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Abstract

A novel antisymmetry law of Cartan geometry is developed from the funda-
mental antisymmetry of the commutator of covariant derivatives acting on any
tensor in any spacetime. The law is illustrated with respect to new fundamental
antisymmetries of the curvature and torsion tensors and curvature and torsion
forms. These laws are expressed in vector format and developed for use with the
Einstein Cartan Evans (ECE) theory of electrodynamics. The ECE electrody-
namical laws are summarized for ease of reference. Their Hodge dual structures
are developed and also summarized, and the fundamental properties of the ECE
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12.1. INTRODUCTION

potential added to the ECE engineering model. The antisymmetry constraints
are developed by Lindstrom and Eckardt in Section 4 for use with computer
simulation of new energy and counter gravitational devices. Tesla resonance is
recognized to be the various spin connection resonances of the ECE engineering
model.

Keywords: Commutator antisymmetry, antisymmetry law of Cartan geome-
try and ECE theory, Hodge duality, ECE electromagnetic potential, computer
simulation with ECE theory and antisymmetry constraints.

12.1 Introduction

In recent papers of this series [1] - [10] on the Einstein Cartan Evans (ECE) field
theory novel antisymmetry laws have been developed from the well known anti-
symmetry of the commutator of covariant derivatives acting on any tensor in any
spacetime of any dimension [11] . These laws are straightforward to understand
but are powerful constraints on electrodynamics and gravitation. They show
that theories of gravitation are incorrect fundamentally if they neglect space-
time torsion, and theories of electromagnetism are incorrect if they are based
on U(1) gauge symmetry. They introduce a fundamentally new antisymmetry
law into Cartan geometry itself, and this is developed in Section 2 in differential
form, tensor and vector notations. The vector format of this law is used to
summarize the ECE laws of electrodynamics which are the basis of the ECE
engineering model [1] - [10]. The latter is the only theory of electrodynamics
capable of describing Tesla resonance [12], a useful source of electric power. In
Section 3 the Hodge dual structures of the ECE field theory are summarized and
reviewed, and the properties of the ECE electromagnetic potential summarized
for use with the engineering model. In Section 4, the Lindstrom constraint of
Paper 133 is developed to produce a completely defined or well posed problem
for use with computer simulation of devices taking electric power from spacetime
through Tesla resonance, and for computer simulation of devices that produce
counter gravitation.

12.2 Geometrical Antisymmetry Laws and Ap-
plication to Physics

Consider the action of the commutator of covariant derivatives on the vector
V ρ in any spacetime of any dimension:

[Dµ, Dν ]V ρ = Dµ(DνV
ρ)−Dν(DµV

ρ). (12.1)

This equation is identically antisymmetric:

Dµ(DνV
ρ)−Dν(DµV

ρ) := −(Dν(DµV
ρ)−Dµ(DνV

ρ)) (12.2)
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CHAPTER 12. THE ANTISYMMETRY LAW OF CARTAN . . .

i.e.

Dµ(DνV
ρ)−Dν(DµV

ρ) := Dµ(DνV
ρ)−Dν(DµV

ρ) (12.3)

Q.E.D. Its only possible solutions are:

Dµ(DνV
ρ) = −Dν(DµV

ρ) (12.4)

because of antisymmetry in µ and ν . From fundamentals [1] - [11]:

Dµ(DνV
ρ) = ∂µ(∂νV ρ) + (∂µρνσ)V σ + Γρνσ∂µV

σ − Γλµν∂λV
ρ − ΓλµνΓρλσV

σ

+ Γρµσ∂νV
σ + ΓρµσΓσνλV

λ

(12.5)

Therefore when we consider Dν(DµV
ρ) , every term on the right hand side of

Eq. (12.5) must change sign when:

µ→ ν, ν → µ. (12.6)

In the limit of Minkowski spacetime:

Dµ(DνV
ρ)→ ∂µ(∂νV ρ) (12.7)

in which case:

∂µ(∂νV ρ) = −∂ν(∂µV ρ). (12.8)

However, in Minkowski spacetime, by coordinate orthogonality:

∂µ(∂νV ρ) = ∂ν(∂µV ρ). (12.9)

Therefore:

∂µ(∂νV ρ) = 0. (12.10)

For example, consider the position vector in two dimensions

V = r = Xi + Y j. (12.11)

In this case:

∂ V
∂X

= i,
∂ V
∂Y

= j (12.12)

and:

∂

∂Y
(
∂ V
∂X

) =
∂

∂X
(
∂ V
∂Y

) = 0, (12.13)

Q.E.D. Regrouping the algebra of Eq. (12.5): [1] - [11]:

