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Abstract

It is argued that anti-symmetry constraints govern the whole of unified field
theory, and determine the way in which new energy and counter-gravitational
devices should be designed within the ECE engineering model. The constraints
are a simple consequence of the anti-symmetry of the commutator of covari-
ant derivatives used to generate terms in any space time in any dimension in
Riemann geometry. Each term that is generated by the commutator is anti-
symmetric in the commutator indices. This simple result is developed as a law
of the field theory in general, and applied in this paper to electromagnetic and
gravitational theory within the context of the Einstein Cartan Evans (ECE)
generally covariant unified field theory.
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11.1. INTRODUCTION

11.1 Introduction

In Riemann geometry it is well known [1] that the covariant derivative is a fun-
damental concept. The commutator of covariant derivatives acts on any tensor
to produce the curvature and torsion tensors simultaneously [2] - [11]. These
tensors are combinations of terms, each of which takes the antisymmetry of the
commutator indices. The commutator method is valid in any spacetime and
in any dimension, and the result is independent of any other assumption. The
commutator is antisymmetric by definition, and it follows immediately that all
terms generated by a commutator are also antisymmetric in the same indices. In
Section 2 this simple result is developed for use with Cartan geometry and the
Einstein Cartan Evans (ECE) unified field theory and engineering model. It is
shown in a simple way that antisymmetry refutes the standard model of physics
in its gravitational and electromagnetic sectors. The demonstration is simple
and easily understood. In Section 3, the theory of antisymmetry constraint
is developed systematically in order to prepare for computer simulation of de-
vices that take electric power from spin connection resonance [2] - [11] (SCR).
The phenomenon of SCR is Euler Bernoulli resonance based on the presence of
the spin connection in ECE theory, and is a plausible explanation for the well
known Tesla resonances [12]. New energy circuits are already available in mi-
crochip format based on Tesla resonance, and are already being manufactured
and marketed [13]. There is no explanation for them in the standard model of
physics, which is easily shown by the commutator method to be deeply flawed
and obsolete.

11.2 The Commutator Antisymmetry Law

The commutator of covariant derivatives in Riemann geometry may act on a
four vector V ρ, for example to produce the following well known result [1]:

[Dµ, Dν ]V ρ = ( ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ)V ρ

− (Γλµν − Γλνµ)DλV
ρ.

(11.1)

Here Γλµν denotes the connection, defined by the action of the covariant deriva-
tive Dµ on the four vector:

DµV
ρ = ∂µV

ρ + ΓρµλV
λ. (11.2)

The curvature tensor is defined as:

Rρσµν := ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ (11.3)

and the torsion tensor by:

Tλµν = Γλµν−Γλνµ. (11.4)
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These quantities transform as tensors under the general coordinate transforma-
tion [1] - [11] but the connection does not transform as a tensor as is well known.
By definition, the commutator is antisymmetric in the indices µ and ν :

[Dµ, Dν ]V ρ = −[Dν , Dµ]V ρ. (11.5)

This means that if µ is replaced by ν and ν by µ , the sign of the commutator
is changed from positive to negative. If µ and ν are the same the commutator
is zero. The same result must therefore be true for each term on the right hand
side of Eq. (11.1), and each term must be antisymmetric in µ and ν . In the
limit of Minkowski spacetime, the connection vanishes, so the right hand side
becomes:

[Dµ, Dν ]V ρ = ( ∂µ ∂ν − ∂ν ∂µ)V ρ. (11.6)

In this limit, there are two terms on the right hand side, and each are antisym-
metric, so:

∂µ ∂νV
ρ = − ∂ν ∂µV

ρ, (11.7)

∂ν ∂µV
ρ = − ∂µ ∂νV

ρ. (11.8)

However, coordinate orthogonality means that:

∂µ ∂νV
ρ = ∂ν ∂µV

ρ, (11.9)

∂ν ∂µV
ρ = ∂µ ∂νV

ρ (11.10)

so we obtain the well known result:

∂µ ∂νV
ρ = ∂ν ∂µV

ρ = 0 (11.11)

which is the only possible solution of Eqs. (11.7) and (11.9). The antisymmetry
law therefore proves coordinate orthogonality, Q. E. D. If on the other hand it
is assumed that only the following combination is antisymmetric:

[ ∂µ, ∂ν ] V ρ = −[ ∂ν , ∂µ] V ρ (11.12)

there is no way of proving co-ordinate orthogonality from the commutator. In
this case, coordinate orthogonality becomes an assumption, and is not part of
a more general geometry.

