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Abstract. 

 
                  The fermion equation is solved for the spectra of atomic hydrogen and helium. It 

is shown that the hydrogenic wavefunctions must be combinations of spin up and spin down 

wavefunctions, a result that is compatible with the fundamental Lorentz transforms of the 

right and left Pauli spinors. A summary of the relevant operator properties is given and key 

notation implemented for clarity. The fine structure of atomic H emerges straightforwardly 

from the angular part of the wavefunctions and the spin orbit coupling term. A summary of 

the solution for H is given for ease of reference and the Pauli Exclusion Principle derived 

from a straightforward use of parity inversion applied to the complete helium wavefunction.  
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1. Introduction.  

 
                     In the two preceding papers of this series [1–10] the first single particle fermion 

equation of physics has been derived and developed. It is given the appellation “fermion 

equation” to distinguish it from the Dirac equation. The fermion equation has multiple 

advantages which are being developed systematically [11]. Notably, the fermion equation 

removes the incorrect notion of “negative energy” from physics and therefore removes the 

need for a multi fermion interpretation [12] of the Dirac equation. It has been shown in UFT 

172 and 173 (www.aias.us) that the fermion equation is an expression in one single first order 

differential equation of the two fundamentally important Lorentz transforms of the right and 

left Pauli spinors [12]. The fermion equation is preferred by Ockham´s Razor to the Dirac 

equation because it expresses the fermion field in terms of the two by two Pauli matrices and 

produces rigorously non negative energy.  The origin of the fallacy of negative energy in 

physics has been shown to be Dirac´s incorrect choice of his four by four gamma matrices - 

the “standard representation”. This error has been repeated dogmatically for eighty five years 

and has resulted in elaborate mathematical contrivances in quantum field theory and quantum 

electrodynamics. The fermion equation makes these complications unnecessary by Ockham´s 

Razor.  

 

                    In Section 2 a summary is given for ease of reference of the operator properties 

used in this paper. In Section 3, details of the solution of the fermion equation are given for 

atomic H, and ket notation adopted for clarity. Some details are given of how the non 

relativistic quantum mechanics emerges as a limit of the relativistic theory. In Section 4 the 

fine spectral structure of the H atom is derived by straightforward consideration of the 

angular part of the wavefunction and the spin orbit term of the hamiltonian. Finally in Section 

5 the Pauli Exclusion Principle is derived straightforwardly using the helium atom as an 

example. The fundamental origin of the principle is the fact that the hydrogenic 

wavefunctions must be combinations of spin up and spin down states, a conclusion that 

emerges from the fermion equation but not from the Dirac equation.   

 

 

2. Summary of operator properties.  

 
                  The basic operator in relativistic quantum mechanics [13, 14] is:  

 

 

�̂   =        ��. �� + ћ            0                                                          (1) 

                    0          –  ��. �� – ћ       
 

where ��  is itself regarded as an operator [13]. Here �� is the orbital angular momentum 
operator and ћ is the reduced Planck constant with dimensions of angular momentum. Thus:  
 

�̂ ψ = – � ћ ψ    ,    �  = ± ( j + 


�
 )                                     (2) 

 

The square of this operator is defined by:      
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�̂ 2 = (��. �� + ћ)2 = ��. �� ��. �� + 2 ћ ��. �� + ћ2   .                                                   (3) 

 

From the algebra of Pauli matrices:  

 

��. �� ��. �� =  �� 2 + i ��. �� x ��   .                                          (4) 

 

The cross product of vector operators in the second term is non zero for the following reason. 