[Dµ, Dν ]V ρ = (∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνµ − ΓρνλΓλµσ) V σ − (Γλµν − Γλνµ)DλV
ρ

= RρσµνV
σ − TλµνDλV

ρ
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(12.14)

where Rρσµν is the curvature tensor of any spacetime in any dimension, and
where Tλµν is its torsion tensor. Therefore:

∂µΓρνσ = −∂νΓρµσ, (12.15)

ΓρµλΓλνσ = −ΓρνλΓλµσ, (12.16)

Γλµν = −Γλνµ. (12.17)

If it is asserted for the sake of argument that:

Γλµν 6= −Γλνµ (12.18)

then it follows that Γλµν must have a symmetric component:

Γλµν = Γλνµ (12.19)

because any asymmetric matrix with lower indices µ and ν is by definition the
sum of a symmetric part (S) and antisymmetric part (A):

Γλµν = Γλµν(S) + Γλµν(A)

=
1
2

(Γλµν + Γλνµ)− 1
2

(Γλµν − Γλνµ).
(12.20)

The connection is not a tensor because it does not transform as a tensor under
the general coordinate transformation [1] - [11], but its lower two indices define
a matrix for each µν . However, if:

µ = ν (12.21)

then:

Γλµν = Γλνµ = 0 (12.22)

so Eq. (12.18) is not true, Q.E.D. Therefore:

Γλµν = −Γλνµ. (12.23)

Eqs. (12.15) and (12.16) are proven in the same way and are also directly the
result of the antisymmetry of the commutator:

[Dµ, Dν ]V ρ = −[Dν , Dµ]V ρ. (12.24)

There is no symmetric part to the commutator, which means that if the indices
µ and ν are the same, the commutator vanishes, and so do ALL the terms on
the right hand side of Eqs. (12.5) and (12.14).

The standard model [11] assumes incorrectly that only certain sums or dif-
ferences of terms are antisymmetric, i.e. it assumes:

Rρσµν = −Rρσνµ, Tλµν = −Tλνµ (12.25)
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where Rρσµν is the sum of four terms and Tλµν is the difference of two terms.
The standard model compounds these errors by assuming that:

Γλµν =? Γλνµ. (12.26)

This is a gross error because µ is assumed to be the same as ν, in which case
the commutator vanishes, and all terms on the right hand side of Eq. (12.14)
vanish.

The correct antisymmetry of the identically non-zero torsion tensor is:

Tλµν = −Tλνµ :6= 0 (12.27)

in which the connection is identically antisymmetric. The correct antisymme-
tries of the curvature tensor are:

Rρσµν = −Rρσνµ, (12.28)

∂µΓρνσ = −∂νΓρµσ, (12.29)

ΓρµλΓλνσ = −ΓρνλΓλµσ. (12.30)

Translating to vector notation:

∇×Rρ
σ1 = 0,

∂Rρ
σ2

∂t
= 0 (12.31)

where

Rρ
σ1 = Rρσ01i +Rρσ02j +Rρσ03k,

Rρ
σ2 = Rρσ23i +Rρσ31j +Rρσ12k.

(12.32)

Therefore there exists the novel identity of Riemann geometry:

∇×Rρ
σ1 +

1
c

∂Rρ
σ2

∂t
:= 0. (12.33)

The vector Rρ
σ1 is irrotational and the vector Rρ

σ2 is independent of time. De-
note:

Rρσµν := Aρσµν +Bρσµν (12.34)

where:

Aρσµν = ∂µΓρνσ − ∂νΓρµσ, (12.35)

Bρσµν = ΓρµλΓλνσ − ΓρνλΓλµσ. (12.36)

Then for each ρ and σ :

Aµν = ∂µΓν − ∂νΓµ (12.37)

Bµν = ΓµλΓλν − ΓνλΓλµ (12.38)
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The orbital antisymmetries are, for each ρ and σ :

A0i = ∂0Γi − ∂iΓ0 (12.39)

B0i = Γ0λΓλi − ΓiλΓλ0 (12.40)

Define the connection four vectors for each ρ and σ :

Γµ = (Γ0,−Γ),

Γµλ = (Γ0λ,−Γλ),

Γλµ = (Γλ0 ,−Γλ)

(12.41)

and the following vectors for each ρ and σ :

A1 = A01i +A02j +A03k,

A2 = A23i +A31j +A12k.
(12.42)

Then:

A1 = −∇Γ0 −
1
c

∂Γ
∂t
, (12.43)

A2 =∇× Γ. (12.44)

The antisymmetry law means that:

∇Γ0 =
1
c

∂Γ
∂t
. (12.45)

Therefore:

∇×A1 =
1
c

∂A2

∂t
= 0. (12.46)

Similarly:

∇×B1 =
1
c

∂B2

∂t
= 0 (12.47)

where, for each ρ and σ :

B1 = B01i +B02j +B03k,

B2 = B23i +B31j +B12k
(12.48)

and where for each ρ and σ :

B1 = −Γ0λΓ
λ + ΓλΓλ0 ,

B2 = Γλ × Γλ
(12.49)

Restoring the ρ and σ indices we recover Eqs. (12.31) and (12.33). These are the
fundamental equations of Riemann geometry in vector format, with the novel
antisymmetry constraints of previous work included.
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Similarly, geometrical antisymmetry is fundamentally important to Cartan
geometry, notably to the first Cartan Maurer structure equation:

T a = d ∧ qa + ωab ∧ qb (12.50)

and the second Cartan Maurer structure equation:

Rab = d ∧ ωab + ωac ∧ ωcb (12.51)

in standard [11] differential form notation. Here T ais the torsion form, d ˆ is
the exterior derivative, qa is the tetrad form, ωab is the spin connection form
and Rab is the curvature form. Considering the torsion, Eq. (12.50) in tensor
notation is:

T aµν = ∂µq
a
ν − ∂νqaµ + ωaµbq

b
ν − ωaνbqbµ (12.52)

where by definition [11]:

ωaµν = ωaµbq
b
ν (12.53)

To translate Eq. (12.52) to vector notation, the torsion is analysed in terms of
its orbital component:

T a0i = ∂0q
a
i − ∂iqa0 + ωa0bq

b
i − ωaibqb0, (12.54)

i = 1, 2, 3,

and its spin component:

T aij = ∂iq
a
j − ∂jqai + ωaibq

b
j − ωajbqbi , (12.55)

j = 1, 2, 3.

Define the vectors:

Ta(orb.) = T a01i + T a02j + T a03k (12.56)

Ta(sp.) = T a23i + T a31j + T a12k (12.57)

The torsion is defined in terms of the tetrad and spin connection, which are
both four-vectors as follows:

qaµ = (qa0 ,−qa), (12.58)

ωaµb = (ωa0b, −ωab ) (12.59)

in a four dimensional spacetime. The four derivative is defined with a sign
change as follows:

∂µ = (
1
c

∂

∂t
,∇). (12.60)
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It follows that:

Ta(orb.) = −1
c

∂qa

∂t
−∇qa0 − ωa0bqb + ωabq

b
0 (12.61)

and:

Ta(sp.) =∇× qa − ωab × qb (12.62)

which is the first Cartan Maurer structure equation in terms of vectors.
In Paper 133 of the ECE series (www.aias.us) it was shown that the funda-

mental tetrad postulate of Cartan geometry [1] - [11] may be expressed as:

Γaµν = ∂µq
a
µ + ωaµν . (12.63)

The fundamental antisymmetry (12.23) therefore implies that:

∂µq
a
ν + ωaµν = −(∂νqaµ + ωaνµ) (12.64)

i.e.:

∂µq
a
ν + ∂νq

a
µ + ωaµbq

b
ν + ωaνbq

b
µ = 0 (12.65)

which is a novel and fundamental constraint on the first Cartan Maurer structure
equation:

T aµν = ∂µq
a
ν − ∂νqaµ + ωaµbq

b
ν − ωaνbqbµ. (12.66)

The Cartan Bianchi identity [1] - [11] in differential form notation is:

d ∧ T a := ja (12.67)

where the current ja is defined as:

ja = Rab ∧ qb − ωab ∧ T b. (12.68)

In tensor notation, Eq. (12.69) is:

∂µT
a
νρ + ∂ρT

a
µν + ∂νT

a
ρµ = jaµνρ + jaρµν + jaνρµ (12.69)

where:

jaµνρ = Raµνρ − ωaµbT bνρ (12.70)

and so on. In vector notation, Eq. (12.69) is expressed as two equations:

∇ ·Ta(sp.) = ja0 (12.71)

and

∇×Ta(orb.) +
1
c

∂Ta(sp.)
∂t

= ja (12.72)
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where the time-like part of the current is:

ja0 = −(ja123 + ja312 + ja213) (12.73)

and where the space-like part is:

ja = jaX i + jaY j + jaZk (12.74)

where

jaX = −(ja012 + ja201 + ja120) (12.75)

and so on. For each a :

Tµν =


0 T01 T02 T03

T10 0 T12 T13

T20 T21 0 T23

T30 T31 T32 0



=


0 TX(orb.) TY (orb.) TZ(orb.)

−TX(orb.) 0 −TZ(sp.) TY (sp.)
−TY (orb.) TZ(sp.) 0 −TX(sp.)
−TZ(orb.) −TY (sp.) TX(sp.) 0

 .