Each of the six terms on the right hand side of Eq. (11.1) must be antisym-
metric. Therefore:

∂µΓρνσ = − ∂νΓρµσ, (11.13)

ΓρµλΓλνσ = − ΓρνλΓλµσ, (11.14)

Γλµν = −Γλνµ. (11.15)
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11.2. THE COMMUTATOR ANTISYMMETRY LAW

In the standard model of gravitation, the above antisymmetries are erroneously
overlooked, and arbitrary choices of antisymmetry are restricted to the following:

Rρσµν = −Rρσνµ, (11.16)

Tλµν = −Tλνµ. (11.17)

It is claimed erroneously that:

Γλµν = Γλνµ. (11.18)

Eq. (11.18) however leads to the result:

[Dµ, Dν ]V ρ = 0 (11.19)

so that all the terms on the right hand side of eq. (11.1) are zero, reductio ad
absurdum. Another way of seeing this error in the standard model is to assume:

µ = ν (11.20)

and it follows that all the terms on both sides of Eq. (11.1) are zero. There
is no symmetric part to a commutator nor to any term that is generated by a
commutator and so takes the indices of that commutator. It is not known why
such severe errors as the assumption (11.18) have been perpetrated for nearly
a century, but events like these happen many times in the history of science.
Another basic error of the standard model is that it asserts that the torsion
tensor:

Tλµν = Γλµν−Γλνµ (11.21)

may have a symmetric component. This is erroneous because the commutator
cannot have a symmetric component. This error is seen clearly from the fact
that in the standard model, the curvature tensor:

Rρσµν = −Rρσνµ (11.22)

is always treated as if it has no symmetric component, i.e.:

Rρσµν = Rρσµν(A) (11.23)

and if

µ = ν (11.24)

then

Rρσµν = 0. (11.25)

If the curvature is antisymmetric the torsion must also be antisymmetric:

Tλµν = −Tλνµ (11.26)
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and if:

µ = ν (11.27)

then

Tλµν = 0. (11.28)

This means that we recover Eq. (11.18) Q.E.D., i.e.:

Γλµν = −Γλνµ. (11.29)

However, in the standard model, the following error is made:

Tλµν = Γλµν−Γλνµ = 0 (11.30)

so that the connection is erroneously asserted to be:

Γλµν = Γλνµ. (11.31)

These fundamental inconsistencies of simple logic have been perpetrated
uncritically to such an extent that the torsion is almost unknown in standard
textbooks. This is what happens when logic is replaced by empty dogma, science
is rendered meaningless by habitual repetition of error. Nearly one hundred
years of research in gravitational physics have been wasted, and a tremendous
dogmatic inertia built up. In contrast ECE theory has already produced a
satisfactory cosmology without repetition of these errors [2] - [11].

The commutator antisymmetry law must be applied self consistently to the
whole of field theory. The ECE field theory for example is built directly on
Cartan geometry, in which the tetrad postulate is [1]- [11]:

Dµq
a
µ = ∂µq

a
ν + ωaµbq

b
ν − Γλµνq

a
λ = 0. (11.32)

Here qaν is the Cartan tetrad, and ωaµb is the Cartan spin connection. Using the
fundamental rules of Cartan geometry [1]:

ωaµbq
b
ν = ωaµν , Γλµνq

a
λ = Γaµν (11.33)

the tetrad postulate simplifies to:

∂µq
a
ν = Γaµν − ωaµν (11.34)

so that:

Γaµν = ∂µq
a
ν + ωaµν . (11.35)

The mixed index connection Γaµν is defined by:

Γaµν = qaλΓλµν (11.36)
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11.2. THE COMMUTATOR ANTISYMMETRY LAW

and from the commutator law, Eq. (11.18), is antisymmetric:

Γaµν = −Γaνµ. (11.37)

From Eq. (11.35), it follows that:

∂µq
a
ν + ωaµν = −( ∂νqaµ + ωaνµ), (11.38)

i.e.

