equation [6.59] represents the velocity of the magnetic field strength in 

the conductor , therefore


(60) 	 [6.60]


On substituting equation [6.19], [6.20] (decaying approach) in equation [6.60] gives


(61) 	 [6.61]


vDc = c R ( π
6 )

vJc = c R ( π
6 )

D J
π
6

B V

π
6

1
c2 ( ∂2H

∂t2
+ ωp

∂H
∂t ) − ∇2H = 0

1
c2 (v2 ∂2H

∂r2
+ ωpv

∂H
∂r ) −

∂2H
∂r2

= 0

v
vHc

1
c2 (v2

Hc
∂2H
∂r2

+ ωpvHc
∂H
∂r ) −

∂2H
∂r2

= 0

v2
Hc(κ

2
e H) + ωpvHc(−κeH) − c2(κ2

e H) = 0
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(62) 	 [6.62]


(63) 	 [6.63]


For a conductor, for example, a metal [4.42]


	 	 [4.42]


On substituting equation [4.42] in equation [6.51] gives


(64) 	 [6.64]


(65) 	 [6.65]


On substituting equation [6.25], [6.26] (growth approach) in equation [6.60] gives


(66) 	 [6.66]


(67) 	 [6.67]


(68) 	 [6.68]


For a conductor, for example a metal, [4.42]


	 	 [4.42]


On substituting equation [4.42] in equation [6.68] gives


(69) 	 [6.69]


(70) 	 [6.70]


Thus, magnetic field strength  is damped in the conductor.


κ2
e v2

Hc − cκpκevHc − c2κ2
e = 0

κev2
Hc − cκpvHc − c2κe = 0

ηe ≈ 0 ⟶ κe ≈ 0 ⟶ ωe ≈ 0

−cκpvHc = 0

vHc(decay) = 0

v2
Hc(κ

2
e H) + ωpvHc(κeH) − c2(κ2

e H) = 0

κ2
e v2

Hc + cκpκevHc − c2κ2
e = 0

κev2
Hc + cκpvHc − c2κe = 0

ηe ≈ 0 ⟶ κe ≈ 0 ⟶ ωe ≈ 0

cκpvHc = 0

vHc(growth) = 0

H
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The wave equation for the magnetic induction field in the conductor [4.49] is 


	 	 [4.49]


On substituting equation [6.12], [6.13] and [6.14] in equation [4.49] gives


(71) 	 [6.71]


The velocity  in equation [6.71] represents the velocity of the magnetic induction field in 

the conductor , therefore


(72) 	 [6.72]


On substituting equation [6.31], [6.32] (harmonic approach) in equation [6.72] gives


(73) 	 [6.73]


(74) 	 [6.74]


(75) 	 [6.75]


For a conductor [4.42]


	 	 [4.42]


On substituting equation [6.42] in equation [6.75] gives


(76) 	 [6.76]


(77) 	 [6.77]


Therefore, the magnetic induction field  wave is damped in the conductor. 


1
c2 ( ∂2B

∂t2
+ ωp

∂B
∂t ) − ∇2B = 0

1
c2 (v2 ∂2B

∂r2
+ ωpv

∂B
∂r ) −

∂2B
∂r2

= 0

v
vBc

1
c2 (v2

Bc
∂2B
∂r2

+ ωpvBc
∂B
∂r ) −

∂2B
∂r2

= 0

v2
Bc(−κ2

e B) + ωpvBc(−iκeB) − c2(−κ2
e B) = 0

−κ2
e v2

Bc − icκpκevBc + c2κ2
e = 0

κev2
Bc + icκpvBc − c2κe = 0

ηe ≈ 0 ⟶ κe ≈ 0 ⟶ ωe ≈ 0

icκpvBc = 0

vBc = 0

B
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Similarly


(78) 	 [6.78]


Thus,  and  fields are damped in the conductor.


6.2. Non Conductors 
The wave equation for the electric field in the non conductor [4.54] is 


	 	 [4.54]


On substituting equation [6.1], [6.4] and [6.5] in equation [4.54] gives


(79) 	 [6.79]


The velocity  in equation [6.79] represents the velocity of the electric field in the non 

conductor , therefore


(80) 	 [6.80]


On substituting equation [6.16] and [6.17] (decaying approach) in equation [6.80] gives


(81) 	 [6.81]


(82) 	 [6.82]


(83) 	 [6.83]


For a Non Conductor [4.51]


	 	 [4.51]


vVc = 0

H, B V

1
c2 ( ∂2E

∂t2
− ωe

∂E
∂t ) − ∇2E = 0

1
c2 (v2 ∂2E

∂r2
− ωev

∂E
∂r ) −

∂2E
∂r2

= 0

v
vEnc

1
c2 (v2

Enc
∂2E
∂r2

− ωevEnc
∂E
∂r ) −

∂2E
∂r2

= 0

v2
Enc(κ

2
p E) − ωevEnc(−κpE) − c2(κ2

p E) = 0

κ2
p v2

Enc − cκeκpvEnc − c2κ2
p = 0

κpv2
Enc − cκevEnc − c2κp = 0

σp ≈ 0 ⟶ κp ≈ 0 ⟶ ωp ≈ 0
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On substituting equation [4.51] in equation [6.83] gives


(84) 	 [6.84]


(85) 	 [6.85]


On substituting equation [6.22] and [6.23] (decaying approach) in equation [6.80] gives


(86) 	 [6.86]


(87) 	 [6.87]


(88) 	 [6.88]


For a non conductor [4.51]


	 	 [4.51]


On substituting equation [4.51] in equation [6.88] gives


(89) 	 [6.89]


(90) 	 [6.90]


Therefore an electric field strength  wave is damped in the non conductor. 


The wave equation for the electric displacement in the non conductor [4.55] is


	 	 [4.55]


On substituting equation [6.9], [6.10] and [6.11] in equation [4.55] gives


(91) 	 [6.91]


−cκevEnc = 0

vEnc(decay) = 0

v2
Enc(κ

2
p E) − ωevEnc(κpE) − c2(κ2

p E) = 0

κ2
p v2

Enc + cκeκpvEnc − c2κ2
p = 0

κpv2
Enc + cκevEnc − c2κp = 0

σp ≈ 0 ⟶ κp ≈ 0 ⟶ ωp ≈ 0

cκevEnc = 0

vEnc(growth) = 0

E

1
c2 ( ∂2D

∂t2
− ωe

∂D
∂t ) − ∇2D = 0

1
c2 (v2 ∂2D

∂r2
− ωev

∂D
∂r ) −

∂2D
∂r2

= 0
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The velocity  in equation [6.91] represents the velocity of the electric displacement field 

in the non conductor , therefore


(92) 	 [6.92]


On substituting equation [6.28], [6.29] (harmonic approach) in equation [6.92] gives 


(93) 	 [6.93]


(94) 	 [6.94]


(95) 	 [6.95]


For a non conductor [4.51]


	 	 [4.51]


On substituting equation [4.51] in equation [6.95] gives


(96) 	 [6.96]


(97) 	 [6.97]


Therefore the electric induction field  wave is damped in the non conductor. 


Similarly


(98) 	 [6.98]


Thus,  and  fields are damped in the non conductor.


The wave equation for the magnetic field strength in the non conductor [4.57] is 


	 	 [4.57]


v
vDnc

1
c2 (v2

Dnc
∂2D
∂r2

− ωevDnc
∂D
∂r ) −

∂2D
∂r2

= 0

v2
Dnc(−κ2

p D) − ωevDnc(iκpD) − c2(−κ2
p D) = 0

−κ2
p v2

Dnc − icκeκpvDnc + c2κ2
p = 0

κpv2
Dnc + icκe vDnc − c2κp = 0

σp ≈ 0 ⟶ κp ≈ 0 ⟶ ωp ≈ 0

icκe vDnc = 0

vDnc = 0

D

vJnc = 0

E, D J

1
c2 ( ∂2H

∂t2
− ωe

∂H
∂t ) − ∇2H = 0
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On substituting equation [6.6], [6.7] and [6.8] in equation [4.57] gives


(99) 	 [6.99]


The velocity  in equation [6.99] represents the velocity of the magnetic field strength in 

the non conductor , therefore


(100) 	 [6.100]


On substituting equation [6.19], [6.20] (decaying approach) in equation [6.100] gives


(101) 	 [6.101]


(102) 	 [6.102]


(103) 	 [6.103]


(104) 	 [6.104]


(105) 	 [6.105]


Therefore


(106) 	 [6.106]


1
c2 (v2 ∂2H

∂r2
− ωev

∂H
∂r ) −

∂2H
∂r2

= 0

v
vHnc

1
c2 (v2

Hnc
∂2H
∂r2

− ωevHnc
∂H
∂r ) −

∂2H
∂r2

= 0

v2
Hnc(−κ2

e H) − ωevHnc(−κeH) − c2(−κ2
e H) = 0

κ2
e v2

Hnc − cκ2
e vHnc − c2κ2

e = 0

v2
Hnc − cvHnc − c2 = 0

vHnc =
c ± (−c)2 + 4c2

2

=
c ± 5c2

2

=
c ± 5c

2

=
1 ± 5

2
c

vHnc(decay) = 1.618c, − 0.618c

vHnc(decay) = 1.618c
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Thus, a magnetic field strength  wave decays rapidly with 1.618 times speed of light in 

the non conductor.


On substituting equation [6.25], [6.26] (growth approach) in equation [6.100] gives


(107) 	 [6.107]


(108) 	 [6.108]


(109) 	 [6.109]


(110) 	 [6.110]


(111) 	 [6.111]


Therefore


(112) 	 [6.112]


Thus, a magnetic field strength  wave grows slowly with 0.618 times speed of light in 

the non conductor.


The wave equation for the magnetic induction field in the non conductor [4.58] is 


	 	 [4.58]


H

v2
Hnc(−κ2

e H) − ωevHnc(κeH) − c2(−κ2
e H) = 0

κ2
e v2

Hnc + cκ2
e vHnc − c2κ2

e = 0

v2
Hnc + cvHnc − c2 = 0

vHnc =
−c ± c2 + 4c2

2

=
−c ± 5c2

2

=
−c ± 5c

2

=
−1 ± 5

2
c

vHnc(growth) = − 1.618c, 0.618c

vHnc(growth) = 0.618c

H

1
c2 ( ∂2B

∂t2
− ωe

∂B
∂t ) − ∇2B = 0
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On substituting equation [6.12], [6.13] and [6.14] in equation [4.58] gives


(113) 	 [6.113]


The velocity  in equation [6.113] represents the velocity of the magnetic induction field in 

the conductor , therefore


(114) 	 [6.114]


On substituting equation [6.31], [6.32] (harmonic approach) in equation [6.114] gives


(115) 	 [6.115]


(116) 	 [6.116]


(117) 	 [6.117]


(118) 	 [6.118]


(119) 	 [6.119]


Therefore


(120) 	 [6.120]


1
c2 (v2 ∂2B

∂r2
− ωev

∂B
∂r ) −

∂2B
∂r2

= 0

v
vBnc

1
c2 (v2

Bnc
∂2B
∂r2

− ωevBnc
∂B
∂r ) −

∂2B
∂r2

= 0

v2
Bnc(−κ2

e B) − ωevBnc(−iκeB) − c2(−κ2
e B) = 0

κ2
e v2

Bnc − icκ2
e vBnc − c2κ2

e = 0

v2
Bnc − icvBnc − c2 = 0

vBnc =
ic ± (−ic)2 + 4c2

2

=
ic ± −c2 + 4c2

2

=
ic ± 3c2

2

=
i ± 3

2
c

vBnc = (0.866 + 0.5i)c, (−0.866 + 0.5i)c

vBnc = (0.866 + 0.5i)c
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(121) 	 [6.121]


(122) 	 [6.122]


(123) 	 [6.123]


Similarly


(124) 	 [6.124]


The magnetic induction field  and voltage area density field  rotate harmonically with 

rotor angle of  with the speed of light. This implies that the  and  fields wave number 

and hence their wave length shortens by factor of 3 in the non conductors.


vBnc = (cos
π
6

+ i sin
π
6 ) c

vBnc = c e
π
6 i

vBnc = c R ( π
6 )

vVnc = c R ( π
6 )

B V
π
6

B V

Table 6.1

Duality

Electricity Magnetism

Perpendicular Interaction - Conductor

Rapid decay Damped wave

Slow growth Damped wave

Damped wave

Damped wave

Perpendicular Interaction - Non Conductor

Damped wave Rapid decay

Damped wave Slow growth

vBc = 0

vHc(growth) = 0

1
c2 ( ∂2J

∂t2
− ωp

∂J
∂t ) − ∇2J = 0

1
c2 ( ∂2H

∂t2
+ ωe

∂H
∂t ) − ∇2H = 0

1
c2 ( ∂2D

∂t2
− ωp

∂D
∂t ) − ∇2D = 0

1
c2 ( ∂2E

∂t2
− ωp

∂E
∂t ) − ∇2E = 0

1
c2 ( ∂2E

∂t2
− ωp

∂E
∂t ) − ∇2E = 0

1
c2 ( ∂2H

∂t2
− ωp

∂H
∂t ) − ∇2H = 0

vVc = 0

1
c2 ( ∂2H

∂t2
+ ωe

∂H
∂t ) − ∇2H = 0

vJc = c e
π
6 i

vEc(growth) = 0.618c

vHnc(growth) = 0.618c1
c2 ( ∂2E

∂t2
+ ωe

∂E
∂t ) − ∇2E = 0

vHc(decay) = 0

vEnc(decay) = 0

1
c2 ( ∂2V

∂t2
− ωp

∂V
∂t ) − ∇2V = 0

vEnc(growth) = 0

vDc = c e
π
6 i1

c2 ( ∂2B
∂t2

− ωp
∂B
∂t ) − ∇2B = 0

vEc(decay) = 1.618c 1
c2 ( ∂2H

∂t2
− ωp

∂H
∂t ) − ∇2H = 0

vHnc(decay) = 1.618c1
c2 ( ∂2E

∂t2
+ ωe

∂E
∂t ) − ∇2E = 0
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On the closer inspection of Table 6.1, it can be clearly observed that


i) In the perpendicular interaction , the electric field vector rapidly decays 

whereas the magnetic field vector is instantly damped in the conductor and vice 

versa in the non conductor. Although the  and  waves are perpendicular, it does 

not mean that they are tied to each other and follow the same pattern.


ii) In the perpendicular interaction , the magnetic field vector slowly grows 

whereas the electric field vector is instantly damped in the conductor and vice 

versa in the non conductor. In the perpendicular interaction , the 

magnetic induction field bivector is instantly damped whereas the electric induction 
field bivector rotates harmonically in the conductor and vice versa in the non 

conductor. Although the and  waves waves are perpendicular, it does not 

mean that they are tied to each other and follow the same pattern.


