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Abstract. The recent development of the scanning near-field apertureless optical micro-
scope, allowing spatial resolutions of the \/50 order, or even better (thus breaking the
A/2 limit derived by Abbe) seems to have deep implications in the very foundations on
the quantum physics. This looks like the first knowu experimental proof that the usual
Heisenberg uncertainty relations are, in fact, a first approximation to describe certain

aspects of the quantum world and are, consequently, in need of revision.
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1 - Introduction

The first demonstration of the scanning near-field apertureless optical microscope was
given by Pohl et al.l, with a spatial resolution of A/20. Today? it is possible to obtain
resolutions of A/50 or better, the theoretical limit not known. Since these experimental
high spatial resolutions break the limit imposed by Abbe’s rule for the common aperture
microscopes: éx > A/2, this implies that the usual Heisenberg’s uncertainty relations,
are in practice violated, contrary to more than a half-century of quantum mechanics
claims that this was not possible. The aim of this letter is to show that these microscope

observations in fact violate the usual uncertainty relations.

2 - The Uncertainty Relations

Contrary to certain common knowledge, that often text books on quantum mechanics sus-
tain, the uncertainty relations do not forbid an actual measurement violating the limits
imposed by the inequalities, as stressed early by Heisenberg®, Popper? and many others.
What Heisenberg’s relations in fact forbid is that after the measurement, after the in-
teraction, one can predict position and momentum with uncertainties that violate these
inequalities. But, in certain conditions, the operation of the scanning near-field optical
microscope violates the uncertainty relations, since after the interaction the product of
the future uncertainty in position and momentum are less than predicted.

In light of the above considerations let us consider the Heisenberg microscope, as has been

done in almost every textbook of quantum mechanics®8.

Fig.1. Scanning near-field optical microscope.

In Figl, there is a schematic representation of the scanning near-field optical microscope
where an horizontal incident photon is diffused by a very small object M. For this kind
of apertureless microscope, experiments have shown that it is possible to attain spatial
resolutions of éx < A/50 or better.

The principles underlying the working of this apertureless scanning optical microscope
are, essentially, the following: The photon after striking the corpuscle M is diffused and,

after that, is caught by a tiny photon sensing device. This photon detector can be made
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of an optical fiber that conduct the light to a large detector. In the limit it is possible to
make the photon detector so small that there is no need for the conducing optical fiber,
the tip being the very detector. [he electric pulse, produced in the light detector, feeds
an electronic system connected to a computer. After the necessary scannig lines the image
of the corpuscle A is seen in the screen.

In order to determine the uncertainty in momentum of the object M after the inter-
action with the photon it is necessary to consider the global conservation of momentum,
photon plus diffusing corpuscle. Before the interaction the momentum of the diffusing
photon is |p| = p’ = h/\. After the interaction it shall be p” making an angle ¢ with the
axis of the point probe. Let p, be the z-component of the particle A after the interaction.
The conservation of momentum for the system object plus incident photon allows us to

write

pr =p —p"sine =~ p'(1 — sine) = %(1 —sine), (1)

where it is assumed that, after the interaction, the absolute value of the momentum of the
diffusing photon remains practically unchanged, p”’ = p’. This means that the value of p,

lies between

%(1 —sing) < p, < %(1 + sine). (2)

In such conditions the uncertainty in the r-component of the momentum is given by

bpr = 2% sine, 3)

the maximum corresponding to a diffusion angle of w/2 and the above expression turns

into

61)1‘ = 2%7 (3/)

The product of the two uncertainties éx = A\/50 and ép, — 2h/\ is
bxébp, = h/25. (4)

If, instead of the experimental resolution of the scanning near-field microscope, the usunal
Abbe’s criterion éx = A/2sine were used, the product of the uncertainties would give the
usual Heisenberg’s relation

bxbp, = h. ()



Conclusion

1 was shown, in a similar manner to the one presented initially by Heisenberg, and since
then used in many textbooks on quantum mechanies, that the uncertainty principle is
violated experimentally by a factor of 1/25 in the above conditions. This means that, in
certain very special experimental settings, it is possible to predict, before actual measure-
ment (interaction) takes place, the future uncertainty of position and momentum in a way

that their product is less than h.