∂µq
a
ν + ∂νq

a
µ + ωaµν + ωaνµ = 0 (11.39)

which is the antisymmetry constraint of Cartan geometry.
Eq. (11.39) is a new law of Cartan geometry, and must be used with Cartan

structure equations, the first of which defines the Cartan torsion as:

T aµν = ∂µq
a
ν − ∂νq

a
µ + ωaµν − ωaνµ. (11.40)

The ECE field theory is based on the hypothesis:

Aaµ = A(0)qaµ (11.41)

defining the electromagnetic potential, and the hypothesis:

F aµν = A(0)T aµν (11.42)

defining the electromagnetic field. The general antisymmetry constraint of elec-
trodynamics is therefore:

∂µA
a
ν + ∂νA

a
µ + ωaµbA

b
ν + ωaνbA

b
µ = 0 (11.43)

and it is seen that it is derived directly from the commutator in Eq. (11.1).
These consequences of the commutator antisymmetry law are developed in Sec-
tion 3. To end this section it is shown that the U(1) sector symmetry of the
standard model is fundamentally erroneous, as is its gravitational sector as just
shown. The standard gravitational sector is erroneous fundamentally because
it always uses the incorrect symmetry:

Γλµν = Γλνµ (11.44)

which leads to:

T aµν = qaλT
λ
νµ = 0. (11.45)

This is quite easily shown [2] - [11] to be inconsistent with basic geometry.
In the U(1) gauge theory of standard electrodynamics, methods are used

which are borrowed from Riemann geometry. In U(1) electrodynamics the co-
variant derivative is:

Dµ = ∂µ − igAµ (11.46)
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where g is a proportionality that is scalar valued. Here Aµ is the four potential.
The commutator of covariant derivatives acts on the gauge field ψ . Thus:

[Dµ, Dν ]ψ = [ ∂µ − igAµ, ∂ν − igAν ]ψ

= [ ∂µ, ∂ν ]ψ − ig[Aµ, ∂ν ]ψ − ig[∂µ, Aν ]ψ − g2[Aµ, Aν ]ψ.
(11.47)

The commutator antisymmetry law implies that:

[Dµ, Dν ]ψ = −[Dν , Dµ]ψ (11.48)

[∂µ, ∂ν ]ψ = −[∂ν , ∂µ]ψ (11.49)

[Aµ, ∂ν ]ψ = −[∂ν , Aµ]ψ (11.50)

[∂µ, Aν ]ψ = −[Aν , ∂µ]ψ (11.51)

[Aµ, Aν ]ψ = −[Aν , Aµ]ψ (11.52)

As in gravitational theory, each term on the right hand side of Eq. (11.47) is
antisymmetric, and as in gravitational theory:

∂µ∂νψ = −∂ν∂µψ = 0. (11.53)

Therefore:

[Dµ, Dν ]ψ = −ig[∂µ, Aν ]ψ + ig[∂ν , Aµ]ψ − g2[Aµ, Aν ]ψ. (11.54)

By definition:

[∂µ, Aν ]ψ = ∂µ(Aνψ)−Aν(∂µψ). (11.55)

Use the Leibnitz Theorem:

∂µ(Aνψ) = (∂µAν)ψ +Aν(∂µψ). (11.56)

Therefore:

[∂µ, Aν ]ψ = (∂µAν)ψ. (11.57)

Similarly:

[∂ν , Aµ]ψ = (∂νAµ)ψ. (11.58)

From Eqs. (11.50) and (11.51):

(∂µAν)ψ = −(∂νAµ)ψ, (11.59)

(∂νAµ)ψ = −(∂µAν)ψ (11.60)

and

∂µAν = −∂νAµ. (11.61)
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11.2. THE COMMUTATOR ANTISYMMETRY LAW

From Eq. (11.52):

[Aµ, Aν ] = −[Aν , Aµ]. (11.62)

Using these results:

[Dµ, Dν ]ψ = −ig(∂µAν−∂νAµ − ig[Aµ, Aν ])ψ. (11.63)

The following fundamental errors occur in the U(1) gauge field theory of
electrodynamics, often referred to as the U(1) sector of standard attempts at a
unified field theory.