Damped wave

Damped wave

Duality

Electricity Magnetism

vVnc = c e
π
6 i 1

c2 ( ∂2J
∂t2

+ ωe
∂J
∂t ) − ∇2 J = 0

vBnc = c e
π
6 i1

c2 ( ∂2B
∂t2

+ ωe
∂B
∂t ) − ∇2B = 0 vDnc = 0

1
c2 ( ∂2V

∂t2
+ ωe

∂V
∂t ) − ∇2V = 0

1
c2 ( ∂2D

∂t2
+ ωe

∂D
∂t ) − ∇2D = 0

vJnc = 0

E ⊥ H

E H

E ⊥ H

⟨B⟩2 ⊥ ⟨D⟩2

⟨B⟩2 ⟨D⟩2
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7. Dual Wave Velocity 
7.1. Conductors 
The dual wave equation for the Electric field in the conductor [5.24] is


	 	 [5.24]


On substituting equation [6.4] in equation [5.24] gives


(1) 	 [7.1]


The velocity  in equation [7.1] represents the velocity of the dual wave of the electric field 

strength in the conductor , therefore


(2) 	 [7.2]


On substituting equation [6.17] or [6.23] (decaying or growth approach) in equation [7.2] 
gives


(3) 	 [7.3]


(4) 	 [7.4]


(5) 	 [7.5]


(6) 	 [7.6]


Therefore


(7) 	 [7.7]


∂2E
∂t2

+ ω2
p E = 0

v2 ∂2E
∂r2

+ ω2
p E = 0

v
vEc(dual)

v2
Ec(dual)

∂2E
∂r2

+ ω2
p E = 0

v2
Ec(dual)(κ

2
p E) + ω2

p E = 0

v2
Ec(dual)κ

2
p + c2κ2

p = 0

v2
Ec(dual) + c2 = 0

vEc(dual) = ± ic

vEc(dual) = ic
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(8) 	 [7.8]


(9) 	 [7.9]


(10) 	 [7.10]


The electric field  vector decays or grows with speed of light with rotor angle of  in the 

conductor in parallel interaction.


The dual wave equation for the electric displacement field in the non conductor [5.25] is


	 	 [5.25]


On substituting equation [6.10] in equation [5.25] gives


(11) 	 [7.11]


The velocity  in equation [7.11] represents the velocity of a dual wave for the electric 

induction field in the conductor , therefore


(12) 	 [7.12]


On substituting equation [6.23] (harmonic approach) in equation [7.31] gives


(13) 	 [7.13]


(14) 	 [7.14]


(15) 	 [7.15]


vEc(dual) = (cos
π
2

+ i sin
π
2 ) c

vEnc(dual) = c e
π
2 i

vEnc(dual) = c R ( π
2 )

E
π
2

∂2D
∂t2

+ ω2
p D = 0

v2 ∂2D
∂r2

+ ω2
p D = 0

v
vDc(dual)

v2
Dc(dual)

∂2D
∂r2

+ ω2
p D = 0

v2
Dc(dual)(−κ2

p D) + ω2
p D = 0

−v2
Dc(dual)κ

2
p + c2κ2

p = 0

v2
Dc(dual) − c2 = 0
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(16) 	 [7.16]


Therefore


(17) 	 [7.17]


(18)  	 [7.18]


(19) 	 [7.19]


(20) 	 [7.20]


The electric induction field  bivector spins harmonically with rotor angle of  with 

speed of light in the conductor in parallel interaction. It is a spinor and takes a rotation of 

 to go back to its original state.


Since 


(21) 	 [7.21]


According to equations [5.27] to [5.29]


	 	 [5.27]


	 	 [5.28]


	 	 [5.29]


Therefore,


(22) 	 [7.22]


(23) 	 [7.23]


(24) 	 [7.24]


vDc(dual) = ± c

vDc(dual) = c

vDc(dual) = (cos2π + i sin2π) c

vDc(dual) = c e2πi

vDc(dual) = c R (2π)

D 2π

4π

J = 0

vJc(dual) = 0

∂2H
∂t2

= 0

∂2B
∂t2

= 0

V = 0

vHc(dual) = 0

vBc(dual) = 0

vVc(dual) = 0
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There is no dual wave for the ,  and  field in the conductor in parallel interaction.


7.2. Non Conductors 
According to equations [5.30] to [5.32]


	 	 [5.30]


	 	 [5.31]


	 	 [5.32]


Therefore


(25) 	 [7.25]


(26) 	 [7.26]


(27) 	 [7.27]


There is no dual wave for the  ,  and  field in the non conductor in parallel interaction.


The dual wave equation for the magnetic field in the non conductor [5.33] is


	 	 [5.33]


On substituting equation [6.7] in equation [5.33] gives


(28) 	 [7.28]


The velocity  in equation [7.28] represents the velocity of dual wave of the magnetic field 

strength in the non conductor , therefore


H B V

∂2E
∂t2

= 0

∂2D
∂t2

= 0

J = 0

vEnc(dual) = 0

vDnc(dual) = 0

vJnc(dual) = 0

E D J

∂2H
∂t2

+ ω2
e H = 0

v2 ∂2H
∂r2

+ ω2
e H = 0

v
vHc(dual)
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(29) 	 [7.29]


On substituting equation [6.20] or [6.26] (decaying or growth approach) in equation [7.28] 
gives


(30) 	 [7.30]


(31) 	 [7.31]


(32) 	 [7.32]


(33) 	 [7.33]


Therefore


(34) 	 [7.34]


(35) 	 [7.35]


(36) 	 [7.36]


(37) 	 [7.37]


The magnetic field  vector decays or grows with speed of light with rotor angle of  in 

the conductor in parallel interaction.


The dual wave equation for the magnetic induction field in the conductor [5.34] is


	 	 [5.34]


v2
Hnc(dual)

∂2H
∂r2

+ ω2
e H = 0

v2
Hnc(dual)(κ

2
e H) + ω2

e H = 0

v2
Hnc(dual)κ

2
e + c2κ2

e = 0

v2
Hnc(dual) + c2 = 0

vHnc(dual) = ± ic

vHnc(dual) = ic

vHnc(dual) = (cos
π
2

+ i sin
π
2 ) c

vHnc(dual) = c e
π
2 i

vHnc(dual) = c R ( π
2 )

H
π
2

∂2B
∂t2

+ ω2
e B = 0
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On substituting equation [6.13] in equation [5.34] gives


(38) 	 [7.38]


The velocity  in equation [7.38] represents the velocity of a dual wave for the magnetic 

induction field in the non conductor , therefore


(39) 	 [7.39]


On substituting equation [6.26] (harmonic approach) in equation [7.39] gives


(40) 	 [7.40]


(41) 	 [7.41]


(42) 	 [7.42]


(43) 	 [7.43]


Therefore


(44) 	 [7.44]


(45)  	 [7.45]


(46) 	 [7.45]


(47) 	 [7.46]


The electric induction field  bivector spins harmonically with rotor angle of  with 

speed of light in the non conductor in parallel interaction. It is a spinor and takes a 

rotation of  to go back to its original state.


Since 


v2 ∂2B
∂r2

+ ω2
e B = 0

v
vBnc(dual)

v2
Bnc(dual)

∂2B
∂r2

+ ω2
e B = 0

v2
Bnc(dual)(−κ2

e B) + ω2
e B = 0

−v2
Bnc(dual)κ

2
e + c2κ2

e = 0

v2
Bnc(dual) − c2 = 0

vBnc(dual) = ± c

vBnc(dual) = c

vBnc(dual) = (cos2π + i sin2π) c

vBnc(dual) = c e2πi

vBnc(dual) = c R (2π)

B 2π

4π

V = 0
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(48) 	 [7.46]
vVnc(dual) = 0

Table 7.1

Duality

Electricity Magnetism

Perpendicular Interaction - Conductor

Rapid decay Damped wave

Slow growth Damped wave

Damped wave

Damped wave

Perpendicular Interaction - Non Conductor

Damped wave Rapid decay

Damped wave Slow growth

Damped wave

Damped wave

Parallel Interaction - Conductor

Normal decay 
and growth

Maxima or 
Minima

Maxima or 
Minima Spinor

Parallel Interaction - Non Conductor

Maxima or 
Minima

Normal decay 
and growth

Spinor Maxima or 
Minima

J = 0

1
c2 ( ∂2D

∂t2
+ ωe

∂D
∂t ) − ∇2D = 0

1
c2 ( ∂2E

∂t2
+ ωe

∂E
∂t ) − ∇2E = 0

vBnc = c e
π
6 i

vHc(dual) = 0

vVc = 0

1
c2 ( ∂2H

∂t2
+ ωe

∂H
∂t ) − ∇2H = 0

vEc(growth) = 0.618c

1
c2 ( ∂2D

∂t2
− ωp

∂D
∂t ) − ∇2D = 0

vDnc = 0

1
c2 ( ∂2E

∂t2
+ ωe

∂E
∂t ) − ∇2E = 0

vHc(decay) = 0

vEnc(dual) = 0

∂2B
∂t2

= 0

1
c2 ( ∂2B

∂t2
+ ωe

∂B
∂t ) − ∇2B = 0

∂2B
∂t2

+ ω2
e B = 0

1
c2 ( ∂2H

∂t2
− ωp

∂H
∂t ) − ∇2H = 0

vVnc = c e
π
6 i

1
c2 ( ∂2E

∂t2
− ωp

∂E
∂t ) − ∇2E = 0

vEnc(growth) = 0

1
c2 ( ∂2V

∂t2
+ ωe

∂V
∂t ) − ∇2V = 0

1
c2 ( ∂2J

∂t2
− ωp

∂J
∂t ) − ∇2J = 0

vHc(growth) = 0

vBc = 0

1
c2 ( ∂2J

∂t2
+ ωe

∂J
∂t ) − ∇2 J = 0

vEc(dual) = c e
π
2 i

vDc(dual) = c e2πi

1
c2 ( ∂2H

∂t2
+ ωe

∂H
∂t ) − ∇2H = 0

vEnc(decay) = 0

vBc(dual) = 0

vHnc(decay) = 1.618c

∂2D
∂t2

+ ω2
p D = 0

∂2D
∂t2

= 0

vDc = c e
π
6 i

1
c2 ( ∂2E

∂t2
− ωp

∂E
∂t ) − ∇2E = 0

vJnc = 0

1
c2 ( ∂2H

∂t2
− ωp

∂H
∂t ) − ∇2H = 0

vJc = c e
π
6 i

vEc(decay) = 1.618c

∂2H
∂t2

= 0

V = 0

∂2E
∂t2

= 0

vHnc(growth) = 0.618c

1
c2 ( ∂2B

∂t2
− ωp

∂B
∂t ) − ∇2B = 0

1
c2 ( ∂2V

∂t2
− ωp

∂V
∂t ) − ∇2V = 0

∂2H
∂t2

+ ω2
e H = 0 vHnc(dual) = c e

π
2 i

vBnc(dual) = c e2πi

∂2E
∂t2

+ ω2
p E = 0

vDnc(dual) = 0
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On the closer inspection of Table 7.1, it can clearly be observed that


i) In the perpendicular interaction , the electric field vector rapidly decays 

whereas the magnetic field vector is instantly damped in the conductor and vice 

versa in the non conductor. Although the  and  waves are perpendicular, it does 

not mean that they are tied to each other and follow the same pattern.


ii) In the perpendicular interaction , the magnetic field vector slowly grows 

whereas the electric field vector is instantly damped in the conductor and vice 

versa in the non conductor. In the perpendicular interaction , the 

magnetic induction field bivector is instantly damped whereas the electric induction 
field bivector rotates harmonically in the conductor and vice versa in the non 

conductor. Although the and  waves are perpendicular, it does not mean 

that they are tied to each other and follow the same pattern.


iii) In the parallel interaction , the electric field vector decays or grows with  

rotor angle of  and the electric induction bivector spins harmonically (rotor angle 

of ) in the conductor but both of them are damped in the non conductor. 

Although the  and waves are parallel, it does not mean that they are tied to 

each other and follow the same pattern.


iv) In the parallel interaction , both the magnetic field vector and the 

magnetic induction bivector are damped in the conductor but the magnetic field 

vector decays or grows with rotor angle of  and the magnetic induction bivector 

spins harmonically (rotor angle of ) in the non conductor. Although the  and 

waves are parallel, it does not mean that they are tied to each other and follow 

the same pattern. 

