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Abstract

ECE theory gives us a symmetric form of the Maxwell-like field equa-
tions with two types of currents: the inhomogeneous current, which is
identical to the usual current of electric charge carriers, and the homoge-
neous current, which is not present in standard theory. In this paper, we
present and discuss both currents on the basis of ECE2 theory. In addi-
tion to other terms, a conductivity term is also present in ECE theory, in
contrast to standard electrodynamics. The full duality of the electric and
magnetic field becomes evident. It is also shown that the homogeneous
current is a source of electromagnetic wave propagation.

Keywords: ECE theory, ECE2 theory, electrodynamics, homogeneous and in-
homogeneous current.

1 Introduction

At the present time, standard electrical theory is completely based on Maxwell’s
equations, which are compatible with Einstein’s special relativity. The Lorentz
force, which is not included in Maxwell’s equations, can also be derived from
special relativity. Maxwell’s equations, notated in the vector form of Heaviside,
are considered to be a complete and well-defined theoretical basis of electro-
magnetism. Potentials are included only as “auxiliary means for computation”,
although it is known from quantum mechanics that potentials are the cause
of excitations in electronic systems, and are not “regaugable” as assumed by
standard electromagnetic theory.

Einstein-Cartan-Evans (ECE) theory [1–3] has changed this picture consid-
erably. The field equations of ECE theory are Maxwell-like, but valid in a
spacetime of general relativity with curvature and torsion. They are symmetric
in the sense that, besides the electric charge and current density, there is also a
magnetic charge and current density, as Paul Dirac had inferred earlier. In ECE
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theory, the full duality of these equations becomes visible. The two currents are
called the homogeneous and inhomogeneous current, for historical reasons. In
standard theory, the homogeneous current (the right side of the Faraday law)
was interpreted as a current of magnetic monopoles. We will show in this series
of papers that this is an incomplete view. When the vacuum is included in the
interpretation, we find polarization effects through this current. For example,
this interpretation can explain the experimental work of Nicola Tesla.

2 Field equations

In the following discussion, we will compare the field equations of ECE theory
to those of standard theory. As a hint about an upcoming interpretation, we
mention you will see the Volt-second (or Weber) where you might expect to see
a different unit (and that one Weber per square meter is one Tesla).

2.1 Differences between standard theory and ECE theory

We start with Maxwell’s equations from standard theory:

∇ ·B = 0 Gauss law, (1)

∂B

∂t
+ ∇×E = 0 Faraday law, (2)

∇ ·E =
ρ

ε0
Coulomb law, (3)

− 1

c2
∂E

∂t
+ ∇×B = µ0 J Ampère-Maxwell law. (4)

E is the electric field, B is the magnetic induction, ρ is the electric charge density
and J is the electric current density.

Maxwell’s theory is a theory of special relativity; it has been shown to be
Lorentz-covariant, i.e., the equations keep their form when the coordinate sys-
tem underlying the fields undergoes a Lorentz transformation.

In ECE theory, the field equations are derived from Cartan geometry, and
they can be transformed into vector notation that corresponds to Maxwell’s
equations. In their simplest form, these field equations read

∇ ·B = −µ0j
0, (5)

∂B

∂t
+ ∇×E = c µ0 j, (6)

∇ ·E =
ρ

ε0
, (7)

− 1

c2
∂E

∂t
+ ∇×B = µ0 J. (8)

In addition to the components of standard Maxwellian theory, a charge density
j0 and current density j appear. The physical units in Maxwell’s equations that
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we will be using are

[∇ ·B] =
T

m
=
V s

m3
, (9)

[∇ ·E] =
V

m2
, (10)

[µ0] =
V s

Am
, (11)

from which we get the following:

[j0] =
T

m
=

A

m2
, (12)

[j] =
A

ms
. (13)

The constant µ0 has been introduced for convenience. Redefining both j0 and
j without this constant leads to units of

[
j0

µ0
] =

V s

m3
, (14)

[
j

µ0
] =

V

m2
=

V s

m2s
. (15)

In this case, it can be seen that j0 is a volume density, while j is a flux density
vector (flux per area). Compared to the usual electric charge density and current
density units, C/m3 and C/(m2s), it is seen that the electric charge is replaced
by the product of Volt times second, also called Weber. This suggests that we
should consider j0 and j as volume and current densities of “magnetic charges”.
With respect to units, the Coulomb is replaced by the Volt-second. Whether
such charges exist is currently an unresolved question, but there are some hints
that they can appear at the quantum level.