1. It is claimed incorrectly that only the following combination of terms is
antisymmetric:

Fµν = −Fνµ (11.64)

where

Fµν = ∂µAν − ∂νAµ. (11.65)

There is no logic behind this claim, it is arbitrary, and Fµν is the electro-
magnetic field tensor in U(1) gauge field theory.

2. It is claimed incorrectly that:

[Aµ, Aν ] = 0. (11.66)

The inverse Faraday effect shows experimentally [2] - [11] that this claim is
incorrect, because the conjugate product of non-linear optics is observable ex-
perimentally in several ways. This has been known for sixty years, but the
U(11.1) dogma still adheres to Eq. (11.66).

As shown in papers 131 and 132 on www.aias.us Eq. (11.61) means that:

∇ϕ =
∂A
∂t

(11.67)

so:

∇×∇ϕ =
∂

∂t
(∇×A) = 0. (11.68)

Therefore:

∂B
∂t

= 0. (11.69)

In U(1) electrodynamics:

B =∇×A, (11.70)

E = −∂A
∂t
−∇ϕ (11.71)
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so the antisymmetry law leads to:

∇×E = 0, (11.72)

∂B
∂t

= 0. (11.73)

If A is non-zero and irrotational, E and B are static fields. In U(1) electro-
dynamics, there can be no radiation, an incorrect result. Even worse for the
standard model, the usual U(1) assumption for a static electric field is [1]:

A = 0 (11.74)

so the static electric field in U(1) gauge field theory is denoted:

E = −∇ϕ. (11.75)

If this assumption is used, then Eq. (11.67) implies:

E = 0, B = 0 (11.76)

which is reductio ad absurdum (reduction to absurdity), because in U(1) (stan-
dard electromagnetism) , there are no fields at all because of commutator anti-
symmetry.

In conclusion, it is seen that the simple commutator antisymmetry law means
that the standard model of physics is refuted in both its gravitational and elec-
tromagnetic sectors. In Section 3 the antisymmetry law is applied to ECE level
electrodynamics.

11.3 Antisymmetry in the ECE Engineering Model
In their most general form, the electric field strength (volts per metre) and
magnetic flux density (tesla or weber per square metre) of the ECE engineering
model are as follows:

Ea = −∇ϕa − ∂Aa

∂t
− cωa0bAb + cAb0ω

a
b , (11.77)

Ba =∇×Aa − ωab ×Ab. (11.78)

Here, the index a is that of an O(3) representation space, for example the
complex circular basis whose unit vectors are related to the Cartesian unit
vectors as follows [1] - [11], [14]:

e(1) =
1√
2

(i− ij), (11.79)

e(2) =
1√
2

(i + ij), (11.80)
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e(3) = k. (11.81)

These are related by an O(11.3) symmetry Lie algebra as follows:

e(1) × e(2) = ie(3)∗, (11.82)

e(3) × e(1) = ie(2)∗, (11.83)

e(2) × e(3) = ie(1)∗. (11.84)

The complex circular basis is the natural basis for states of circular polarization
of the electromagnetic field. The basis can be any basis with O(3) symmetry
that is different form the Cartesian basis defined by:

i× j = k, (11.85)

k× i = j, (11.86)

j× k = i. (11.87)

The presence of a is a fundamental geometrical or topological requirement. For
example the well known B(3) field of electromagnetism [2] - [11] is defined by
the conjugate product of non-linear optics as follows:

