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Abstract

This paper is the fourth in sequence that describes effects of the homo-
geneous current, which was shown to be a voltage flow rather than a flow
of magnetic monopoles. Important aspects for practical use of this poten-
tial flux current are developed. Kirchhoff’s laws for electronic circuits are
extended to this current, which was previously called “cold current” by
practitioners. An additional set of circuit laws is derived which is dual to
the known laws for the electronic current. Impedances in AC circuits are
also derived for the dual laws.

Keywords: ECE theory, ECE2 theory, electrodynamics, potential area flux den-
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1 Introduction

In ECE theory [1–3], a symmetric form of field equations has been developed.
These comprise all areas of the unified field, like electrodynamics and mechanics.
In the latest papers [4–6], the dual form of electrodynamics has been worked
out in further detail. In the first of these papers [4], the ECE2 field equations
were shown to contain current terms that consist of a conductivity part and a
Lorentz force part. This holds for both the inhomogeneous and the homogeneous
currents. In the second paper [5], polarization effects have been studied. The
homogeneous current has been identified as a vacuum current, and it has been
shown that energy transfer from the vacuum is possible.

The third paper [6] brought some remarkable new insights. The homoge-
neous current is a current of flowing potentials, and it has the characteristics
of electricity rather than of a flow of magnetic monopoles. Therefore, we re-
named it the potential flux current. The wave equations have been extended
by conductivity terms for both types of currents, and the Heaviside flow (the
energy flow outside of a conductor) is derived from the extended Poynting theo-
rem. Moreover, the conductivity terms in the wave equations lead to expansion
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velocities of electromagnetic waves that can be smaller or even larger than the
speed of light in vacuo.

In this paper, we explain the consequences of the preceding papers with
respect to practical electrical engineering. Our approach here is a simplified
version of the original theory [7] which we have translated into standard vector
algebra. The original theory is based on Clifford algebra and contains even
more information. The potential flux current leads to a second set of circuit
laws (Kirchhoff’s laws) that are dual to the original ones. For AC currents,
the impedances of standard elements, like coils and capacitors, take different
forms when the second type of voltages/currents derived from the potential
flux current are present. This opens new possibilities for the construction of
electromagnetic devices.

2 Extended field equations

In Parts I-III of this article series [4–6], we have described the two currents of
ECE theory [1–3], the homogeneous and inhomogeneous current. They are the
right sides of the extended Maxwell-Heaviside equations:

∇ ·B = ρp, (1)

∂B

∂t
+ ∇×E = V, (2)

∇ ·D = ρe, (3)

−∂D
∂t

+ ∇×H = J. (4)

These equations are the Gauss law, the Faraday law, the Coulomb law, and
the Ampère-Maxwell law. Therein, E is the electric field, B is the magnetic
induction, J is the electronic current density vector, and ρe is the volume charge
density. The new terms on the right side are the potential density ρp and the
potential area flux density V. The equations hold for a spacetime with curvature
and torsion, in contrast to the original Maxwell-Heaviside equations, which are
valid only for special relativity.

3 Kirchhoff’s circuit laws

3.1 Standard form

Kirchhoff’s laws are widely used for the computation of electric circuits, and
form the basis for circuit simulation software, such as SPICE. These laws handle
electric devices as “point devices”, i.e., no spatial extensions are considered, only
their logical behavior is relevant. This allows circuits to be described by ordinary
differential equations. If geometric dimensions of devices play a role, one has to
use partial differential equations, which require finite element methods for their
solution.

We will now take a closer look at the two Kirchhoff laws: the current law
and the voltage law [8].
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3.1.1 Current law

For any node (junction) in an electric circuit, the sum of the currents flowing
into that node is equal to the sum of the currents flowing out of that node:

n∑
i=1

IJ,i = 0. (5)

This law is derived from the conservation of charge in the following way. The
continuity equation connects the electric charge density ρe with the current
density J. It is derived from the Coulomb and Ampère-Maxwell laws [2], and
reads

∂ρe
∂t

+ ∇ · J = 0. (6)

After taking the volume integral over a volume containing one junction, this
equation gives∫

∂ρe
∂t

dV +

∫
(∇ · J) dV = 0. (7)

The first term is the electric current, by definition:

IJ =

∫
∂ρe
∂t

dV. (8)

If the current density is divergence-free, the inflow is equal to the outflow and
the second term gives zero, thus resulting in

IJ = 0. (9)

The current density in a junction consists of the sum of all current densities ρe,i
of the conductors connected to it:

IJ =
∑
i

IJ,i =
∑
i

∫
∂ρe,i
∂t

dV ; (10)

therefore,∑
i

IJ,i = 0. (11)

3.1.2 Voltage law

The second Kirchhoff law (voltage or loop law) states that the directed sum of
the electric potential differences (voltages) around any closed loop is zero:∑

i

UE,i = 0. (12)

For a circuit to be described by Kirchhoff’s laws, it must be assumed that
there is no external charge input or field interaction, for example, no antennas.
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The second law is based on the Faraday law, in which both the electric and
magnetic fields are zero on a surface far enough away from the circuit elements:

∇×E = −∂B
∂t

= 0. (13)

According to the Stokes theorem [9], we can apply the surface integral over the
curl of a vector field where the surface S is that of the surrounding volume.
This is then identical to the integral over any closed loop Γ on that surface:∫

S

(∇×E) · dS =

∮
Γ

E · dl. (14)

Figure 1: Integration paths for the Stokes theorem.