Duality

Electricity Magnetism

V = 0 J = 0

E ⊥ H

E H

E ⊥ H

⟨B⟩2 ⊥ ⟨D⟩2

⟨B⟩2 ⟨D⟩2

E ∥ ⟨D⟩2
π
2

2π

E ⟨D⟩2

⟨B⟩2 ∥ H

π
2

2π E
⟨D⟩2
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8. Equilibrium Wave Equations 
The wave equation for the electric field [4.15] is


	 	 [4.15]


For the special case of equilibrium in the quantum realm


(1) 	 [8.1]


On substituting the equation [8.1] in the wave equation [4.15], this becomes


(2) 	 [8.2]


(3) 	 [8.3]


(4) 	 [8.4]


Similarly


(5) 	 [8.5]


(6) 	 [8.6]


(7) 	 [8.7]


(8) 	 [8.8]


(9) 	 [8.9]


□ E +
1
c2 (ωp

∂E
∂t

− ωe
∂E
∂t

− ω2
0 E) = 0

ω0 = ωp = ωe ⟶ κ0 = κp = κe

□ E − κ 2
0 E = 0

1
c2

∂2E
∂t2

− ∇2E − κ 2
0 E = 0

∂2E
∂t2

− c2 ∇2E − c2κ 2
0 E = 0

∂2D
∂t2

− c2 ∇2D − c2κ 2
0 D = 0

∂2J
∂t2

− c2 ∇2J − c2κ 2
0 J = 0

∂2H
∂t2

− c2 ∇2H − c2κ 2
0 H = 0

∂2B
∂t2

− c2 ∇2B − c2κ 2
0 B = 0

∂2V
∂t2

− c2 ∇2V − c2κ 2
0 V = 0
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According to the Einstein/ de Broglie equation for a rest particle:


(10) 	 [8.10]


(11) 	 [8.11]


(12) 	 [8.12]


(13) On substituting the equation [8.12] in equation [8.2] gives


(14) 	 [8.13]


In this way, the equilibrium wave equation is connected with the quantum-mechanical 

realm. The equilibrium wave equation [8.13] is known as the Klein–Gordon equation. 

ℏω0 = mc2

ω0 =
mc2

ℏ

κ0 =
mc
ℏ

□ E − ( mc
ℏ )

2

E = 0

Table 8.1

Duality

Electricity Magnetism

Perpendicular Interaction

Equilibrium wave 
equation

Equilibrium wave 
equation

∂2D
∂t2

− c2 ∇2D − c2κ 2
0 D = 0

∂2J
∂t2

− c2 ∇2 J − c2κ 2
0 J = 0

∂2B
∂t2

− c2 ∇2B − c2κ 2
0 B = 0

∂2E
∂t2

− c2 ∇2E − c2κ 2
0 E = 0

∂2V
∂t2

− c2 ∇2V − c2κ 2
0 V = 0

∂2H
∂t2

− c2 ∇2H − c2κ 2
0 H = 0

anil@anilgoel.com Proprietary and Confidential

mailto:anil@anilgoel.com


RA-DIANT Page  of 91 160

9. Dual Equilibrium Wave 
Equations 

The dual/ Beltrami wave equation for the electric field [5.7] is


[5.7] 

For the special case of equilibrium in the quantum realm [8.1]


	  

On substituting the equation [8.1] in the wave equation [5.7] becomes


(1) [9.1]


(2) [9.2] 

Similarly


(3) [9.3]


(4) [9.4]


(5) [9.5]


(6) [9.6]


(7) 	 [9.7]


∂2E
∂t2

+ ω2
p E = 0

ω0 = ωp = ωe ⟶ κ0 = κp = κe

∂2E
∂t2

+ ω2
0 E = 0

∂2E
∂t2

+ c2κ 2
0 E = 0

∂2D
∂t2

+ c2κ 2
0 D = 0

J = 0

∂2H
∂t2

+ c2κ 2
0 H = 0

∂2B
∂t2

+ c2κ 2
0 B = 0

V = 0
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On substituting the equation [8.10] in equation [9.2] gives


(8) 	 [9.8]


In this way, the dual equilibrium wave equation is connected with the quantum-

mechanical realm. The equation [9.8] can be seen as the Klein–Gordon equation in the 

dual space. 

∂2E
∂t2

+ c2 ( mc
ℏ )

2

E = 0

Table 9.1

Duality

Electricity Magnetism

Perpendicular Interaction

Equilibrium wave 
equation

Equilibrium wave 
equation

Parallel Interaction

Dual equilibrium wave 
equation

Dual equilibrium wave 
equation

∂2B
∂t2

+ c2κ 2
0 B = 0

∂2V
∂t2

− c2 ∇2V − c2κ 2
0 V = 0

∂2D
∂t2

+ c2κ 2
0 D = 0

∂2E
∂t2

+ c2κ 2
0 E = 0

∂2B
∂t2

− c2 ∇2B − c2κ 2
0 B = 0

∂2D
∂t2

− c2 ∇2D − c2κ 2
0 D = 0

∂2J
∂t2

− c2 ∇2 J − c2κ 2
0 J = 0

∂2H
∂t2

+ c2κ 2
0 H = 0

∂2E
∂t2

− c2 ∇2E − c2κ 2
0 E = 0

V = 0

∂2H
∂t2

− c2 ∇2H − c2κ 2
0 H = 0

J = 0
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10. Equilibrium Wave Velocity 
The equilibrium wave equation for the electric field [8.4] is


	 	 [8.4]


On substituting equation [6.4] and [6.5] in equation [8.4] gives


(1) 	 [10.1]


The velocity  in equation [10.1] represents the velocity of the electric field in the 

equilibrium , therefore


(2) 	 [10.2]


On substituting equation [6.17] or [6.23] (decaying or growth approach) in equation [10.2] 
gives


(3) 	 [10.3]


For the special case of equilibrium in the quantum realm [8.1]


	 	 [8.1]


Therefore


(4) 	 [10.4]


(5) 	 [10.5]


(6) 	 [10.6]


∂2E
∂t2

− c2 ∇2E − c2κ 2
0 E = 0

v2 ∂2E
∂r2

− c2 ∂2E
∂r2

− c2κ 2
0 E = 0

v
vEe

v2
Ee

∂2E
∂r2

− c2 ∂2E
∂r2

− c2κ 2
0 E = 0

v2
Ee(κ

2
p E) − c2(κ2

p E) − c2κ 2
0 E = 0

ω0 = ωp = ωe ⟶ κ0 = κp = κe

v2
Ee(κ

2
0 E) − c2(κ 2

0 E) − c2κ 2
0 E = 0

v2
Ee − 2c2 = 0

vEe = ± 2c
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Therefore


(7) 	 [10.7]


The electric field strength  decays or grows faster than speed of light in the equilibrium 

state.


The equilibrium wave equation for the electric displacement [8.5] is


	 	 [8.5]


On substituting equation [6.10] and [6.11] in equation [8.5] gives


(8) 	 [10.8]


The velocity  in equation [10.8] represents the velocity of the electric displacement field 

in equilibrium , therefore


(9) 	 [10.9]


On substituting equation [6.23] (harmonic approach) in equation [10.12] gives


(10) 	 [10.10]


For the special case of equilibrium in the quantum realm [8.1]


	 	 [8.1]


Therefore


(11) 	 [10.11]


(12) 	 [10.12]


(13) 	 [10.13]


vEe = 2c

E

∂2D
∂t2

− c2 ∇2D − c2κ 2
0 D = 0

v2 ∂2D
∂r2

− c2 ∂2D
∂r2

− c2κ 2
0 D = 0

v
vDe

v2
De

∂2E
∂r2

− c2 ∂2E
∂r2

− c2κ 2
0 E = 0

v2
De(−κ2

p E) − c2(−κ2
p E) − c2κ 2

0 E = 0

ω0 = ωp = ωe ⟶ κ0 = κp = κe

v2
De(−κ 2

0 E) + c2(κ 2
0 E) − c2κ 2

0 E = 0

−κ2
p v2

De = 0

vDe = 0
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Similarly


(14) 	 [10.14][374]


Therefore, the  and  fields are damped in the equilibrium state.


The equilibrium wave equation for the magnetic field [8.7] is


	 	 [8.7]


On substituting equation [6.7] and [6.8] in equation [8.7] gives


(15) 	 [10.15]


The velocity  in equation [10.15] represents the velocity of the magnetic field in the 

equilibrium , therefore


(16) 	 [10.16]


On substituting equation [6.20] or [6.26] (decaying or growth approach) in equation [10.16] 
gives


(17) 	 [10.17]


For the special case of equilibrium in the quantum realm [8.1]


	 	 [8.1]


Therefore


(18) 	 [10.18]


(19) 	 [10.19]


(20) 	 [10.20]


vJe = 0

D J

∂2H
∂t2

− c2 ∇2H − c2κ 2
0 H = 0

v2 ∂2H
∂r2

− c2 ∂2H
∂r2

− c2κ 2
0 H = 0

v
vHe

v2
He

∂2H
∂r2

− c2 ∂2H
∂r2

− c2κ 2
0 H = 0

v2
He(κ

2
e E) − c2(κ2

e E) − c2κ 2
0 E = 0

ω0 = ωp = ωe ⟶ κ0 = κp = κe

v2
He(κ

2
0 E) − c2(κ 2

0 E) − c2κ 2
0 E = 0

v2
He − 2c2 = 0

vHe = ± 2c
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Therefore


(21) 	 [10.21]


The magnetic field strength  decays or grows faster than speed of light in equilibrium 

state.


The equilibrium wave equation for the magnetic induction [8.8] is


	 	 [8.8]


On substituting equation [6.13] and [6.14] in equation [8.8] gives


(22) 	 [10.22]


The velocity  in equation [10.21] represents the velocity of the magnetic induction field in 

equilibrium , therefore


(23) 	 [10.23]


On substituting equation [6.26] (harmonic approach) in equation [10.23] gives


(24) 	 [10.24]


For the special case of equilibrium in the quantum realm [8.1]


	 	 [8.1]


Therefore


(25) 	 [10.25]


(26) 	 [10.26]


(27) 	 [10.27]


vHe = 2c

H

∂2B
∂t2

− c2 ∇2B − c2κ 2
0 B = 0

v2 ∂2B
∂r2

− c2 ∂2B
∂r2

− c2κ 2
0 B = 0

v
vBe

v2
Be

∂2B
∂r2

− c2 ∂2B
∂r2

− c2κ 2
0 B = 0

v2
Be(−κ2

e E) − c2(−κ2
e E) − c2κ 2

0 E = 0

ω0 = ωp = ωe ⟶ κ0 = κp = κe

v2
Be(−κ 2

0 E) + c2(κ 2
0 E) − c2κ 2

0 E = 0

−κ2
e v2

Be = 0

vBe = 0
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Similarly


(28) 	 [10.28][392]


Therefore, the  and  fields are damped in the equilibrium state.


On the closer inspection of Table 10.1, it can be clearly observed that


i) In the perpendicular interaction  in the equilibrium state, the electric field 

vector and the magnetic field decay or grow rapidly and follow the same pattern.


ii) In the perpendicular interaction  in the equilibrium state, both the 

magnetic induction field bivector and the electric induction field bivector are 
instantly damped and follow the same pattern.


vVe = 0

B V

Table 10.1

Duality

Electricity Magnetism

Perpendicular Interaction

Equilibrium 
state - Faster 
decay or 
growth

Equilibrium 
state - Faster 
decay or 
growth

Damped Damped

Damped Damped vJe = 0

∂2H
∂t2

− c2 ∇2H − c2κ 2
0 H = 0

vVe = 0∂2V
∂t2

− c2 ∇2V − c2κ 2
0 V = 0

vHe = 2c

vDe = 0

vEe = 2c

∂2D
∂t2

− c2 ∇2D − c2κ 2
0 D = 0

∂2E
∂t2

− c2 ∇2E − c2κ 2
0 E = 0

∂2J
∂t2

− c2 ∇2 J − c2κ 2
0 J = 0

vBe = 0∂2B
∂t2

− c2 ∇2B − c2κ 2
0 B = 0

E ⊥ H

⟨B⟩2 ⊥ ⟨D⟩2
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11. Dual Equilibrium Wave 
Velocity 

The dual equilibrium wave equation for the electric field [9.2] is


	 	 [9.2]


On substituting equation [6.4] in equation [9.2] gives


(1) 	 [11.1]


The velocity  in equation [11.1] represents the dual wave velocity of the electric field in 

the equilibrium , therefore


(2) 	 [11.2]


On substituting equation [6.17] or [6.23] (decaying or growth approach) in equation [10.2] 
gives


(3) 	 [11.3]


For the special case of equilibrium in the quantum realm [8.1]


	 	 [8.1]


Therefore


(4) 	 [11.4]


(5) 	 [11.5]


(6) 	 [11.6]


∂2E
∂t2

+ c2κ 2
0 E = 0

v2 ∂2E
∂r2

+ c2κ 2
0 E = 0

v
vEe(dual)

v2
Ee(dual)

∂2E
∂r2

+ c2κ 2
0 E = 0

v2
Ee(κ

2
p E) + c2κ 2

0 E = 0

ω0 = ωp = ωe ⟶ κ0 = κp = κe

v2
Ee(dual)(κ

2
0 E) + c2κ 2

0 E = 0

v2
Ee(dual) + c2 = 0

vEe(dual) = ± ic
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Therefore


(7) 	 [11.7]


(8) 	 [11.8]


(9) 	 [11.9]


(10) 	 [11.10]


The electric field  vector decays or grows with speed of light with rotor angle of  in 

equilibrium state in parallel interaction. 