B(3)∗ = −igA(1) ×A(2) (11.88)

using the complex circular basis. Here A(1) and A(2) are complex conjugates
and describe a state of circular polarization. Therefore ϕa is the scalar potential
in a state of polarization denoted a, Aa is the vector potential of the same state.
The spin connection is defined in general by two indices, a and b, and summation
occurs over the index b . The spin connection is a four vector:

ωaµb = (ωa0b,−ωab ) (11.89)

and so is the potential:

Aaµ = (Aa0 ,−Aa). (11.90)

Finally the four derivative is defined as usual by:

∂µ = (
1
c

∂

∂t
,∇). (11.91)

Using the fundamental rules of Cartan geometry [1]:

ωaµν = ωaµbq
b
ν (11.92)

which means that the spin connection can be expressed in terms of one index
a. The fundamental ECE hypothesis (11.41), together with Eq. (11.39), is then
used to deduce that the antiymmetry constraint in ECE theory is:

∂µA
a
ν + ∂νA

a
µ + ωaµbA

b
ν + ωaνbA

b
µ = 0. (11.93)
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As in previous work the homogeneous field equations of ECE without a magnetic
monopole are:

∇ ·Ba = 0, (11.94)

∇×Ea +
∂Ba

∂t
= 0 (11.95)

and the inhomogeneous field equations are:

∇ ·Da = ρa, (11.96)

∇×Ha − ∂Da

∂t
= Ja (11.97)

where Da is the electric displacement, ρa is the electric charge density, Ha is the
magnetic field strength, and Ja is the electric current density. The constitutive
equations of ECE electrodynamics are:

Da = ε0Ea + Pa, Ba = µ0(Ha + Ma) (11.98)

where Pa is the polarization and Ma the magnetization. Here ε0 and µ0 are
the S.I. vacuum permittivity and vacuum permeability. More generally, ECE
electrodynamics allows for the possible existence of a magnetic charge density
and a magnetic current density [2] - [11], so that the right hand sides of Eqs.
(11.94) and (11.95) are non-zero. It has been shown [2] - [11] that the magnetic
four current density may arise form the interaction of free field electromagnetism
and free field gravitation.

Using Eq. (11.92) the ECE engineering model may be linearized, so that the
ECE electromagnetic field tensor is:

F aµν = ∂µA
a
ν + ∂νA

a
µ +A(0)(ωaµν − ωaνµ) (11.99)

constrained as follows by antisymmetry:

∂µA
a
ν + ∂νA

a
µ +A(0)(ωaµν + ωaνµ) = 0. (11.100)

In vector notation:

E−E(connection) = −∇ϕ− ∂A
∂t

, (11.101)

B−B(connection) =∇×A (11.102)

where

E(connection) = cA(0)ωE , (11.103)

B(connection) = A(0)ωB . (11.104)

The electric and magnetic spin connection vectors are:

ωE = ωXE i + ωY E j + ωZE k, (11.105)
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ωB = ωXB i + ωY B j + ωZB k (11.106)

where:

ωXE = −(ω01−ω10), ωXB = −(ω23−ω32),
ωY E = −(ω02 − ω20), ωY B = −(ω31−ω13),
ωZE = −(ω03−ω30), ωZB = −(ω12−ω21).

(11.107)

The electric antisymmetry constraints are therefore:

∂0A1 + ∂1A0 +A(0)(ω01 + ω10) = 0,

∂0A2 + ∂2A0 +A(0)(ω02 + ω20) = 0,

∂0A3 + ∂3A0 +A(0)(ω03 + ω30) = 0

(11.108)

and the magnetic antisymmetry constraints are:

∂1A2 + ∂2A1 +A(0)(ω12 + ω21) = 0,

∂3A1 + ∂1A3 +A(0)(ω31 + ω13) = 0,

∂2A3 + ∂3A2 +A(0)(ω23 + ω32) = 0.