As depicted in Fig. 1, the surface can be subdivided into smaller parts Pi

that cover each of the circuit elements. The line integrals can be taken over the
parts Pi, but the integrations over the interior paths cancel out; consequently,
their sum is equal to the integral over an outer path Γ. Because the line integral
over an electric field is the voltage, it follows from Eq. (14) that∑

i

UE,i =
∑
i

∮
Pi

E · dl =

∮
Γ

E · dl = 0. (15)

This is Kirchhoff’s second law.

3.2 Kirchhoff’s laws for the potential flux current

We will now derive Kirchhoff’s laws for the potential density and potential flux
current defined in Eqs. (1) and (2). We will see that these new laws are inverse
to those of the electronic current. Since Eqs. (1) and (2) are dual to (3) and
(4), we speak of the dual Kirchhoff laws.

3.2.1 Dual current law (node law for potential current)

Concerning the first law, conservation of this current must be guaranteed at
node points. The “flux quantum” is a volt-second in this case. The number of
these quanta must be conserved, as is the case for the electronic current.
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We can use the same process that we used to reach Eq. (11). We start by
deriving a continuity equation in the same way from the Gauss and Faraday
laws, giving

∂ρp
∂t
−∇ ·V = 0. (16)

This is the continuity equation for the potential flux density. Taking the volume
integral over this equation gives∫

∂ρp
∂t

dV −
∫

(∇ ·V) dV = 0. (17)

Because ρp is a voltage density with units of V s/m3, the first term gives the
total voltage of the flow:

UV =

∫
∂ρp
∂t

dV. (18)

The volume integral encompasses all potential flows in a node. Therefore, for
the single contributions UV i of the node:

UV =
∑
i

UV i (19)

and ∑
i

UV i = 0, (20)

which is the dual node or “current” law that holds for the voltages of potential
flow, in this case.

3.2.2 Dual voltage law (loop law for potential current)

The second law is based on the Ampère-Maxwell law (4):

−∂D
∂t

+ ∇×H = J. (21)

Similarly to Eq. (13), we assume that both the electric and magnetic fields are
zero on a surface far enough away from the circuit elements, and that there is
no electric current:

∇×H =
∂D

∂t
= 0. (22)

Proceeding analogously to Eq. (14), we find that∫
S

(∇×H) · dS =

∮
Γ

H · dl (23)

and, for the same reasons, the closed line integral over Γ vanishes. Since this
integral represents the potential currents IV i, we get an equation that is the
analogue of Eq. (15):∑

i

IV i =
∑
i

∮
Pi

H · dl =

∮
Γ

H · dl = 0. (24)

This is the dual of Kirchhoff’s second law, which is valid for potential currents:∑
i

IV i = 0. (25)
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4 Examples for Kirchhoff’s original and dual laws

4.1 Kirchhoff’s original laws

For clarity, let us review the well-known laws for serial and parallel circuit
elements.

4.1.1 Serial circuit

The current in a circuit path is always the same, and the voltages at the circuit
path elements add up:

IJ = IJ,1 = IJ,2 = · · · = IJ,n, (26)

UE = UE,1 + UE,2 + · · ·+ UE,n. (27)

Ohm’s law reads

UJ = IJR, (28)

from which we get the following:

UE = UE,1 + UE,2 + · · ·+ UE,n = IJ (R1 +R2 + · · ·+Rn) (29)

= IJRtotal.

4.1.2 Parallel circuit

In a parallel circuit, the voltages and currents behave inversely:

UE = UE,1 = UE,2 = · · · = UE,n, (30)

IJ = IJ,1 + IJ,2 + · · ·+ IJ,n. (31)

Using Ohm’s law, we obtain

IJ = IJ,1 + IJ,2 + · · ·+ IJ,n = UE

(
1

R1
+

1

R2
+ · · ·+ 1

Rn

)
(32)

=
UE

Rtotal
.

4.2 Kirchhoff’s dual laws

In the dual laws (see Section 3.2), IJ is replaced with UV and UE with IH .