The dual equilibrium wave equation for the electric displacement [9.3] is


	 	 [9.3]


On substituting equation [6.10] in equation [9.3] gives


(11) 	 [11.11]


The velocity  in equation [11.11] represents the dual wave velocity of the electric 

displacement field in equilibrium , therefore


(12) 	 [11.12]


On substituting equation [6.23] (harmonic approach) in equation [11.12] gives


(13) 	 [11.13]


vEe(dual) = ic

vEe(dual) = (cos
π
2

+ i sin
π
2 ) c

vEe(dual) = c e
π
2 i

vEe(dual) = c R ( π
2 )

E
π
2

∂2D
∂t2

+ c2κ 2
0 D = 0

v2 ∂2D
∂r2

+ c2κ 2
0 D = 0

v
vDe(dual)

v2
De(dual)

∂2D
∂r2

+ c2κ 2
0 D = 0

v2
De(dual)(−κ2

p D) + c2κ 2
0 D = 0
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For the special case of equilibrium in the quantum realm [8.1]


	 	 [8.1]


Therefore


(14) 	 [11.14]


(15) 	 [11.15]


(16) 	 [11.16]


Therefore


(17) 	 [11.17]


(18)  	 [11.18]


(19) 	 [11.19]


(20) 	 [11.20]


The electric induction field  bivector spins harmonically with rotor angle of  with 

speed of light in the equilibrium state in parallel interaction. It is a spinor and takes a 

rotation of  to go back to its original state.


Since 


(21) 	 [11.21]


The dual equilibrium wave equation for the magnetic field [9.5] is


	 	 [9.5]


ω0 = ωp = ωe ⟶ κ0 = κp = κe

v2
De(−κ 2

0 D) + c2κ 2
0 D = 0

v2
De(dual) − c2 = 0

vDe(dual) = ± c

vDe(dual) = c

vDe(dual) = (cos2π + i sin2π) c

vDe(dual) = c e2πi

vDe(dual) = c R (2π)

D 2π

4π

J = 0

vJe(dual) = 0

∂2H
∂t2

+ c2κ 2
0 H = 0
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On substituting equation [6.7] in equation [9.5] gives


(22) 	 [11.22]


The velocity  in equation [11.22] represents the dual wave velocity of the magnetic field 

in the equilibrium , therefore


(23) 	 [11.23]


On substituting equation [6.20] or [6.26] (decaying or growth approach) in equation [11.23] 
gives


(24) 	 [11.24]


For the special case of equilibrium in the quantum realm [8.1]


	 	 [8.1]


Therefore


(25) 	 [11.25]


(26) 	 [11.26]


(27) 	 [11.27]


Therefore


(28) 	 [11.28]


(29) 	 [11.29]


(30) 	 [11.30]


v2 ∂2H
∂r2

+ c2κ 2
0 H = 0

v
vHe(dual)

v2
He(dual)

∂2H
∂r2

+ c2κ 2
0 H = 0

v2
He(dual)(κ

2
e E) + c2κ 2

0 E = 0

ω0 = ωp = ωe ⟶ κ0 = κp = κe

v2
He(dual)(κ

2
0 E) + c2κ 2

0 E = 0

v2
He(dual) + c2 = 0

vHe(dual) = ± ic

vHe(dual) = ic

vHe(dual) = (cos
π
2

+ i sin
π
2 ) c

vHe(dual) = c e
π
2 i
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(31) 	 [11.31]


The magnetic field  vector decays or grows with speed of light with rotor angle of  in 

equilibrium state in parallel interaction.


The dual equilibrium wave equation for the magnetic induction [9.6] is


	 	 [9.6]


On substituting equation [6.13] in equation [9.6] gives


(32) 	 [11.32]


The velocity  in equation [11.32] represents the dual wave velocity of the magnetic 

induction field in equilibrium , therefore


(33) 	 [11.33]


On substituting equation [6.26] (harmonic approach) in equation [11.33] gives


(34) 	 [11.34]


For the special case of equilibrium in the quantum realm [8.1]


	 	 [8.1]


Therefore


(35) 	 [11.35]


(36) 	 [11.36]


vHe(dual) = c R ( π
2 )

H
π
2

∂2B
∂t2

+ c2κ 2
0 B = 0

v2 ∂2B
∂r2

+ c2κ 2
0 B = 0

v
vBe(dual)

v2
Be(dual)

∂2B
∂r2

+ c2κ 2
0 B = 0

v2
Be(dual)(−κ2

e E) − c2κ 2
0 E = 0

ω0 = ωp = ωe ⟶ κ0 = κp = κe

v2
Be(dual)(−κ 2

0 E) + c2κ 2
0 E = 0

v2
Be(dual) − c2 = 0
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(37) 	 [11.37]


Therefore


(38) 	 [11.38]


(39)  	 [11.39]


(40) 	 [11.40]


(41) 	 [11.41]


The electric induction field  bivector spins harmonically with rotor angle of  with 

speed of light in the equilibrium state in parallel interaction. It is a spinor and takes a 

rotation of  to go back to its original state.


Since 


(42) 	 [11.42]


vBe(dual) = ± c

vBe(dual) = c

vBe(dual) = (cos2π + i sin2π) c

vBe(dual) = c e2πi

vBe(dual) = c R (2π)

B 2π

4π

V = 0

vVe(dual) = 0

Table 11.1

Duality

Electricity Magnetism

Perpendicular Interaction

Equilibrium 
state - Faster 
decay or 
growth

Equilibrium 
state - Faster 
decay or 
growth

Damped Damped

Damped Damped

Parallel Interaction

Equilibrium 
state - Normal 
decay or 
growth

Equilibrium 
state - Normal 
decay or 
growth

∂2B
∂t2

− c2 ∇2B − c2κ 2
0 B = 0

vHe = 2c

vVe = 0 vJe = 0

vEe(dual) = c e
π
2 i

∂2D
∂t2

− c2 ∇2D − c2κ 2
0 D = 0

∂2E
∂t2

+ c2κ 2
0 E = 0

vDe = 0

vEe = 2c∂2E
∂t2

− c2 ∇2E − c2κ 2
0 E = 0

vHe(dual) = c e
π
2 i

∂2V
∂t2

− c2 ∇2V − c2κ 2
0 V = 0

∂2J
∂t2

− c2 ∇2 J − c2κ 2
0 J = 0

vBe = 0

∂2H
∂t2

+ c2κ 2
0 H = 0

∂2H
∂t2

− c2 ∇2H − c2κ 2
0 H = 0
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On the closer inspection of Table 11.1, it can be clearly observed that


i) In the perpendicular interaction  in the equilibrium state, the electric field 

vector and the magnetic field decay or grow rapidly and follow the same pattern.


ii) In the perpendicular interaction  in the equilibrium state, both the 

magnetic induction field bivector and the electric induction field bivector are 
instantly damped and follow the same pattern.


iii) In the parallel interaction  in the equilibrium state, the electric field vector 

decays or grow with rotor angle of  and the electric induction bivector spins (rotor 

angle of ) harmonically.


iv) In the parallel interaction  in the equilibrium state, the magnetic field 

vector decays or grow with rotor angle of  and the magnetic induction bivector 

spins (rotor angle of ) harmonically.  

v) The only waves in equilibrium state are due to parallel interaction. The dual wave 
equations are independent of the spatial component, without assumptions to that 
effect.


Spinor Spinor

Duality

Electricity Magnetism

∂2B
∂t2

+ c2κ 2
0 B = 0

V = 0 J = 0

∂2D
∂t2

+ c2κ 2
0 D = 0vBe(dual) = c e2πi vDe(dual) = c e2πi

E ⊥ H

⟨B⟩2 ⊥ ⟨D⟩2

E ∥ ⟨D⟩2
π
2

2π
⟨B⟩2 ∥ H

π
2

2π
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12. Wave Function 
The total energy  with kinetic energy  and potential energy  is


(1) 	 [12.1]


The energy and momentum of a quantum-mechanical particle due to the wave-particle 
duality is


(2) 	 [12.2]


(3) 	 [12.3]


(4) 	 [12.4]


On substituting equation [12.3] in equation [12.4] gives


(5) 	 [12.5]


(6) 	 [12.6]


Consider a wave function


(7) 	 [12.7]


(8) 	 [12.8]


W T U

W = T + U

W = ℏω

p = ℏκ

T =
1
2

mv2

=
1

2m
(mv)2

=
p2

2m

T =
ℏ2κ2

2m

κ2 =
2m
ℏ2

T

Ψ(r, t) = Aei(κ⋅r−ωt)

∂2Ψ
∂r2

= i2κ2A ei(κ⋅r−ωt)

= − κ2Ψ
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On multiplying the equation [12.1] with equation [12.7] gives


(9) 	 [12.9]


On substituting equation [12.6] in equation [12.8] gives


(10) 	 [12.10]


(11) 	 [12.11]


(12) 	 [12.12]


On substituting equation [12.12] with wave function [12.9] gives


(13) 	 [12.13]


(14) 	 [12.14]


(15) 	 [12.15]


In the equilibrium state, the particle has no potential energy. Therefore the equation [12.9] 
becomes


(16) 	 [12.16]


(17) 	 [12.17]


(18) 	 [12.18]


W Ψ = T Ψ + U Ψ

∂2Ψ
∂r2

= −
2m
ℏ2

T Ψ

∇2Ψ = −
2m
ℏ2

T ψ

T ψ = −
ℏ2

2m
∇2Ψ

W Ψ = −
ℏ2

2m
∇2Ψ + U Ψ

W Ψ = (−
ℏ2

2m
∇2 + U) Ψ

W Ψ = Ĥ Ψ

W Ψ = T Ψ

E Ψ = −
ℏ2

2m
∇2Ψ

∂Ψ
∂t

= − iωA ei(ω⋅r−ωt)

= − iωΨ
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(19) 	 [12.19]


(20) 	 [12.20]


(21) 	 [12.21]


Under external influence, the  equation [12.21] becomes


(22) 	 [12.22]


As we have observed earlier, the only wave equations in equilibrium state/quantum realm 
are due to parallel interaction. The dual wave equations are independent of the spatial 
component, i.e., the time and space variables are naturally separated.


Consider the separation of variables approach


(23) 	 [12.23]


(24) 	 [12.24]


(25) 	 [12.25]


On substituting equations [12.23], [12.24] and [12.25] in equation [12.22] gives


(26) 	 [12.26]


(27) 	 [12.27]


∂Ψ
∂t

= − i
ℏω
ℏ

Ψ

= − i
W
ℏ

Ψ

W Ψ = iℏ
∂Ψ
∂t

iℏ
∂Ψ
∂t

= −
ℏ2

2m
∇2Ψ

iℏ
∂Ψ
∂t

= −
ℏ2

2m
∇2Ψ + U Ψ

Ψ(r, t) = ψ (t)ϕ(r)

∂Ψ
∂t

=
dψ
dt

ϕ

∂2Ψ
∂r2

= ψ
d2ϕ
dt2

iℏ
dψ
dt

ϕ = −
ℏ2

2m
ψ

d2ϕ
dt2

+ Uψϕ

iℏ
1
ψ

dψ
dt

= −
ℏ2

2m
1
ϕ

d2ϕ
dt2

+ U
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Therefore


(28) 	 [12.28]


(29) 	 [12.29]


(30) 	 [12.30]


(31) 	 [12.31]


The only possible wave functions in equilibrium state are decay and growth wave function 
for vectors and spinor wave function for bivectors.


Therefore, the equation [12.31] becomes


(32) 	 [12.32]


(33) 	 [12.33]


iℏ
1
ψ

dψ
dt

= W

1
ψ

dψ
dt

=
1
iℏ

W

1
ψ

dψ
dt

= − i
W
ℏ

ψ = e−i W
ℏ t

ψ = ce±i W
ℏ

π
2 t

ψ = ce±i W
ℏ 2πt
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13. Electric Potential and 
Magnetic Charge 

According to fluid dynamics, the current density of mass transport is 


(1) 	 [13.1]


where .is a mass density 


According to equation [1.35]


	 	 [1.35]


(2) 	 [13.2]


On comparing equations [13.1] and [13.2], it can be concluded that


(3) 	 [13.3]


Therefore


(4) 	 [13.4]


The equation [13.4] is a proper definition — though not of the electric induction  field, 

but of the magnetic charge, given that electric induction bivector  exists and is primary. 

It states that the magnetic charge is the divergence of the bivector , i.e., the notion of 

the magnetic charge captures the divergence aspect of the spinning bivector  field. 

Thus, the magnetic charge particle is a bivector/ trivector element and represents nothing 
but the spinning spacetime structure. It flows analogously to that of the the electric 

induction  field. The negative sign in equation [1.32] means that the flow of the magnetic 

charge is in the opposite direction to the flow of the current area density .


The equation [13.4] can be rewritten mathematically as


(5)  	 [13.5]


Jf luid dynamics = vρm

ρm

J = − v( ∇ ⋅ D)

Jelectro dynamics = − v( ∇ ⋅ D)

Jf luid dynamics ≡ Jelectro dynamics

ρe ≡ ∇ ⋅ D

D
D

D
D

D
J

ρe = ∇ ⋅ D
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The equation [13.5] is known as the Coulomb law.


Therefore, the current area density equation [1.35] becomes


(6) 	 [13.6]


The dual of a magnetic charge density  is an electric potential density .


(7) 	 [13.7]


The dual of an electric current area density  is a magnetic voltage area density .


(8) 	 [1.48]


Therefore


(9) 	 [13.9]


The equation [13.9] is a proper definition — though not of the magnetic induction  field, 

but of the electric potential, given that the magnetic induction bivector  exists and is 

primary. It states that the electric potential is the divergence of the bivector , i.e., the 

notion of the electric potential captures the divergence aspect of the spinning bivector  

field. Thus, the electric potential particle is a bivector/ trivector element and represents 
nothing but the spinning spacetime structure. It flows analogously to that of the electric 

induction  field. The flow of the electric potential is in the same direction to the flow of 

voltage area density .


The equation [13.9] can be rewritten mathematically as


(10) 	 [13.10]


The equation [13.2] can be seen as the Dual Coulomb law.


