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1. Introduction

Geometry is visible everywhere in daily life. It appears in objects that have been engineered in any
form. We are familiar with geometry, since it has been used for centuries (Fig. 1.1). Also, in pure
sciences like mathematics and physics, it plays an important role. The mathematical description of
geometry consists of the logic elements of geometry itself, for example, the geometric constructions
for triangles (Fig. 1.2). This type of logical treatment dates back to the beginning of recorded time,
which is assumed be around 3500 B.C., when the first written documents appeared in Mesopotamia.
For earlier times, we have to rely on documents of stone, like the pyramids in Egypt, which are
probably much older than commonly assumed. The Cheops pyramid has been charted in detail, and
correlations have been found to the circumference of the earth, hinting that geometry had had an
important role even in the Stone Age. At that time, Europe had a flourishing Celtic culture, from
which numerous stone relics exist, and the runes used by the druids were geometric signs.

Ancient philosophy, in particular natural philosophy, culminated in Greece. Pythagoras is
said to have been the first founder of mathematics, and we all know the Pythagorean theorem.
In Athens, where democracy was born, the “triumvirate” Socrates, Plato and Aristotle founded
classical philosophy, starting at about 400 B.C. Their schools were valid for about a thousand years.
Euclid, who wrote the pivotal treatise on geometric reasoning, Elements, was a member of the
Platonic school.

During medieval times, knowledge from the Roman Empire was preserved by monasteries of
the ecclesia and by Arabian philosophers and mathematicians. The Renaissance, which began in
Italy in the 14th century and spread to the rest of Europe in the 15th and 16th centuries, was both
a rebirth of ancient knowledge, and the beginning of modern empirical natural philosophy. This
philosophy is connected with Galileo Galilei, who constituted the method of experimental proofs,
and to Johann Kepler, who established our modern heliocentric model of the solar system, first
presented as a hypothesis by Nicolaus Copernicus.

Since the 17th century, the mathematical description of physics has made great progress. Isaac
Newton published the law of gravitation, which actually goes back to his mentor Robert Hooke. This
represented huge progress in natural philosophy, because celestial events could now be predicted
mathematically, although this has become completely possible only since the advent of computers.
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Figure 1.1: Example of geometry: rosette window
in the cathedral of Chartres.

Figure 1.2: Example of geometry: triangles.

The 18th century was the golden age of mechanics. Newton’s laws, and their generalizations by
Lagrange and Hamilton, paved the way for mathematical physics for the next 300 years. Initially,
geometry was used mainly for describing the motion of bodies and particles. The emergence of
quantum mechanics in the 20th century extended geometry to the atomic and subatomic realm. For
example, the atoms that comprise solids and molecules exhibit a geometrical structure (Fig. 1.3)
which is essential for their macroscopic properties. Similar arguments hold for electrodynamics
(see, e.g., Fig. 1.4). Faraday’s lines of force describe a close-range effect, which was a basis for the
geometrical description of electrodynamics, culminating in Maxwell’s equations.

The use of geometry changed again at the beginning of the 20th century, when Einstein
introduced his theory of general relativity, in which he based physics on non-Euclidean geometry.
Gravitation was no longer described by a field imposed externally on space and time, but instead the
“spacetime” itself was considered to be an object of description, and altered so that force-free bodies
move on a virtually straight line (geodetic line) through space. Spacetime was considered to be
curved, and the curving described the laws of gravitation. Along with this interpretation, geometry
was considered to be an abstract concept described by numbers and mathematical functions. This
approach is known as analytical geometry, and its simplest form uses coordinate systems and
vectors.

Figure 1.3: Example of geometry: unit cell of
Fluorite crystal. White: Calcium, green: Fluorine.

Figure 1.4: Example of geometry: torus.
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Einstein’s geometrical concept was the first paradigm shift in physics since Newton had
introduced his laws of motion, 300 years earlier. Experimental validation of Einstein’s general
relativity has been rare, and has mainly concerned the solar system, like the deflection of light
by the sun and the precession of the orbit of Mercury. In spite of this limitation, the theory was
taken as a basis for cosmology, from which the existence of the big bang and dark matter was later
extrapolated.

Unfortunately, this approach to cosmology has introduced self-contradictory inconsistencies.
For example, the concept that the speed of light is an absolute upper limit is treated like a dogma
in contemporary physics, and thus immune to rational argument. However, to explain the first
expansive phase of the universe, one has to assume that this happened with an expansion velocity
faster than the speed of light. This example is only one of the criticisms of Einstein that have yet to
be answered properly and scientifically.

Later, after Einstein’s death, the so-called velocity curve of galaxies was observed by as-
tronomers. This means that stars in the outer arms of galaxies do not move according to Newton’s
law of gravitation, but have a constant velocity. However, Einstein’s theory of general relativity
is not able to explain this behavior. Both theories (Einstein and Newton) break down in cosmic
dimensions. When a theory does not match experimental data, the scientific method requires that
the theory be improved or replaced by a better concept. In the case of galactic velocity curves,
however, it was “decided” that Einstein is right and that there has to be another reason why stars
behave in this way. Dark matter that interacts through gravity and is distributed in a way that
accounts for observed orbits was then postulated. Despite an intensive search for dark matter,
even on the sub-atomic level, nothing has been found that could interact with ordinary matter
through gravity, but not interact with observable electromagnetic radiation, such as light. Sticking
with Einstein’s theory seems to be a pipe dream, but nobody in the scientific community dares to
abandon this non-working theory.

The members of the AIAS institute, Myron Evans at the head, took over the task of developing
a new theory of physics that overcomes the problems in Einstein’s general relativity. Shortly after
the year 2000, Myron Evans developed the “Einstein Cartan Evans theory” (ECE theory [1–5])
as a replacement, and was even able to unify this with electrodynamics and quantum mechanics.
This lead to significant progress in several fields of physics, and the most significant aspects are
described in this text book.

ECE theory is based entirely on geometry, as was Einstein’s general theory of relativity.
Therefore, Einstein is included in the name of this new theoretical approach. Both theories take the
geometry of spacetime (three space dimensions, plus one time dimension) as their basis. While
Einstein thought that matter curves spacetime and assumed matter to be a “source” of fields, we will
see that ECE theory is based entirely on the field concept and does not need to introduce external
sources. This idea of sources created a number of difficulties in Einstein’s theory.

Another reason for these difficulties is that Einstein made a significant mathematical error in
his original theory (1905 to 1915), because all of the necessary information was not yet available.
Riemann inferred the metric around 1850, and Christoffel inferred the idea of connection around
the 1860s. The idea of curvature was inferred at the beginning of the twentieth century, by Levi
Civita, Ricci, Bianchi and colleagues in Pisa. However, torsion was not inferred until the 1920s, by
Cartan and his colleagues in Paris.

Therefore, in 1915, when Einstein published his field equations, Riemann geometry contained
only curvature, and there was no way of determining that the Christoffel connection must be
antisymmetric or at least asymmetric. The arbitrary decision to use a symmetric connection was
made into an axiom, and the inferences of Einstein’s theory ended up being based on incorrect
geometry. Omission of torsion leads to many problems, as has been shown by the AIAS Institute,
in great detail [6].



12 Chapter 1. Introduction

Torsion is a twisting of space, which turns out to be essential and inextricably linked to curvature,
because if the torsion is zero then the curvature vanishes [6]. In fact, torsion is even more important
than curvature, because the unified laws of gravitation and electrodynamics are basically physical
interpretations of twisting, which is formally described by the torsion tensor.

ECE theory unifies physics by deriving all of it directly and deterministically from Cartan
geometry, and doing so without using adjustable parameters. Spacetime is completely specified by
curvature and torsion, and ECE theory uses these underlying fundamental qualities to derive all
of physics from differential geometry, and to predict quantum effects without assuming them (as
postulates) from the beginning. It is the first (and only) generally covariant, objective and causal
unified field theory.

This book first introduces the mathematics on which ECE theory is based, so that the foundations
of the theory can be explained systematically. Mathematical details are kept to a minimum, and
explained only as far as is necessary to ensure understanding of the underlying Cartan geometry.
This allows the fundamental ECE axioms and theorems to be introduced in a simple and direct
manner. The same equations are shown to hold for electrodynamics, gravitation, mechanics
and fluid dynamics, which places all of classical physics on common ground. Physics is then
extended to the microscopic level by introducing canonical quantization and quantum geometry.
The quantum statistics used is classically deterministic. There is no need for renormalization and
quantum electrodynamics. All known effects, up to and including the structure of the vacuum,
can be explained within the ECE axioms, which are based on Cartan geometry. This is the great
advancement that this textbook will explain and clarify.
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2. Mathematics of Cartan geometry

2.1 Coordinate transformations

Before we can discuss the foundations of non-Cartesian and Cartan geometry on a mathematical
level, we need to review the basics of analytical geometry.

2.1.1 Coordinate transformations in linear algebra

To start our discussion of geometry, we first recapitulate some basics of linear algebra. Cartan
geometry is a generalization of these concepts, in a sense. Points in space are described by
coordinates which are n-tuples for an n-dimensional vector space. The tuple components are
numbers and describe how a point in space is reached by putting parts (for example yardsticks)
in different directions together. The directions are called base vectors. For a three-dimensional
Euclidian space we have the base vectors

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 . (2.1)

A point with coordinates (X ,Y,Z) is allocated to a vector

X = Xe1 +Y e2 +Ze3. (2.2)

We have the freedom to choose any base in a vector space, rectangular or not, but when vector
analysis is applied to the vector space, it is beneficial to have a rectangular basis. The basis vectors
have to be normalized so that this is an orthonormal basis.

A question arises as to what happens when the basis vectors are changed. The position of points
in the vector space should be independent of the basis, and we will encounter this fundamental
requirement often in Cartan geometry. The coordinates will change when the basis changes. An
important part of linear algebra deals with describing this mathematically. Taking the above basis
vectors ei, a new basis e′i in an n-dimensional vector space will be a linear combination of the
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original basis:

e′i =
n

∑
j=1

qi je j (2.3)

where the coefficients qi j represent a matrix that is commonly called the transformation matrix.
The above equation can therefore be written as a matrix equatione′1

...
e′n

= Q

e1
...

en

 (2.4)

with

Q = (qi j) (2.5)

and the unit vectors formally arranged in a column vector. Q must be of rank n and invertible. In
Eq. (2.4) the unit vectors can be written with their components as row vectors. Denoting the j-th
component of the unit vector ei by (ei) j = ei j, we then can set up a matrix from the unit vectors
and write (2.4) in the forme′11 . . . e′1n

...
...

e′n1 . . . e′nn

= Q

e11 . . . e1n
...

...
en1 . . . enn

 . (2.6)

Then the basis transformation is a matrix multiplication by Q. The matrix for the inverse transfor-
mation is obtained by multiplying (2.4) or (2.6) by the inverse matrix Q−1:e11 . . . e1n

...
...

en1 . . . enn

= Q−1

e′11 . . . e′1n
...

...
e′n1 . . . e′nn

 . (2.7)

Multiplying Q with Q−1 gives the unit matrix which can be expressed by the Kronecker symbol:

Q Q−1 =

1 . . . 0
...

...
0 . . . 1

= (δi j). (2.8)

� Example 2.1 The rotation of bases by an angle φ in a two-dimensional vector space can be
described by the rotation matrix

Q =

(
cosφ sinφ

−sinφ cosφ

)
. (2.9)

The basis of unit vectors (1,0), (0,1) is then transformed to the new basis vectors(
e′1
e′2

)
=

(
cosφ sinφ

−sinφ cosφ

)(
1 0
0 1

)
=

(
cosφ sinφ

−sinφ cosφ

)
, (2.10)

this means

e′1 =
(

cosφ

sinφ

)
, e′2 =

(
−sinφ

cosφ

)
. (2.11)

Both basis sets are depicted in Fig. 2.1. �
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Figure 2.1: Basis vector rotation by an angle φ .