The basic commutator equations are:  

 

   ��� , ���   = i ћ ���                                          (5) 

 

et cyclicum 

 

which in vector operator notation [14] are:  

 

�� x ��  = i ћ ��  .                                    (6) 

 

Therefore:  

 

��. �� ��. �� = �� 2 – ћ ��. ��   .                        (7) 

 

From Eq. (7) in Eq. (3):  

 

�̂ 2 = �� 2 + ћ ��. �� + ћ2    .                                   (8) 

 

As in UFT 173 and in reference [13]:  

 

��. ��  φ� =  ћ ( j – 


�
 )  φ�                                                   (9) 

��. ��  φ� = –  ћ ( j + 
�

�
 )  φ�  .                                               (10) 

 

where   φ� and  φ� are the right and left Pauli spinors:  

 

 

��
 =   ψ

�        ,  ��
  =   ψ

�        .                                              (11) 

            ψ�
�                        ψ�

� 
 

 

The total angular momentum operator is:  

 

�� = ��   + 


�
 ћ��  = ��   +  ��  .                                     (12) 

 

This equation arose originally [13, 14] from an empirical suggestion that spin half explained 

many features of atomic spectra. The intrinsic spin angular momentum operator is defined as:  

 

��  = 


�
 ћ��  .                                       (13) 
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 The square of the total angular momentum operator is therefore:  

 

��2 = �� 2 + ћ ��. ��  + 
 ћ!

"
 ��. �� 

    = �� 2 + ћ ��. ��  + 
�

"
  ћ� 

    = �� 2 + 2 ��. �� + �� . ��   ,                                                           (14) 

 

in which has been used the result [12]:  

 

��. �� = 3 .                                    (15) 

 

Therefore:   

 

��  =   
1 1– $

1 + $ – 1
      .                                                    (16) 

 

Therefore:  

 

�� 2 ��
 = ћ2 l– (%– + 1 ) ��

  ,                                (17) 
 

�� 2 ��
 = ћ2 l+ (l+ + 1 ) �

�
                                          (18) 

 

where:  

 

l± = j ± 


�
    .                                              (19) 

 

                Now consider the operator identity [13]:  

 

��.... &�    = = = = ��. . . . 
'

(
    ( 

'

(
    ....    &�    + + + + i  

��.��

(
 )                                 (20) 

 

in radial coordinates, and construct the square:  

 

σσσσ.... &�    σσσσ.... &�    = = = = 
'

(
    ....    &�    

'

(
    ....    &�    – 

��.����.��

(!     ++++    i  ( 
'

(
    ....    &�    

��.��

(
    ++++    

��.��

(
    
'

(
    ....    &�    )              (21) 

 

The real part of this equation is:  

 

Re (σσσσ.... &�    σσσσ.... &� ) = 
'

(
    ....    &� 

'

(
    ....    &�    – 

��.����.��

(!                                                                                     (22) 
 

where we have used:  
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σσσσ. . . . 
'

(
    σσσσ. . . . 

'

(
    = 1    .                                                 (23) 

 

Now use:  

 

'

(
    ....    &� 

'

(
    ....    &�    = = = = – ћ2 

)!

)*!                                    (24) 

 

to find:  

 

σσσσ.... &�    σσσσ.... &�    = = = = – ћ2 
)!

)*! – 
 ��2

 (!    ++++    
ћ

 (!    ��. ��                       (25) 

 

However we know that:  

 

σσσσ.... &�    σσσσ.... &�    = = = = +̂2 = – ћ2 ∇2
                                           (26) 

 

so we obtain the operator identity:  

 

∇2
 = 

)!

)(! + 
 ��!

 ћ!(! – 
��.��

 ћ (!            .                        (27) 

 

To make clear that these are all operator equations the symbol ^ has been placed over all 

operators.  

 

                   The fine structure of atomic H can be deduced [14] straightforwardly using the 

operator equation:  

 

��2 =  �� 2 + ,�2 + 2 ��  . � � .                                                                 (28)                 

 

The energy levels of spin orbit coupling are given [14] by:  

 

�� . � � ψ = 


�
 ( �� 2 – �� 2 – ,� 2 ) ψ   ,                              (29) 

 

so the energy levels are:  

 

E = 
ћ!

�
 ( j ( j + 1) – l ( l + 1) – s ( s + 1)) < ψ*| ξ (r) | ψ >                    (30) 

 

where  ξ  is defined in the next section.  
 