(12.76)

The homogeneous field equations of ECE electrodynamics, and of the ECE
engineering model, are based directly on this geometry [1] - [11]. It is also known
from recent work that the field equations must be constrained by antisymmetry
(Eq. (12.65) in tensor notation). The basic ECE hypothesis is:

F aµν = A(0)T aµν (12.77)

where cA(0) has the units of volts and in ECE theory is a basic property of the
vacuum observable in the radiative corrections and also in Tesla resonance. In
general, the homogeneous field equations are:

∂µF̃
µν = J̃ν/ε0 (12.78)

where F̃µν is the electromagnetic field tensor, and where J̃ν is the homogeneous
or magnetic four current density. There is no geometrical reason why J̃ν should
be zero in general. From experimental data in the laboratory, it is claimed that:

J̃ν = 0. (12.79)

Accepting this claim for the sake of argument, it follows that the homogeneous
field equations in vector notation are:

∇×Ea +
∂Ba

∂t
= 0 (12.80)

and:

∇ ·Ba = 0. (12.81)
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For each a , the field tensor F̃µν is:

F̃µν =


0 −cBX −cBY −cBZ

cBX 0 EZ −EY
cBY −EZ 0 EX
cBZ EY −EX 0

 (12.82)

and is the Hodge dual of

Fµν =


0 −EX −EY −EZ
EX 0 −cBZ cBY
EY cBZ 0 −cBX
EZ −cBY cBY 0

 (12.83)

The Hodge duality between these tensors is defined (see section 3) as:

F̃µν =
1
2
εµνρσFρσ (12.84)

where εµνρσis the totally antisymmetric four-dimensional unit tensor defined by:

ε0123 = −ε1230 = ε2301 = −ε3012 = 1

ε1023 = −ε2130 = ε3201 = −ε0312 = −1

ε1032 = −ε2103 = ε3210 = −ε0321 = 1

ε1302 = −ε2013 = ε3120 = −ε0231 = −1
etc.

(12.85)

12.3 Hodge Duality, Inhomogeneous Field Eqau-
tion and Electromagnetic Potential

The Hodge duality (12.84) means that for each a , elements of the field tensor
and its Hodge dual are related as follows:

F̃ 01 = F 23; F̃ 02 = F 31; F̃ 03 = F 12 (12.86)

F̃ 12 = F 30; F̃ 31 = F 20; F̃ 23 = F 10. (12.87)

It is seen that this is a re-arrangement of a four dimensional antisymmetric
tensor to give another four dimensional antisymmetric tensor. The indices in
Eq. (12.86) are in cyclic permutation:

0123, 0231, 0312 (12.88)

and also those in Eq. (12.87):

1230, 3120, 2310 (12.89)
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Eqs. (12.86) and (12.87) mean that there are two ways of writing an antisym-
metric tensor in four dimensions. The basic field tensors of the ECE engineering
model are therefore related by Eqs. (12.86) and (12.87) and are defined by Eqs.
(12.82) and (12.83).

Consider the fundamental commutator structure of Riemann geometry:

[Dµ, Dν ]V = RσµνV
σ − TλµνDλV. (12.90)

Raising indices term by term gives:

[Dµ, Dν ]V = RρσµνV σ − TλµνDλV. (12.91)

The Hodge duals of the terms appearing in this equation are defined as follows:

[Dµ, Dν ]HDV
ρ =

1
2
‖g|1/2εµναβ [Dα, Dβ ]V ρ (12.92)

R̃ρσµν = [Dµ, Dν ]HDV
ρ (12.93)

T̃λµν =
1
2
‖g|1/2εµναβTλαβ (12.94)

where ‖g|1/2 is the square root of the modulus or positive value of the determi-
nant of the metric [1] - [11]. This is a weighting factor used to define the Hodge
dual in the general four dimensional spacetime. In Eq. (12.91) it cancels out
however. By definition [1] - [11], the antisymmetric tensor in Eqs. (12.92) to
(12.94) is the Minkowski spacetime tensor.

Therefore:

[Dµ, Dν ]HDV
ρ = R̃ρσµνV

σ − T̃λµνDλV
ρ (12.95)

results from Eq. (12.90). For example, if we consider:

[D2, D3]V ρ = Rρσ23V
σ − Tλ23DλV

ρ (12.96)

then:

[D0, D1]HDV
ρ = R̃ρσ01V

σ − T̃λ01DλV
ρ (12.97)

and the commutator has been rearranged. Its indices have been changed from
2,3 to 0,1 using an antisymmetric unit tensor. Therefore:

[D0, D1]HD = [D2, D3]
[D0, D2]HD = [D3, D1]
[D0, D3]HD = [D1, D2]
[D1, D2]HD = [D3, D0]
[D3, D1]HD = [D2, D0]
[D2, D3]HD = [D1, D0]

(12.98)
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and Eq. (12.95) is an example of Eq. (12.90). This means that the tensors
R̃ρσµν and T̃λµν are related to each other in the same way as the tensors Rρσµν
and Tλµν .