J = − vρe

ρe ρp

ρe ( As
m3 ) ⟵ dual ⟶ ρp ( Vs

m3 )
J V

J = − vρe ( A
m2 ) ⟵ dual ⟶ V = vρp ( V

m2 )

ρp ≡ ∇ ⋅ B

B
B

B
B

B
V

ρp = ∇ ⋅ B
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In the parallel interaction


	 	 [2.15]


	 	 [2.17]


This does not mean that there are no magnetic charge  or of electric potential  in 

parallel dual interaction. It means that there is a constant flow of magnetic charges and 
electric potentials in parallel dual interaction.


∇ ⋅ D = 0

∇ ⋅ B = 0

e p

Table 13.1

Duality

Electricity Magnetism

Perpendicular Interaction - Conductor

Rapid decay Damped wave

Slow growth Damped wave

Damped wave

Damped wave

Perpendicular Interaction - Non Conductor

Damped wave Rapid decay

Damped wave Slow growth

Damped wave

Damped wave

vρenc = 0

vHc(growth) = 0

1
c2 ( ∂2D

∂t2
+ ωe

∂D
∂t ) − ∇2D = 0

1
c2 ( ∂2J

∂t2
+ ωe

∂J
∂t ) − ∇2 J = 0

vDnc = 0

vVc = 0

vHc(decay) = 01
c2 ( ∂2H

∂t2
− ωp

∂H
∂t ) − ∇2H = 0

vρpc = 0

1
c2 ( ∂2V

∂t2
+ ωe

∂V
∂t ) − ∇2V = 0

vDc = c e
π
6 i1

c2 ( ∂2B
∂t2

− ωp
∂B
∂t ) − ∇2B = 0

vEnc(decay) = 0

1
c2 ( ∂2B

∂t2
+ ωe

∂B
∂t ) − ∇2B = 0

1
c2 ( ∂2H

∂t2
+ ωe

∂H
∂t ) − ∇2H = 0

1
c2 ( ∂2E

∂t2
+ ωe

∂E
∂t ) − ∇2E = 0

1
c2 ( ∂2J

∂t2
− ωp

∂J
∂t ) − ∇2J = 0

ρp

1
c2 ( ∂2E

∂t2
− ωp

∂E
∂t ) − ∇2E = 0

1
c2 ( ∂2D

∂t2
− ωp

∂D
∂t ) − ∇2D = 0

1
c2 ( ∂2H

∂t2
− ωp

∂H
∂t ) − ∇2H = 0

vρpnc = c e
π
6 i

vBnc = c e
π
6 i

vEnc(growth) = 0

1
c2 ( ∂2V

∂t2
− ωp

∂V
∂t ) − ∇2V = 0

vVnc = c e
π
6 i

1
c2 ( ∂2E

∂t2
− ωp

∂E
∂t ) − ∇2E = 0

vEc(decay) = 1.618c

vHnc(growth) = 1.618c

1
c2 ( ∂2H

∂t2
+ ωe

∂H
∂t ) − ∇2H = 0

ρe

vBc = 0

1
c2 ( ∂2E

∂t2
+ ωe

∂E
∂t ) − ∇2E = 0

ρp

vJc = c e
π
6 i

vHnc(decay) = 1.618c

vρec = c e
π
6 i

vJnc = 0

vEc(growth) = 0.618c

ρe
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Parallel Interaction - Conductor

Normal decay 
and growth

Maxima or 
Minima

Maxima or 
Minima Spinor

Parallel Interaction - Non Conductor

Maxima or 
Minima

Normal decay 
and growth

Spinor Maxima or 
Minima

Duality

Electricity Magnetism

vHnc(dual) = c e
π
2 ivEnc(dual) = 0

∂2H
∂t2

= 0 vHc(dual) = 0

vρenc(dual) = 0

J = 0

∂2D
∂t2

= 0

∂2E
∂t2

= 0

ρe

ρe vρec(dual) = c e2πi

vBc(dual) = 0

vρpc(dual) = 0

vDc(dual) = c e2πi

vEc(dual) = c e
π
2 i

ρp

∂2B
∂t2

= 0

∂2H
∂t2

+ ω2
e H = 0

∂2E
∂t2

+ ω2
p E = 0

∂2B
∂t2

+ ω2
e B = 0 vBnc(dual) = c e2πi vDnc(dual) = 0

V = 0

ρp vρpnc(dual) = c e2πi

J = 0

∂2D
∂t2

+ ω2
p D = 0

V = 0

Table 13.2

Duality

Electricity Magnetism

Perpendicular Interaction

Equilibrium 
state - Faster 
decay or 
growth

Equilibrium 
state - Faster 
decay or 
growth

Damped Damped

Damped Damped

∂2E
∂t2

− c2 ∇2E − c2κ 2
0 E = 0

∂2J
∂t2

− c2 ∇2 J − c2κ 2
0 J = 0

vEe = 2c

ρp

∂2H
∂t2

− c2 ∇2H − c2κ 2
0 H = 0

vDe = 0∂2B
∂t2

− c2 ∇2B − c2κ 2
0 B = 0

ρe

vJe = 0∂2V
∂t2

− c2 ∇2V − c2κ 2
0 V = 0

∂2D
∂t2

− c2 ∇2D − c2κ 2
0 D = 0

vVe = 0

vρpe = 0 vρee = 0

vBe = 0

vHe = 2c
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Parallel Interaction

Equilibrium 
state - Normal 
decay or 
growth

Equilibrium 
state - Normal 
decay or 
growth

Spinor Spinor

Duality

Electricity Magnetism

∂2H
∂t2

+ c2κ 2
0 H = 0

vBe(dual) = c e2πi vDe(dual) = c e2πi

V = 0

vρee(dual) = c e2πivρpe(dual) = c e2πi

vEe(dual) = c e
π
2 i∂2E

∂t2
+ c2κ 2

0 E = 0

∂2B
∂t2

+ c2κ 2
0 B = 0

J = 0

ρp

vHe(dual) = c e
π
2 i

∂2D
∂t2

+ c2κ 2
0 D = 0

ρe
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14. Equations of Transformation 
Unipolar induction by Faraday [1.13] is expressed by 


	 	 [1.13]


The equation of convection [1.14], formulated by rules of duality from the equation of 
unipolar induction, is


	 	 [1.14]


The equations [1.13] and [1.14] together are called equations of transformation.


1) 	 [14.1]


On substituting equation [1.13] into equation [14.1] gives


2) 	 [14.2]


3) 	 [14.3]


4) 	 [14.4]


According to the Vector algebra


5) 	 [14.5]


Therefore


6) 	 [15.6]


Since  always vanishes, therefore


7) 	 [15.7]


8) 	 [15.8]


E = v × B

H = − v × D

H = − ϵ0(v × E)

H′ = − ϵ0(v × E)

H′ = − ϵ0(v × v × B)

H′ = − ϵ0μ0(v × v × H)

A × (B × C) = (A ⋅ C)B − (A ⋅ B)C

H′ = − ϵ0μ0 ((v ⋅ H)v − (v ⋅ v)H)

(v ⋅ H)v

H′ = − ϵ0μ0 (−v2H)

H′ =
v2

c2
H
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Alternatively


9) 	 [14.9]


On substituting equation [1.14] into equation {14.9] gives


10) 	 [14.10]


11) 	 [14.11]


According to the Vector algebra


	 	 [14.5]


Therefore


12) 	 [14.12]


Since  always vanishes, therefore


13) 	 [14.13]


14) 	 [14.14]


The equation [14.8] and [14.14} imply that the equations of transformation convert into 

one another at  and there is a constant flow of the electric and magnetic fields ad 

infinitum as shown in Figure 14.1.


E = μ0v × H

E′ = − μ0(v × v × D)

E′ = − ϵ0μ0(v × v × E)

A × (B × C) = (A ⋅ C)B − (A ⋅ B)C

E′ = − ϵ0μ0 ((v ⋅ E)v − (v ⋅ v)E)

(v ⋅ E)v

E′ = − ϵ0μ0 (−v2E)

E′ =
v2

c2
E

v = c
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B = μ0 H D = ϵ0 E
Infinite Loop

Figure 14.1
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For  there will be infinite cause and effect feed back and feed forward non-linear 

cycles.


Let’s consider starting electric and magnetic fields as  and  respectively.


15) 	 [14.15]


16) 	 [14.16]


For 1st Cycle


17) 	 [14.17]


On substituting equation [14.17] into equation [1.14] gives


	 	 [1.14]


18) 	 [14.18]


19) 	 [14.19]


On substituting equation [14.19] into equation {14.18] gives


20) 	 [14.20]


21) 	 [14.21]


On substituting equation [14.21] into equation {14.20] gives


22) 	 [14.22]


Therefore


23) 	 [14.23]


24) 	 [14.24]


v ≠ c

E0 H0

E = E0

H = H0

D1 = ϵ0E0

H = − v × D

H1 = − ϵ0(v × E0)

E0 = v × B0

H1 = − ϵ0(v × v × B0)

B0 = μ0H0

H1 = − ϵ0μ0(v × v × H0)

H1 =
v2

c2
H0

H = H0 + H1
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25) 	 [14.25]


For 2nd Cycle


26) 	 [14.26]


On substituting equation [14.23] into equation [14.26] gives


27) 	 [14.27]


28) 	 [14.28]


29) 	 [14.29]


For Infinite cycles:


30) 	 [14.30]


31) 	 [14.31]


32) 	 [14.32]


33) 	 [14.33]


Similarly


34) 	 [14.34]


H = H0 +
v2

c2
H0

H2 =
v2

c2
H1

H2 =
v4

c4
H0

H = H0 + H1 + H2

H = H0 +
v2

c2
H0 +

v4

c4
H0

H = H0 + H1 + H2 + H3 . . .

H = H0 +
v2

c2
H0 +

v4

c4
H0 +

v6

c6
H0 . . .

H = (1 +
v2

c2
+

v4

c4
+

v6

c6
. . . ) H0

H = 1 +
v2

c2
+ ( v2

c2 )
2

+ ( v2

c2 )
3

. . . H0

E = 1 +
v2

c2
+ ( v2

c2 )
2

+ ( v2

c2 )
3

. . . E0
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For  in case of general relativity in the higher dimensions, there will be 

an ever increasing electric and magnetic field, which generates energy for example in the 
case of a decaying electric field in the conductor [6.40] and a magnetic field in the non 
conductor [6.106]. This is precisely what happens in the RA device during the trailing 
edge of the pulse in the input coil.	 


	 	 [6.40]


	 	 [6.106]


For in case of special relativity the equations [14.33] and [14.34] 

become a converging series.


Therefore


35) 	 [14.35]


Similarly


36) 	 [14.36]


Therefore 


37) 	 [14.37]


38) 	 [14.38]


v > c ⟶
v2

c2
> 1

vEc(decay) = 1.618c

vHnc(decay) = 1.618c

v < c ⟶
v2

c2
< 1

H =
1

1 − v2

c2

H0

E =
1

1 − v2

c2

E0

H0

H
= 1 −

v2

c2

E0

E
= 1 −

v2

c2
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The length contraction in special relativity is given by 


39) 	 [14.39]


40) 	 [14.40]


On comparing equations [14.37], [14.38] and [14.40] gives


41) 	 [14.41]


Therefore


42) 	 [14.42]


43) 	 [14.43]


The equations [14.42] and [14.43] mean that the electric and the magnetic field 

determine the length measurement.


This has profound implications. If the observer is exposed to the same fields, in which the 
object being observed is situated, then then observer will not be able to perceive the 
influence of the fields on the object. For example, if we would sit inside a rocket, the 
rocket will become smaller with faster velocity, and we would notice nothing since we 
also would contract to the same extent.


For a wave with wavelength  and frequency  we have


44) 	 [14.44]


L = 1 −
v2

c2
L0

( L
L0 )

2

= 1 −
v2

c2

H0

H
=

E0

E
= ( L

L0 )
2

= 1 −
v2

c2

L ∝
1

E
,

1

H

L0 ∝
1
E0

,
1
H0

λ f

c = λ f
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From equation [14.42] it follows that 


45) 	 [14.45]


46) 	 [14.46]


It is evident from equation [14.45] that every measurement of a velocity and the speed of 
light which are measured in meters per second, the field determines the length 
measurement and hence speed of light. This means it is not possible to measure the 
speed of light correctly as the metre has been internationally defined as the length of the 
path travelled by light in vacuum for during a time interval of 1/299792458 of a second. If 
speed of light is changed, then this applies to the measurement path in the same way. 
The variable is measured by itself, and as a result the speed of light is always measured 
as a constant value.


c ∝ λ ∝ L ∝
1

E
,

1

H

c2 ∝ λ2 ∝ L2 ∝
1
E

,
1
H
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15. Speed of Light 
In the previous chapters, we have seen that the electric and magnetic field can have 
velocities other than the speed of light with rotations.


This can also be easily visualised geometrically with the Clifford algebra. In the Vector 
algebra, the velocity is deemed as a vector.


The geometric product of two vectors is given by equation [2.7]


	 	 [2.7]


In both perpendicular and parallel interaction, the velocity of the electric field  and the 

velocity of the magnetic field  are parallel i.e. in the same direction. The wedge product 

of parallel vectors is zero, therefore


1) 	 [15.1]


The term  is a scalar value which is Lorentz invariant. This represents the scalar 

speed of light  which is observed everywhere.