 

3. Solution of the Fermion Equation for H.  

 
                  The fermion equation produces the correct Lorentz transforms of the right and left 
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Pauli spinors, whereas the Dirac equation does not. The fermion equation is therefore the 

correct equation in physics. The fermion equation may be written as:  

 

( Ê  – e � + c σσσσ.... &� ) φ�= = = = 0 1���
                                                                                                                                                    (31) 

 

( Ê  – e � – c σσσσ.... &� ) φ�= = = = 0 1���
                                                                                                                                                    (32) 

 

where the minimal prescription has been used to describe the effect of the Coulomb potential 

of the H atom:  

 

E            E – e φ .                                         (33) 

 

Here E is the total relativistic energy, - e is the charge on the electron, φ  is the Coulomb 
potential, m is the mass of the electron and c the vacuum speed of light. Under the Lorentz 

transform [12]:  

 

��
         exp ( 

1
2 σσσσ.... 2) ��

            ,                             (34) 

��
         exp ( –

1
2 σσσσ.... 2) ��

    ,                                        (35) 

 

where  2  denotes a vector angle. There are two fundamental Lorentz transforms [12] 
because the underlying group theory is one that is described by the Lorentz group extended 

by parity. The latter has the effect:  

 

3 �  (��
) = ��

   ,                                        (36) 

 

3 �  (��
) = ��

   .                                        (37) 

   

              It is clear and simple to see that the rest energy:  

 

45 = m1�                         (38) 

 

is always positive, and Eqs. (31) and (32) are interconverted by parity because:  

 

3 �  (��.... &�)    = = = = – ��.... &�    .                                           (39) 

 

The energy levels of the H atom are found by solving Eqs. (31) and (32) simultaneously. The 

basic problem [13] is to solve:  

 

( �� 2 + ћ ��. ��  + 
�

"
  ћ� )     ��

    =  j ( j + 1 ) ћ�    ��
                                     (40) 

                                         ��
                                ��

 
 

and  
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( ��Z  + 


�
 ћσ�Z )     �

�
    = m ћ    ��

      .                                      (41) 

                            ��
                  ��

 
 

There are two angular momenta present, the orbital and spin angular momentum of the 

electron. The permitted states [14] of the total angular momentum are given by the Clebsch 

Gordan series:  

 

j = j1 + j2 , ... , | j1 – j2 |  ,                                        (42) 

 

mj = mj1 + mj2   .                                                      (43) 

 

When:  

 

j2  =  


�
                                      (44) 

 

then:  

 

j = l + 


�
      or     j = l – 



�
  .                               (45) 

 

The state of the system is defined by the key notation [14], which is related to the notation 

used by Merzbacher [13] as follows: 

 

| j mj l+ >  =   7
 8 9 

1
2

:;
    ,                                 (46)

 

| j mj l- >  =   7
 8 – 

1
2

:;
    .                                 (47)

 

Here:  

 

l± = j ± 


�
  .                                     (48) 

 

Using the operator equation (14) it follows that [14]:  

 

�� . � � | j mj l >  =  


�
  ћ� ( j ( j + 1 ) – l ( l + 1 ) – s ( s + 1 )) | j mj l >                     (49) 

 

where j, l and s are quantum numbers. It follows from Eqs. (19) and (45) that:  

 

��. ��  | j mj l+ >  = – ( l+ + 1 ) | j mj l+ >  ,                               (50) 

 

��. ��  | j mj l- >  =  l- | j mj l- >  .                                           (51) 

 

The following operator relation is given [13] by considerations of parity, because this 
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operator is a pseudoscalar:  

 

��.
'
<  | j mj l± >  =  – | j mj l∓ >  .                                           (52) 

 

Furthermore, this operator has the parity reversal effects:  

 

��.
'
<  

=

=(
 = – 

=

=(
    ,    ��.