In standard theory, charge and current densities are external sources that
are independent of the E and B fields. This is analogous to the mass density
in Einstein’s general relativity, which is the source of the gravitational field. In
ECE theory, however, there are no external sources. All source terms are field
quantities, and while their combinations may behave like local sources, their
intrinsic nature remains that of a field quantity. This avoids problems that
arise, for example, in Einstein’s general relativity, where fields have their own
energy density, and act as additional sources, so energy is not conserved. This
problem is not present in ECE theory, because sources are fields, exclusively.

This is an essential difference between ECE theory and standard electro-
dynamics that is often not understood. ECE electrodynamics is a theory of
general relativity, and the field equations, although formally identical to those
of standard theory, are generally covariant instead of only Lorentz covariant.

Because there are no external sources in ECE theory, all density and current
terms in Eqs. (5-8) can be expressed by fields [3]. The right sides of these
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equations then become

−µ0j
0 = 2

(
1

W (0)
A− ω(Λ)

)
·B, (16)

cµ0j = 2

((
1

W (0)
φ− cω 0

(Λ)

)
B−

(
1

W (0)
A− ω(Λ)

)
×E

)
, (17)

ρ

ε0
= −2

(
1

W (0)
A− ω

)
·E, (18)

µ0J = 2

((
1

c2W (0)
φ− 1

c
ω0

)
E +

(
1

W (0)
A− ω

)
×B

)
. (19)

We see that, in addition to the E and B fields, the vector potential A and
scalar potential φ also appear. In ECE theory, the potentials are interpreted
as spacetime (or “aether”) flux and pressure. This is a first hint that material
charges consist of localized aether structures. We also see quantities denoted
by ω. These quantities are called spin connections and they describe spacetime
curvature and torsion. ω0 and ω 0

(Λ) are scalar spin connections, and ω and

ω(Λ) are vector spin connections. W (0) is a constant with units of V s. The spin
connections have units of inverse meters. Two spin connections have an index
Λ and are different1 from those without this index.

The field equations can be simplified and made more understandable by
introducing wave numbers (in scalar and vector form) defined by

κ(Λ)0 =
1

cW (0)
φ− ω 0

(Λ) , (20)

κ(Λ) =
1

W (0)
A− ω(Λ), (21)

κ0 =
1

cW (0)
φ− ω0, (22)

κ =
1

W (0)
A− ω. (23)

Then, Eqs. (5 - 8) can be written as

∇ ·B = 2κ(Λ) ·B, (24)

∂B

∂t
+ ∇×E = 2

(
cκ(Λ)0B− κ(Λ) ×E

)
, (25)

∇ ·E = −2κ ·E, (26)

− 1

c2
∂E

∂t
+ ∇×B = 2

(
1

c
κ0E + κ×B

)
. (27)

The homogeneous currents vanish, for example, when both Λ-based wave num-
bers are zero. Another case where they vanish is when κ(Λ) is parallel to E, and
B is zero.

In the ECE2 variant of ECE theory [2], it is possible to interpret the spin
connections as special potentials, called ΦW and W. Because we have two types

1The spin connections and their differences result from the derivation of the field equations
in tensor form. The details cannot be presented here, but they can be found in ref. [3],
Chapter 4.
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of spin connections (with and without Λ), we have two types of W potentials
(scalar and vector):

Φ(Λ)W = cW (0)ω0
(Λ), (28)

W(Λ) = W (0)ω(Λ), (29)

ΦW = cW (0)ω0, (30)

W = W (0)ω. (31)

Then, the definitions of the κ’s, Eqs. (20-23), take the following form:

κ(Λ)0 =
1

cW (0)

(
φ− φ(Λ)W

)
, (32)

κ(Λ) =
1

W (0)

(
A−W(Λ)

)
, (33)

κ0 =
1

cW (0)
(φ− φW ) , (34)

κ =
1

W (0)
(A−W) . (35)

The Λ-based potentials play a role only for the homogeneous currents. These
currents vanish if

φ = φ(Λ)W and (36)

A = W(Λ). (37)

Consequently, the Λ-based potentials do not occur in standard theory. In ECE
theory, electric charges and currents are based on the potentials φW and W, in
addition to the “standard” potentials φ and A. In free space, these potentials
are identical to their W counterparts:

φ = φW and (38)

A = W. (39)

In this case, we have an electromagnetic field without charges and currents, and
ECE theory coincides with standard theory:

∇ ·B = 0, (40)

∂B

∂t
+ ∇×E = 0, (41)

∇ ·E = 0, (42)

− 1

c2
∂E

∂t
+ ∇×B = 0. (43)

2.2 Interpretation of the current terms

2.2.1 Interpretation of standard current and charge density

Now we will try to find interpretations for the current terms in Eqs. (24-
27). The most evident example is the term containing E on the right side
of (27). In electrical engineering, it is often assumed that the electrical current
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is proportional to the electric field vector. The constant connecting both is the
conductivity σ:

JE = σE. (44)

This constant is an empirical extension of Maxwell’s equations. Comparing Eq.
(44)with Eq. (27), we see that this constant can be written in the form:

σ =
2

µ0c
κ0, (45)

which is the most general corresponding conductivity term in ECE theory.
It is known from experiment that the conductivity is frequency dependent.

This is in accordance with the result of ECE theory, because κ0 is a spatial
frequency that is connected to a time frequency ωt via

ωt = cκ0. (46)

The term κ × B in (27) is a magnetic contribution to the current that
looks like the Lorentz force. To investigate this, we first write the empirical
conductivity expression (44) for a case where a magnetic field is present [4].
Then, this field produces a Lorentz force term that contributes to the electric
current density in the form:

JE = σ(E + v ×B). (47)

The Lorentz force on a charge q moving with velocity v (including the electrical
part) is

F = q(E + v ×B), (48)

wich can be written for an infinitesimally small charge in the form:

dF = dq(E + v ×B). (49)

Dividing this by the corresponding infinitesimal volume element, we obtain the
Lorentz force density:

F0 = ρ(E + v ×B). (50)

The current density can be written as the motion of a charge continuum ρ with
velocity v:

JE = ρv. (51)

Therefore, the total Lorentz force density is

F0 = ρE + JE ×B, (52)

and the Lorentz force for the continuum charge is

F =

∫
F0dV. (53)
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Comparing Eqs. (47) and (50), it follows that

JE =
σ

ρ
F0. (54)

Now, we can find an expression for κ in Eq. (27), which will show that the
term κ×B actually describes a Lorentz force density. By equating

JE = J, (55)

and respecting the factor µ0 in (19), we find that

µ0 σ(E + v ×B) = 2

(
1

c
κ0E + κ×B

)
. (56)

Comparing the second terms on both sides, it follows that

µ0σv = 2κ, (57)

or, with Eq. (45),

κ =
κ0

c
v. (58)

Thus, we have shown that Eq. (27) contains the Lorentz force density in a
non-relativistic approximation. While the term σE represents a laminar flow,
the Lorentz force term is rotational and leads to a turbulent flow.

As an example, we investigate the Coulomb law, Eq. (26):

∇ ·E = −2κ ·E. (59)

For a point charge q, the electric field depends only on the radial coordinate:

E = Er r̂ =
q

4πε0r2
r̂, (60)

where r̂ is the unit vector in the radial direction. The divergence of E is

∇ ·E =
∂

∂r
Er = −2

q

4πε0r3
. (61)

Equating this with the right side of Eq. (59), we obtain

−2κrEr = −2κr
q

4πε0r2
= −2

q

4πε0r3
, (62)

from which it follows that the radial part of the wavevector κ is

κr =
1

r
. (63)

Except for constants, κr is identical to the Coulomb potential.
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2.2.2 Interpretation of the homogeneous current and associated
charge density

We now come to the homogeneous current – the charge and current terms of
the Gauss (5) and Faraday (6) laws. Similar as before, we start from Equations
(24) and (25), which contain the homogeneous terms in wave vector notation.