Now that we understand the basis transformation, we want to find the transformation law for
vectors. The components of vectors in one base, the coordinates, are transformed to the components
in another base. From the definition (2.2) a vector with coordinates xi can be written as

X = ∑
i

xiei (2.12)

and may be transformed to a representation in a second basis with coordinates x′i:

X′ = ∑
i

x′ie
′
i. (2.13)

Since the vector should remain the same in both bases, we can set X = X′. Inserting the basis
transformations into this relation, one finds that the transformation law of coordinates is

X′ = Q−1 X (2.14)

or in coordinates:x′1
...

x′n

= Q−1

x1
...

xn

 . (2.15)

We notice the important result that the coordinates transform with the inverse matrix compared to
the basis vectors and vice versa.

� Example 2.2 The transformation matrix of coordinates for the rotation in two dimensions is

Q−1 =

(
cosφ −sinφ

sinφ cosφ

)
. (2.16)

This can easily be seen because the reverse rotation is by an angle −φ . Then the sine function
reverses sign but the cosine function does not. The vectors on the basis axes are transformed to(

1
0

)
→
(

cosφ

−sinφ

)
,

(
0
1

)
→
(

sinφ

cosφ

)
. (2.17)

�
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Comparing with (2.9), we see that the columns of the transformation matrix Q represent the
coordinates of the transformed unit vectors, not the basis. In general:x11 . . . xn1

...
...

x1n . . . xnn

= Q−1

1 . . . 0
...

...
0 . . . 1

 (2.18)

where xi j = (xi) j denotes the jth component of the transformed unit vector ei. Please notice that the
index scheme for xi j is transposed compared to the usual matrix definition.

2.1.2 General coordinate transformations and coordinate differentials
In the framework of general relativity, coordinate transformations are mappings from one vector
space to another. These mappings are multidimensional functions. In the preceding section we
restricted ourselves to linear transformations (or mappings), while in general relativity we operate
with nonlinear transformations.

Space is described by a four-dimensional manifold, using advanced mathematics. However, in
this book we do not develop these concepts in any great extent, but only explain the parts that are
required for a basic understanding. The mathematical details can be found in textbooks on general
relativity, for example, see [7]- [11].

In this book, we use one time-coordinate plus three space-coordinates for general relativity,
with indices numbered from 0 to 3. Such vectors are also called 4-vectors. The functions and maps
(later: the tensors) defined on this base space are functions of the coordinates: f (xi), i=0...3. In
particular, coordinate transformations can be described in this form. Let’s consider two coordinate
systems A and B which describe the same space and are related by a nonlinear transformation.
Let Xi be the components of a 4-vector X in space A and Yi the components of a 4-vector Y in
space B. The coordinate transformation function f : X→ Y then can be expressed as a functional
dependence of the components:

Yi = fi(X j) = Yi(X j) (2.19)

for all components i of f and all pairs i, j. In the following, we consider the transformations
between a rectangular, orthonormal coordinate system, defined by basis vectors (1,0, ...),(0,1, ...),
etc., and coordinates

X =


X1
X2
X3
X4

 (2.20)

and a curvilinear coordinate system with coordinates

u =


u1
u2
u3
u4

 . (2.21)

The transformation functions from the curvilinear to the cartesian coordinate system may be defined
by

Xi = Xi(u j) (2.22)
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Figure 2.2: Transformation to curvilinear coordinates.

as discussed above. The inverse transformations define the coordinate functions of u:

ui = ui(X j). (2.23)

The functions ui = constant define coordinate surfaces, see Fig. 2.2, for example.
The degree of change in each direction is given by the change of arc length and is expressed by

the scale factors

hi =

∣∣∣∣∂X
∂ui

∣∣∣∣ . (2.24)

The unit vectors in the curvilinear space are computed by

ei =
1
hi

∂X
∂ui

. (2.25)

The tangent vector of the coordinate curves at each point of space is defined by

∇ui = ∑
j

∂ui

∂X j
e j. (2.26)

We require that curvilinear coordinate system be orthonormal at each point of space. This can be
assured by the condition that the tangent vectors of the coordinate curves at each point fulfill the
requirement

∇ui ·∇u j = δi j. (2.27)

The scale factors can alternatively be expressed by the modulus of the tangent vector:

hi =
1
|∇ui|

. (2.28)

� Example 2.3 We consider the transformation from cartesian coordinates to spherical coordinates
in Euclidean space. The curvilinear coordinates of a point in space are (r,θ ,φ), where r is the
radius, θ the polar angle and φ the azimuthal angle, see Fig. 2.3. The cartesian coordinates are
(X ,Y,Z). The transformation equations from the curvilinear to the rectangular coordinate system
are

X = r sinθ cosφ

Y = r sinθ sinφ (2.29)

Z = r cosθ
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and the inverse transformations are

ur = r =
√

X2 +Y 2 +Z2

uθ = θ = arccos
Z√

X2 +Y 2 +Z2
(2.30)

uφ = φ = arctan
Y
X
.

Figure 2.3: Spherical polar coordinates [111].

The vector of scale factors (2.24) is

h =

 1
r

r sinθ

 (2.31)

and the matrix of column unit vectors (2.25) is

(e1,e2,e3) =

 cosφ sinθ sinφ sinθ cosθ

cosφ cosθ sinφ cosθ −sinθ

−sinφ cosφ 0

 . (2.32)

The components of h have to be positive. The sine function may have positive and negative values,
but in spherical coordinates the range of θ is between 0 and π , therefore this function is always
positive. �

As explained, the coordinate systems are chosen in a way that ensures that the length of vectors
is conserved. This must also hold for time-dependent processes. For example, a distance vector
changing over time is

∆X = v∆t−X0 (2.33)

where v is the velocity vector of a mass point and X0 is an offset. The squared distance is

s2 = v2
∆t2− (X0)

2. (2.34)

We notice that a minus sign appears in front of the space part of s2. This is different from pure
“static” Euclidean 3-space, where we have

s2
E = X2 +Y 2 +Z2. (2.35)
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Now we generalize Eq. (2.34). When the differences in time as well as in space between two
points are infinitesimally different, we can write the distance between these points with coordinate
differentials:

ds2 = c dt2−dX2−dY 2−dZ2 (2.36)

where ds is the differential line element. We have added a factor c to the time coordinate t so that
all coordinates have the physical dimension of length. In the same way, we can express the line
element in another coordinate system, say u coordinates:

ds2 = (du0)
2− (du1)

2− (du2)
2− (du3)

2. (2.37)

So far we have dealt with a Euclidian 3-space, augmented by a time component. More generally,
the above equations can be written in the form

ds2 = ∑
i j

ηi j dxi dx j (2.38)

where ηi j represents a matrix of constant coefficients directly leading to the result (2.36) or (2.37):

(ηi j) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.39)

Formally, we can write the coordinates as a 4-column vector

(xµ) =


ct
X1

X2

X3

 (2.40)

where µ runs from 0 to 3 and is written as an upper index. We can do the same for the coordinate
differentials:

(dxµ) =


cdt
dX1

dX2

dX3

 . (2.41)

At this point, we should notice that the determinant of the matrix (2.39) is -1. The η matrix is
called the metric of the space, here the time-extended flat Euclidean space, also called Minkowski
space. Obviously, the metric is negative definite. Sometimes η is defined with reverse signs but the
result is the same. At this point, we enter the realm of special relativity, but we need not deal with
Lorentz transformations in this book. Since the spacetime metric is an essential physical quantity in
general relativity as well as in ECE theory, we introduce special relativity only under the view point
that the line element ds is independent of the coordinate system. Later we will see that this leads to
the gamma factor of special relativity. This is the only formalism in common between Einstein’s
relativity and ECE theory. We will come back to this when physical situations are considered where
very high velocities occur. This requires a relativistic treatment (in the sense of special relativity).
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2.1.3 Transformations in curved spaces
So far, we have done linear algebra in Euclidean spaces, but now we are extending the concepts
of the preceding section to curved spaces. This means that equidistant coordinate values do not
describe line elements equal in length. But we should be warned: Using such coordinate systems
does not mean that space is “curved” in any way. According to Example 2.1 in the preceding
section, a curvilinear coordinate system can perfectly describe a Euclidean “flat” space.

Below, we consider two coordinate systems existing in the same space, denoted by primed and
un-primed differentials dx and dx′. According to Eqs. (2.22, 2.23) we have a functional dependence
between both coordinates:

xµ = xµ(x′ν) (2.42)

and

x′ν = x′ν(xµ). (2.43)

Differentiating these equations gives

dx′µ = ∑
ν

∂x′µ

∂xν
dxν , (2.44)

dxµ = ∑
ν

∂xµ

∂x′ν
dx′ν . (2.45)

To make these equations similar to the transformations in linear algebra (see Section 2.2.2), we
define transformation matrices

α
µ

ν =
∂xµ

∂x′ν
, (2.46)

α
µ

ν =
∂x′µ

∂xν
(2.47)

so that any vector V with components V µ in one coordinate system can be transformed to a vector
V ′ in the other coordinate system by

V ′µ = α
µ

ν V ν , (2.48)

V µ = α
µ

ν V ′ν . (2.49)

These matrices, however, are not elements of linear algebra but matrix functions, because we are
not working with linear transformations. α is the inverse matrix function of α and vice versa. This
means:

∑
ρ

α
µ

ρ α
ρ

ν = δ
µ

ν (2.50)

with the Kronecker delta

δ
µ

ν =

{
1 if µ = ν

0 if µ 6= ν
. (2.51)

Here we have written α with an upper and lower index intentionally. This allows us to introduce
the Einstein summation convention: if the same index appears as an upper and a lower index on one
side of an equation, this index is summed over. Such an index is also called a dummy index. We
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will use this feature intensively, when tensors are introduced later. With this convention, which we
will use without notice in the future, we can write:

α
µ

ρ α
ρ

ν = δ
µ

ν . (2.52)

Since space is not necessarily flat, the metrical coefficients of (2.39) are not constant, and non-
diagonal terms may appear. This general metric is conventionally called gµν and defined by the
line element as before:

ds2 = gµν dxµ dxν . (2.53)

For a flat space with cartesian coordinates we have

gµν = ηµν . (2.54)

� Example 2.4 We compute an example for a transformation matrix. Using Example 2.3 (trans-
formation between cartesian coordinates and spherical polar coordinates), we have by (2.29),
(2.30):

x1 = r sinθ cosφ

x2 = r sinθ sinφ (2.55)

x3 = r cosθ

and the inverse transformations

x′1 = r =
√

(x1)2 +(x2)2 +(x3)2

x′2 = θ = arccos
x3√

(x1)2 +(x2)2 +(x3)2
(2.56)

x′3 = φ = arctan
x2

x1 .