In order to accommodate the experimental results it looks like the usual meaning of
Heisenberg uncertainty relations need to be revised. We would like to point out that the
relevant aspects mentioned here for the experiment with the Scanning Near-Field Optical
Microscope do not involve, contrary to the usual reasoning, the wave-like nature of the
light: we are thus making a measure where Bohr's” Complementary principle does not
apply. It is therefore only natural that the Fourier analysis for the formation of the particle

image does not apply to this new type of microscope.
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Abstract: An overall view of some possible interpretations and forms for the
uncertainty relations and certain aspects of quantum non-linear theories correlated
with the local analysis by wavelets are presented. Also two possible experiments
that may test the general validity of the usual Eisenberg uncertainty relations are
discussed.
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1. INTRODUCTION

Since Bohr[l] interpretation of the Eisenberg uncertainty relations in terms
of the Fourner analysis, there was a general acceptation of them, at least on its
mathematical form. It is true that were and still are lots of arguing on the actual
meaning[2] of those relations, nevertheless almost[3] everybody seems to agree
with its actual mathematical formulation.

Some, like de Broglie and many others, have always felt uneasy with some
physical implications[4] of those relations, like for instance the infinite spreading
of the matter wave packets, given by the known relation

h
1y~ —
Ax(1) Im f. (1)
If this relation holds true for all cases, then an electron ejected by the Sun,
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Those, and other reasons induced some to believe that the master equation
for full describing the quantum phenomena must be a nonlinear equation. These
kind of equations have nondispersive localized solutions in space and time, which
are very well suited for describing the evolution of nondispersive causal
particles. Recently some authors, like Mackinnon(5], Gueret[6], Vigier[7], and
many others have proposed finite nondispersive, soliton-like , forms for the wave
function solutions of a general master wave equation.

If quantum phenomena really need for full explanation a more general
theory formulated in non linear terms, then the usual nonlocal Fourier transform
will most likely need to be replaced by a different set of transforms. The recent
development of the theory of wavelets[8], or finite waves, seems to indicate that
a local analysis, both in time and space, of the functions is possible. These facts
open the way for a more general set of uncertainty relations, derived, not as Bohr
has done from the Fourier nonlocal transforms, but from a local analysis. Of
course, these new uncertainty relations must in the most cases coincide with the
usual ones.

2. ANEW FORM FOR THE UNCERTAINTY RELATIONS

In order to derive mathematically a different set of uncertainty relations{9],
it is convenient to assume;

- 1 Quantum phenomena need for full explanation a nonlinear theory.

- 2 The nonlocal Fourier analysis, in a more complete theory, need to be replaced
by a local wavelet type analysis.

- 3 Free quantum particles, are in general small, and can be localized, at any time,
in a finite nondispersive volume.

Let us consider an unidimensional finite source of approximate size o ,
each point of which emits monochromatic pulses of width ¢ , described by a
finite wave of the form

g(x,t,6,k) =Aexp [— (x —¢ —vt)2 /20 127] exp[i(kx ) t)] Q)]

It is also assumed that each point of the unidimensional source consists of
many oscillators emitting pulses at wave numbers k that are Gaussian, distribu-
ted with average ko,

fxy =erexp [~ (k — ko) 120 ¢ ] ®



and that the spacial distribution of these emitters at each instant is also
approximately Gaussian, with a width ¢ ; of the line source

s(e) = Bexp [-&* /20 7] 3)
The total pulse from this source will then be
+ oopt 00
V() =aoB[ [ sers g e kded, )

which upon integration on ¢ gives

2
Y (x,t) =AaB27 Smexpl:— - wy” —(k_kg)»+:(kx—wt)]dk. (5)

2(o§+03) 20}

Now assuming that for the chosen range of & the velocity of each pulse is
practically constant, one is allowed to write

w=vk, v=c” ©)

and by substitution in (5) it yields

¥ (x,0) :73’1‘/”_7"—;:_#“;) [-(x 1) 120 2 Jexplithx wn)] (7
where
ai :[a,f+1/(af,+ﬂf)]—14 8

This expression (8) represents a generalized dispersion relation. Although
o ;has been used to describe the approximate size of the one.dimension source, it

could as well be regarded as representing the coherence length of a point-like
source with a coherence time 7, such that o | = v7.