'
< 



(
 = – 



(
   .                                  (53) 

 

                 It is clear that the spinors ��
 and ��

 are the physically meaningful wavefunctions 

because they obey the Lorentz transform and are given by fundamental considerations [12] of 

group theory, and, most importantly, because they give positive rest energy. In order to solve 

equations (31) and (32) the following mathematical transformations are used:   

 

��
            ��

�
 + ��

�
   ,                               (54) 

 

��
            ��

�
 – ��

�
   .                                                  (55)

 

In ket notation, solutions must be of the format [13]:  

 

��
�
 = | j mj l- >    ,      ��

�
 = | j mj l+ >                                                   (56) 

 

so:   

 

��
 = | j mj l- >  –  | j mj l+ >                                     (57) 

 

��
 = | j mj l- >  +  | j mj l+ >                                       (58) 

 

with the normalization:  

 

∫ ��
9
 ��  d

3
x = 1  .                          (59) 

 

In this notation:  

 

��  =     ��
�
      ,                                        (60) 

               ��
�
 

and:  

 

��
9
 =    ��

�∗
 ,  ��

�∗
                                               (61) 

 

so that:  

 

∫ (ψ�@
�∗ ψ�@

�  + ... + ψ�@
�∗  ψ�@

�  ) d
3
x = 1   .                                       (62) 
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From these considerations:  

 

ψ@
� = ψ@

� (r) (| j mj l- >  –  | j mj l+ >  )    ,                       (63) 

 

ψA
� = ψA

� (r) (| j mj l- >  –  | j mj l+ >  )    ,                       (64) 

 

ψ@
� = ψ@

� (r) (| j mj l- >  +  | j mj l+ >  )    ,                       (65) 

 

ψA
� = ψA

� (r) (| j mj l- >  +  | j mj l+ >  )    .                       (66) 

 

 

               The fundamentally important result has been obtained that in order for the Lorentz 

transforms (34) and (35) to be obeyed correctly, the H wavefunctions must be the 

combinations (63) to (66). These are combinations of different spin states of the electron. The 

fact that energy is always positive in nature implies these combinations and vice versa. The 

eigenequation for �� . � � is always the equation (49), giving the energy levels of the H atom as 
in Section 4.   

 

                 The transformations (54) and (55) lead to:  

 

( Ê  – e φ – 0 1�)��
�

        + + + + c σσσσ.... &� ��
�
  ====    0                                                                                                                                                (67) 

 

( Ê  – e φ + 0 1�)��
�

        + + + + c σσσσ.... &� ��
�
  = = = = 0                            .                                                                                                                    (68) 

 

Application of parity inversion leaves these equations unchanged because:  

 

3 �  (��
�

) = ��
�
    ,      3 �  (��

�
) = – ��

�
     .                                                       (69) 

 

In contrast, parity interconverts Eqs. (31) and (32). These considerations mean that Eqs. (67) 

and (68) are incomplete, they say nothing about parity. The Dirac equation is simply a 

combination of the incomplete equations (67) and (68), a combination using the four by four 

Dirac matrices in the standard representation [12]. The error made by Dirac, and repeated 

ever since, was to assert that the minus sign in Eq. (67) means “negative energy”, whereas it 

has no physical significance. The correct equations (31) and (32) keep the sign positive. The 

fermion equation is a combination of Eqs. (31) and (32), a combination constructed with 

Pauli matrices only. There is no need for the Dirac matrices in physics, and certainly no need 

for “negative energy”.   

 

                 For the H atom, the transformed  Eqs. (67) and (68) happen to have a semi 

analytical solution as follows. This solution must be regarded, however, as a solution of the 

correct equations (31) and (32). The significance of the transformations (54) and (55) is that 

the physical wavefunctions ��
 and  ��

 must be combinations of different spin states.  The 

Dirac equation does not give this fundamentally important result. By inspection [13] the 

solutions must take the format:  
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��
�
 = F | j mj l- >       ,        ��

�
 = – i f | j mj l+ >      ,                                            (70) 

 

where the  - i  has been introduced in order to give two real simultaneous equations at a later 

stage of the calculation.  In these equations:  