The Gauss law (24),

∇ ·B = 2κ(Λ) ·B, (64)

now has a term on the right side analogous to the Coulomb law (26). This term
corresponds to a magnetic charge density. As in standard theory, we start by
assuming that

κ(Λ) = 0. (65)

Please note that this wave number is different from that in the Coulomb law. If
the scalar wave number κ(Λ)0 also vanishes, then the entire homogeneous current
in the Faraday law,

∂B

∂t
+ ∇×E = 2

(
cκ(Λ)0B− κ(Λ) ×E

)
, (66)

vanishes, and we return to the situation in standard theory.
The homogeneous current of the Faraday law is formally dual to the inhomo-

geneous (standard) current in the Ampère-Maxwell law (27). All E and B terms
are interchanged on both sides of the equations2. Using the same argumenta-
tion as above, we find that 2cκ(Λ)0B is a magnetic conductivity term, while

−κ(Λ)×E is the inverse Lorentz force density [5], which in standard notation is

B = − 1

c2
v ×E. (67)

In the following, we work this out in detail.
The term −κ(Λ) ×E in (66) is an electric contribution to the homogeneous

current that looks like the inverse Lorentz force. We define an expression for
a magnetic conductivity σh in ananlogy to Eq. (47). Then, we obtain a con-
ductivity that originates in a magnetic field (instead of an electric field) and
contains an additional term of the inverse Lorentz force in the form:

JB = σh(B− 1

c2
v ×E). (68)

In full analogy to the previous derivation, we obtain an inverse Lorentz force
density:

F0h = ρh(B− 1

c2
v ×E), (69)

where ρh is the density of “magnetic charges”.
The current density can again be written as the motion of a charge continuum

ρh with velocity v:

JB = ρhv. (70)

2The deeper reason is that Eq. (25) is the Hodge dual of Eq. (27), which is a property of
Cartan geometry.
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Therefore, the density of the inverse Lorentz force is

F0h = ρhB−
1

c2
JB ×E, (71)

and the total inverse Lorentz force is

Fh =

∫
F0hdV. (72)

Comparing Eqs. (68) and (71), it follows that

JB =
σh
ρh

F0h. (73)

Now, we can find an expression for κ(Λ) in Eq. (25) which will show that the
term −κ(Λ)×E actually describes an inverse Lorentz force density. By equating

JB = j, (74)

and respecting the factor cµ0 in (17), we find that

cµ0 σh(B− 1

c2
v ×E) = 2

(
cκ0B− κ(Λ) ×E

)
. (75)

In analogy to Eq. (45), we obtain

σh =
2κ0

µ0
. (76)

Comparing the second terms on both sides, it follows that

µ0σh
c

v = 2κ(Λ). (77)

or

κ(Λ) =
κ(Λ)0

c
v. (78)

Thus, we have shown that Eq. (25) contains the inverse Lorentz force density
in a non-relativistic approximation. While the term σhB represents a laminar
flow, the Lorentz force term is rotational and leads to a turbulent flow.

Quantity Unit

µ0
V s
Am

σ A
Vm

σh
A
V s

J A
m2

j A
ms

µ0J
V s
m3 = T

m

cµ0j
V
m2

Table 1: Physical units of conductivity and current quantities.

9



In Table 1, the physical units of the conductivity and current terms of both
the inhomogeneous and homogeneous current are listed for comparison. The
homogeneous current will further be discussed in the subsequent paper.

2.2.3 Wave equation with the homogeneous current

In standard electrodynamics, we have wave equations for the electric and mag-
netic fields, which indicates that wave propagation of fields is possible. We
extend this to include the homogeneous current. Applying the time derivative
to Eq. (8) gives

− 1

c2
∂2E

∂t2
+ ∇× ∂B

∂t
= µ0

∂J

∂t
, (79)

and taking the curl of Eq. (6) leads to

∇× ∂B

∂t
+ ∇×∇×E = c µ0 ∇× j. (80)

After replacing the double-curl according to the rule

∇×∇×E = −∇2E + ∇(∇ ·E), (81)

and assuming no charge density (∇ · E = 0), we can insert (80) into (79) to
obtain

1

c2
∂2E

∂t2
−∇2E = −µ0

∂J

∂t
+ µ0∇× j. (82)

This is the wave equation for E with two inhomogeneous terms, consisting of
the inhomogeneous and homogeneous currents. In normal free space conditions,
both are zero. Furthermore, both vanish when J is time-independent and j is
curl-free.

In magnetostatics we have

∇×B = µ0 J. (83)

If a homogeneous current is present, Eq. (6) gives the following result for elec-
trostatics:

∇×E = cµ0 j. (84)

We again see the complete duality between electric and magnetic fields, includ-
ing both types of currents. In the second paper of this series, we will further
investigate the properties and effects of the homogeneous current, including
polarization of the vacuum.
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