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Abstract
Constant torsion of space-time in general relativity produces a constant an-
gular momentum of space-time by volume integration. It is shown that this
constant angular momentum gives rise straightforwardly to a potential energy
proportional to inverse square distance - a negative valued centrifugal potential
energy that does work on a star. The potential energy attracts the star into
a logarithmic spiral orbit through a negative valued force law that is inversely
proportional to the cube of distance. The orbit gradually becomes a circle with
constant orbital velocity. This theory explains the main features of a whirlpool
galaxy without any "dark matter". The angular momentum is a constant of
motion and is conserved, i.e. does not change with time. Total energy is con-
served, and consists of the kinetic energy of a star with velocity v moving in a
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1.1. INTRODUCTION

plane, added to the potential energy of the spinning space-time. A whirlpool
galaxy is a direct demonstration of the potential energy of spinning space-time.

Keywords: Einstein Cartan Evans field theory, dark matter, cosmology, galax-
ies.

1.1 Introduction
It is well known that the now obsolete Einsteinian general relativity omits con-
sideration of space-time torsion, and in so doing uses an incorrect symmetric
connection [1] - [10] with multiple sequential mathematical errors that render
the theory meaningless in physics. By correctly considering the space-time tor-
sion [1] - [10] a new cosmology has been constructed in Einstein Cartan Evans
(ECE) theory, a cosmology that is based directly on Cartan geometry. In so
doing the space-time torsion plays a central role. In Section 2 it is shown that
a constant space-time torsion is sufficient to produce the main features of a
whirlpool galaxy, in which stars move on a logarithmic spiral orbit contrary
to Newtonian dynamics. The constant torsion is integrated over a volume to
produce a constant angular momentum of space-time and a negative valued
potential energy that does work on the star, attracting it into a logarithmic
spiral orbit. The potential energy is inversely proportional to r2, and produces
a negative valued force of attraction that is inversely proportional to r3. A La-
grangian analysis of the problem shows that the orbit due to such a force law is
a logarithmic spiral as observed experimentally. The orbit gradually becomes a
circle in which the orbital linear velocity is constant as observed experimentally.
The angular momentum is a constant of the motion and does not change with
time in this simplest theory. The angular momentum is therefore conserved.
The total energy is also conserved, and is the sum of the kinetic energy due
to the linear velocity of the star in a plane, and the potential energy caused
by the constant torsion of space-time. In Section 3, a graphical analysis of the
evolution of the whirlpool galaxy is given. The orbital equations may also be
animated for direct visualization. Some discussion is given of this theory and
of the main experimental features of a whirlpool galaxy. This simplest theory
is soluble analytically, and is designed to produce only the main features of the
galaxy. More realistic models would include a varying torsion and the dynami-
cal equations of ECE theory solved numerically. Severe criticism of the obsolete
"dark matter" speculation is summarized.

1.2 Calculation of the Logarithmic Spiral Stellar
Orbit due to Constant Space-Time Torsion

The space-time torsion tensor is defined [1] - [10] in ECE theory by the Cartan
- Evans dual identity:

DµT
κµν = Rκ µν

µ (1.1)
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CHAPTER 1. EXPLANATION OF THE WHIRLPOOL GALAXY . . .

where its covariant derivative is the curvature tensor appearing on the right
hand side of Eq. (1.1). In general the torsion tensor may be integrated over a
hyper-surface to give a rank two anti-symmetric tensor:

Tµν = −T νµ =
∫
σ

Tκµν dσκ. (1.2)

This tensor defines the angular momentum tensor of space-time through the
following proportionality:

Jµν =
c

k
Tµν (1.3)

where k is Einstein’s constant and c the vacuum speed of light. Eq. (1.3) is a hy-
pothesis that asserts that the integrated torsion tensor Tµν is proportional to the
angular momentum tensor. It is well known [11] that the angular momentum is
defined by the following volume integration of the angular momentum/angular
energy density tensor in field theory:

Jµν =
∫
J0µν dV (1.4)

and similarly:

Tµν =
∫
T 0µν dV . (1.5)

Therefore the hypothesis Eq. (1.3) is one way of correcting the Einstein field
equation for the presence of torsion [1] - [10].