 

��. &� =  �. 
'B

(
 (– i ћ ∂

∂< + i 
��.��

(
 )                                            (71) 

 

with:  

 

�. 
'B

(
 | j mj l∓ >  =  – | j mj l± >                                      (72) 

 

and:  

 

��. �� | j mj l  >  = ћ ( j ( j + 1 ) – l ( l + 1 ) – s ( s + 1 )) | j mj l  >                                    (73) 
 

where:  

 

l± = j ± 


�
   .                                                       (74) 

 

As shown in the following section the fine structure of the H atom is given completely by 

considerations of Eq. (73) alone [14], so it follows immediately that the fine structure is given 

by the fermion equation with the major advantage of keeping energy positive.  

 

                 This result is emphasized by Eq. (71), which gives:    

   

c ��. &� ��
�
 = – i ћ c (

=

=(
 –  

8 – 
E
!

(
 ) F | j m l+ >   ,                                                         (75)   

c ��. &� ��
�
 = – ћ c (

=

=(
 +  

89 
F
!

(
 ) f | j m l-  >   .                                                         (76)   

                          

So Eqs. (67) and (68) become simultaneous differential equations in f and F:  

 

( Ê  – e φ – 0 1�)F        – ћ c (
=

=(
 +  

89 
F
!

(
 ) f  = = = = 0                    ,                                                                                                                        (77) 

 

( Ê  – e φ + 0 1�)I        + + + +  ћ c (
=

=(
 –  

8 – 
E
!

(
 ) F  = = = = 0            .                                                                                                                (78) 

 

which can be solved with some approximation [13] to give E, the energy levels of the H 

atom. The details of the result are given in the accompanying note 174(2) and are well known 

[13]. This solution is clearly a solution of the fermion equation, which gives all the fine 
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structure of the H spectrum excluding the Lamb shift.  

 

                    To derive Eqs. (77) and (78) use:  

 

��. ��  | j m l- >  =  ( j – 


�
 )| j m l- >  ,                                                      (79) 

 

��. ��  | j m l+ >  = – ( j +  
�

�
 )| j m l- >  .                                          (80) 

 

and note that:  

 

(�. 
'

(
 ) 

=

=(
 = – =

=(
      ,       (�. 

'

(
 ) 



(
 = – 



(
                         (81) 

 

because of parity. Therefore:  

 

��. &� ��
�
 = �. 

'

(
 (– i ћ 

=

=(
 + i 

��.��

(
 ) F j m l- >   

 

                     =  – i ћ 
=F

=(
 | j m l+ > + i ћ 

(8 – 
E
!

)

(
 F | j m l+ >    

 

                    = – i ћ (
=

=(
 – (

8 – 
E
!

(
 )) F | j m l+ >                                        (82) 

 

which is Eq. (75). Similarly:  

 

��. &� ��
�
 = – i �. 

'

(
 (– i ћ 

=

=(
 + i 

��.��

(
 ) f  |j m l+ >   

 

                     =  – ћ 
=K

=(
 | j m l- > – ћ 

(89 
F
!

)

(
 f | j m l- >    

 

                    = – ћ (
=

=(
 + 

(89 
F
!

)

(
 )) f | j m l- >                                        (83) 

 

which is Eq. (76). The complete H wavefunctions are the combinations:  

 

��
 =  ��

�
 + ��

�
 = F | j mj l- >   – i f | j mj l+ >                             (84)     

 

and  

 

��
 =  ��

�
 – ��

�
 = F | j mj l- >   + i f | j mj l+ >                             (85)     
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These combinations can be expressed in the simple format:  

 

��
 =  LMN    ,      ��

 =  LOMN                                                     (86) 

 

where:  

 

cos P = F | j mj l- >       ,       sin P = f | j mj l+ >                                                 (87) 

 

 

 

4. Non relativistic approximation and fine structure.  

 
                     In the non relativistic approximation [12] used to derive the Landé and Thomas 

factors the total relativistic energy is expressed as:  

    

E               m 1�                                       (88) 

 

where:  

 

E =  Q m 1�     ,     Q =  ( 1 – 
R!