The way that Rρσµν and Tλµν are related to each other is given by the
Cartan Bianchi identity:

D ∧ T a := Rab ∧ qb (12.99)

so R̃ρσµν and T̃λµν are related to each other by the identity:

D ∧ T̃ a := R̃ab ∧ qb (12.100)

which is the Cartan Evans identity. In tensor notation Eq. (12.99) becomes
the homogeneous field equation of ECE theory, and Eq. (12.100) becomes the
inhomogeneous field equation. These are respectively:

DµT̃
aµν := R̃a µν

µ (12.101)

and

DµT
aµν := Ra µν

µ . (12.102)

For each a in these equations:

T̃ 01 = T 23; T̃ 02 = T 31; T̃ 03 = T 12

T̃ 12 = T 30; T̃ 31 = T 20; T̃ 23 = T 10
(12.103)

and for each a and b:

R̃01 = R23; R̃02 = R31; R̃03 = R12

R̃12 = R30; R̃31 = R20; R̃23 = R10
(12.104)

In tensor notation, and using the fundamental ECE hypothesis (12.77), these
equations become the homogeneous field equation of ECE electrodynamics:

∂µF̃
aµν = J̃aν/ε0 (12.105)

and the inhomogeneous field equation:

∂µF
aµν = Jaν/ε0. (12.106)

If the experimental claim for the absence of magnetic four current density is
accepted, then:

∂µF̃
aµν = 0 (12.107)

and

∂µF
aµν = Ja/ε0. (12.108)
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In vector notation:

∇ ·Ba = 0

∇×Ea +
∂Ba

∂t
= 0

∇ ·Ea = ρa/ε0

∇×Ba − 1
c

∂Ea

∂t
= µ0Ja

(12.109)

Note carefully that the vector notation subsumes the existence of the metric.
The latter is not known in general because the equations are not written in a
Minkowski spacetime. They are written in a general spacetime. The metric is
used to raise and lower indices [1] - [11] as usual, so care has to be taken to use
a consistent scheme of calculation throughout. See the accompanying notes for
paper 134 for more details.

As in previous work the electric and magnetic fields are related to the po-
tential four vector and spin connection four vector, giving the following results:

Ea = −c∇Aa0 −
∂Aa

∂t
− c ωa0bAb + cAb0ω

a
b (12.110)

and

Ba =∇×Aa − ωab ×Ab. (12.111)

The potential four vector of ECE theory is a vector valued one-form, i.e. a
mixed index rank two tensor which is a one-form for each a :

Aaµ = (Aa0 ,−Aa) (12.112)

and the spin connection is a tensor valued one-form which is a one-form for each
aand b:

ωaµb = ( ωa0b,−ωab ). (12.113)

For each a therefore, Φa is the time-like and scalar valued potential in volts,
and for each a, Aais the space-like and vector valued potential. By definition:

Φa = cAa0 (12.114)

and Aa0 is scalar-valued for each a. Quantities such as Aai , i = 1, 2, 3 are
components of the space-like three-vector part of the four-vector Aaµ for each a.
If the complex circular basis is used then by definition the following components
vanish:

A
(1)
Z = A

(2)
Z = A

(3)
X = A

(3)
Y = 0. (12.115)

By definition, the electric and magnetic fields are space-like three-vectors, in
which:

a = (1), (2), (3). (12.116)
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Similarly the vector potential is a space-like three-vector, taking the a indices
defined in Eq. (12.116). Therefore:

E(0) = B(0) = A(0) = 0 (12.117)

and:

E
(0)
i = B

(0)
i = A

(0)
i = 0 (12.118)

where:

A(0)
µ = (

Φ(0)

c
, 0). (12.119)

The magnetic field of the ECE engineering model is therefore:

Ba =∇×Aa − ωab ×Ab (12.120)

a, b = (1), (2), (3)

and the electric field of the ECE engineering model is therefore:

Ea = −∇Φa − ∂Aa

∂t
− c ωa0bAb + cAb0ω

a
b , (12.121)

a = (1), (2), (3); b = (0), (1), (2), (3).

In the definition of the electric field the components Aa0 appear. They are
time-like and scalar-valued for all a. In summary:

Aaµ = (
Φa

c
,Aa), a = (1), (2), (3), (12.122)

A(0)
µ = (

Φ(0)

c
, 0).