The transformation matrix is according to (2.46):

α
1
1 =

∂x1

∂x′1
=

∂

∂ r
(r sinθ cosφ) = sinθ cosφ (2.57)

α
1
2 =

∂x1

∂x′2
=

∂

∂θ
(r sinθ cosφ) = r cosθ cosφ

etc. ...

resulting in the 3x3 matrix

α =

sinθ cosφ r cosθ cosφ −r sinθ sinφ

sinθ sinφ r cosθ sinφ r sinθ cosφ

cosθ −r sinθ 0

 . (2.58)

Obviously, this matrix is not symmetric and even has a zero on the main diagonal. Nonetheless, it
is of rank 3 and is invertible, as can be checked. We omit the details here, since the inverse matrix
is a bit complicated. The determinant of α is r2 sinθ , the determinant of the inverse matrix α is
1/(r2 sinθ). By insertion, one can check that

α ·α = 1. (2.59)

This example is available as code for the computer algebra system Maxima [80]. �
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� Example 2.5 As a further example, we will compute the metric of the coordinate transformation
of the previous example (2.4), see computer algebra code [81]. So far, we have no formal method
given to do this. The simplest way for Euclidean spaces is the method going back to Gauss. If the
metric g (a matrix) is known for one coordinate system xµ , the invariant line element of a surface
(which is hypothetical in our case) is given by

ds2 =
[
dx1dx2dx3

]
g

dx1

dx2

dx3

 . (2.60)

The metrical matrix belonging to another coordinate system x′µ is then computable by

g′ = JT g J (2.61)

where J is the Jacobian of the coordinate transformation:

J =

 ∂x1

∂x′1
∂x1

∂x′2
∂x1

∂x′3
∂x2

∂x′1
∂x2

∂x′2
∂x2

∂x′3
∂x3

∂x′1
∂x3

∂x′2
∂x3

∂x′3

 . (2.62)

Comparing this with Eq. (2.57), we see that the transformation matrix α is identical with the
Jacobian, so we can also write:

g′ = α
T g α. (2.63)

The metric of the cartesian coordinates is simply

g =

1 0 0
0 1 0
0 0 1

 (2.64)

and can be inserted into (2.63), together with α from the preceding example. The result is

g′ =

1 0 0
0 r2 0
0 0 r2sin2θ

 (2.65)

for the metric of the spherical coordinates. Written as the line element, this is

ds2 = dr2 + r2dθ
2 + r2 sin2

θ dφ
2. (2.66)

The metric is symmetric in general, and diagonal in most relevant cases. We will learn other
methods of determining the metric in curved spaces during the course of this book. �

2.2 Tensors
Now that we have explained coordinate transformations and their matrix representations, including
the metric, to some extent, we will extend this formalism from vectors to tensors. First, we have to
define what a tensor is, and then we can see how they are transformed.

In Section 1.1.3 we introduced the formalism of writing matrices and vectors by indexed
quantities, with upper or lower index, where this position was chosen more or less arbitrarily, for
example to fulfill the Einstein summation convention. Now let’s introduce k-dimensional objects (k
ranging from 0 to any integer number) with upper and lower indices of the form

T µ1...µn
ν1...νm . (2.67)
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T has n upper indices µi and m lower indices νi with n+m = k. It is not required that all upper
indices appear first, for example

T 3 30
1 (2.68)

is a valid object. The indices µi,νi represent the coordinate indices for each dimension, ranging
from 0 to k-1 by definition. In the above example we have k = 4, so

T 3 40
5 (2.69)

would not be a valid object. For k = 2 such an object represents a matrix, for k = 1 a vector and for
k = 0 (without index) a scalar value. A tensor is defined by objects of type (2.67) which adhere to a
certain transformation behavior of the upper and lower indices. Given a coordinate transformation
α

µ

ρ between two coordinate systems, this transformation has to be applied for each index of a tensor
separately. For example, a 2-dimensional tensor T may be transformed to T ′ by

T ′µν = α
µ

ρ α
ν

λ
T ρλ . (2.70)

We further require that for lower indices we use the inverse transformation matrices:

T ′µν = α
ρ

µ α
λ
ν Tρλ (2.71)

and, consequently, for mixed cases:

T ′µν = α
µ

ρ α
λ
ν T ρ

λ
. (2.72)

Please notice that the α matrices are defined by the differentials of the transformation, see Eqs.
(2.44, 2.45).

In Section 2.1.1 we have seen that, if α
µ

ρ transforms the basis vectors, then the inverted
matrix α

ν

λ
transforms the coordinates of vectors. Therefore, the upper indices of tensors transform

like coordinates, while the lower indices transform like the basis. Upper indices are also called
contravariant indices, while lower indices are called covariant indices. A tensor containing both
types of indices is called a mixed index tensor.

We conclude this section with the hint that the metric introduced in the previous section is also
a tensor. Mathematically, more precisely, we would restrict the tensors then to live in metric spaces,
but we won’t bother too much with mathematical details in this textbook. The metric gµν in curved
spaces is a symmetric matrix and a tensor of dimension 2. The inner product of two vectors v, w
can be written with aid of the metric:

s = gµν vµwν . (2.73)

In Euclidean space with Cartesian coordinates, g is the unit matrix as demonstrated in Example
(2.5). Indices of arbitrary tensors can be moved up and down via the relations

T µ

ν = gνρ T µρ (2.74)

and

T µ

ν = gµρ Tρν (2.75)

where gµρ is the inverse metric:

gµρgνρ = δ
µ

ν . (2.76)
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� Example 2.6 We present several tensor operations. Tensors can be multiplied. Then the product
has the union set of indices, for example

AµνBρ =Cµν

ρ . (2.77)

The order of multiplication of A and B plays a role. Therefore, such a product is only meaningful
for tensors with a certain symmetry, for example the product tensor of two vectors:

vµwν =Cµν . (2.78)

Here C is a symmetric tensor, i.e.

Cµν =Cνµ . (2.79)

Only tensors with the same rank can be added:

Aµ

ν +Bρ

σ =Cα

β
. (2.80)

The equation

Aµ

ν +Bρσ

τ =? Cαβ

τ (2.81)

is not compatible with the definition of tensors, and is therefore wrong. For further examples,
see [7]. �

2.3 Base manifold and tangent space
Now that we have seen an overview of the tensor formalism, we will consider the spaces on which
these tensors are operating. A tensor can be considered as a function, for example

T µ

ν : R4→ R2 (2.82)

which maps a 4-vector to a two-dimensional tensor field:

[ct,X ,Y,Z]→ T µ

ν (ct,X ,Y,Z) (2.83)

where the two indices of the tensor indicate that the image map is two-dimensional. We speak of
“tensor field” in cases where a continuous argument range is mapped to a continuous image range
which is different from the argument set. For example, T could be an electromagnetic field which
is defined at each point of 4-space. If the set of arguments is not Euclidean, we require that, at each
point of the argument set, a local neighborhood exists, which is homomorphous to an open subset of
Rn where n is the dimension of the argument set. This is then called a manifold. Applying multiple
tensor functions to a manifold means that several maps of the manifold exist. It is further required
that the manifold is differentiable because we want to apply the differential calculus later. Assume
that a point P is located within the valid local range of two different coordinate systems. Then
the manifold is differentiable in P, if the Jacobian of the transformation between both coordinate
systems is of rank n, the dimension of the manifold. For definition of scalar products, lengths,
angles and volumes we need a metric structure for “measurements”, and this requires the existence
of a metric tensor. A differentiable manifold with a metric tensor is called Riemannian manifold.

� Example 2.7 In Fig. 2.4 an example for a 2-dimensional manifold is given: the surface of
the earth. The geometry is non-Euclidean. For large triangles on the earth’s surface, the sum of
angles is different from 180◦. A small region is mapped to a flat area where Euclidean geometry
is re-established. This can be done for each point of a manifold within a neighborhood, but not
globally for the whole manifold. �
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Figure 2.4: 2-dimensional manifold and mapping of a section to a plane segment.

Figure 2.5: Tangential vector v to a 2-dimensional manifold M.

At each point of such a manifold a tangential space can be defined. This is a flat Rn space
with the same dimension as the manifold. In Fig. 2.5 an example of a 2-dimensional manifold and
tangent space is depicted. The manifold is denoted by M and the tangent space at the point x by
TxM. Such a tangent space (a plane) for example occurs for the motion of mass points along an
orbital curve γ(t).

The manifold can be covered by points with local neighborhoods and corresponding tangent
spaces in each of these points. The set of all tangent spaces is called the tangent bundle. Changing
the coordinate systems within the manifold means that the mapping from the manifold to the
tangential space has to be redefined. A scalar product can be defined in the tangential space by use
of the metric of the manifold.

Now we want to make the definition of tangent space independent of the choice of coordinates.
The tangent space TxM at a point x in the manifold can be identified with the space of directional
derivative operators along curves through x. The partial derivatives ∂

∂xµ = ∂µ represent a suitable
basis for the vector space of directional derivatives, which we can therefore safely identify with the
tangent space.

Consider two manifolds M and N and a function F : M→ N for a mapping of points of M to
points in N. In M and N no differentiation is defined. However, we can define coordinate charts
from the manifolds to their corresponding tangent spaces. These are the functions denoted by φ

and ψ in Fig. 2.6. The coordinate charts allow us to construct a map between both tangent spaces:

ψ ◦ f ◦φ
−1 : Rm→ Rn. (2.84)

With aid of this construct we can define a partial derivative of f exploiting the indirection via the
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tangent spaces. For a point xµ in Rm (the mapped point x of M) we define:

∂ f
∂xµ

:=
∂

∂xµ
(ψ ◦ f ◦φ

−1)(xµ). (2.85)

In many application cases we have a curve in the manifold M described by a parameter λ . This
could be the motion of a mass point in dependence of time. Similarly, as above, we can define the
derivative of function f according to λ by using the chain rule:

d f
dλ

:=
dxµ

dλ
∂µ f . (2.86)

As can be seen, there is a summation over the indices µ and the ∂µ can be considered as a basis of
the tangent space. This is sometimes applied in mathematical textbooks (for example [12]).

Figure 2.6: Mapping between two manifolds and tangent spaces.

n-forms
There is a special class of tensors, called n-forms. These comprise all completely anti-symmetric
covariant tensors. In an n-dimensional space, there are 0-forms, 1-forms, ..., n-forms. All higher
forms are zero by the antisymmetry requirement. A 2-form F can be constructed, for example, by
two 1-forms (co-vectors) a and b:

Fµν =
1
2
(aµbν −aνbµ). (2.87)

By index raising this can be rewritten to the form

F ′µν =
1
2
(a′µb′ν −a′νb′µ) (2.88)

with

a′µ = gµνaν , etc. (2.89)

Introducing a square bracket for an antisymmetric index permutation:

[µν ]→ µν−νµ (2.90)

we can also write this in the form

Fµν =
1
2

a[µbν ]. (2.91)
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In general, we can define

T[µ1µ2...µn] =
1
n!
(Tµ1µ2...µn + alternating sum over permutations of µ1 . . .µn). (2.92)

The antisymmtric tensor may contain further indices which are not permuted.

� Example 2.8 Consider a tensor T τ
µνρσ being antisymmetric in the first three indices. Then we

have

T τ

[µνρ]σ =
1
6
(T τ

µνρσ −T τ
µρνσ +T τ

ρµνσ −T τ
νµρσ +T τ

νρµσ −T τ
ρνµσ ). (2.93)

By utilizing the antisymmetry of the first two indices, we can simplify this expression to

T τ

[µνρ]σ =
1
6

(
T τ

µνρσ − (−T τ
µνρσ )+T τ

ρµνσ − (−T τ
ρµνσ )+T τ

νρµσ − (−T τ
νρµσ )

)
(2.94)

=
1
3

(
T τ

µνρσ +T τ
ρµνσ +T τ

νρµσ

)
.

This is the sum of indices µ,ν ,ρ cyclically permuted. �

With the help of antisymmetrization, we can define the exterior product or wedge product.
Given a p-form a and q-form b, we define the antisymmetric product by the ∧ (wedge) operator:

(a∧b)µ1...µp+q :=
(p+q)!

p!q!
a[µ1...µpbµp+1...µp+q]. (2.95)

For example, the wedge product of two 1-forms is

(a∧b)µν = 2a[µbν ] = aµbν −aνbµ . (2.96)

The wedge product is associative:

(a∧ (b+ c))
µν

= (a∧b)µν +(a∧ c)µν . (2.97)

Mathematicians like to omit the indices if it is clear that an equation is written for forms. Thus the
last equation can also be written as

a∧ (b+ c) = a∧b+a∧ c (2.98)

in a short-hand notation. Another property is that wedge products are not commutative. For a
p-form a and a q-form b it is

a∧b = (−1)pqb∧a (2.99)

and for a 1-form:

a∧a = 0. (2.100)

These features may justify the name “exterior product” as a generalization of a vector product in
three dimensions.