S! )
-½    .                                   (89) 

 

As described in UFT 172 and 173 (www.aias.us)  this approximation leads to the 

hamiltonian:    

 

T� = m 1� + eU + 
&�A

�;
 – 

Vћ

�;
 ��. B –  

V

";!S! ��. (&� – L A) U��. (&� – L A) + …                       (90) 

 

where the vector potential A and magnetic flux density B have been introduced via the 

minimal prescription [1 – 14]:  

 

&�               &�  – L A                            (91) 

 

 Also:  

 

T� ��
 =  E ��

   ,                                            (92) 

 

T� ��
 =  E ��

   ,                                           (93) 

 

and so:  

 

T� ψ =  E ψ   ,                                                       (94) 

 

where the fermion spinor is defined as:   
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ψ =     
ψ

� ψ�
�

ψ
� ψ�

�       .                                                   (95) 

 

The appellation “fermion spinor” is used to distinguish it from the Dirac spinor.  

 

              Rewrite Eq. (94) as:  

 

T�1 ψ =  ( E – m 1� + eU) ψ                                                                (96) 
 

 where:  

 

T�1 =  
&�A

�;
 – 

Vћ

�;
 ��. B –  

V

";!S! ��. (&� – L A) U��. (&� – L A) + …       

 

    : =   T�2 + T�3 + T�4                                        (97) 

 

In the absence of spin this equation becomes:  

 

YB!

�;
 ψ = ( E – m 1� + eU) ψ                                                                 (98) 

 

and in the non relativistic limit:  

 

E = m 1�            T = 


�
 m Z�   .                                         (99) 

 

So Eq. (98) becomes the Schroedinger equation of the H atom:  

 

&�A

�;
 ψ = – 

ћA

�;
 ∇2 ψ = E nr ψ                                         (100) 

 

where the total non-relativistic energy is the sum of the kinetic and potential energies:  

 

E nr = T + V  = T – eU   .                                                                                 (101) 

 

It is well known [13, 14] that the Schroedinger equation gives the major features of the H 

spectrum but does not give the fine structure.   

 

               To obtain the fine structure consider Eq. (25):  

 

σσσσ.... &�    σσσσ.... &�    = = = = – ћ2 
)!

)(! – 
 ��2

 (!    + + + + 
ћ

 (!    ��. ��                          (102) 

 

in which:  

 

��� ��
 = ћ2 l- ( l- + 1 ) �

�
                                                       (103) 
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��� ��
 = ћ2 l+( l+ + 1 ) �

�
                                                                   (104) 

 

where:  

l± = j ± 


�
  .                                          ( 105) 

 

The first two terms on the right hand side of Eq. (102) are present in the Schroedinger 

equation of H [14] but the third term is absent from the Schroedinger equation. From the 

operator equation (14):  

 

��. �� | j mj l >  =  


�
   ( �� 

2
 –  ��2 –  ,�2 ) | j mj l > 

 

= 


�
 ћ2 ( j ( j + 1 ) – l ( l + 1 ) – s ( s + 1 )) | j mj l >   .                                                                      (106) 

 

The hamiltonian component T�3 gives the g = 2 or Landé factor of the electron in the H atom 
(see UFT 172 and UFT 173).  The hamiltonian component T�4 gives the Thomas factor of 2 in 
the denominator of the spin orbit term as follows:  

 

T�4 =  
V!

`a;!S!(F∈c
  ��. ��   .                      (107)                      

 

The evaluation of the radial integral in this approximation gives [14]:  

 

<


(F >= 
dc

F

eFf ( f 9 ½ )( f 9  )
                                      (108) 

 

where the Bohr radius is:  

 

h5  = 
"a∈cћ!