In higher dimensions, the velocity is a bivector. The geometric product of two bivectors is 
given by equation [2.20]


	 	 [2.20]


Therefore, the velocity clif is


2) 	 [15.2]


The wedge product of parallel bivectors is zero, therefore 


3) 	 [15.3]


In reality, the first term  is a scalar value which is Lorentz invariant and 

represents the scalar speed of light  which is observed everywhere although this is 

attributed to the  in equation [15.1] in the Vector algebra which only distorts our 

AB = ⟨A ⋅ B⟩0 + ⟨A ∧ B⟩2

vE

vH

v = ⟨vE ⋅ vH⟩0

⟨vE ⋅ vH⟩0

c

⟨A⟩2⟨B⟩2 = ⟨A ⋅ ⋅ B⟩0 + ⟨A ⋅ B⟩2 + ⟨A ∧ B⟩4

v = ⟨vE ⋅ ⋅ vB⟩0 + ⟨vE ⋅ vB⟩2 + ⟨vE ∧ vB⟩4

v = ⟨vE ⋅ ⋅ vB⟩0 + ⟨vE ⋅ vB⟩2

⟨vE ⋅ ⋅ vB⟩0

c

⟨vE ⋅ vH⟩0
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understanding. It does not describe the workings of the reality which remain unchanged 
irrespective of our view. 


The second term  is a bivector and is the reason for the velocities other than 

the invariant scalar c.


A velocity bivector always has a rotation. The rotation doesn’t change, only the velocity or 
speed with which rotation happens change. This means the angular frequency of the 
current area density or voltage area density remains constant for the medium but the 
rotational velocity changes. The velocity of the outward spiralling current area density 
increases whereas the velocity of the inward spiralling voltage area density decreases. 
When the velocity of the outward spiralling current area density increases, more energy is 
consumed which produces heat, whereas when the velocity of the inward spiralling 
voltage area density decreases, more energy is released which cools. This is what some 
have called the cold electricity.  

⟨vE ⋅ vH⟩2
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16. Continuity Equations 
In the perpendicular interaction, on applying the divergence to the Ampère-Maxwell law 
[1.9] gives


	 	 [1.9]


1) 	 [16.1]


2) 	 [16.2]


3) 	 [16.3}


Applying the time derivative of the Coulomb law [1.1]gives


	 	 [1.1]


(4) 	 [16.4]


On substituting equation [16.4] in equation [16.3] gives


(5) 	 [16.5]


(6) 	 [16.6]


(7) 	 [16.7]


∇ × H −
∂ D
∂ t

= J

∇ × B −
1
c2

∂ E
∂ t

= μ0J

∇ ⋅ ∇ × B −
1
c2

∂
∂ t

( ∇ ⋅ E) = μ0( ∇ ⋅ J)

∂
∂ t

( ∇ ⋅ E) = − c2μ0( ∇ ⋅ J)

∇ ⋅ E =
ρe

ϵ0

∂
∂t

( ∇ ⋅ E) =
1
ϵ0

∂ρe

∂t

1
ϵ0

∂ρe

∂t
= − c2μ0( ∇ ⋅ J)

∂ρe

∂t
= − c2ϵ0μ0( ∇ ⋅ J)

∂ρe

∂t
+ ∇ ⋅ J = 0

anil@anilgoel.com Proprietary and Confidential

mailto:anil@anilgoel.com


RA-DIANT Page  of 124 160

The equation [15.7] is known as the continuity equation. The correct terminology would 

be MAGNETIC CONTINUITY EQUATION.


Applying the divergence to the dual Ampère-Maxwell law [1.50] gives


	 	 [1.50]


8) 	 [16.8]


9) 	 [16.9]


10) 	 [16.10]


Applying the time derivative of the dual Coulomb law [1.48] gives


	 	 [1.48]


11) 	 [16.11]


On substituting equation [16.11] in equation [16.10] gives


12) 	 [16.12]


13) 	 [16.13]


14) 	 [16.14]


The equation [16.14] can be seen as the DUAL POTENTIAL CONTINUITY EQUATION.


∇ × E +
∂B
∂ t

= V

∇ × D +
1
c2

∂ H
∂ t

= ϵ0V

∇ ⋅ ∇ × D +
1
c2

∂
∂ t

( ∇ ⋅ H) = ϵ0( ∇ ⋅ V)

∂
∂ t

( ∇ ⋅ H) = c2ϵ0( ∇ ⋅ V)

∇ ⋅ H =
ρp

μ0

∂
∂t

( ∇ ⋅ H) =
1
μ0

∂ρp

∂t

1
μ0

∂ρp

∂t
= c2ϵ0( ∇ ⋅ V)

∂ρp

∂t
= c2ϵ0μ0( ∇ ⋅ V)

∂ρp

∂t
− ∇ ⋅ V = 0

anil@anilgoel.com Proprietary and Confidential

mailto:anil@anilgoel.com


RA-DIANT Page  of 125 160

In the parallel dual interaction, similarly


15) 	 [15.15]


16) 	 [15.16]


The equations [15.15] and [15.16] mean that there is a constant flow of magnetic charges 
and electric potentials in parallel dual interaction.


∂ρe

∂t
= 0

∂ρp

∂t
= 0

Table 15.1

Duality

Electricity Magnetism

Perpendicular Interaction

Potential 
Continuity

Magnetic 
Continuity

Parallel Interaction

Potential 
Continuity

Magnetic 
Continuity

∂ρp

∂t
− ∇ ⋅ V = 0

∂ρp

∂t
= 0

∂ρe

∂t
= 0

∂ρe

∂t
+ ∇ ⋅ J = 0
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17. Electric and Magnetic Force 
In the perpendicular interaction


1) 	 [17.1]


The equation [16.1] is known as the Lorentz force. This is an ELECTRIC FORCE. 

It is evident from equation [16.1] (the second term on the RHS) that the Faraday unipolar 
induction is inherent in the Lorentz force.


The dual of an electric force would be a MAGNETIC FORCE.


2) 	 [17.2]


The equation [17.12] can be seen as the DUAL LORENTZ FORCE.


It is evident from equation [16.2] (the second term on the RHS) that the equation of 
convection is inherent in the magnetic force.


In the parallel dual interaction, the second terms in equations [17.1] and first term in 
equation [17.3] are exchanged.


Therefore


3) 	 [17.3]


4) 	 [17.4]


F⊥ = q(E + v × B)

G⊥ = − ϕp(H + v × D)

F∥ = qE − ϕpH

G∥ = qv × B − ϕpv × D

Table 16.1

Duality

Electricity Magnetism

Perpendicular Interaction

Potential 
Continuity

Magnetic 
Continuity

∂ρe

∂t
+ ∇ ⋅ J = 0

∂ρp

∂t
− ∇ ⋅ V = 0
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Electric Force 
(Lorentz Force)

Magnetic Force 
(Dual Lorentz 
Force)

Parallel Interaction

Potential 
Continuity

Magnetic 
Continuity

Electric Force Magnetic Force

Duality

Electricity Magnetism

AVs
m

∂ρp

∂t
= 0

AVs
m

F∥ = qE − ϕpH

∂ρe

∂t
= 0

F⊥ = q(E + v × B)
AVs
m

G∥ = q v × B − ϕpv × D

G⊥ = − ϕp(H + v × D)

AVs
m
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18. Power Area Density & Energy 
Volume Density 

In the perpendicular interaction, the Poynting vector is


(1) 	 [18.1]


In the Clifford algebra, the Poynting vector would be the geometric product between  

and .


2) 	 [18.2]


The geometric product of two vectors is given by equation [2.7]


	 	 [2.7]


Therefore


3) 	 [18.3]


The dot product of perpendicular vectors is zero, therefore


4) 	 [18.4]


On substituting equation [18.4] in equation[18.3] gives 


5) 	 [18.5]


Like the Beltrami condition, the Poynting vector uses the original interpretation of the 
direct representation of a curl of a field from the Clifford algebra and imports it into the 
Vector algebra, i.e., applies it to the indirect representation of a curl of a field.


6) 	 [18.6]


The cross product is defined 


7) 	 [18.7]


S⊥ = E × H

E
H

S⊥ = EH

AB = ⟨A ⋅ B⟩0 + ⟨A ∧ B⟩2

S⊥ = ⟨E ⋅ H⟩0 + ⟨E ∧ H⟩2

⟨E ⋅ H⟩0 = 0

S⊥ = ⟨E ∧ H⟩2

S⊥ = ⟨E ∧ H⟩2 ⟶ S⊥ = ⟨E × H⟩1

A × B = AB sinθ
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For perpendicular vector, the cross product becomes 


8) 	 [18.8]


Therefore 


9) 	 [18.9]


The dual of the the Poynting vector would be a DUAL POYNTING VECTOR.


10) 	 [18.10]


The geometric product of two bivectors is given by equation [2.20]


	 	 [2.20]


Therefore


11) 	 [18.11]


The double dot product of perpendicular bivectors is zero and the quadvector vanishes in 

, therefore 


12) 	 [18.12]


13) 	 [18.13]


On substituting equations [18.12] and [18.13] in equation[18.11] gives 


14) 	 [18.14]


Like the Poynting vector, we must import the dual Poynting vector into the Vector algebra. 
We apply the direct representation of the dot product to the indirect representation of a 
curl of a field.


15) 	 [18.15]


A × B = AB sin
π
2

= AB

S⊥ = E × H
= EH

S⊥ = EH ⟵ dual ⟶ S⊥(dual) = DB

⟨A⟩2⟨B⟩2 = ⟨A ⋅ ⋅ B⟩0 + ⟨A ⋅ B⟩2 + ⟨A ∧ B⟩4

S⊥(dual) = ⟨D ⋅ ⋅ B⟩0 + ⟨D ⋅ B⟩2 + ⟨D ∧ B⟩4

D = 3

⟨D ⋅ ⋅ B⟩0 = 0

⟨D ∧ B⟩4 = 0

S⊥(dual) = ⟨D ⋅ B⟩2

S⊥(dual) = ⟨D ⋅ B⟩2 ⟶ S⊥(dual) = ⟨D × B⟩1
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We know that  is a bivector, thus its dimension would be the same as that of 

. This is achieved by multiplying  by . 


Therefore


16) 	 [18.16]


In the parallel dual interaction , the Poynting vector is


17) 	 [18.17]


The geometric product of a vector and a bivector is given by equation [2.12]


	 	 [2.12]


Therefore


18) 	 [18.18]


The wedge product of parallel vector and bivector is zero, therefore 


19) 	 [18.19]


On substituting equation [18.19] in equation[18.18] gives 


20) 	 [18.20]


Again, we must import the original interpretation of the direct representation of the 
Poynting vector of a parallel interaction from the Clifford algebra and apply it into the 
Vector algebra.


21) 	 [18.21]


The dot product of two vectors is given by equation [2.10]


	 	 [2.10]


S⊥(dual)

S⊥ ( AV
m2 ) S⊥(dual) c2

S⊥(dual) = c2D × B

E ∥ ⟨D⟩2

S∥ = ED

A⟨B⟩2 = ⟨A ⋅ B⟩1 + ⟨A ∧ B⟩3

S∥ = ⟨E ⋅ D⟩1 + ⟨E ∧ D⟩3

⟨E ∧ D⟩3 = 0

S∥ = ⟨E ⋅ D⟩1

S∥ = ⟨E ⋅ D⟩1 ⟶ S∥ = ⟨E ⋅ D⟩0

⟨A ⋅ B⟩0 =
AB + BA

2
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Therefore


22) 	 [18.22]


23) 	 [18.23]


24) 	 [18.24]


Therefore


25) 	 [18.25]


The dot product of a vector and a bivector is given by equation [2.15]


	 	 [2.15]


Therefore


26) 	 [18.26]


27) 	 [18.27]


The discrepancy in equations [18.24] and [18.27] is due to the fact that in reality  is a 

trivector but we assume it as a bivector . This means that we must also count the 

time dimension in the unit of the object while ascertaining the grade of the object even in 
three dimensions.


The dot product of a vector and a trivector is given by equation [2.18]


	 	 [2.18]


⟨E ⋅ D⟩0 =
ED + DE

2

⟨E ⋅ D⟩0 =
E(ϵ0E) + (ϵ0E)E

2

⟨E ⋅ D⟩0 = ϵ0E2

S∥ = ϵ0E2

⟨A ⋅ ⟨B⟩2⟩1 =
AB − BA

2

⟨E ⋅ D⟩1 =
E(ϵ0E) − (ϵ0E)E

2

⟨E ⋅ D⟩1 = 0

⟨D⟩3

⟨D⟩2

⟨A ⋅ ⟨B⟩r⟩(r−1) =
AB + (−1)r−1BA

2
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Therefore


28) 	 [18.28]


29)  	 [18.29]


Therefore equation [18.21] becomes 


30) 	 [18.30]


Similarly


31)  	 [18.31]


32) 	 [18.32]


33) 	 [18.33]


The Vector algebra is grade blind and defined the energy density bivector from 

perpendicular interaction as the power area density vector based on the dimension 

and the energy volume density bivector from parallel interaction as the energy volume 

density scalar based on the dimension .


34)  	 [18.34]


35) 	 [18.35]


36) 	 [18.36]


37) 	 [18.37]


As already pointed out earlier, the parallel interaction is a transverse wave and not a 
longitudinal wave. The parallel interaction is also not a scalar wave as the energy density 

⟨E ⋅ D⟩2 =
ED + DE

2

⟨E ⋅ D⟩2 = ϵ0E2

S∥ = ⟨E ⋅ D⟩2 ⟶ S∥ = ⟨E ⋅ D⟩0

S∥ = ⟨H ⋅ B⟩2 ⟶ S∥ = ⟨H ⋅ B⟩0

⟨H ⋅ B⟩0 = μ0H2

S∥(dual) = μ0H2

AV
m2

AVs
m3

⟨S⟩2 = ⟨S⊥⟩2 + ⟨S⊥(dual)⟩2 ⟶ ⟨P⟩1 = ⟨S∥⟩1 + ⟨S∥(dual)⟩1

⟨P⟩1 = EH + c2DB

⟨S⟩1 = ⟨S∥⟩2 + ⟨S∥(dual)⟩2 ⟶ ⟨W⟩0 = ⟨S∥⟩0 + ⟨S∥(dual)⟩0

⟨W⟩0 = ED + HB
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is not a scalar quantity. The correct terminology is the Beltrami wave as detailed 
perviously.