Therefore Φ(0) is the scalar potential of a scalar wave and Φ(i) are scalar poten-
tials for waves of polarizations:

(i) = (1), (2), (3). (12.123)

In the next section the antisymmetry laws will be applied to this engineering
model in order to define a well posed problem for the computer simulation of
devices.

12.4 Electromagnetic Equations Suitable for Nu-
merical Analysis

In the previous section, general equations in a vector format were presented for
the electromagnetic portion of the ECE theory. A completely specified set of
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equations for the electromagnet portion of the ECE theory is available is one
restricts the model to that of a single polarization. The equations can be written
in a compact elegant format if one restricts the solution to that specified by the
Lindstrom constraint [5]. In this case, the complete set of equations for a single
polarization is

∇ ·B = 0, (12.124)

∇×E +
∂B
∂t

= 0, (12.125)

∇ ·E = ρ/ε0, (12.126)

∇×B− 1
c2
∂E
∂t

= µ0J (12.127)

with the field intensities defined by

E = −∇Φ− ∂A
∂t
− ω0A + ωΦ, (12.128)

B =∇×A− ω ×A. (12.129)

The electric component of the antisymmetry equation for a single polarization
is

∇Φ− ∂A
∂t
− ω0A − ωΦ = 0 (12.130)

and the magnetic antisymmetry relation restricted by the Lindstrom constraint
is

∇×A = −ω ×A. (12.131)

If we apply the antisymmetry equations (12.130) and (12.131) to the field inten-
sities E and B we see two independent definitions for E and a single definition
for B, namely

E = −2
∂A
∂t
− 2ω0A (12.132)

or

E = −2∇Φ + 2ωΦ (12.133)

and

B = 2∇×A. (12.134)

B is obviously compatible with Gauss’ Law, Eq. (12.124).
Applying the two alternative equations (12.132) and (12.133) for E , and

(12.134) for B , to Faraday’s Law, Eq. (12.125) gives for both cases:

∇× (ωΦ +
∂A
∂t

) = 0, (12.135)
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∇× (ω0A) = 0. (12.136)

Note that if we take the curl of Eq.(12.130) and apply Eq. (12.136) we get Eq.
(12.135) meaning that Eq. (12.135) contains no new information that is not
already given by the electric component of the antisymmetry equations.

Now we derive three alternative formulations for the field equations in po-
tential and spin connection formulation. Using Eqs. (12.133) and (12.134) and
inserting them into Faraday’s Law (12.125), Coulomb’s Law (12.126) and the
Ampere-Maxwell Law (12.127) we obtain

∇× (ωΦ)− ∂

∂t
(ω ×A) = 0 (12.137)

−∇2Φ +∇ · (ωΦ) =
1

2ε0
ρ (12.138)

−∇× (ω ×A)− 1
c2
∂

∂t
(∇Φ− ωΦ) =

1
2
µ0J (12.139)

Eq. (12.138) is the well-known form of the resonant Coulomb Law. Eqs. (129-
131) represent a set of seven equations for seven unknowns ω,A,Φ , but accord-
ing to Appendix A, the Coulomb and Ampere-Maxwell Law are not independent
from one another. This can also be seen by the following: Take the divergence
of Eq. (12.139):

1
c2
∂

∂t
(−∇2Φ +∇ · (ωΦ)) =

1
2
µ0∇ · J. (12.140)

Time integration of this equation gives

−∇2Φ +∇ · (ωΦ) =
1

2ε0
ρ (12.141)

with

ρ =
∫
∇ · Jdt. (12.142)

So there is a connection between current and charge density (continuity equa-
tion) which must be respected to obtain linear dependence of Eqs. (12.138) and
(12.139). If both quantities are chosen independently as normally is done for
modeling real systems, all equations are linearly independent. Please note that
this consideration cannot be transferred to the Gauss and Faraday Laws since
there are no density terms at the right-hand side.

We derive a second version of the equation set by starting with Eqs. (12.132)
and (12.134). Faraday’s Law (12.125) then reads

∇× (−2
∂A
∂t
−−2ω0A) + 2

∂

∂t
(∇×A) = 0 (12.143)

which can be simplified to

∇× (ω0A) = 0 (12.144)
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and is identical to Eq. (12.136). The Coulomb Law and Ampere-Maxwell take
the form

∇.∂A
∂t

+∇ · (ω0A) =
1

2ε0
ρ, (12.145)

∇×∇×A +
1
c2
∂2A
∂t2

+
1
c2
∂

∂t
(ω0A) =

1
2
µ0J. (12.146)

Eq. (12.145) is compatible with (12.144) and tells that ω0A represents a pure
source field. Eqs. (12.145) and (12.146) represent four equations for four vari-
ables ω0, A. As discussed before, these equations are independent if the charge
and current density are chosen in an unrelated way. This form of the electro-
magnetic field equations is most simple and can be compared with other known
equations of physics. Eq. (12.146) is a wave equation in three dimensions with
transversal and longitudinal solutions. This goes beyond Maxwellian electro-
dynamics. Eq. (12.145) is a non-linear diffusion equation. The non-linearity
is caused by the spin connection, indicating that there is a flow of potential
present in addition to standard theory. This could be considered to represent
interaction with a surrounding vacuum (or space time) which is the source of
energy in case of resonance effects.