Consider now the space-time angular momentum in the Z axis defined by:

JZ = J12 =
∫
J012 dV . (1.6)

This is a Z axis angular momentum generated by space-time itself. It does
not exist in Einsteinian theory, and does not exist in Newtonian theory. It is
a concept of the ECE unified field theory. The space-time angular momentum
produces a negative valued potential energy:

U = − J2

2mr2
(1.7)

where m is the mass of a star moving in the spinning space-time and r is
the radial distance of the star from the force centre (the centre of the space-
time "whirlpool"). Work is done on the star by the spinning space-time and
changes the star’s potential energy from U1 to U2 while keeping the star’s kinetic
energy constant. In a whirlpool galaxy the stars move in a plane to a good
approximation, so a star’s kinetic energy is defined by:

T =
1
2
mv2 (1.8)
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1.2. CALCULATION OF THE LOGARITHMIC SPIRAL STELLAR . . .

where the linear velocity in the plane is expressed [11] in terms of plane polar
coordinates:

v = ṙ er + rθ̇ eθ. (1.9)

Therefore the kinetic energy of a star that moves in a plane with any velocity
(v) is:

T =
1
2
m
(
ṙ2 + r2θ̇2

)
. (1.10)

The force on the star due to the constant angular momentum Eq. (1.7) of
space-time is:∫ 2

1

F · dr = U1 − U2 (1.11)

and changes the star from state 1 to 2 while keeping the kinetic energy constant.
This is the definition of potential energy [11]. If:

U2 > U1 (1.12)

the force is attractive and negative valued. The initial state is chosen such that:

U1 = 0. (1.13)

The force on the star due to the spinning space-time is negative valued:

F = −∇U = − J2

mr3
er (1.14)

and attracts the star into an orbit. It is shown as follows that this is a logarithmic
spiral orbit.

The total energy of the system is:

E = T + U (1.15)

and consists of the kinetic energy of the star moving at v in a plane:

T =
1
2
m
(
ṙ2 + r2θ̇2

)
(1.16)

and potential energy due to the spinning space-time:

U = − J2

2mr2
. (1.17)

The Lagrangian of the system is:

L = E − U (1.18)
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and the Euler Lagrange equations of motion are:

∂L

∂r
=

d

dt

∂L

∂ṙ
(1.19)

and

∂L

∂θ
=

d

dt

∂L

∂θ̇
= 0. (1.20)

Eq. (1.19) can be rewritten [11] as:

d2

dθ2

(
1
r

)
+

1
r

= −mr
2

J2
F (r) (1.21)

by using a change of variable. If the potential energy Eq. (1.17) is expressed as:

U(r) = − J2

2mr2

(
1 + α2

)
(1.22)

the force is:

F (r) = − J2

mr3

(
1 + α2

)
(1.23)

and Eq. (1.21) shows that:

r = r0 exp(αθ). (1.24)

This is a logarithmic spiral orbit as observed experimentally. The star evolves
with time as follows:

θ(t) =
1

2α
log
(

2αJ
mr2

0

t+ C

)
(1.25)

and

r(t) =
(

2αJ
m

t+ r2
0C

)1/2

(1.26)

where C is an integration constant. Both quantities (with all constants set to
unity) are depicted in Figs. 1.1 and 1.2, showing their sublinear time depen-
dence. The angular velocity is defined [11] as:

ω = θ̇ =
dθ

dt
=

J

mr2
(1.27)

and the radial velocity is defined as:

vr = ṙ =
dr

dt
=
αJ

mr
. (1.28)
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Figure 1.1: Time dependence of θ coordinate for a spiralling star.
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Figure 1.2: Time dependence of r coordinate for a spiralling star.
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Figure 1.3: Time dependence of velocity v for a spiralling star.

The total velocity of the star is therefore defined by:

v2 = ṙ2 + r2θ̇2 =
(
1 + α2

)( J

mr

)2

(1.29)

(see Fig. 1.3) and so the angular momentum magnitude is:

J =
mvr

(1 + α2)1/2
. (1.30)

It is observed in a whirlpool galaxy that v in the arms of the galaxy is a
constant, and that the arms are logarithmic spirals of stars, i.e. stars moving
on a logarithmic spiral. The angular momentum J is constant and is defined by
the lagrangian:

J =
∂L

∂θ̇
= −∂U

∂θ̇
= mr2θ̇ (1.31)

and so the angular momentum of the spinning space-time is related to the
potential energy by:

J = −∂U
∂θ̇

= − ∂

∂θ̇

(
−1

2
mr2θ̇2

)
(1.32)

If v and J are constants then from Eq. (1.30), r is also constant, meaning
that the orbit evolves to a circle. The Newtonian attraction of the star to the
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heavy mass at the centre of the galaxy is balanced by the centrifugal force of the
spinning space-time which attracts the stars outwards. The angular momentum
is constant and given by:

J

mv
=

r

(1 + α2)1/2
= constant. (1.33)

For each spiral of the galaxy, the parameter α is characteristic of that spiral,
and the observed rotation curve is such that the velocity v is constant over large
distances from the centre, meaning that the velocity v is much greater than that
expected from Kepler’s equation:

v2 =
k

m

(
2
r
− 1
a

)
, F = − k

r2
. (1.34)

This fact is explained in this paper by an additional v due to Eq. (1.30), i.e. due
to spinning space-time. The simplest model of this paper may be elaborated in
many different ways.