An important operation on forms is applying the Hodge dual. First we have to define the
Levi-Civita symbol in n dimensions:

εµ1...µn =


1 if µ1 . . .µn is an even permutation of 0, . . .(n−1),
−1 if µ1 . . .µn is an odd permutation of 0, . . .(n−1),
0 otherwise.

(2.101)
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The determinant of a matrix can be expressed by this symbol. If Mµ

µ ′ is a n× n matrix, the
determinant |M| obeys the relation

εµ ′1...µ
′
n
|M|= εµ1...µnMµ1

µ ′1
· · ·Mµn

µ ′n
(2.102)

or, restricting to one permutation at the left-hand side:

|M|= εµ1...µnMµ1
1 · · ·M

µn
n . (2.103)

The Levi-Civita symbol is defined in any coordinate system in the same way, not undergoing a
coordinate transformation. Therefore, it is not a tensor. The symbol is totally antisymmetric, i.e.
when any two indices are interchanged, the sign changes. All elements where one index appears
twice are zero because the index set must be a permutation.

The Levi-Civita symbol can also be defined with upper indices in the same way. Then the
determinant (2.102/2.103) takes the form

ε
µ ′1...µ

′
n |M|= ε

µ1...µnMµ ′1
µ1 · · ·M

µ ′n
µn (2.104)

or

|M|= ε
µ1...µnM1

µ1
· · ·Mn

µn
. (2.105)

We can construct a tensor from the Levi-Civita symbol by multiplying it with the square root of
the modulus of the metric (in Minkowski space the metric is negative definite, therefore we have to
take the modulus). To show this, we start with the transformation equation of the metric tensor

gµ ′ν ′ =
∂xµ

∂xµ ′
∂xν

∂xν ′
gµν (2.106)

and apply the determinant. With the product rule of determinants this can be written as

|gµ ′ν ′ |=
∣∣∣∣ ∂xµ

∂xµ ′

∣∣∣∣ ∣∣∣∣ ∂xν

∂xν ′

∣∣∣∣ |gµν |=
∣∣∣∣ ∂xµ

∂xµ ′

∣∣∣∣2 |gµν | (2.107)

or ∣∣∣∣ ∂xµ

∂xµ ′

∣∣∣∣=
√
|gµ ′ν ′ |
|gµν |

(2.108)

where the left-hand side represents the determinant of the Jacobian. Using the special case

Mµ ′

µ =
∂xµ ′

∂xµ
(2.109)

and inserting this into (2.104) we obtain

ε
µ ′1...µ

′
n

∣∣∣∣∣∂xµ ′

∂xµ

∣∣∣∣∣= ε
µ1...µn

∂xµ ′1

∂xµ1
· · · ∂xµ ′n

∂xµn
. (2.110)

The determinant of the inverse Jacobian is∣∣∣∣ ∂xµ

∂xµ ′

∣∣∣∣=
∣∣∣∣∣∂xµ ′

∂xµ

∣∣∣∣∣
−1

, (2.111)
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therefore we obtain from (2.110) with inserting (2.108):

ε
µ ′1...µ

′
n

1√
|gµ ′ν ′ |

= ε
µ1...µn

∂xµ ′1

∂xµ1
· · · ∂xµ ′n

∂xµn

1√
|gµν |

. (2.112)

So εµ1...µn/
√
|g| transforms like a tensor, and therefore is a tensor, by definition. The corresponding

covariant tensor transforms as

εµ ′1...µ
′
n

√
|gµ ′ν ′ |= εµ1...µn

∂xµ1

∂xµ ′1
· · · ∂xµn

∂xµ ′n

√
|gµν |. (2.113)

Indices can be raised and lowered as usual by multiplying with metric elements.
With this behavior of the Levi-Civita symbol in mind, we define the Hodge-Dual of a tensorial

form as follows. Assume a n-dimensional manifold, a p-dimensional sub-manifold p < n, and a
tensor p-form A. We then define

Ãµ1...µn−p :=
1
p!
|g|−1/2

ε
ν1...νp

µ1...µn−p Aν1...νp . (2.114)

The tilde superscript ˜ is called the Hodge dual operator. In the mathematical literature this
is mostly denoted by an asterisk as prefix-operator (∗A) but this is a very misleading notation,
therefore we prefer the tilde superscript. The Hodge dual can be rewritten with a Levi-Civita
symbol with only covariant components by

Ãµ1...µn−p =
1
p!
|g|−1/2 gν1σ1 · · ·gνpσp εσ1...σpµ1...µn−p

Aν1...νp . (2.115)

In this book, we will mostly use a somewhat simpler form where a contravariant tensor is trans-
formed into a covariant tensor and vice versa. The factors gν1σ1 , etc., can be used to raise the indices
of Aν1...νp :

Ãµ1...µn−p =
1
p!
|g|−1/2

εν1...νn
Aν1...νp , (2.116)

Ãµ1...µn−p =
1
p!
|g|1/2

ε
ν1...νn Aν1...νp (2.117)

where the sign of the exponent of |g| has been changed according to (2.113). As an example, in
four-dimensional space we use n = 4, p = 2. Then Hodge duals of the A form are

Ãµν =
1
2
|g|−1/2

εµνσρ Aσρ , (2.118)

Ãµν =
1
2
|g|1/2

ε
µνσρ Aσρ . (2.119)

The Hodge dual Ã is linearly independent on the original form A. We will use the Hodge dual when
deriving the theorems of Cartan geometry and the field equations of ECE theory.

2.4 Differentiation

We have already used some types of differentiation in the preceding sections, but only in the
“standard” way within Euclidean spaces. Now we will extend this to curved spaces (manifolds) and
to the calculus of p-forms.
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2.4.1 Covariant differentiation
So far, we have already used partial derivatives of tensors and parametrized derivatives. This,
however, is not sufficient to define a general type of derivative in curved spaces of manifolds. Partial
derivatives depend on the coordinate system. What we need is a “generally covariant” derivative
that keeps its form under coordinate transformations and passes into the partial derivative for
Euclidean spaces.

To retain linearity, the covariant derivative should have the form of a partial derivative plus a
linear transformation. The latter corrects the partial derivative in such a way that covariance is
ensured. The linear transformation depends on the coordinate indices. We define for the covariant
derivative of an arbitrary vector field V ν :

DµV ν := ∂µV ν +Γ
ν

µλ
V λ (2.120)

where the Γν

µλ
are functions and called the connection coefficients or Christoffel symbols. In

contrast to an ordinary partial derivative, the covariant derivative of a vector component V ν depends
on all other components via the sum with the connection coefficients (observe the summation
convention!). The covariant derivative has tensor properties by definition, therefore Eq. (2.120) is a
tensor equation, transducing a (1,0) tensor into a (1,1) tensor, and we can apply the transformation
rules for tensors:

Dµ ′V ν ′ =
∂xµ

∂xµ ′
∂xν ′

∂xν
DµV ν =

∂xµ

∂xµ ′
∂xν ′

∂xν

(
∂

∂xµ
V ν +Γ

ν

µλ
V λ

)
. (2.121)

On the other hand, we can apply the transformation to Eq. (2.120) directly:

Dµ ′V ν ′ = ∂µ ′V ν ′+Γ
ν ′

µ ′λ ′V
λ ′ . (2.122)

The single terms on the right-hand side transform as follows:

∂µ ′V ν ′ =
∂xµ

∂xµ ′
∂

∂xµ
V ν ′ =

∂xµ

∂xµ ′
∂

∂xµ

(
∂xν ′

∂xν
V ν

)
(2.123)

=
∂xµ

∂xµ ′
∂ 2xν ′

∂xµ∂xν
V ν +

∂xµ

∂xµ ′
∂xν ′

∂xν

∂

∂xµ
V ν ,

Γ
ν ′

µ ′λ ′V
λ ′ = Γ

ν ′

µ ′λ ′
∂xλ ′

∂xλ
V λ , (2.124)

where the product rule has been applied in the first term. Eqs. (2.122) and (2.121) can be equated.
The term with the partial derivative of V ν cancels out and we obtain:

Γ
ν ′

µ ′λ ′
∂xλ ′

∂xλ
V λ +

∂xµ

∂xµ ′
∂ 2xν ′

∂xµ∂xλ
V λ =

∂xµ

∂xµ ′
∂xν ′

∂xν
Γ

ν

µλ
V λ . (2.125)

Here we have replaced the dummy index ν by λ in the term with the mixed partial derivative. This
is a common operation for tensor equations. Another common operation is multiplying a tensor
equation by an indexed term and summing over one or more free indices (i.e. making the previously
independent index into a dummy index). Multiplying the last equation by ∂xλ

∂xλ ′ then gives

Γ
ν ′

µ ′λ ′V
λ =

∂xµ

∂xµ ′
∂xλ

∂xλ ′
∂xν ′

∂xν
Γ

ν

µλ
V λ − ∂xµ

∂xµ ′
∂xλ

∂xλ ′
∂ 2xν ′

∂xµ∂xλ
V λ (2.126)
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so that we approach an equation of determining the transformation of the connection coefficients.
The last equation holds for any vector V λ , therefore the equation must hold for the coefficients of
V λ directly. Thus, we obtain the transformation equation for the connection coefficients:

Γ
ν ′

µ ′λ ′ =
∂xµ

∂xµ ′
∂xλ

∂xλ ′
∂xν ′

∂xν
Γ

ν

µλ
− ∂xµ

∂xµ ′
∂xλ

∂xλ ′
∂ 2xν ′

∂xµ∂xλ
. (2.127)

Obviously, the Gammas do not transform as a tensor, the last term prevents this. The Gammas
are not a tensor, therefore indices of Gamma cannot be raised and lowered by multiplying with
metric elements and we need not put too much effort into maintaining the order of upper and lower
indices.

So far, we have investigated covariant derivatives of a contravariant vector (Eq. (2.120)). The
theory can be extended to covariant vectors of 1-forms ων :

Dµων := ∂µων + Γ̄
λ
µνωλ (2.128)

where Γ̄ is a connection coefficient being a priori different from Γ. It can be shown [7] that, for
consistency reasons, Γ̄ is the same as Γ except for the sign:

Γ̄
λ
µν =−Γ

λ
µν . (2.129)

Please note that the summation indices are different between (2.120) and (2.128). Now that we
have a covariant derivative for contravariant and covariant components, the covariant derivative for
arbitrary (k,m) tensors is defined as follows:

Dσ T µ1...µk
ν1...νm := ∂σ T µ1...µk

ν1...νm +Γ
µ1
σλ

T λ µ2...µk
ν1...νm +Γ

µ2
σλ

T µ1λ µ3...µk
ν1...νm + . . . (2.130)

−Γ
λ
σν1

T µ1...µk
λν2...νm

−Γ
λ
σν2

T µ1...µk
ν1λν3...νm

− . . .

By applying the covariant derivative, a (k,m) tensor is transformed into a (k,m+1) tensor. It is also
possible to take the covariant derivative of a scalar function. Since no indices are defined for the
connection in this case, we define for a scalar function φ :

Dµφ := ∂µφ . (2.131)

As we have seen, the connection coefficients are not a tensor. It is, however, easy to make a
tensor of them by taking the antisymmetric sum of the lower indices:

T λ
µν := Γ

λ
µν −Γ

λ
νµ . (2.132)

This is called the torsion tensor. When applying the transformation (2.127) for the difference of
Gammas, the last term vanishes because the order in the mixed partial derivative is arbitrary. The
torsion tensor is antisymmetric by definition. In four dimensions it can be written out for each
index λ as

(T λ
µν ) =


0 T λ

01 T λ
02 T λ

03
−T λ

01 0 T λ
12 T λ

13
−T λ

02 −T λ
12 0 T λ

23
−T λ

03 −T λ
13 −T λ

23 0

 . (2.133)

There are six independent components per λ . We will see later that this is one of the basis elements
of Cartan geometry. A connection that is symmetric in its lower indices is torsion-free.