Some remarks can be made on the new dispersive relation (8), considering
the following cases:

(a) sources with a relative "large" coherence length ¢ _,
(b) wide-band sources, i.e. sources with "large" o ,,
(c) truly monochromatic sources, o, =0,

(d) very sharp pulses, ¢ , "small."



In cases (a) and (b), sources with large o (1/(0; + 0.)=0) and/or
relatively wide-band (1/ (o ; + ¢ f) <<g f), the general dispersion relation (8)
becomes the usual one

0,0, =1. ©))

In cases (c) and (d), since in these two cases (1/(01 +of) >>aﬁ), one

gets

0, =0+ 0. (10)

As can be seen from Fig.1, in most practical instances relation (8) and (9)
do give the same results.

The essential difference between the new dispersion relation (8) and the
usual (9) lies then in the fact that, with the former, one can have a source with
practically no dispersion (¢, =0) giving a finite pulse, whereas with (9) the
size of the pulse grows indefinitely.

It was seen that starting from very general assumptions for quantum
"particle” represented by finite, nondispersive waves, it was possible, by pure
formal calculations, to obtain a more general set of uncertainty relations that
avoid the shortcomings of the usual ones. The question of the physical meaning
of such relations remains, of course, an open question. In situations of this kind
only experiment can decide which is the better formula for the uncertainty
relations

»>
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Fig.1. Usual Heisenberg dispersion relations
(dotted line) and generalized dispersion relations
(full) for different values of (1/ (a7}, +03)).



3. EXPERIMENTS TO TEST THE GENERAL VALIDITY OF
HEISENBERG UNCERTAINTY RELATIONS

There seems to be many ways to investigate the general validity of the usual
uncertainty relations, however in the present work I shall discuss only two
possible expenments[10,11}].

In quantum mechanics, as it is well known, the mean life of an excited state
7, is identified with the coherence time of the emitted particle. When taken to its
ultimate consequences, together with the uncertainty relations this leads to some
strange conclusions. For instance, it is known that the 5+ state of the nucleus

fbe has a mean life of 1140 s and decays to the 8- state emitting gamma photons

of 17.7 kev[12]. Consequently, this leads to a photon wave packet of the same
coherence time 7, =Af, =1140s. From this coherence time it is possible to
calculate the approximate coherence length, which gives a longitudinal size for the
wave packet very large, in fact it is greater than the diameter of Earth's orbit.

Since the above inference seems to defeat the physical feeling, which
assumes the single gamma photon as a very small entity, it would be interesting to
submit the conclusion to an experimental validation.

An experiment to test the general validity of the Heisenberg uncertainty
relations, based on those ideas, seems possible with the modem methods of X-ray
interferometry. Essentially the experiment consists in using an X-ray in which the
source is a suitable gamma emitter of reasonable energy and mean life. X-ray
sources, even if the same energy of the gamma emutters, are not suitable because
the mean life of the excited states are too short. The interferometer, shown in
Fig.2, has a shutter placed in one arm, that chops the passing wave packet, with
an initial coherence time Af;, in minute pieces with a coherent time At <<<<Af,.
Now the question is: What are the predicted results for the interference pattemn at
the detector?

The answer to the question depends on the assumptions made on the nature
of the quantum particle.