4.2.1 Serial circuit

In a serial circuit, we have:

UV = UV,1 = UV,2 = · · · = UV,n, (33)

IH = IH,1 + IH,2 + · · ·+ IH,n. (34)

To write the dual of Ohm’s law, we have to use the conductance values G = 1/R:

IH = UVG, (35)

from which we get the following:

IH = IH,1 + IH,2 + · · ·+ IH,n = UV (G1 +G2 + · · ·+Gn) (36)

= UVGtotal.
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4.2.2 Parallel circuit

In a parallel circuit, the inverse relations are

II = IH,1 = IH,2 = · · · = IH,n, (37)

UV = UV,1 + UV,2 + · · ·+ UV,n. (38)

Using the conductance values from 4.2.1, we obtain

UV = UV,1 + UV,2 + · · ·+ UV,n = IH

(
1

G1
+

1

G2
+ · · ·+ 1

Gn

)
(39)

=
IH
Gtotal

.

4.3 Comparison with examples

The duality of Kirchhoff’s laws is graphically presented in Figs. 2 and 3. The
dual laws take some getting used to, since they are counter-intuitive for the
electrical engineer. However, it should be helpful to remember that the potential
current is a flow of potentials and behaves more like potentials than electric
charge carriers.

Figure 2: Comparison of serial circuits.

Figure 3: Comparison of parallel circuits.
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5 AC resistances

For alternating currents, the resistances are frequency-dependent. From stan-
dard electrical engineering, we know the induction law:

UE = L
dIJ
dt

, (40)

and the capacitance law:

IJ = C
dUE

dt
, (41)

where L and C are the inductance and capacitance values of the corresponding
devices.

From the preceding sections, we see that the current-voltage dualities that
appear through the potential current are

UE ←→ IH
and

IJ ←→ UV .

By applying these dualities, we can directly formulate the equations dual to
(40) and (41). The following are the new induction law:

IH = CV
dUV

dt
, (42)

and the new capacitance law:

UV = LH
dIH
dt

. (43)

In these equations, we have defined new constants CV and LH , which must be
capacitance and inductance values to keep the units right. They could have
values different from C and L.

To derive the AC properties of capacitance and inductance, one usually
assumes harmonic behavior of the currents and voltages appearing on the right
sides of Eqs. (40) and (41), for example,

IJ = IJ0 exp(iωt), (44)

with a time frequency ω. We write Eqs. (40-43) with impedances for resistances
and conductances:

UE = ZLIJ , inductive, (45)

UE = ZCIJ , capacitive, (46)

IH = GLUV , inductive, (47)

IH = GCUV , capacitive. (48)
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Evaluation of the time derivatives then gives

ZL = iωL, (49)

ZC =
1

iωC
, (50)

GL =
1

iωLH
, (51)

GC = iωCV . (52)

This is the complete dual structure of frequency-dependent impedance values.

6 Discussion

We start by recalling that the voltage created by an electric field is

U =

∫
Γ

E · dl, (53)

where Γ is a curve in the electric field that has different starting and ending
points, in general. Analogously, the current induced by a magnetic field is

I =

∫
Γ

H · dl. (54)

In classical physics, this current is often called a “magnetic voltage”. In the case
considered here, the H field flows outside of the conductor (or a ferromagnetic
core); it represents the voltage area flux density V and is called IV .

The dual versions of Kirchhoff’s laws interchange the effects of a serial and
a parallel connection. This could cause confusion: how can a serial connection,
as in Fig. 2, have different currents in each resistance element? To answer
this question, it can be helpful to visualize the potential current as consisting
of voltages, internally. It then becomes easier be see that multiple resistances
in a series can produce an enhancement of current. An alternative interpre-
tation is that we have negative resistances in such a circuit that are current
sources instead of (ohmic) consumers. These two interpretations could explain
the different voltages in the parallel circuit on the right side in Fig. 3.

In the case of AC impedances, we obtain from Eqs. (45-52) the following
pairs:

UE = iωL IJ , (55)

UV = iωLH IH , (56)

and

UE =
1

iωC
IJ , (57)

UV =
1

iωCH
IH . (58)

We see that the impedance laws are maintained, for the most part: only the
parameter values of the elements could differ for the standard and potential
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currents. We have to bear in mind, however, that the dual of a voltage is
a current, and vice versa. Thus, when comparing Eqs. (40) and (42), for
example, the appearance of the dual part means that a capacitance is the dual
of an inductance, and vice versa.

The power consumption can be computed in the usual way for the electric
current as well as for the potential current:

PEJ = UEIJ , (59)

PV H = UV IH . (60)

From the preceding papers, we remember that a potential current gathers
energy from the environment, while the electronic current dissipates energy. For
practical use, instruments for measuring both types of voltages and currents
are required. Unfortunately, no instruments exist for the potential current,
and voltmeters show both types of voltage in sum. Additional development
work would be required to produce suitable devices for research and practical
employment.
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