In higher dimension, the  and  are trivectors.


The geometric product of two trivectors is given by equation [2.24]


	 	 [2.24]


Table 18.1

Duality

Electricity Magnetism

Perpendicular Interaction

Potential 
Continuity

Magnetic 
Continuity

Electric Force 
(Lorentz Force)

Magnetic Force 
(Dual Lorentz 
Force)

Power Area 
Density

Dual Power 
Area Density

Parallel Interaction

Potential 
Continuity

Magnetic 
Continuity

Electric Force Magnetic Force

Energy Volume 
Density

Dual Energy 
Volume Density

S∥(dual) = μ0H2

S⊥(dual) = c2DB

F⊥ = q(E + v × B)

AV
m2

∂ρe

∂t
= 0

∂ρe

∂t
+ ∇ ⋅ J = 0

AVs
m

∂ρp

∂t
= 0

AVs
m3

AV
m2

S⊥ = EH

AVs
m3

AVs
m3

AVs
m

AVs
m3

S∥ = ED

S⊥(dual) = c2D × B

G∥ = q v × B − ϕpv × D

S∥(dual) = HB

AV
m2

AV
m2

∂ρp

∂t
− ∇ ⋅ V = 0

S⊥ = E × H

AVs
m

G⊥ = − ϕp(H + v × D)

F∥ = qE − ϕpH AVs
m

S∥ = ϵ0E2

D B

⟨A⟩3⟨B⟩3 = ⟨A ⋅ ⋅ ⋅ B⟩0 + ⟨A ⋅ ⋅ B⟩2 + ⟨A ⋅ B⟩4 + ⟨A ∧ B⟩6
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Therefore


38) 	 [18.38]


The triple dot product of perpendicular trivectors is zero, the quadvector is a pseudo 

scalar and the sextvector vanishes in , therefore 


39) 	 [18.39]


40) 	 [18.40]


On substituting equations [18.39] and [18.40] in equation[18.38] gives 


41) 	 [18.41]


It is evident from equation [18.38] (the second term on the RHS) that there are additional 
higher grade power terms inherent in the dual power.


The geometric product of a vector and a trivector is given by equation [2.17]


	 	 [2.17]


Therefore


42) 	 [1842]


The wedge product of a parallel vector and a trivector is zero, therefore 


43) 	 [18.43]


On substituting equation [18.43] in equation [18.42] gives 


44) 	 [18.44]


The dot product of a vector and a trivector is given by equation [2.18]


	 	 [2.18]


S⊥(dual) = ⟨D ⋅ ⋅ ⋅ B⟩0 + ⟨D ⋅ ⋅ B⟩2 + ⟨D ⋅ B⟩4 + ⟨D ∧ B⟩6

D = 4

⟨D ⋅ ⋅ ⋅ B⟩0 = 0

⟨D ∧ B⟩6 = 0

S⊥(dual) = ⟨D ⋅ ⋅ B⟩2 + ⟨D ⋅ B⟩4

A⟨B⟩r = ⟨A ⋅ ⟨B⟩r⟩(r−1) + ⟨A ∧ ⟨B⟩r⟩(r+1)

S∥ = ⟨E ⋅ D⟩2 + ⟨E ∧ D⟩4

⟨E ∧ D⟩4 = 0

S∥ = ⟨E ⋅ D⟩2

⟨A ⋅ ⟨B⟩r⟩(r−1) =
AB + (−1)r−1BA

2

anil@anilgoel.com Proprietary and Confidential

mailto:anil@anilgoel.com


RA-DIANT Page  of 135 160

Therefore


45) 	 [18.45]


46) 	 [18.46]


47) 	 [18.47]


Similarly


48) 	 [18.48]


49) 	 [18.49]


50) 	 [18.50]


Therefore


51) 	 [18.51]


52) 	 [18.52]


In , both power area density and energy volume density are bivectors and in 

addition there is an additional pseudo scalar quadvector power term. 


We know that the equations of transformation, i.e., the unipolar induction by Faraday and 
the equation of convection, are valid at the same time.


	 	 [1.13]


	 	 [1.14]


This means that the velocity  is perpendicular to  and  and  and at the 

same time. This implies that there must exist a 4th space dimension even though we 
cannot visualise it. This is exactly the same situation with the time dimension in 

⟨E ⋅ D⟩2 =
ED + DE

2

⟨E ⋅ D⟩2 = ϵ0E2

S∥ = ϵ0E2

S∥(dual) = ⟨H ⋅ B⟩2

⟨H ⋅ B⟩2 = μ0H2

S∥(dual) = μ0H2

P = ⟨EH⟩2 + c2⟨DB⟩2 + c2⟨DB⟩4

W = ⟨ED⟩2 + ⟨HB⟩2

D = 4

E = v × ⟨B⟩2 ⟶ v ⊥ E ⊥ ⟨B⟩2

H = − v × ⟨D⟩2 ⟶ v ⊥ H ⊥ ⟨D⟩2

v E ⟨B⟩2 H ⟨D⟩2
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Minkowski spacetime which is perpendicular to three space dimensions which has been 
widely accepted even though we cannot visualise it. 
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V 
❬B❭2

4th Space Dimension

H 

V 
❬D❭2

4th Space Dimension

H 

V 

4th Space Dimension

Fragmented Equations of Transformation

Figure 18.1

 Lane Architecture

E 

H 

❬B❭2

❬D
❭2

V 

4th Space Dimension

Unified Equations of Transformation

Figure 18.2
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The real power clif is


53) 	 [18.53]


The real energy clif is


54) 	 [18.54]


The quadvector and sextvector power terms are always present in reality irrespective of 
our view and our belief. This is the reason that we are unable to explain certain 
phenomena. 


It is necessary to acknowledge the existence of the 4th space dimension and to move to 

 spacetime in order to better understand reality. The  spacetime is called the 

“conformal space” or “conformal geometry”. The basic geometric elements of this space 

are spheres and circles: a point is regarded as a sphere of radius , a plane as a sphere of 

radius  passing through , and a line as a circle of radius  passing through . This 

means that the conformal geometry is a geometry of curved spacetime and hence 
general relativity.


Since the last term of equation [18.53] is a sextvector, even the  spacetime is not 

sufficient and it is necessary to work with  spacetime to get closer to the true nature of 

reality.


P = ⟨EH⟩2 + c2⟨DB⟩2 + c2⟨DB⟩4 + c2⟨DB⟩6

W = ⟨ED⟩2 + ⟨HB⟩2

5D 5D

0

∞ ∞ ∞ ∞

5D

7D
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19. Unaccounted Power Volume 
Density 

The Poynting theorem is 


(1) 	 [19.1]


The power area density [18.35] is


	 	 [18.35]


2) 	 [19.2]


3) 	 [19.3]


According to Vector algebra


4) 	 [19.4]


Therefore


5) 	 [19.5]


On substituting the Ampère-Maxwell law [1.9] and [1.9a], and the dual Ampère-Maxwell 
law [1.50]  and [1.50a] into equation [19.5] gives


	 	 [1.9]


	 	 [1.9a]


	 	 [1.50]


	 	 {1.50a]


∇ ⋅ P = −
∂W
∂t

− J ⋅ E

⟨P⟩1 = EH + c2DB

P = E × H + c2(D × B)

∇ ⋅ P = ∇ ⋅ (E × H) + c2∇ ⋅ (D × B)

∇ ⋅ (A × B) = ( ∇ × A) ⋅ B − ( ∇ × B) ⋅ A

∇ ⋅ P = ( ∇ × E) ⋅ H − ( ∇ × H) ⋅ E + c2 (( ∇ × D) ⋅ B − ( ∇ × B) ⋅ D))

∇ × H −
∂ D
∂ t

= J

∇ × B −
1
c2

∂ E
∂ t

= μ0J

∇ × E +
∂B
∂ t

= V

∇ × D +
1
c2

∂H
∂ t

= ϵ0V
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(6) 	 [19.6]


(7) 	 [19.7]


(8) 	 [19.8]


(9) 	 [19.9]


(10) 	 [19.10]


(11) 	 [19.11]


(12) 	 [19.12]


The energy volume density [18.37] is


	 	 [18.37]


(13) 	 [19.13]


∇ ⋅ P = (−
∂B
∂ t

+ V) ⋅ H − ( ∂ D
∂ t

+ J) ⋅ E

+c2 ((−
1
c2

∂H
∂ t

+ ϵ0V) ⋅ B − ( 1
c2

∂ E
∂ t

+ μ0J) ⋅ D)

∇ ⋅ P = −
∂B
∂t

⋅ H + V ⋅ H −
∂D
∂t

⋅ E − J ⋅ E −
∂H
∂t

⋅ B + ϵ0c2V ⋅ B

−
∂E
∂t

⋅ D − μ0c2J ⋅ D

∇ ⋅ P = −
∂E
∂t

⋅ D −
∂D
∂t

⋅ E −
∂H
∂t

⋅ B −
∂B
∂t

⋅ H − J ⋅ E − μ0c2J ⋅ D

+V ⋅ H + ϵ0c2V ⋅ B

∇ ⋅ P = − ( ∂E
∂t

⋅ D +
∂D
∂t

⋅ E +
∂H
∂t

⋅ B +
∂B
∂t

⋅ H) − J ⋅ (E + μ0c2D)

+V ⋅ (H + ϵ0c2B)

∇ ⋅ P = −(ϵ0
∂E
∂t

⋅ E + ϵ0
∂E
∂t

⋅ E + μ0
∂H
∂t

⋅ H + μ0
∂H
∂t

⋅ H)
− J ⋅ (E + μ0c2D) + V ⋅ (H + ϵ0c2B)

∇ ⋅ P = −(2ϵ0
∂E
∂t

⋅ E + 2μ0
∂H
∂t

⋅ H) − J ⋅ (E + E) + V ⋅ (H + H)

∇ ⋅ P = −2 (ϵ0
∂E
∂t

⋅ E + μ0
∂H
∂t

⋅ H) − 2J ⋅ E + 2V ⋅ H

⟨W⟩0 = ED + HB

W = E ⋅ D + H ⋅ B
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(14) 	 [19.14]


(15) 	 [19.15]


(16)  	 [19.16]


(17) 	 [19.17]


On substituting equation [19.17} into equation [19.12] gives


(18) 	 [19.18]


(19) 	 [19.19]


where


 is the power volume density flow out of the volume


 is the rate of change of the energy volume density


 is the power volume density consumed by the outward spiralling magnetic current


 is the power volume density released by the inward spiralling electric potential


The equation [19.19] represents the COMPLETE POYNTING THEOREM. The 

unaccounted power volume density term  can been seen as the HEAVISIDE 

ENERGY FLOW or the ENERGY FROM SPACETIME.


On substituting Ohms law [1.53] and the dual Ohm law [1.58] in equation [19.19] gives


	 	 [1.53]


	 	 [1.58]


∂W
∂t

=
∂E
∂t

⋅ D +
∂D
∂t

⋅ E +
∂H
∂t

⋅ B +
∂B
∂t

⋅ H

∂W
∂t

= ϵ0
∂E
∂t

⋅ E + ϵ0
∂E
∂t

⋅ E + μ0
∂H
∂t

⋅ H + μ0
∂H
∂t

⋅ H

∂W
∂t

= 2ϵ0
∂E
∂t

⋅ E + 2μ0
∂H
∂t

⋅ H

∂W
∂t

= 2 (ϵ0
∂E
∂t

⋅ E + μ0
∂H
∂t

⋅ H)

∇ ⋅ P = −
∂W
∂t

− 2J ⋅ E + 2V ⋅ H

∇ ⋅ P ( AV
m3 ) = −

∂W
∂t ( AV

m3 ) − 2J ⋅ E ( AV
m3 ) + 2V ⋅ H ( AV

m3 )

∇ ⋅ P
∂W
∂t

2J ⋅ E
2V ⋅ H

2V ⋅ H

J = σ0E

V = η0H
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(20) 	 [19.20]


(21) 	 [19.21]


On substituting equation [19.17] in equation [19.21] gives


(22) 	 [19.22]


For materials, ‚equation [19.22] becomes


23) 	 [19.23]


24) 	 [19.24]


25) 	 [19.25]


On substituting equation [19.24] and [19.25] in equation [19.23] gives


26) 	 [19.26]


27) 	 [19.27]


The electric energy stored in the capacitor is 


28) 	 [19.28]


∇ ⋅ P = −
∂W
∂t

− 2σ0E ⋅ E + 2η0H ⋅ H

∇ ⋅ P = −
∂W
∂t

− 2σ0E2 + 2η0H2

∇ ⋅ P = − 2 (ϵ0
∂E
∂t

⋅ E + μ0
∂H
∂t

⋅ H) − 2σ0E2 + 2η0H2

∇ ⋅ P = − 2 (ϵ
∂E
∂t

⋅ E + μ
∂H
∂t

⋅ H) − 2σE2 + 2ηH2

∫
E

0
E dE =

1
2

E2 ⟶ E ⋅
∂E
∂t

=
∂
∂t ( 1

2
E2)

∫
H

0
H dH =

1
2

H2 ⟶ H ⋅
∂H
∂t

=
∂
∂t ( 1

2
H2)

∇ ⋅ P = − 2 (ϵ
∂
∂t ( 1

2
E2) + μ

∂
∂t ( 1

2
H2)) − 2σE2 + 2ηH2

∇ ⋅ P = − ϵ
∂E2

∂t
− μ

∂H2

∂t
− 2σE2 + 2ηH2

W = ∭V
(ϵE2) dV
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29) 	 [19.29]


30) 	 [19.30]


31) 	 [19.31]


where , is the capacitance of the capacitor


The magnetic energy stored in the inductor is 


32) 	 [19.32]


33) 	 [19.33]


34) 	 [19.34]


35) 	 [19.35]


where , is the inductance of the inductor loop


On substituting equation [19.31] and [19.35] in equation [19.27] gives


36) 	 [19.36]


W = (ϵ
U2

d2 ) d ⋅ A

W = (U2) ϵA
d

W = CU2

C =
ϵA
d

W = ∭V
(μH2) dV

W = (μ
I2

s2 ) s ⋅ A

W = (I2) μA
s

W = LI2

L =
μA
s

∇ ⋅ P = − CU2 − LI2 − 2σE2 + 2ηH2
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37) 	 [19.37]


The dual power area density [18.16] is


	 	 [18.16]


38) 	 [19.38]


39) 	 [19.39]


40) 	 [19.40]


Therefore


41) 	 [19.41]


The effects of  are much more pronounced and easily observable when we work 

with media that are polarisable by electric fields and magnetisable by magnetic fields. 