¢

\> /' gﬂm
/

Fig.2. Proposed experiment. X-ray interferometer with a shutter
In one arm.
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3.1. Quantum Particles are Small Entities

In this case the action of the chopper on the beam two, when the time
interval between two cuts is much greater than the "true" coherence time of the
particle, is to absorb more or less wavelets. This situation is depicted in Fig.3.

A e A A e e A e e e e A
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Fig.3. Overlapping of small waves.

It is possible to show[10] that the visibility for this case is given by

2c

Ys T ita > (1)

where « is the absorption factor, such that I, = al;, (0 <a <I). When the rate

of incident particles is small one may have « =1 which means a visibility

practically one. That is for small particle emission rate the action of the chopper
on the arm two of the interferometer does not greatly change the visibility of the
interference pattern.

3.2. Heisenberg Uncertainty Relations AE At = h Holds True in All Cases

In such circumstances the action of the chopper on the beam two of the
interferometer is to change the initial minimum energy dispersion of the packet
from AE, to AE so that AE >>>>AE,, since the coherence time of the chopped
pieces is much smaller than the initial coherence time (At <<<< At,). Therefore at
the overlapping region one wave practically monochromatic superimposes to
many small wave packets, see Fig. 4, producing a specific interference pattern.
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L e e L/ L SR A S
Fig.4. Overlapping of two waves: one practically monochromatic, the

other composed of many small wave packets with large energy
dispersion.
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In this situation two cases may be considered:

(a) The action of the chopper on the beam produces small wave packets with a
random relative phase, the most likely case. Then no interference pattern is to be
expected at the detector.

(b) It is assumed, with Géhler and Golub{13] in what they call diffraction in
time, that chopper is made in such a way that it maintain the relative phase among
the small wave packets nearly constant. It is possible to show, under reasonable
approximations, that, even in this very optimistic situation, the visibility v, is
smaller than v,, obtained under the assumption that the quantum particles are
small entities.

The other possible experiment to test the usual uncertainty relations is based
on the spreading of the matter wave packets, given by formula (1),
Ax = [h/ m(Ax,)]t. According to this formula, for instance, Auger electrons
produced in a monolayer of vacuum-deposited gold atoms on a perfect crystal
surface, as proposed by Scheer et all.[14], the uncertainty of the initial position
Ax, can be of the order of the atom layer, say Ax, = 10A, which by substitution
in the spreading formula (1) gives after one second Ax =100km. Meaning that,
after one second, the initial wave packet of about 10 A increases to a size of 100
km. This conclusion is very striking. Even so the usual interpretation is perfectly
able to deal with it. In this contest it means that after one second one can detect an
electron somewhere within a distance of about 100 km, with a velocity
distribution equal to the minimum initial one Av = Av,. Since

Ax, Av, = (12)

which, after substituting Ax, gives Av = Av, =v,, —v_ =10"cms™.
Other explanation for the spreading of the matter wave packets is possible

in context of a non linear theory where each single quantum free particle is
described by a finite wave of constant shape.

Ax, Ax(t)
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Fig.5. At time t=0, particles with different velocities occupy an initial
length Ax,; as the time increases, they will be spread over a much
larger length Ax(¢).



In this natural model, the spreading of the "wave train" is only a way of
saying that an initial burst of many particles, of constant small size, increase the
distance between each other to a value that depends only of the elapsed time and
of their respective range of velocities Av,.

Therefore, in this model, an electron "wave train" of 100 km means that the
possible distance between the faster and slower electron after one second is of that
magnitude as depicted in Fig.5.

In order to see which is the right model consider the following experiment:
An electron source emits, at fixed known time intervals ¢, electrons with an
uncertainty in the position Ax, =100 A, which according to the Heisenberg
relations correspond to a minimum energy dispersion Av, = 10 %cms™". A
millisecond later the initial wave packet will have spread to a size of 10 m.
Suppose now, that from each electron wave packet, and always for the same
elapsed time t=1 ms, one "slices " a piece of, say, 8 x = 100 A. This slice from the
wave packet can in principle be made with an electromagnetic field, triggered by
the emission of the electron from the source, as seen in Fig.6.