       ;Vi  
                               (109) 

 

Here j  is the principal quantum number of H, and ∈5 is the vacuum permittivity. Denote:  

 

ξ ef = L
� (8m0�1�h5

� ∈5 j�% ( % +  ½ )( % +  1 ) ћ1) -1                         (110) 

 

then the energy levels of the H atom are given in this approximation by:  

 

E = 


�
 ћ2 ( j ( j + 1 ) – l ( l + 1 ) – s ( s + 1 )) <| j mj l| ξ | j 0j %| >    

 

     =  


�
 ћ1 ξ ef( j ( j + 1 ) – l ( l + 1 ) – s ( s + 1 )                                   (111) 

 

where:  
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ξ =  
V!

`a;!S!(F∈c
    .                                               (112) 

 

5. Derivation of the Pauli exclusion principle.  
 

                      By observation of atomic and molecular spectra, Pauli noticed in 1925 that no 

two electrons can have the same set of quantum numbers. He stated this observation as the 

principle that the complete wavefunction is antisymmetric under interchange of any two 

electrons, or more generally, fermions. This has become accepted [12–14] as a fundamental 

axiom of quantum mechanics. In H it has been shown in Section 2 that the wavefunctions of 

the single electron of H must be the combinations (63) to (66) in which the effect of parity is 

as follows:  

 

3 �  (��
) = ��

     ,       3 �  (��
) = ��

   .                                             (113) 

 

Therefore parity has the following effect on F and f:  

 

3� (F) = F      ,      3� (f) = – I      .                                                     (114) 

 

These combinations of spin up and down states of the electron indicate that they are the 

fundamental origin of the Pauli exclusion principle, which therefore follows from the fermion 

equation.  

                 Consider the mathematical structure of the Schroedinger Eq. (100), a structure of 

the type:  

 

T� ψ = E  ψ                           (115) 
 

This structure means [14] that in the helium atom, with two electrons, the total wavefunction 

must be the product: 

 

Ψ (' , '�) = ψpEqErE
(') ψp!q!r!

('�)                               (116) 
 

of the individual wavefunctions of each electron. If electron spin is now considered, there 

must be products such as:  

 

Ψ
� (A) Ψ

� (B) , ... , Ψ�
� (A) Ψ�

� (B) ,                                                   (117) 

 

where A and B denote electron A and electron B. Denote:  

 

F
–
 (A) = F| j mj l->    ,                                               (118) 

 

I
9 (A) = I| j mj l+>    ,                                               (119) 

 

 

and so on. A typical product of wavefunctions is:  
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Ψ
� (A) Ψ

� (B) = (F
–
 (A) + i I

9 (A)) (F
–
 (B) + i I

9 (B))                              (120) 

 

where the appearance of i is simply a consequence of the definitions (70) used for 

convenience. Now apply parity:  

 

3 �  (Ψ
� (A) Ψ

� (B)) = (F
–
 (A) – i I

9 (A)) (F
–
 (B) – i I

9 (B))  .                           (121) 

 

Finally use the algebraic result:  

 

(F
–
 (A) + i I

9 (A)) (F
–
 (B) + i I

9 (B)) = (F
–
 (B) + i I

9 (B)) (F
–
 (A) + i I

9 (A))              (122) 

 

and apply parity to the right hand side:  

 

3 � ((F
–
 (A) + i I

9 (A)) (F
–
 (B) + i I

9 (B)) =  (F
–
 (A) – i I

9 (A)) (F
–
 (B) – i I

9 (B))        (123) 

 

The Pauli exclusion principle is the result of the parity operation:  

 

3 � ((F
–
 (A) I

9 (B) + I
9(A) F

–
 (B)) = – (F

–
 (B) I

9 (A) + I
9(B) F

–
 (A)                 (124) 

 

It is seen that the complete wavefunction is antisymmetric under interchange of A and B, 

meaning that if A is replaced by B, and B is replaced by A, the wavefunction changes sign. 

By observation of atomic and molecular spectra this is the observed wavefunction, one in 

which no two electrons have the same set of quantum numbers.  
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