For completeness, we give the definition of the Riemann curvature tensor, which is also defined
by the connection coefficients, but in a more complicated manner:

Rλ
ρµν := ∂µΓ

λ
νρ −∂νΓ

λ
µρ +Γ

λ
µσ Γ

σ
νρ −Γ

λ
νσ Γ

σ
µρ . (2.134)

The tensor is antisymmetric in its last two indices. If it is written in pure covariant form Rλρµν =
gτλ Rτ

ρµν and the manifold is torsion-free, the Riemann tensor is also antisymmetric in its first two
indices. This property will, however, not be used in Cartan geometry.
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2.4.2 Metric compatibility and parallel transport
A fundamental property of vectors in physics is that they must be independent of their coordinate
representation. From Euclidean space, we know that a rotation of a vector leaves its length and
orientation against other vectors constant. In curved manifolds this is not necessarily the case
anymore. Whether the length of a vector is preserved depends on the metric tensor. A parallel
transport of a vector is depicted in Fig. 2.7. On a spherical surface, a vector is parallel transported
from the north pole to a point on the equator in two ways: 1) moved directly along a meridian
(red; right) and 2) moved first along another meridian and then along an equatorial latitude (left;
blue). Obviously, the results are different, so this naive procedure is not compatible with a spherical
manifold.

Figure 2.7: Parallel transport of a vector on a sphere.

Let us formalize the process to define parallel transport in a compatible way. A path is a
displacement of a vector V ν whose coordinates are parameterized, say by a parameter λ :

V ν =V ν(λ ) at point xν(λ ). (2.135)

This can be considered as moving the vector (which is a tensor) along a predefined path. We define
the covariant derivative along the path by

D
dλ

:=
dxµ

dλ
Dµ , (2.136)

where dxµ

dλ
is the tangent vector of the path. This gives us a method for specifying a parallel

transport of V . This transport condition is fulfilled if the covariant derivative along the path
vanishes:

D V ν

dλ
=

dxµ

dλ
DµV ν =

dxµ

dλ
(∂µV ν +Γ

ν
µρV ρ) = 0. (2.137)

Since the tangent vector cannot vanish (we would not have a path anymore), it follows that the
covariant derivative of the tensor must vanish:

DµV ν = 0. (2.138)

This is the condition for parallel transport. It is fulfilled if and only if the covariant derivative along
a path vanishes. This holds for any tensor. In particular we can choose the metric tensor and require
it to be parallel transported:

Dσ gµν = 0. (2.139)
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This is called metric compatibility. It is also said that the connection is metrically compatible
because it is contained in the covariant derivative. It means that the metric tensor is covariantly
constant everywhere and can be parallel transported. If this requirement were omitted, we would
have difficulties defining meaningful physics in a manifold, for example, norms of vectors would
not be constant but change during translations or rotations.

� Example 2.9 We show that the inner product of two vectors is preserved if the vectors can be
parallel transported. The inner product of vectors V µ and W ν is gµνV µW ν . Its covariant path
derivative is

D
dλ

(
gµνV µW ν

)
=

(
D

dλ
gµν

)
V µW ν +gµν

(
D

dλ
V µ

)
W ν +gµνV µ

(
D

dλ
W ν

)
= 0

(2.140)

because all three tensors are parallel transported, by definition. In the same way, one can prove that,
if gµν can be parallel transported, then so can its inverse gµν :

0 =
D

dλ
gµν =

D
dλ

(
gµσ gρν gρσ

)
(2.141)

=
D

dλ

(
gµσ

)
gρν gρσ +gµσ

D
dλ

(
gρν

)
gρσ +gµσ gρν

D
dλ

(gρσ ) .

The first two terms in the last line vanish by definition, and consequently the third term has to
vanish. �

The concept of parallel transport allows us to find the equation for geodesics. A geodesic is the
generalization of a straight line in Euclidean space. Mass points without external forces move this
way. In a curved manifold, the motion follows the curving of space and therefore is not a straight
line. We can find the equation of geodesics by requiring that the path parallel transports its own
tangent vector. This is in analogy to flat space where the tangent vector is parallel to its line vector.
From (2.137) then we have

D
dλ

dxν

dλ
= 0 (2.142)

which can be written

dxµ

dλ
Dµ

dxν

dλ
=

dxµ

dλ

(
∂

∂xµ

dxν

dλ
+Γ

ν
µρ

dxρ

dλ

)
= 0 (2.143)

and, by replacement of ∂

∂xµ by ∂λ

∂xµ

d
dλ

, simplifies to

d2xν

dλ 2 +Γ
ν
µρ

dxµ

dλ

dxρ

dλ
= 0 (2.144)

which is the geodesic equation. In flat space, the Gammas vanish and Newton’s law ẍ = 0 for an
unconstrained motion is regained.

Given a path in the manifold, covariant derivatives can be used to describe the deviation of
a tensor from being parallel transported. Consider a round-trip as depicted in Fig. 2.8. A tensor
is moved counter-clockwise along its covariant tangent vector Dµ , then Dν , and afterwards back
to its starting point in the reverse order. In the case where the tensor is parallel transportable, all
derivatives vanish. However, this will not be the case in general. The commutator of two covariant
derivatives is defined as

[Dµ ,Dν ] := DµDν −DνDµ (2.145)
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Figure 2.8: Closed loop for composition of two covariant derivatives.

and describes the difference of both paths with respect to the covariant derivative. We can apply
this to a vector V ρ and evaluate the terms:

[Dµ ,Dν ]V ρ = DµDνV ρ −DνDµV ρ (2.146)

= ∂µ(DνV ρ)−Γ
λ
µνDλV ρ +Γ

ρ

µσ DνV σ

−∂ν(DµV ρ)+Γ
λ
νµDλV ρ −Γ

ρ

νσ DµV σ

= ∂µ∂νV ρ +(∂µΓ
ρ

νσ )V
σ +Γ

ρ

νσ ∂µV σ −Γ
λ
µν∂λV ρ −Γ

λ
µνΓ

ρ

λσ
V σ

+Γ
ρ

µσ ∂νV σ +Γ
ρ

µσ Γ
σ

νλ
V λ

−∂ν∂µV ρ − (∂νΓ
ρ

µσ )V σ −Γ
ρ

µσ ∂νV σ +Γ
λ
νµ∂λV ρ +Γ

λ
νµΓ

ρ

λσ
V σ

−Γ
ρ

νσ ∂µV σ −Γ
ρ

νσ Γ
σ

µλ
V λ

=
(

∂µΓ
ρ

νσ −∂νΓ
ρ

µσ +Γ
ρ

µλ
Γ

λ
νσ −Γ

ρ

νλ
Γ

λ
µσ

)
V σ − (Γλ

µν −Γ
λ
νµ)DλV ρ .

Comparing the last line with the definitions of curvature tensor (2.134) and torsion tensor (2.132),
it can be written:

[Dµ ,Dν ]V ρ = Rρ

σ µνV σ −T λ
µν DλV ρ . (2.147)

Interestingly, the commutator of covariant derivatives of a vector depends linearly on the vector
itself and its tangent vector, where the coefficients are the curvature and torsion tensors. In the case
of no torsion, there would be no dependence on a derivative of V ρ at all. The action of [Dµ ,Dν ]
can be applied to a tensor of arbitrary rank. In general, it is

[Dρ ,Dσ ]X
µ1...µk

ν1...νm = Rµ1
λρσ

Xλ µ2...µk
ν1...νm +Rµ2

λρσ
X µ1λ ...µk

ν1...νm + · · · (2.148)

−Rλ
ν1ρσ X µ1...µk

λν2...νm
−Rλ

ν2ρσ X µ1...µk
ν1λ ...νm

−·· ·

−T λ
ρσ Dλ X µ1...µk

ν1...νm .

We have seen that the curvature and torsion tensors depend on the connection coefficients
directly. To describe the geometry of a manifold, one must know these coefficients. The geometry
is typically defined by a coordinate transformation. However, there is no direct way to derive the
connection coefficients from the coordinate transformation equations. In Example (2.8) we have
seen that the metric tensor can be derived from the Jacobian, which contains the derivatives of
the coordinate transformations. Therefore, what we need is a relation between the metric and the
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connection, from which the connection coefficients can be derived, when the metric is known. Such
a relation is given by the metric compatibility condition:

Dσ gµν = ∂σ gµν −Γ
λ
σ µgλν −Γ

λ
σνgµλ = 0. (2.149)

For a space of four dimensions, this tensor equation represents 43 = 64 single equations. The first
of them (for the diagonal metric elements) read:

∂

∂x0 g00−2Γ
0
00 g00 = 0 (2.150)

−Γ
1
00 g11−Γ

0
01 g00 = 0

−Γ
2
00 g22−Γ

0
02 g00 = 0

−Γ
3
00 g33−Γ

0
03 g00 = 0

. . .

You should keep in mind that the metric is symmetric, and therefore not all equations are linearly
independent. It is difficult to see how many independent equations remain. Computer algebra (code
available at [10]) tells us that one half (24 equations) are dependent on the other 24 equations.
Therefore, we can predefine 24 Gammas arbitrarily. A solution is, for example,

Γ
0
00 =

∂

∂ x0 g00

2g00
(2.151)

Γ
0
01 =−

g11

g00
A25

Γ
0
02 =−

g22

g00
A43

Γ
0
03 =−

g33

g00
A40

Γ
0
10 =

∂

∂ x1 g00

2g00

. . .

with

Γ
1
00 = A25 (2.152)

Γ
2
00 = A43

Γ
3
00 = A40

. . .

where the Ai are the predefined parameters, and they may even be functions of xµ . From the first
equation of (2.150), it can be seen that assuming Γ0

00 = 0 is not a good choice, because this would
impose the restriction ∂g00

∂ x0 = 0 on the metric a priori. Therefore, the diagonal elements of the lower
pair of indices of Gamma do not vanish in general. By comparing the solutions for Γ0

01 andΓ0
10 in

(2.151) it is obvious that the Gammas are not symmetric in the lower indices.
Having found the connection coefficients, we can construct the curvature and torsion tensors

(2.134) and (2.132). While the coefficients go into the curvature tensor as is, the torsion tensor itself
depends only on the antisymmetric part of the Gammas. Each 2-tensor or connection coefficient
can be split into a symmetric and antisymmetric part:

Γ
ρ

µν = Γ
ρ(S)
µν +Γ

ρ(A)
µν (2.153)
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with

Γ
ρ(S)
µν = Γ

ρ(S)
νµ , (2.154)

Γ
ρ(A)
µν =−Γ

ρ(A)
νµ .

For the torsion tensor we have

T λ
µν = Γ

λ (A)
µν −Γ

λ (A)
νµ = 2 Γ

λ (A)
µν , (2.155)

the symmetric part does not enter the torsion. This motivates the imposition of additional antisym-
metry requirements on the Gammas, instead of choosing 24 elements arbitrarily. So, in addition to
the metric compatibility equation (2.149), we define 24 extra equations

Γ
ρ

µν =−Γ
ρ

νµ (2.156)

for all pairs µ 6= ν with µ > ν . This reduces the number of free solution parameters from 24 to 4
(see computer algebra code [83]). The situation gets quite complicated when non-diagonal elements
in the metric are present [84]. Alternatively, we could even force a purely symmetric connection by
requiring that

Γ
ρ

µν = Γ
ρ

νµ . (2.157)

Then there are no free parameters anymore, and all Gammas are uniquely defined, where 24 of
them turn out to be zero. However, in this case, torsion is zero and we will run into irretrievable
conflicts with geometrical laws, as we will see in subsequent sections. There is a reason for leaving
a certain variability in the connection: the theorems of Cartan geometry have to be satisfied, which
imposes additional conditions on curvature and torsion, and thereby on the connection.