Now, if one measures the velocity dispersion &vof these small slices of
length & x from the expanded electron packet, what is to be expected?

According to the Heisenberg uncertainty relations, one must always have,
6xdv = h/2m; therefore as 6 x = Ax,, and Ax, Av, =h/2m, this implies that
dv = Av,. That is, the velocity dispersion of the arriving electron, from the small
slice, will be equal or greater than the initial minimum dispersion Av,. One may
conclude that when one "slices" the expanded electron wave train, one interacts
with all the Fourier components of the packet, modifying them in such a way, that
at the end the predicted velocity distribution must be at least equal to the initial
one. If it could be otherwise, it would be contra the Heisenberg relations and
therefore against the usual quantum mechanics.

thin metalic % velocity
Electron atomic layer detector
source
8x
—) @
Av, B Sv
knife

coincidence line

Fig.6. Schematic representation of the proposed experiment.



Assuming that the quantum phenomena need for full explanation a non linear
theory and therefore that the quantum particle must be described by a finite local
wave, the spreading of the "wave packet" has no real meaning for the individual
electrons. It is only a mathematical description for the average separation between
particles of different velocities. One is really slicing nothing. What happens is a
selection from the expanded "packet" of particles that have a smaller range of
velocities. Only those particles that fall in the selected smaller velocity range have
the chance to be detected. Therefore if the nonlocal Fourier spectral
decomposition is only a mathematical device for the average particle dispersion, a
smaller velocity dispersion is to be predicted 6 v << Av,, as shown in Fig.7.

Fig.7. Predicted results for the velocity distribution
of the electrons from the slice 6 x of the expanded

wave packet. Usual theory (dotted line) vs nonlinear
theory (solid line).

Because dx =~ Ax, and 0 v << Av, (Ax, Av, = hi/2m), one concludes that
0x8v << h/2m.the experiment violating the Heisenberg uncertainty relations.
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DISPERSION RELATIONS FOR THE SUPERPOSITION OF
MONOCHROMATIC FINITE PULSES

J.R.Croca' , A.J.Rica da Silvat

Setembro, 1990

Abstract. We obtain the general dispersion relations for the superposition offinite, monochro-
matic pulses emited by a pontual or unidimensional source intoboth dispersive and non-
dispersive mediae. It is shown under what conditionsthose relations revert into the form of
Heisenberg’s dispersion relations.

Résumé. On obtient les relations générales de dispersion lorsqu’il y a la superposition de
pulsations monochromatiques finies émises par une source ponctuelle ou unidimensionelledans
des milieux dispersifs ou non-dispersifs. On discute dans quelles conditions ces relations se
réduisent aux relations de dispersion de Heisenberg.

Quantum Mechanics is, 1n its traditional formulation, a linear theory which uses Fourier
duality as main mathematical tool: from the transformation theory and the equivalence
between q- and p-spaces one can derive as a direct consequence the Heisenberg uncertainty
relations.

This has urged many authors, starting with de Broglie!, to propose, from the very
beginning of quantum theory, more general, non-linear theories for the interpretation of
quantum phenomena. De Broglie formulated some non-linear aspects of the theory but
never gave an explicit form for the non-linear equation that would sit as the cornerstone of
his non-linear theory. Recently, many autjors following de Broglie’s ideas, like Mackinnon?,
Gueret®, Vigier® * and many others, have proposed finite, non-dispersive, soliton-like forms
for the wave-function solution of a non-linear general wave equation.