(11.109)

In vector notation Eqs. (11.108) to (11.109) become:

−1
c

∂A
∂t

+∇A0 = −A(0)ΩE , (11.110)

∇×A = −A(0)ΩB (11.111)

where:

ΩE = −(ω01 + ω10)i− (ω02 + ω20)j− (ω03 + ω30)k, (11.112)

ΩB = −(ω23 + ω32)i− (ω31 + ω13)j− (ω12 + ω21)k. (11.113)

In summary, for each each state of polarization a:

E−E(connection) = −∇ϕ− ∂A
∂t

, (11.114)

B−B(connection) =∇×A, (11.115)

∇ϕ− ∂A
∂t

+ ϕ(0)ΩE = 0, (11.116)

∇×A +
ϕ(0)

c
ΩB = 0. (11.117)

Therefore:

E(ECE) = E−E(connection) = −2∇ϕ− ϕ(0)ΩE , (11.118)

B(ECE) = B−B(connection) = −ϕ
(0)

c
ΩB . (11.119)
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For practical applications, spin connection resonance (SCR) [2] - [11] is
important, because it is a plausible explanation for the Tesla resonances [12]
upon which basis new energy circuits are already being manufactured and mar-
keted [13]. These circuits use the following Euler Bernoulli resonance phe-
nomenon generated by the presence of the spin connection in the equations
of ECE electrodynamics. These are the only correct electrodynamics available
are present. The presence of SCR has been demonstrated in many ways [2]
- [11]. To demonstrate it in the presence of antisymmetry is important, and the
demonstration proceeds as follows. For each polarization a , Eq. (11.100) is:

Fµν = ∂µAν − ∂νAµ + ωµbA
b
ν − ωνbAbµ. (11.120)

To simplify the mathematics without loss of generality, consider the case where
there is only one state of polarization present:

a = b. (11.121)

Then Eq. (11.120) simplifies to:

Fµν = ∂µAν − ∂νAµ + ωµν − ωνµ (11.122)

with the antisymmetry constraint:

∂µAν + ∂νAµ + ωµν + ωνµ = 0. (11.123)

The electric field from Eq. (11.122) is [2] - [11]:

E = −∇ϕ0−
∂A
∂t
− ω0A + ωϕ0 (11.124)

and the magnetic field from Eq. (11.122) is [2] - [11]:

B =∇×A− ω ×A. (11.125)

The relevant four vectors are:

Aµ = (A0,−A) = (
ϕ0

c
,−A), (11.126)

ωµ = (ω0,−ω), (11.127)

∂µ = (
1
c

∂

∂t
,∇) (11.128)

with

A0 =
ϕ0

c
, A =

ϕ

c
. (11.129)

In vector notation, the constraint (11.123) for the electric field is:

∇ϕ0 − ωϕ0 =
1
c

∂ϕ

∂t
+ ω0ϕ. (11.130)
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For each a the Coulomb law without polarization being present is:

∇ ·E = ρ/ε0 (11.131)

where the electric field strength is:

E = −2(∇ϕ0 − ωϕ0) = −2(
1
c

∂ϕ

∂t
− ω0ϕ). (11.132)

In the Coulomb law there is only one, longitudinal polarization:

a = (3). (11.133)

Therefore:

∇2ϕ0 − (∇ · ω)ϕ0 − ω ·∇ϕ0 = −1
2
ρ/ε0 (11.134)

which produces Euler Bernoulli resonance [2] - [11], [14] if∇·ω is negative valued
and if the charge density is oscillatory. This is the fundamentally important
phenomenon of SCR in the Coulomb law, first evaluated in paper 63 of the
ECE series. There are many other types of SCR, and all are Tesla resonances.
None occur in U(1) and as argued, U(1) is incorrect.

It is possible to experiment with different solutions of the general antisym-
metry constraint (11.123), for example the Lindstrom constraint:

∂µAν = −ωνAµ, ∂νAµ = −ωµAν . (11.135)

In vector notation the Lindstrom constraint is:

E = −2 (∇ ϕ+
∂A
∂t

) = −cω0A + cA0ω (11.136)

for the electric field strength, and

B = 2∇×A = −2ω ×A (11.137)

for the magnetic flux density. Spin connection resonance is also compatible with
the Lindstrom constraint.
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