For completeness, we describe how the symmetric connection coefficients are computed in
Einsteinian general relativity. Starting with Eq. (2.149), this equation is written three times with
permuted indices:

∂σ gµν −Γ
λ
σ µgλν −Γ

λ
σνgµλ = 0, (2.158)

∂µgνσ −Γ
λ
µνgλσ −Γ

λ
µσ gνλ = 0,

∂νgσ µ −Γ
λ
νσ gλ µ −Γ

λ
νµgσλ = 0.

Subtracting the second and third equation from the first and using the symmetry of the connection
gives

∂σ gµν −∂µgνσ −∂νgσ µ +2 Γ
λ
µνgλσ = 0, (2.159)

and multiplying the equation by gσρ gives for the Gamma term:

(Γλ
µνgλσ ) gσρ = Γ

λ
µν(gλσ gσρ) = Γ

λ
µνδ

ρ

λ
= Γ

ρ

µν . (2.160)

From (2.159) then follows

Γ
ρ

µν =
1
2

gρσ (∂µgνσ +∂νgσ µ −∂σ gµν). (2.161)

The symmetric connection is determined completely by the metric, in accordance with our earlier
result from the single equation of metric compatibility.

All derivations in this section were exemplified with a diagonal metric. They remain true
if non-diagonal elements are added, but the solutions become much more complex. Imposing
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additional symmetry or antisymmetry conditions on the connection may lead to results differing
from those for a diagonal metric.

It should be noted that the metric of a given geometry of a manifold is not unique, and depends
on the choice of coordinate system. Recalling the examples above, Euclidean space can be described
by cartesian or spherical coordinates which lead to different metric tensors. However, the spacetime
structure is the same, only the numerical addressing of points changes, as do the coordinates of
vectors. However, the vectors as physical objects (position and length) remain the same.

� Example 2.10 We compute the connection for the spherical coordinate system (r,θ ,φ ) for three
cases: general connection, antisymmetrized connection, and symmetrized connection. This example
is available as Maxima code [82]. The metric tensor is from Example 2.5:

(gµν) =

1 0 0
0 r2 0
0 0 r2sin2θ

 . (2.162)

Since the metric is not time-dependent, indices run from 1 to 3. This gives 33 = 27 equations from
metric compatibility (2.149), and the first equations are

−2 Γ
1
11 = 0 (2.163)

−Γ
2
11 r2−Γ

1
12 = 0

−Γ
3
11 r2 sin2(θ)−Γ

1
13 = 0

−Γ
2
11 r2−Γ

1
12 = 0

2r−2 Γ
2
12 r2 = 0

. . .

The solution (obtained by computer algebra) contains 9 free parameters A1, . . . ,A9. There are 27
solutions in total. Some of them are:

Γ
1
11 = 0 (2.164)

Γ
1
13 =−A9 r2 sin2(θ)

Γ
1
31 = 0

Γ
1
33 =−A3 r2 sin2(θ)

Γ
2
12 =

1
r

Γ
2
21 =−

A4

r2

Γ
3
23 =

cos(θ)
sin(θ)

Γ
3
32 = A2

. . .
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With 9 additional antisymmetry conditions, the solutions are

Γ
1
11 = 0 (2.165)

Γ
1
13 = Γ

1
31 = 0

Γ
1
23 =−Γ

1
32 =−A10

Γ
2
12 =−Γ

2
21 =

1
r

Γ
3
23 =−Γ

3
32 =

cos(θ)
sin(θ)

. . .

There is only one free parameter A10 left. A certain similarity to the general solution is retained,
but with antisymmetry. If symmetric connection coefficients are enforced, most Gammas are zero.
The only non-zero coefficients are:

Γ
1
22 =−r (2.166)

Γ
1
33 =−r sin2(θ)

Γ
2
12 = Γ

2
21 =

1
r

Γ
2
33 =−cos(θ)sin(θ)

Γ
3
13 = Γ

3
31 =

1
r

Γ
3
23 = Γ

3
32 =

cos(θ)
sin(θ)

This example is often found in textbooks of general relativity. If all coordinates have the physical
dimension of length, then the connection coefficients have the same physical dimension. In this
example we have angles and lengths, therefore the physical dimensions differ. �

2.4.3 Exterior derivative
So far, we have dealt with covariant derivatives of tensors. Now we want to extend the concept of
derivatives to n-forms. We already know that a partial derivative of a tensor does not conserve the
tensor properties. Therefore, we will define an appropriate derivative for n-forms. We have already
introduced antisymmetric forms in Section 2.3. It is useful to define a derivative on these objects
that conserves antisymmetry and tensor properties. A partial derivative for one coordinate generates
an additional index in a tensor, therefore a p-form is extended to a (p+1)-form by the definition

(d∧A)µ1...µp+1 := (p+1)∂[µ1Aµ2...µp+1]. (2.167)

This (p+1)-form is a tensor, irrespective of what A is. The simplest exterior derivative is that of a
scalar function φ(xµ) which is

(d∧φ)µ = ∂µφ , (2.168)

in other words, this is the gradient of φ . Another example is the definition of the electromagnetic
field in tensor form Fµν as a 2-form (see Example 2.11 below). It is derived as an exterior derivative
of a 1-form, the vector potential Aµ :

Fµν := (d∧A)µν = ∂µAν −∂νAµ . (2.169)
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The tensor character of exterior derivatives can be seen by applying the transformation law
(2.123) to a (0,1) tensor V for example:

∂

∂xµ ′
Vν ′ =

∂xµ

∂xµ ′
∂

∂xµ
Vν ′ =

∂xµ

∂xµ ′
∂

∂xµ

(
∂xν

∂xν ′
Vν

)
(2.170)

=
∂xµ

∂xµ ′
∂ 2xν

∂xµ∂xν ′
Vν +

∂xµ

∂xµ ′
∂xν

∂xν ′
∂

∂xµ
Vν .

The first term in the second line should not appear if this were a tensor transformation. It can be
rewritten to

∂ 2xν

∂xµ ′∂xν ′
Vν (2.171)

and now is symmetric in µ ′ and ν ′. Since the exterior derivative only contains antisymmetric sums
of both indices, all these terms vanish because partial derivatives are commutable. Therefore, d∧Vν

transforms like a tensor, and so do all n-forms.
An important property of an exterior derivative is that its two-fold application is zero:

d∧ (d∧A) = 0. (2.172)

The reason is the same as above, the partial derivatives are commutable, summing up to zero in all
antisymmetric sums.

� Example 2.11 We describe Maxwell’s homogeneous field equations in form notation and
transform this to the well-known vector form (see computer algebra code [85]). The homogeneous
laws are the Gauss law and the Faraday law. In tensor notation they are condensed into one equation:

d∧F = 0 (2.173)

or with indices

(d∧F)µνρ = 0. (2.174)

Because F is a 2-form, the exterior derivative of F is a 3-form. The electromagnetic field tensor is
antisymmetric and defined by the contravariant tensor

Fµν =


F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33

=


0 −E1 −E2 −E3

E1 0 −cB3 cB2

E2 cB3 0 −cB1

E3 −cB2 cB1 0

 (2.175)

where E i are the components of the electric field and Bi those of the magnetic field. It is E1 =
EX ,E2 = EY , etc. To be able to apply the exterior derivative, we first have to transform this tensor
to covariant form. Since classical electrodynamics takes place in a Euclidean space, we use the
Minkowski metric to lower the indices:

ηµν = η
µν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.176)

Then the covariant field tensor is

Fµν = ηµρηνσ Fρσ =


0 E1 E2 E3

−E1 0 −cB3 cB2

−E2 cB3 0 −cB1

−E3 −cB2 cB1 0

 . (2.177)
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Compared to the contravariant form, only the signs of the electric field components have changed.
Working out the exterior derivative for µ = 0,ν = 1,ρ = 2, we obtain

(d∧F)012 = ∂0F12 +∂1F20 +∂2F01−∂0F21−∂1F02−∂2F10. (2.178)

Because F is antisymmetric, the negative summands are equal to the positive summands with
reversed sign so that we have

(d∧F)012 = 2(∂0F12 +∂1F20 +∂2F01), (2.179)

this is twice the cyclic sum of indices. Since (µ,ν ,ρ) must be a subset of (0, 1, 2, 3) only the
combinations
(0, 1, 2)
(0, 1, 3)
(0, 2, 3)
(1, 2, 3)
are possible, leading to four equations for d∧F . Setting F01 = EX etc. leads to the four equations:

2(c∂0B3 +∂1E2−∂2E1) = 0 (2.180)

2(−c∂0B2 +∂1E3−∂3E1) = 0

2(c∂0B1 +∂2E3−∂3E2) = 0

2(c∂1B1 + c∂2B2 + c∂3B3) = 0

or, written with cartesian components and simplified:

∂tBZ +∂X EY −∂Y EX = 0 (2.181)

∂tBY −∂X EZ +∂ZEX = 0

∂tBX +∂Y EZ−∂ZEY = 0

∂X BX +∂Y BY +∂ZBZ = 0

where we have used ∂0 = 1/c ·∂t . Comparing these equations with the curl operator:

∇×V =

 ∂YVZ−∂ZVY

−∂XVZ +∂ZVX

∂XVY −∂YVX

 (2.182)

the first three equations of (2.181) contain the third, second and first line of this operator and can be
written in vector form:

∂B
∂ t

+∇×E = 0 (2.183)

which is the Faraday law. The fourth equation of (2.181) is the Gauss law

∇ ·B = 0. (2.184)

We conclude this example with the hint that the inhomogeneous Maxwell equations (Coulomb law
and Ampère-Maxwell law) cannot be written as an exterior tensor derivative due to the current
terms. In those cases, a formulation similar to that in the next example has to be used. �

� Example 2.12 As an example involving the Hodge dual (see computer algebra code [86]), we
derive the homogeneous Maxwell equations from a tensor notation containing the Hodge dual of
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the electromagnetic field tensor introduced in the preceding example, 2.11. In tensor notation, the
equation is:

∂µ F̃µν = 0 (2.185)

and involves the Hodge dual of the 4 x 4 field tensor, defined as follows:

F̃µν =
1
2

εµνρσ Fρσ =


0 −cB1 −cB2 −cB3

cB1 0 −E3 E2

cB2 E3 0 −E1

cB3 −E2 E1 0

 . (2.186)

Indices are raised using the Minkowski metric (2.176):

F̃µν = η
µκ

η
νρ F̃κρ . (2.187)

Therefore, the covariant Hodge dual is:

F̃µν =


0 cB1 cB2 cB3

−cB1 0 −E3 E2

−cB2 E3 0 −E1

−cB3 −E2 E1 0

 , (2.188)

for example:

F̃01 =
1
2
(ε0123F23 + ε0132F32) = F23 (2.189)

and

F̃01 = η
00

η
11F̃01 =−F̃01. (2.190)

The homogeneous laws of classical electrodynamics are obtained as follows, by choice of
indices. The Gauss law is obtained by choosing:

ν = 0 (2.191)

and so

∂1F̃10 +∂2F̃20 +∂3F̃30 = 0. (2.192)

In vector notation this is

∇ ·B = 0. (2.193)

The Faraday law of induction is obtained by choosing:

ν = 1,2,3 (2.194)

and consists of three component equations:

∂0F̃01 +∂2F̃21 +∂3F̃31 = 0 (2.195)

∂0F̃02 +∂1F̃12 +∂3F̃32 = 0

∂0F̃03 +∂1F̃13 +∂2F̃23 = 0.
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These can be condensed into one vector equation, which is

∂B
∂ t

+∇×E = 0. (2.196)

The differential form, tensor and vector notations are summarized as follows:

d∧F = 0→ ∂µ F̃µν = 0→∇ ·B = 0 (2.197)
∂B
∂ t

+∇×E = 0.