1.3 Approximations for Angular Momentum and
Velocity

The angular momentum J of spinning space-time is given by Eq. (1.30). J is
assumed to be constant throughout the spiral arms of a galaxy. Experimentally
it is found that the velocity v of stars in the galaxy arms is constant too.
According to Eq. (1.30) then the spiral parameter α has to be variable with r.
Assuming this, the potential U Eq. (1.22) takes the form

U1(r) = −
J2
(
1 + α2(r)

)
2mr2

. (1.35)

Correspondingly the force can be written

F1(r) = −∂U1

∂r
= −

J2
(
1 + α2(r)

)
mr3

+
J2

mr2
α(r)α′(r) (1.36)

with

α′(r) =
dα(r)
dr

. (1.37)

In order to obtain the original force law which gives the logarithmic spiral orbits
we define a potential

U2(r) = −
J2
(
1 + α2(r)

)
2mr2

+
∫

J2

mr2
α(r) α′(r) dr. (1.38)

Then we get the original force

F2(r) = −∂U2

∂r
= −

J2
(
1 + α2(r)

)
mr3

(1.39)
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of spiral orbits. Now we make the ansatz

α(r) :=
r

r0
(1.40)

with a characteristic length r0. From Eq. (1.38) we then obtain

U2(r) = − J2

2mr2

(
1 +

(
r

r0

)2
)

+
J2 log(r)
mr2

0

. (1.41)

From the Lagrange Function

L = T − U2 (1.42)

and the Lagrange Equation

∂L

∂r
− d

dt

∂L

∂ṙ
= 0 (1.43)

the radial part of the equation of motion becomes

mr̈ = mrθ̇ − J2(1 + α2(r))
mr3

+
J2α(r)α′(r)

mr2
(1.44)

or with Eq. (1.40):

mr̈ = mrθ̇ −
J2

(
1 +

(
r
r0

)2
)

mr3
+

J2

mr2
0r

(1.45)

There is a strong centrifugal term proportional to 1/r now.
From Eq. (1.30) the angular momentum for a constant v = v0 becomes

J =
mv0r(

1 + ( rr0 )2
)1/2

(1.46)

(see Fig. 1.4) which in the limit r →∞ goes towards

J = mv0r0. (1.47)

The orbits can be derived from the Euler Lagrange equation. We make the
ansatz

r = r0 exp(α(r) θ) (1.48)

and will show that this fulfills the force law Eq. (1.39). From Eq. (1.48) follows

1
r

=
1
r0

exp(−α(r) θ) (1.49)
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Figure 1.4: Angular momentum J(r) for radius-dependent α.
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Figure 1.6: Potential for radius-dependent α, model of Eq. (1.40).

d

dθ

(
1
r

)
= −α(r)

r0
exp(−α(r) θ) (1.50)

d2

dθ2

(
1
r

)
=
α2(r)
r

(1.51)

The Euler Lagrange equation is

d2

dθ2

(
1
r

)
+

1
r

= −mr
2

J2
F (r), (1.52)

so

F (r) = − J2

mr3

(
1 + α2(r)

)
(1.53)

q.e.d.
The orbital velocity Eq. (1.29) is

v2 =
(
J

mr

)2 (
1 + α2(r)

)
. (1.54)

Inserting the above approach Eq. (1.40) for α leads to

v2 =
(
J

mr

)2
(

1 +
(
r

r0

)2
)

(1.55)

15



1.3. APPROXIMATIONS FOR ANGULAR MOMENTUM AND . . .

which again has a constant limit for large r:

v0 =
J

mr0
(1.56)

and is consistent with Eq. (1.47). It is shown in Fig. 1.5. The logarithmic
potential U2 which is induced by constant angular momentum is compared in
Fig. 1.6 with the pure spiral potential being proportional to 1/r2.