These material properties evoke additional fields in the media, polarisation  and 

magnetisation . The resulting total electric displacement field is: 


42) 	 [19.42]


For magnetic materials, the induction is the sum of the magnetic field H and 

magnetisation M: 	 [19.43]


43) 	 [19.44]


∇ ⋅ P
⏟

Power Volume Density

= − CU2
⏟

Stored Electric Energy

− LI2
⏟

Stored Magnetic Energy

− 2σE2
⏟

Energy Used by the Load

+ 2ηH2

⏟
Total Energy Induced

S⊥(dual) = c2D × B

S⊥(dual) = c2ϵ0E × μ0H

S⊥(dual) = c2ϵ0μ0E × H

S⊥(dual) = E × H

S⊥ = S⊥(dual) = E × H

S⊥(dual)

P
M

D⊥(dual) = ϵ0E + P

B⊥(dual) = μ0(H + M)

S⊥(dual) = c2(ϵ0E + P) × μ0(H + M)
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44) 	 [19.45]


45) 	 [19.46]


For Magnetic Materials


46) 	 [19.47]


The second term  in equation [19.47] gives the additional unaccounted power 

density when we work with magnetic material, for example, in an electric motor.


For Polarised Media 


47) 	 [19.48]


The second term  in equation [19.48] gives the additional unaccounted power 

density when we work with polarised material for example a polarised capacitor.


The real power clif is


	 	 [18.42]


The quadvector and sextvector power terms are always present in reality irrespective of 
our view. This is one of the key reasons that the prevalent theory of electromagnetism 
cannot be corroborated with free energy devices and many experimental results and 
continues to plague human collective consciousness.


19.1. Additional Analysis 
The equations of transformation are 


	 	 [1.13]


	 	 [1.14]


S⊥(dual) = c2 (μ0ϵ0E × H + μ0ϵ0E × M + μ0P × H + μ0P × M))

S⊥(dual) = E × H + E × M +
1
ϵ0

(P × H + P × M)

S⊥(dual)M = E × H + E × M

E × M

S⊥(dual)P = E × H +
1
ϵ0

P × H

1
ϵ0

P × H

P = ⟨EH⟩2 + c2⟨DB⟩2 + c2⟨DB⟩4 + c2⟨DB⟩6

E = v × B

H = − v × D
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Since 


48) 	 [19.49]


Since 


49) 	 [19.50]


On substituting equation [19.49] and {1950} in equation [18.35] gives


	 	 [18.35]


50) 	 [19.51]


51) 	 [19.52]


52) 	 [19.53]


For  in case of special relativity, the magnetic field [14.35] and electric  

field [14.36] are 


	 	 [14.35]


	 	 [14.36]


v ⊥ B

E = vB

v ⊥ D

H = − vD

⟨P⟩1 = EH + c2DB

P = − v2BD + c2DB

P = (1 −
v2

c2 ) c2DB

P = (1 −
v2

c2 ) EH

v < c ⟶
v2

c2
< 1

H =
1

1 − v2

c2

H0

E =
1

1 − v2

c2

E0
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Therefore 


53) 	 [19.54]


On substituting equation [19.54] in equation [19.53] gives 


54) 	 [19.55]


55)  	 [19.56]


For  in case of general relativity there will be an ever increasing 

electric and magnetic field, which generates ever increasing power, for example, in the 
case of a decaying electric field in the conductor [6.40] and a magnetic field in the non 
conductor [6.106]. This is precisely what happens in the RA device during the trailing 
edge of the pulse in the input coil.


	 	 [6.40]


	 	 [6.106]


EH =
1

1 − v2

c2

2

E0H0

P =
1

1 − v2

c2

E0H0

P =
1

1 − v2

c2

P0

v > c ⟶
v2

c2
> 1

vEc(decay) = 1.618c

vHnc(decay) = 1.618c
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20. Scalar Potential and 
Magnetic Vector Potential 

The scalar potential  and magnetic vector potential  is missing from the 

comprehensive table of duality. 


This is due the fact that when William Thomson introduced the concept of vector  

potential, it was purely based on mathematics by appropriately satisfying the Gauss law 
with no so called magnetic monopoles.


(1) 	 [20.1]


(2) 	 [20.2]


This is analogous to imaging a circle as a straight line and trying to figure out properties  
of the circle and build it with a ruler and a square set. Once it is realised that the original 
entity is a circle, all its properties can be determined without fragmentation and it can be 
built perfectly with simple compass (right tools).


Similarly the scalar potential  was introduced purely based on mathematics by 

appropriately satisfying the Coulomb law.


(3) 	 [20.3]


(4) 	 [20.4]


(5) 	 [20.5]


Both the scalar potential  and magnetic vector potential , are poor substitute for 

electric potential  and electric voltage area density  respectively. They distort reality 

and obscure the true nature of things. However, they do indirectly measure them in 
convoluted way. They did evolve our understanding and served their purpose well until 

ϕ A

A

∇ ⋅ B = 0

∇ ⋅ ( ∇ × A) = 0

ϕ

∇ ⋅ E =
ρe

ϵ0

∇ ⋅ ( − ∇ϕ) =
ρe

ϵ0

∇2ϕ = −
ρe

ϵ0

ϕ A

ϕh V
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now in the absence of so called magnetic monopoles i.e electric potential and electric 

voltage area density .


The scalar potential  represented electric potential , which is a perfect analogue to 

magnetic charge . Similarly, magnetic vector potential  represented the electric voltage   

area density , which is a perfect analogue of then magnetic current area density .


With the discovery of law of duality and new unknown quantities i.e. the electric potential 

, electric voltage area density  and parallel interaction between the electric field and 

the magnetic field in conjunction with electromagnetism in curved spacetime using the 
appropriate mathematical tools such as the Clifford algebra, we would be able to a make 
quantum leap in our understanding of nature of reality. 

ϕh

V

ϕ ϕp

q A

V J

Table 20.1

Duality

Electricity Magnetism

Description Symbol Units Description Symbol Units

Scalar potential

Electric 
potential

Magnetic 
charge

Magnetic A 
potential

Electric voltage 
area density

Magnetic 
current area 
density

V

C = As

A

ϕp

ϕ

W b = Vs

V
m2

q

V J

Vs
m

A
m2

ϕp V
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21. Horst Eckardt 
Horst Eckardt, PhD, was born in Lower Saxony, Germany. After graduating from high 
school in 1973, he studied physics at the Technical University of Clausthal-Zellerfeld. 
There, he received his master's degree and his doctorate in theoretical solid state 
physics. His doctoral thesis dealt with the calculation of the optical properties of metals 
using numerical calculation methods. Thus, he also acquired basic knowledge in 
programming and working with computers. In 1985 he then switched to industry, to 
Siemens AG in Munich. There he worked in research and development, initially in the field 
of computer architectures, later in hardware and software application areas. 


On a private basis, Horst Eckardt dealt with the basics of alternative energy production, 
for which he was able to make good use of his knowledge in physics. As early as 2004 he 
recognized the great importance of the Einstein-Cartan-Evans (ECE) theory, which the 
Welsh physicist and chemist Myron Evans had been developing since 2003. From around 
2005, Horst Eckardt actively contributed to the development of the ECE theory by 
introducing the use of computer algebra. This caused a significant acceleration in 
development and was a guarantee for the mathematical correctness of the results. Horst 
Eckardt then contributed to the further development of the content and became a co-
author of most of the 450 scientific papers that Myron Evans produced until his sudden 
death in 2019. Horst Eckardt has recently expanded the theory so that it can also provide 
an answer to very fundamental natural-philosophical questions.


While working with Myron Evans, Horst Eckardt was appointed Director of the AIAS 
Institute (Alpha Institute for Advanced Studies), which Myron Evans founded in the 1990s. 
Horst Eckardt is also President of UPITEC (Unified Physics Institute of Technology), a 
non-profit association founded by Sean MacLachlan in the USA. Dr Eckardt is a leading 
scholar in the field of unified physics based on ECE theory, an area that has been pursued 
by practitioners for nearly 20 years. In addition to the development of the ECE theory, 
Horst Eckardt deals with the application of its results to technology, in particular to 
alternative methods of energy production. The AIAS Institute has developed various 
propositions for application in its articles. The aim of the institute is to promote technical 
progress in order to improve people's quality of life.  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22. Anil Goel 
Anil is the Founder and Creator of Ra Device - A Next Generation Renewable Energy 
Device.


Previously he was the Founder and Creator of Wayz - A Next Generation Mobility Platform 
and Ways - A Next Generation Tolling Platform. Ways Tolling Platform was commercially 
deployed at Rajiv Gandhi Sea Link Toll Plaza in Mumbai (attached MEP letter of 
appreciation and RGSL case study). 


Previously he was the Founder and Creative Director of Meem Memory Cable. He was 
responsible for complete Product Development, Software and Hardware Development, ID 
and Interaction Design, Supply Chain, Manufacturing i.e. every aspect that is required to 
put the product into the box. He successfully converted his original concept into a fully 
certified product and has been granted patents for the same in EU, US and other 
countries. 


With MEEM head office in London, Anil single handedly managed development office in 
Bangalore, design office in Milan and manufacturing in China. He also fostered strong 
relationships with top management in Toshiba, and other key partners. 


Two of his innovations were Finalist in Bell Award 11th Edition (held in February 2021) in 
the Transport Tech Category namely Ways - Next generation tolling Platform (winner) and 
Wayz - Next Generation Mobility Platform (patent granted in UK).


He studied Post Graduate Diploma in Film & Television from University of Bristol, UK. He 
also holds an MBA from JBIMS, University of Bombay, and B.E. in Civil Engineering from 
Delhi College of Engineering, India.


Publications & Patents 

1. A method of collecting travel fares in a transport system 
A Next Generation Mobility App to replace RFID card.

Priority Date: 13 April 2018


Status: Granted in UK and US (Notice of Allowance). Abandoned due to lack of 
funds in EU and Application Pending in India
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2. System and method of operating an email service for mobile telephone 
A Next Generation Messenger App with mobile number as email ID.

Priority Date: 19 December 2017


Status: Granted in UK, EU (Intention to Grant) and US (Notice of allowance). 
Application Pending in India


3. Systems, methods and computer program product for operating electronic toll 

collection  Page 24 
A mobile App to prepay the toll fees for a journey and when the user vehicle arrives at 
the toll plaza, it is automatically recognised by its licence plate and opens the barrier 
gate if the toll fees has been prepaid. 

Priority Date: 19 April 2017

Status: Applied only in India due to lack of funds. Just received the First Examination 
Report after 3 years with minor objections.


4. Zero no-load usb power supply and a method for controlling the power 

consumption of a usb power supply 
A USB charger that ejects the USB cable and switch itself off as soon as the mobile 
device is fully charged to save the vampire power. 

Priority Date: 1 October 2010  


Status: Granted in EU and US


5. QWERTY keypad for handheld mobile computer 
A ergonomic two thumb QWERTY keypad to significantly increase typing speed on 
mobile devices.

Priority Date: 21 November 2007

Status: Abandoned due to lack of funds


6. Cable with memory  
A USB cable that back-up all the data on the mobile device in the cable itself while 
charging.

Priority Date: 30 October 2007 


Status: Granted in EU, US and other countries
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23. Appendix 
1) Mep - Letter of Appreciation

2) Graham Bell - Ways Tolling Award Certificate

3) Graham Bell - Wayz Mobility Award Certificate

4) Patent Grant Certificate  - Wayz Mobility

5) US Patent Notice of Allowance - Wayz Mobility

6) Patent Grant Certificate - Xcess

7) US Patent Notice of Allowance - Xcess

8) Red Dot Awards-MEEM 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23.1. Mep - Letter of Appreciation Mep 
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23.2. Graham Bell - Ways Tolling Award Certificate 
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23.3. Graham Bell - Ways Tolling Award Certificate 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23.4. Patent Grant Certificate - Wayz Mobility  
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@
lntellectual
Property
Office Certificate of Grant of Patent

Patent Number

Proprietor(s):

Inventor(s):

G82572816

Anil Goel

Anil Goel

This is to Certify that, in accordance with the Patents Act 1977,

a Patent has been granted to the proprietor(s) for an invention entitled "A
method of collecting travel fares in a transport system" disclosed in
an application filed L3 April2018.

Dated 23 September 2020

Tim Moss
Comptroller-General of Patents, Designs and Trade Marks

lntellectual ProPertY Office

The attention of the Proprietor(s) is drawn to the important notes overleaf

lntellectual Property Office is an operating name of the Patent Office
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23.5. US Patent Notice Of Allowance - Wayz 
Mobility 
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23.6. Patent Grant Certificate - Xcess  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23.7. US Patent Notice Of Allowance - Wayz 
Mobility 
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23.8. Red Dot Awards - MEEM 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