The homogeneous laws of classical electrodynamics are most elegantly represented by the differen-
tial form notation, but most usefully represented by the vector notation. �

Exterior covariant derivative
So far, we have seen that exterior derivatives are antisymmetric sums of partial derivatives applied
to n-forms. The question now is what happens if we want to combine the concept of the exterior
derivative with a covariant derivative. This is a generalization of the concept, which should be
more appropriate to curved manifolds where covariant derivatives play an important role for their
description, for example, to define commutators as in Section 2.4.2. We can define an exterior
covariant derivative by creating an (n+1)-form from an n-form A:

D∧A := (D∧A)µ1...µn+1 = D[µ ∧Aν1···νn]. (2.198)

For a 1-form Aν this then is

D∧A = (D∧A)µν = D[µ ∧Aν ] = ∂µAν −Γ
λ
µνAλ −∂νAµ +Γ

λ
νµAλ (2.199)

= ∂[µAν ]− (Γλ
µν −Γ

λ
νµ)Aλ

and with the definition (2.132) of the torsion tensor this can be written:

D∧A = ∂[µAν ]−T λ
µν Aλ . (2.200)

Since the right-hand side is a tensor, D∧A is also a tensor. The equation can be written in form
notation:

D∧A = d∧A−T A. (2.201)

We will extend this concept further in the next chapter.

2.5 Cartan geometry
Having developed the basics of Riemannian geometry, including torsion, we now approach the
central point of this book: Cartan geometry. This will be the mathematical foundation of all fields
of physics, as we will see.

2.5.1 Tangent space, tetrads and metric
By using Riemannian geometry as a basis, we have available nearly all tools that we need to develop
the geometry that is called Cartan geometry and is the basis of ECE theory. We now need to set
our focus on tangent spaces. In Section 2.1 we dealt with coordinate transformations in the base
manifold. The tangent space at a point x in the base manifold was introduced as a Minkowski space
of the same dimension for the local neighborhood of x. A vector V µ defined in the base manifold
can be transformed to a vector in tangent space denoted by V a. We introduce Latin indices to



2.5 Cartan geometry 45

denote vectors and tensors in tangent space. A vector in the base manifold can be transformed to the
corresponding one in the tangent space by a transformation matrix q. This is similar to introduction
of the transformation matrix α in Eqs. (2.46 ff.), but with the difference that the transformation
takes place between two different spaces. The basic transformation is

V a = qa
µV µ (2.202)

with transformation matrix elements qa
µ . This is the basis of Cartan geometry, and q is called the

tetrad. q transforms between the base manifold and tangent space. The inverse transformation is
q−1 = (qµ

a), producing a vector in the base manifold:

V µ = qµ
aV a. (2.203)

If the metric of the tangent space ηab is transformed to the base manifold (this is a (0,2) tensor), the
result must be the metric of the base manifold gµν by definition:

gµν = n qa
µqb

ν ηab, (2.204)

and inversely:

ηab =
1
n

qµ
aqν

b gµν , (2.205)

where n is the dimension of the base manifold. Since q is a coordinate transformation, the product
of q and its inverse has to be the unit matrix:

qq−1 = 1 (2.206)

which, written in component form, is

qa
µqν

a = δ
ν
µ , (2.207)

qa
µqµ

b = δ
a
b . (2.208)

The sum of the diagonal elements of (2.206), called the trace, is the dimension of the spaces
between which the transformation takes place:

qa
µqµ

a = n. (2.209)

However, this kind of summed product will often occur in our calculations and it is beneficial to let
the result be unity:

qa
µqµ

a := 1. (2.210)

Therefore, we introduce a scaling factor of 1/
√

n to the tetrad elements and
√

n to the inverse tetrad
elements:

qa
µ →

1√
n

qa
µ , (2.211)

qµ
a→
√

n qµ
a. (2.212)

Thus, the conditions (2.204) and (2.205) remain satisfied.
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� Example 2.13 We consider the transformation to spherical polar coordinates, Eq. (2.58) from
Example (2.4):

α =

sinθ cosφ r cosθ cosφ −r sinθ sinφ

sinθ sinφ r cosθ sinφ r sinθ cosφ

cosθ −r sinθ 0

 . (2.213)

The inverse transformation is

α
−1 =

cos(φ) sin(θ) sin(φ) sin(θ) cos(θ)
cos(φ) cos(θ)

r
sin(φ) cos(θ)

r − sin(θ)
r

− sin(φ)
r sin(θ)

cos(φ)
r sin(θ) 0

 (2.214)

as can be seen from computer algebra code [87]. To make this transformation a tetrad from a
cartesian base manifold to a Euclidian tangent space with spherical polar coordinates, we have to
set

q =
1√
3

α, (2.215)

q−1 =
√

3 α
−1. (2.216)

Then we have

qq−1 =

1 0 0
0 1 0
0 0 1

 (2.217)

which is the unit matrix as required. �

2.5.2 Derivatives in tangent space
We will now investigate the differential calculus in tangent space and how it is connected to that of
the base manifold. The tangent space at a point x is a Euclidian space, and we could argue that this
allows us to use ordinary differentiation. To define a derivative, we have to construct infinitesimal
transitions from the neighborhood of x. For a point y 6= x, however, another tangent space is defined
because of the definition of tangent spaces. Therefore, the curved structure of the base manifold
has to be respected in the definition of the derivatives in tangent space. In the base manifold, we
defined the covariant derivative for this purpose, see Eq. (2.120):

DµV ν := ∂µV ν +Γ
ν

µλ
V λ (2.218)

where the partial derivatives ∂µ and the connection coefficients Γν

µλ
are operating on a vector V λ

in the base manifold. We can do the same definition for a vector V a in tangent space, but the
connection coefficients are different here:

DµV a := ∂µV a +ω
a
µbV b. (2.219)

The role of the connection coefficients is taken over by other coefficients called spin connections
ωa

µb . These have the same number of indices as the Γ’s but transform in the tangent space.
Therefore they have two Latin indices. The name “spin connection” comes from the fact that this
can be used to define covariant derivatives of spinors, which is actually impossible using the Γ

connection coefficients. The derivative Dµ itself is defined with respect to the base manifold and
therefore has a Greek index. This also has to be present in the spin connection to maintain the
indices as required for a tensor expression.
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Covariant derivatives of a mixed index tensor are defined in a way so that the indices of tangent
space are accompanied by a spin connection and the indices of the base manifold by a Christoffel
connection, for example:

DµV a
ν = ∂µV a

ν +ω
a
µbV b

ν −Γ
λ

µνV a
λ
. (2.220)

or

DµXab
cν = ∂µXab

cν +ω
a
µd Xdb

cν +ω
b
µd Xad

cν −ω
d
µc Xab

dν −Γ
λ

µνXab
cλ
. (2.221)

In the second example d and λ are dummy indices. The summations over lower (covariant)
indices have a minus sign for both the spin connection and Christoffel connection terms. The spin
connections are not tensors, as this holds for the Γ connections. However, the expressions with
covariant derivatives are tensors.

2.5.3 Exterior derivatives in tangent space
In section 2.4.3 we introduced exterior derivatives. These are n-forms based on covariant derivatives.
Considering a mixed-index tensor V a

µ , we can interpret this as a vector-valued 1-form where a is
the index of the vector component. So V a would be a short notation of this 1-form. The concept of
antisymmetric n-forms has been introduced in section 2.3. An exterior derivative of n-forms has
been introduced in section 2.4.3, where a p-form is extended to a (p+1)-form by introducing the
antisymmetric derivative operator d∧, see Eq. (2.167):

(d∧A)µ1...µp+1 = (p+1)∂[µ1Aµ2...µp+1]. (2.222)

We can extend this concept to the tangent space. First, the definition of the covariant derivative
can be extended to mixed-index tensors by giving A one or more indices of tangent space:

(d∧Ab)µ1...µp+1 := (p+1)∂[µ1Ab
µ2...µp+1]. (2.223)

This definition stands on its own, but in curved manifolds it becomes important to define a covariant
exterior derivative of p-forms by basing this definition on the covariant derivative operator Dµ . In
form notation, this kind of covariant derivative is written as

(D∧Ab)µ1...µp+1 := (p+1)D[µ1Ab
µ2...µp+1]. (2.224)

where the D’s at the right-hand side are the “usual" covariant derivatives of coordinate index µ1,
etc., as defined in (2.220) for example. A may be a tensor of an arbitrary number of Greek and
Latin indices, as before. The lower Greek indices define the p-form. In short indexless notation we
can also write:

D∧A := (p+1)D[µ1Aµ2...µp+1]. (2.225)

We will come back to this short-hand notation later. For example, Eq. (2.220) with exterior
covariant derivative and coordinate indices µ ∈ {0,1,2} reads:

D∧V a = (D∧V a)µν (2.226)

= 2(D0V a
1 +D1V a

2 +D2V a
0 −D1V a

0 −D2V a
1 −D0V a

2 )

= 2(D0(V a
1 −V a

2 )+D1(V a
2 −V a

0 )+D2(V a
0 −V a

1 ))

where the “normal” covariant derivatives are defined as before, for example:

D0V a
1 = ∂0V a

1 +ω
a
0bV b

1 −Γ
λ

01V a
λ
. (2.227)

The antisymmetry of the 2-form (2.226) requires

(D∧V a)µν =−(D∧V a)νµ (2.228)

from which it follows that interchanging the indices µ and ν gives the negative result of (2.226).
That this is the case can be seen directly from the second line of the equation.
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2.5.4 Tetrad postulate
Since the tangent space is uniquely related to the base manifold via the tetrad matrix qa

µ , the
Γ-connections of the base manifold and spin connections of the tangent space are related to each
other. To see how this is the case, we use the so-called metric compatibility, the statement that
a vector must be the same when described in different coordinate systems. This is necessary for
physical uniqueness, otherwise we would be dealing with a kind of mathematics that is not related
to physical objects and processes. We introduced this concept in Section 2.4.2 for vectors in the
base manifold, and here we extend it to the tangent space in Cartan geometry.

Having this in mind, we can represent a covariant derivative of a tangent vector in two different
ways. Denoting the orthonormal unit vectors in the base manifold by êν and those of the tangent
space by êa, we can write

DV = DµV ν = (∂µV ν +Γ
ν

µλ
V λ )êν (2.229)

and

DV = DµV a = (∂µV a +ω
a
µbV b)êa (2.230)

for the same vector DV . In the latter case, one also speaks of a mixed basis because the derivative
relates to the manifold as before. The latter equation can be transformed into the base manifold
coordinates by transforming the coordinates V a and the unit vectors êa according to the rules
introduced in Section 2.5.1 and with renaming of dummy indices:

DµV a =
(

∂µV a +ω
a
µbV b

)
êa (2.231)

=
(

∂µ(qa
νV ν)+ω

a
µb qb

λ
V λ

)
qσ

aêσ

= qσ
a

(
qa

ν∂µV ν +V ν
∂µqa

ν +ω
a
µb qb

λ
V λ

)
êσ

=
(

∂µV ν +qν
aV λ

∂µqa
λ
+ω

a
µb qν

aqb
λ
V λ

)
êν .

Comparing with Eq. (2.229) then directly gives

Γ
ν

µλ
= qν

a∂µqa
λ
+qν

aqb
λ

ω
a
µb . (2.232)

Multiplying this equation with qλ
c and applying the same rules as above gives

qλ
cΓ

ν

µλ
= qν

aω
a
µc +qλ

cqν
a∂µqa

λ
(2.233)

and multiplying with qb
ν gives

qb
νqλ

cΓ
ν

µλ
= ω

b
µc +qλ

c∂µqb
λ
, (2.234)

which after renaming of indices is

ω
a
µb = qa

νqλ
bΓ

ν

µλ
−qλ

b∂µqa
λ
. (2.235)

Thus, we have obtained the relations between both types of connections that we needed. Knowing
one of them and the tetrad matrix allows us to compute the other connection.