Now we derive the third version of the equation set. Although not necessary,
Eq. (12.136) means that we can write

ω0A = −∂
∂t

(∇ψ) (12.147)

where the time derivative has been introduced for elegance only. It is shown in
the Appendix A, that Coulomb’s Law (12.126) and the Maxwell–Ampere Eq.
(12.119) reduce to three independent equations. If we substitute (12.132) and
(12.134) into (12.126) and (12.127), we get

∇ · ∂A
∂t

+∇ · (ω0A) = − 1
2ε0

ρ, (12.148)

∇×∇×A +
1
c2
∂2A
∂t2

+
1
c2
∂

∂t
(ω0A) =

1
2
µ0J. (12.149)

Using the vector identity

∇×∇×A =∇(∇ ·A)−∇2A (12.150)

time-integrating Eq. (12.148), and substituting the expression for ∇ · A into
Eq. (12.149) we have immediately

(−∇2 +
1
c2
∂2

∂t2
)(A +

∫
ω0Adt) =

1
2
µ0J +

1
2

∫ ∇ρ
ε0

dt (12.151)

Using Eq. (12.147), this can be written more elegantly as

(−∇2 +
1
c2
∂2

∂t2
)(A−∇Φ) =

1
2
µ0J +

1
2ε0

∫
∇ρ dt. (12.152)
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By using Eq. (12.132) we find∫
E dt = −2A− 2

∫
ω0A dt = −2A + 2∇ψ (12.153)

which term appears in (12.152). Alternatively, (12.153) is according to (12.133):∫
E dt = −2

∫
∇Φ dt+ 2

∫
ωΦ dt. (12.154)

Substituting this alternative form of (12.153) into (12.152), we obtain

(−∇2 +
1
c2
∂2

∂t2
)(
∫
∇Φdt−

∫
ωΦ dt) =

1
2
µ0J +

1
2ε0

∫
∇ρ dt (12.155)

or after taking the time derivative:

(−∇2 +
1
c2
∂2

∂t2
)(∇Φ− ωΦ) =

1
2
µ0
∂J
∂t

+
1

2ε0
∇ρ. (12.156)

In total, Equations (12.147), (12.152) and (12.156) represent nine equations in
nine unknowns:

ω0A = −∂
∂t

(∇ψ) (12.157)

(−∇2 +
1
c2
∂2

∂t2
)(A−∇ψ) =

1
2
µ0J +

1
2ε0

?∇ρdt (12.158)

(−∇2 +
1
c2
∂2

∂t2
)(∇Φ− ωΦ) =

1
2
µ0
∂J
∂t

+
1

2ε0
∇ρ (12.159)

The equations are entirely independent, and so represent a balanced set.
It is interesting to note how singularities can arise in the solution scenario.

For example, if one takes the cross product of the electric portion of the anti-
symmetry equation (12.128) with A, one gets

∇Φ×A− ∂A
∂t
×A− ω0A×A−−Φω ×A = 0. (12.160)

Assuming that the time derivative of A is parallel to A, this simplifies to

∇Φ×A = Φω ×A. (12.161)

Eq. (12.131) can finally be used to remove ω ×A :

∇×A = − 1
Φ
∇Φ×A. (12.162)

Singularities occur whenever Φ is zero and∇Φ and A are not. Coupled with the
obvious driven resonances in (12.158) and (12.159), a rich supply of non-linear
solutions becomes available.
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Finally we mention that the engineering model reduces to standard electro-
magnetic theory if the constraint (12.130) is formulated in a more restricted
form; see Appendix B. This explains the occurrence of the factor of 2 between
ECE and standard theory.

ACKNOWLEDGMENTS
The British Government is thanked for a Civil List pension to MWE and the
TGA for gold medals to MWE and HE. Colleagues worldwide are thanked for
many interesting discussions.