In the present letter we whish to draw attention to some possible implications of the
assumption of non-dispersive solution for the master non-linear equation for quantum me-
chanics. If quantum phenomena really needs for its full explanation a theory formulated in
non-linear terms, then the usual Fourier-transform tool will most likely need to be replaced
by a different set of transforms. In fact, the recent developments of the mathematical the-
ory of wavelets®, or finite waves, seems to indicate that from finite waves of constant shape
it is possible to analize both discrete and continuous objects. These facts may have im-
plications on the usual Heisenberg uncertainty relations: by assuming that the particles
are to be described by finite wavelets of constant shape, it may happen that the common
uncertainty relations will change.

t.Departamento de Fisica - Faculdade de Ciéncias de Lisboa, Campo Grande, Ed. C1 - 1700 Lisboa
Portugal
t.Departamento de Fisica - Instituto Superior Técnico, Avenida Rovisco Pais, 1096 Lisboa Portugal



Some strange physical situation like the prediction of infinite spreading of matter wave-
packets® in free space and others” that can (in principle) be tested experimentally, seem
to indicate the need to obtain a more general set of uncertainty relations, containing the
usual ones as particular cases, in order that we may avoid these problems.

We show, with a very simple localized non-dispersive model for particle waves, that
when one considers the sum of many particles emmited by a source in pulse form, one gets
a more general set of dispersion relations from the product of the dispersion of conjugate
variables, and study the conditions under which they revert to the usual ones.

If the wave-functions ¥; and W, are solutions to some master equation which is non-
linear, then ¥ = ¥, 4+ ¥, need not be in general another solution: nevertheless, there
must be a certain ¥ = ¥(¥,,¥,) which is a solution of that non-linear equation, otherwise
such equation would not even describe the emission of two or more particles. It is also
assumed that a deeper non-linear quantum theory must, at the large-ensemble statisti-
cal/thermodynamic limit, approach the usual one, at least at the formal and predictive
level.

In another work we show that, when the number of emmiting oscillators is very large
with a gaussian-distributed amplitude, the solution ¥ = ¥(¥,,¥,,..,¥~) approaches the
sum y oo ¥;. In the case of mono-chromatic, gaussian pulses in non-dispersive media
it 1s possible to show exactly that the integral sum is a solution to a certain non-linear
Schrodinger equation. In the more complex case of propagation in dispersive medium, we
can say as much in the asymptotic limit of very small t or fixed position and very large t.

General Setup

Consider a one-dimensional, finite source § of approximate size o, each point of which
emits limited (half-width = ¢,), monochromatic (uncorrelated) pulses of the form

(1) _(z=zq—ve)? -
¢(-T,t: .T07k) = Ae 20,2 el( r—wt)

We will assume that each point of the source S consists of many oscillators, emmiting
at wave-numbers k that appear gaussian-distributed with average k,

(s-2y)’
(2) fB)=ae =

and that the spatial distribution of the emiters at each instant is also approximately
gaussian, with the width o, of the line-source S itself,

E

9(z,) = Be 7

(B could eventually be a function of time t).
The total pulse from the source & will thus be

2
0

(3)

(4) v = [ " de, [ i siyglaotants 20,



and after some arrangement

(5)
2 2 2
+ o0 + o0 :E_;’_a’_ (I _ 2 (I—vt)) _(k~:2o) _ (z=ve) ti(k z—wt)
O Y S (o)
—o oo
which upon integration on z¢ gives

2
27!'0’2 2 +oo g:—:g)— ;ﬁ(i-il;—t%)-iﬂ'(kz——wt)
a2+02/

(6) U(z,t)=Aap

Propagation in Non-Dispersive Medium

In non-dispersive media, where pulses of any wavelength propagate with velocity ¢, the
usual dispersion relation

(7 w =ck
can be used to carry out the integral in (4), yielding

o _!: ct) 1 w
(8) \I/(:c,t) = 2P 26 20 ik, ot)
V Op +Us

2 1

9 g, = —F/F—F .
( ) ‘ Uz + Up21+03

where

Expression (9) is a generalized dispersion relation.

Although o, has been used to describe the approximate size of a one-dimensional source,
it could as well be regarded as representing the coherence-length of a point-like source with
acoherence time 7, i.e. such that o, = c7.