As an alternative approach, let’s start directly with the condition that Eq.
(1.30) is exactly constant:

J =
mv0r

(1 + α2(r))1/2
= J0 = const. (1.57)

From this condition we obtain α(r) directly:

α(r) =

√
r2

r2
0

− 1 (1.58)

with

r0 :=
J0

mv0
. (1.59)

Computeralgebra then delivers quite simple expressions for the potential and
force law:

U2 = mv2
0

(
log (r)− 1

2

)
, (1.60)

F2 = −mv2
0

r
. (1.61)

This is the potential and force law for spiralling orbits where angular momen-
tum and orbital velocity are strictly constant. The velocity condition changes
the spiral 1/r3 force law to a 1/r force law. The potential is a logarithmic func-
tion with a constant shift (see Fig. 1.7, in comparison to pure spiral potential).
It is known that a 1/r force is longer reaching than a Newtonian 1/r2 force.
This explains in a natural way why galaxies are developing spiral structures
outside the central bulge region. Work done on the star implies a negative val-
ued potential energy by convention, and an attractive force by convention. This
attracts the star outwards from the centre of the galaxy. To obtain a constant
velocity as observed, the second positive valued term of Eq. (1.38) is needed.
This means that the galaxy develops spirals of stars which reach a constant
velocity - the graph of velocity against r is a plateau.

In a third approach we start with the expression for the asymptotically
contant velocity which according to Eq. (1.54) is

v2 =
(
J0

mr

)2 (
1 + α2(r)

)
. (1.62)
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Figure 1.7: Potential for radius-dependent α, model of Eq. (1.58).

It is observed that in the limit r →∞ we have v → v0, so

1 + α2(r)
r2

→ 1
r2
0

(1.63)

with

r0 =
J0

mv0
(1.64)

as in Eq. (1.59). The force Eq. (1.53) therefore becomes

F2 = −mv2
0

r
(1.65)

which is self-consistently the same result as Eq. (1.61).

1.4 Simulation of Dynamical Galaxy Behaviour

Finally we describe a method for numerical solution of the galaxy problem.
According to [12] the equations of motion can be derived from the kinetic energy
Eq. (1.16) and potential energy Eq. (1.60) via the Lagrange function Eq. (1.42).
Besides the radial and angular coordinate, we introduce additional variables to
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Figure 1.8: Orbit for −1/r3 potential.

obtain differential equations of first order which can be solved by the Runge-
Kutta method:

ṙ = vr, (1.66)
θ̇ = ω, (1.67)

v̇r = rω2 +
1
m
F (r), (1.68)

v̇θ = −2
vr
r
ω. (1.69)

The first approach we analyse is the 1/r3 force law which should give spi-
ralling orbits. The problem is that such orbits are only obtained for a negative
force

F (r) = − 1
r3
. (1.70)

Then the orbits spiral inwards, not outwards as in galaxies. Taking the positive
value of F (r) does not give spiral orbits since the equations of motion do not
exhibit mirror symmetry in space. Therefore we restrict to the statement that
a time reversal t→ −t together with a sign reversal of the force F (r)→ −F (r)
gives at least conceptually the desired behaviour. Fig. 1.8 shows the orbits of
Eq. (1.70), Fig. 1.9 the velocity, angular momentum and total energy. The
velocity is not constant because a force component in diretction of θ would be
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Figure 1.9: Velocity, angular momentum and total energy for −1/r3 potential.

required to achieve this. Angular momentum and total energy are conserverd,
with exception near to the end of the calculation where numerical errors become
significant. This is because the radius of curvature of the orbit becomes very
small near to the center.

The next example is more realistic. We added a Neutonian potential with a
repulsive term γ/r

F (r) =
γ

r
− 1
r2

(1.71)

where γ has been adopted to a suitable value of 0.15775. In this combination we
obtain outward-spiralling orbits with a limit of a straight line as is predicted by
logarithmic spirals (Fig. 1.10). This is an indication that our result Eq. (1.61)
is able to predict the correct orbitals in connection with Newtonian attraction
in the inner region of a galaxy. From Fig. 1.11 the velocity components vr and
ω are shown. One sees that for t→∞ the angular component goes to zero and
the radial component dominates.

It has to be noted finally that in none of the simulations the velocity is
constant. The velocity is a dependent variable and is completely determined by
the Eqs. (1.66-1.69). To enforce constancy of velocity we have to define

ω =
J0

mr2
(1.72)

from constancy of angular momentum J0. Then ω is no more an independent
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Figure 1.10: Orbit for potential of type γ/r − 1/r3.

variable but defined by r. Therefore the equation system Eqs. (1.66- 1.69 would
have to be modified.
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