171



12.5. APPENDIX A - DEPENDENCE OF THE COULOMB AND . . .

12.5 Appendix A - Dependence of the Coulomb
and Gauss Law on the Ampère-Maxwell Law

A proof is given here that Coulomb’s Law and the Maxwell-Ampere Law reduce
to three independent equations given that there is a conservation of charge. If
we write Coulomb’s Law with conservation of charge, and the Maxwell-Ampere
Law in matrix form, we have 0 − ∂

∂z
∂
∂y

∂
∂z 0 − ∂

∂x

− ∂
∂y

∂
∂x 0

BxBy
Bz

− 1
c2

 ∂
∂t 0 0
0 ∂

∂t 0
0 0 ∂

∂t

ExEy
Ez

 = µ0

JxJy
Jz

 , (A-1)

(
∂
∂x

∂
∂y

∂
∂z

)ExEy
Ez

 =
1
ε0

∫
∇ · J dt. (A-2)

If in Eq. (A-1), we take ∂
∂x of the first row, ∂

∂y of the second row, and ∂
∂z of the

third row, we get 0 − ∂2

∂x∂z
∂2

∂x∂y
∂2

∂y∂z 0 − ∂2

∂y∂x

− ∂2

∂y∂z
∂2

∂x∂z 0


BxBy
Bz

− 1
c2

 ∂2

∂x∂t 0 0
0 ∂2

∂y∂t 0
0 0 ∂2

∂z∂t


ExEy
Ez


(A-3)

= µ0

 ∂
∂xJx
∂
∂yJy
∂
∂zJz

 .

If we add to row 1 the sum of rows 2 and 3, this becomes 0 0 0
∂2

∂y∂z 0 − ∂2

∂y∂x

− ∂2

∂y∂z
∂2

∂x∂z 0

− 1
c2

BxBy
Bz




∂2

∂x∂t
∂2

∂y∂t
∂2

∂z∂t

0 ∂2

∂y∂t 0
0 0 ∂2

∂z∂t


ExEy
Ez



= µ0

 ∂
∂xJx + ∂

∂yJy + ∂
∂zJz

∂
∂yJy
∂
∂zJz

 .

(A-4)

We note that the equation given by row 1 is just Coulomb’s equation (A-2). Thus
the set of four equations has been reduced to three independent equations. That
is to say, Coulomb’s Law adds nothing to the Maxwell-Ampere equation given
that conservation of charge applies.

A similar argument can be made for the pair of equations given by Gauss’s
Law and Faraday’s Law, reducing the number of equations from four to three.
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12.6 Appendix B - Derivation of Standard Elec-
tromagetic Theory from Specialized Anti-
symmetry Constraints

We show that the Lindstrom magnetic constraint plus a particular solution to
the electric constraint reduces engineering model II to standard electromagnetic
theory. In comparing ECE electromagnetic theory to standard electromagnetic
theory, it has been noted that if the spin connection is reduced to zero in the
ECE theory, that the definitions of electric and magnetic fields in terms of the
electric and magnetic potentials reduce to that of traditional electromagnetic
theory, i.e.

E = −∂A
∂t
−∇Φ, (B-1)

B =∇×A. (B-2)

These forms violate the antisymmetry conditions of ECE theory and in so doing
generally invalidate standard electromagnetic theory.

Let us apply the following particular solutions to the antisymmetry equations
ie.

ωΦ = −∂A
∂t

, (B-3)

ω0A =∇Φ, (B-4)

ω ×A = −∇×A. (B-5)

These satisfy the antisymmetry equations, which we will now apply to the ECE
engineering model for a single polarization, called model II.

Using equations (B-3) through (B-5) the electric and magnetic field of the
engineering model II become

E = −2
∂A
∂t
− 2∇Φ, (B-6)

B = 2∇×A. (B-7)

Traditional electromagnetic theory (Jackson) defines the electric and magnetic
potential through the use of Gauss’ and Faraday’s Law, namely, since

∇ ·B = 0 (B-8)

we can write

B =∇× a. (B-9)

Comparing (B-9) to (B-7) we see

a = 2A. (B-10)
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Substituting (B-9) into Faraday’s equation

∇× E +
∂B
∂t

= 0 (B-11)

gives

∇×E = −∇× ∂a
∂t

(B-12)

which has

E = −∂a
∂t
−∇ϕ (B-13)

as the only solution. Note that we will use lower case symbols for the traditional
electromagnetic theory.

Comparing (B-13) to (B-6) gives

ϕ = 2Φ. (B-14)

This shows that the engineering model II equations reduce to standard elec-
tromagnetic equations given the restrictions (B-3) through (B-5), which are a
particular solution to the antisymmetry equations.

In this particular example, the fundamental comparison is not setting the
spin connection to zero, but rather setting

B =∇× a =∇×A− ω ×A = 2∇×A (B-15)

and imposing the particular solutions (B-3) through (B-5).
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