We will look at formula (9) in the following cases:

(a) Source with relatively large coherence length oy;
(b) Wide-band sources, i.e. sources with “large” oy;
(c) Truly monochromatic sources, i.e. o = 0;
(d) Very sharp pulses.
In cases (a)-(b), sources with large coherence-length ((—2—+—2) 0) and/or relatively

wide-band ((m) < 0}), the general dispersion relation (7) becomes the usual one®
4 s

(10) o0 =1

In cases (c)-(d) on the other hand, since (Tzliﬁ) > of we have

(11) oz =\/0p% + 02

As can be seen from Fig. I, in most pratical instances relations (9) and (10) do give the
same result. The essential difference between the dispersion relation (9) and the usual one
(10) lies in the fact that in the former one can have a source with pratically no dispersion
(ox = 0) giving a finite pulse, whereas in the latter the size of the total pulse has to grow
indefinitely in order to achieve the same low-dispersion regimes.
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Fig. 1
Usual dispersion relation (dotled line) and generalized dis-
persion relation (full) for different values of ;2_1—6-;.
P s

Propagation in Dispersive Medium

In the case of dispersive media, waves of different frequencies travel with different ’ve-
locities’, and therefore there will be some functional dependence v = v(k) as well. Taking
this into account, the remaining integral in (6) can be written as

dk6_2(ap2+a_,2) 20,

(12) oi (ko z=wo 0) /+°° (eove)®  (k=kQ)? 4 i((k—ko) z—t (w—wp))

— o0
Introducing now the relations

h 2 h
(13) w=—k ; v=—k

2m m

“that we assume valid for dispersive media, and making the following changes

K.:k——kg

h

T =—1

(14) m
2 2 2
0y =0, +o,

X(z,7) =T — koT

in the integrand for convenience, we get

Foo - X gx(itp)a—flirt b+ I’

/ d,ge 27, %o ke %o =

— o0

(15)
182y 2 .t 1 L B2 2
2(62 +55y)X > —Lo(r)(x—BLr))? B \/§P(§) 2(U2 +5F7)X
e 0 dre ? ) = ——— e 0
o a(7)



where

. T

Blr) =i+ =

00
(16) 1 7_2
a(r)=ir+ =5+ %
o, o,

After some work, the development of this expression leads to

4

e-—%(dl +id2)(1:—%vo r)zei(kor——'—;'—wor)

(17) \I/(:r,t)‘ =

3

where we have made

r0? + 02 (140} o?)

di = 2 2 2
(rokos)® +(r20f +03)
18) ng—TO'i‘ T20'l2c+0'§ (2—{—0,%03)
( (rofod)? +(r2 o} + 03’
V(T a2 a2+ (r2 o + 02)?
ds = ot o2
k~o
Setting Azj = ﬁ, these formulas indicate that
k a2
0'2 0'2 0'2
L+7(GE)" + (;% + rf)
(19) ol(r) = Az - ’

20'7Azg
147 ——“——64
0

gives the time-dependence of the total pulse’s size. At 7 = 0 we obtain the value d2(0) of
the initial size of the pulse from

1
(20) 02(0) = Az,* = o I

2
k a,

Thus, the size of a pulse of superposing, finite waves travelling with different speeds
starts out to be equal to (9), i.e. that of a pulse of waves propagating with the same
velocity.

On the other hand, in the domain of large 7, expression (19) becomes

h 1 1
21 (1)~ —1 - —
(21) SOR e




For reasonable coherence length sources, the previous expression reduces to

1_7'l_t
m

(22) oa(t) ~

T,

which is the approximate spreading for the matter wave packet as presented inmost
textbooks®.

Conclusion

In conclusion, we wish to stress that, starting from very general assumptions of ”particle”
representation by finite, non-dispersive waves, it is possible to obtain a more general set of
uncertainty/dispersion relations that avoid the shortcomings of the usual ones, which are
valid for the standard Quantum Mechanics and follow from those derived in this paper. The
question of the physical meaning of such relations remains, of course, open. In a situation
of this kind only experiment can decide which is a better formula for the uncertainty
relations.
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