We can further multiply Eq. (2.232) by qc
ν , obtaining (after applying the rules)

qa
νΓ

ν

µλ
= ∂µqa

λ
+qb

λ
ω

a
µb . (2.236)
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As can be seen by comparison with (2.220), these are exactly the terms of the covariant derivative
of the tensor qa

ν in a mixed basis. It follows that

Dµqa
ν = 0. (2.237)

This is called the tetrad postulate. It states that the covariant derivative of all tetrad elements
vanishes.

This is a consequence of metric compatibility, which we postulated at the beginning of this
section. As was shown earlier in Eq. (2.139), metric compatibility in the base manifold is defined
by an analogue equation for the metric:

Dσ gµν = 0. (2.238)

If the space is Euclidean, we have

Dσ ηµν = 0 (2.239)

for the Minkowski metric (2.176). Since this is also the metric for the tangent space, we can apply
the corresponding definition of the covariant derivative:

Dµηab = ∂µηab−ω
c
µa ηcb−ω

c
µb ηac = 0. (2.240)

The Minkowski metric lowers the Latin indices of the spin connections so that we have

−ωaµb −ωbµa = 0 (2.241)

or

ωaµb =−ωbµa . (2.242)

Metric compatibility provides the property of antisymmetry for the spin connections. Notice that
antisymmetry is only defined if the respective indices are all at the lower or upper positon. Despite
this antisymmetry, the spin connection is not a tensor, as is also the case for the Γ connection. The
symmetry properties of the Γ connection were discussed in Section 2.4.2.

� Example 2.14 We compute some spin connection examples from Eq. (2.235). We need a given
geometry defined by a tetrad and the Christoffel connection coefficients. We will use example 2.13,
where we considered a transformation to spherical polar coordinates. We interpret this in such a
way that the polar coordinates of the base manifold are transformed into cartesian coordinates of
the tangent space. According to Eqs. (2.213) and (2.215) the tetrad matrix then is

q =
1√
3

sinθ cosφ r cosθ cosφ −r sinθ sinφ

sinθ sinφ r cosθ sinφ r sinθ cosφ

cosθ −r sinθ 0

 . (2.243)

The spin connections for spherical polar coordinates have been investigated in three variants in
example 2.10:

1. a general connection,
2. a connection antisymmetrized in the non-diagonal lower indices,
3. a symmetric connection (used in Einsteinian relativity).

These functions for the Γ’s have to be inserted into Eq. (2.235), together with the tetrad elements of
(2.243). Please notice that both the tetrad and inverse tetrad elements occur in (2.235). The qa

ν are
the elements of (2.243) and the qν

a are those of the inverted tetrad matrix, essentially Eq. (2.214).
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The calculation is lengthy and has been automated through computer algebra code [88]. The results
for case 1 (the general connection) are, for example:

ω
(1)

1(1) = 0, (2.244)

ω
(1)

1(2) =−sin(θ) (A9 r sin(θ)+A8 cos(θ)) ,

ω
(1)

1(3) = A8 sin(φ)sin(θ)2−A9 sin(φ)r cos(θ) sin(θ)− A7 cos(φ)
r

.

The A’s are constants contained in the Γ’s. Obviously they have different physical units, otherwise
there would be problems in summation. In order to make it easier to distinguish between Latin and
Greek indices, the numbers for Latin indices have been set in parentheses. For case 2 (above), the
results are simpler:

ω
(1)

1(1) = 0, (2.245)

ω
(1)

1(2) =
A10 cos(θ)
r2 sin(θ)

,

ω
(1)

1(3) =−
A10 sin(φ)

r2 ,

and in case 3 (symmetric Christoffel connections), all spin connections vanish:

ω
a
µb = 0, (2.246)

indicating that there is no spin connection for a geometry without torsion. The antisymmetry holds
even for the case where a and b are indices at different positions (upper and lower), because the
metric in tangent space is the unit matrix. The antisymmetry has been checked using the code, and
it is always

ω
a
µb =−ω

b
µa (2.247)

as required. �

2.5.5 Evans lemma
We now come to some more specifically relevant properties of Cartan geometry. The tetrad postulate
can be modified to give a differential equation of second order for the tetrad elements. This equation
is a wave equation and is fundamental for many fields of physics. The tetrad postulate (2.237) can
be augmented by an additional derivative:

Dµ(Dµqa
ν) = 0. (2.248)

We introduced a covariant derivative with upper index in order to make µ a summation (dummy)
index. Because the expression in the parentheses is a scalar function due to the tetrad postulate, we
need not bother with how this derivative is defined, it reduces to a partial derivative by definition.
So, we can write:

∂
µ(Dµqa

ν) = 0. (2.249)

or

∂
µ(∂µqa

ν +ω
a
µb qb

ν −Γ
λ

µνqa
λ
) = 0. (2.250)
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In a manifold with 4-vectors [ct,X ,Y,Z], the contravariant form of the partial derivative is defined
in the usual way:

[∂0, ∂1, ∂2, ∂3] =

[
1
c

∂

∂ t
,

∂

∂X
,

∂

∂Y
,

∂

∂Z

]
, (2.251)

while the covariant form of the partial derivative is defined with sign changed for the spatial
derivatives:[

∂
0, ∂

1, ∂
2, ∂

3]= [1
c

∂

∂ t
, − ∂

∂X
, − ∂

∂Y
, − ∂

∂Z

]
. (2.252)

Therefore ∂ µ∂µ is the d’Alembert operator

�=
1
c2

∂ 2

∂ t2 −
∂ 2

∂X2 −
∂ 2

∂Y 2 −
∂ 2

∂Z2 . (2.253)

Then from Eq. (2.250) follows

� qa
ν +Ga

ν = 0 (2.254)

a wave equation with the tensor function

Ga
ν = ∂

µ(ωa
µb qb

ν)−∂
µ(Γλ

µνqa
λ
). (2.255)

This equation can be made an eigenvalue equation by requiring Ga
ν to be split into a tetrad part and

a scalar function R:

Ga
µ = Rqa

ν (2.256)

with

R = qν
a

(
∂

µ(ωa
µb qb

ν)−∂
µ(Γλ

µνqa
λ
)
)
. (2.257)

R contains only dummy indices and is a scalar function. Then (2.254) can be written as

� qa
ν +Rqa

ν = 0 (2.258)

and is called the Evans lemma. It is a generally covariant eigenvalue equation. R plays the role of a
curvature, as we will see in later chapters. The entire field of generally covariant quantum mechanics
is based on this equation. The equation is highly non-linear, because R depends on the eigenfunction
qa

ν and the Christoffel and spin connections. In later chapters, in a first approximation, we will
often assume that R is a constant.

2.5.6 Maurer-Cartan structure equations
The torsion and curvature tensors of Riemannian geometry can be transformed to 2-forms of Cartan
geometry simply by defining

T a
µν := qa

κ T κ
µν , (2.259)

Ra
bµν := qa

ρqσ

b Rρ

σ µν . (2.260)

Multiplication with tetrad elements replaces some Greek indices with Latin indices of the tangent
space, so the torsion and curvature tensors defined in Eqs. (2.132) and (2.134) are made 2-forms of
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torsion and curvature. To these forms two foundational relations apply, which will be derived in
this section, using the proof described in [13].

We first define forms of the Christoffel and spin connections similarly to (2.259) and (2.260):

Γ
a

µν := qa
λ

Γ
λ

µν , (2.261)

ω
a
µν := qb

ν ω
a
µb . (2.262)

These are both 2-forms as well. The tetrad postulate (2.237) can be formulated by inserting these
definitions into (2.236):

Γ
a

µν = ∂µqa
ν +ω

a
µν . (2.263)

Inserting the definition of torsion

T κ
µν := Γ

κ
µν −Γ

κ
νµ (2.264)

into (2.259) gives

T a
µν = qa

κ (Γ
κ

µν −Γ
κ

νµ) = Γ
a

µν −Γ
a
νµ , (2.265)

and inserting relation (2.263) gives

T a
µν = ∂µqa

ν −∂νqa
µ +ω

a
µν −ω

a
νµ . (2.266)

This can be written with the ∧ operator for antisymmetric forms, introduced in Example 2.8 and
Section 2.4.3 as

(T a)µν = (d∧qa)µν +(ωa
b ∧qb)µν (2.267)

or, in short form notation:

T a = d∧qa +ω
a
b ∧qb (2.268)

which is called the first Maurer-Cartan structure equation.
The Riemann curvature tensor is defined

Rλ
ρµν := ∂µΓ

λ
νρ −∂νΓ

λ
µρ +Γ

λ
µσ Γ

σ
νρ −Γ

λ
νσ Γ

σ
µρ . (2.269)

We define additional 1-forms of the Christoffel connection:

Γ
a

µb := qa
λ

qν
bΓ

λ
µν (2.270)

and from (2.263) we have

Γ
a

µb = qν
b(∂µqa

ν +ω
a
µν ). (2.271)

Then the curvature form (2.260) can be written:

Ra
bµν = ∂µΓ

a
νb−∂νΓ

a
µb +Γ

a
µcΓ

c
νb−Γ

a
νcΓ

c
µb. (2.272)

This is an antisymmetric 2-form that in form notation reads:

Ra
b = d∧Γ

a
b +Γ

a
c∧Γ

c
b. (2.273)
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The first term on the right-hand side is

d∧Γ
a

b = (d∧d∧qa)qb +d∧ω
a
b = d∧ω

a
b (2.274)

because of the rule d∧d∧a = 0 for any form a. The second term of (2.273) is

Γ
a

c∧Γ
c
b = (qc d∧qa +ω

a
c )∧ (qb d∧qc +ω

c
b ). (2.275)

The terms with the exterior derivative can be written with full indices as qν
c∂µqa

ν , for example.
The product is summed over by the dummy index ν .

From the Leibniz rule we find:

qλ
c∂µqa

λ
+qa

λ
∂µqλ

c = ∂µ(qλ
cqa

λ
) = ∂µδ

a
c = 0, (2.276)

therefore:

qλ
c∂µqa

λ
=−qa

λ
∂µqλ

c. (2.277)

The summation on the left-hand and right-hand side can be contracted to functions

qa
c =−qa

c. (2.278)

It follows

qa
c = 0, (2.279)

qν
c∂µqa

ν = 0. (2.280)

Therefore from (2.275):

Γ
a

c∧Γ
c
b = ω

a
c ∧ω

c
b , (2.281)

and with (2.274), we obtain from (2.273):

Ra
b = d∧ω

a
b +ω

a
c ∧ω

c
b (2.282)

which is called the second Maurer-Cartan structure equation. Using the definition of the exterior
covariant derivative (2.198), the Maurer-Cartan structure equations can be written in the form

T a = D∧qa = d∧qa +ω
a
b ∧qb,

Ra
b = D∧ω

a
b = d∧ω

a
b +ω

a
c ∧ω

c
b .

(2.283)

(2.284)

� Example 2.15 The validity of structure equations is demonstrated by an example of the trans-
formation to spherical polar coordinates again. The tetrad was defined in Example 2.13, and the
spin connections in Example 2.14. For the Gamma connections two versions were used: a general,
asymmetric connection, and an antisymmetrized connection, as described in Example 2.14. If we
know the Gamma connection, we can compute the torsion form:

T a
νµ = qa

λ

(
Γ

λ
µν −Γ

λ
νµ

)
(2.285)

and the Riemann form:

Ra
bµν = qa

σ qµ

b

(
∂µΓ

σ
νρ −∂νΓ

σ
µρ +Γ

σ

µλ
Γ

λ
νρ −Γ

σ

νλ
Γ

λ
µρ

)
. (2.286)
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This has been done using computer algebra code [89]. The antisymmetry of the form elements in
the two last indexes is checked:

T a
µν =−T a

νµ , (2.287)

Ra
bµν =−Ra

bνµ . (2.288)

For example, we find with the antisymmetrized connection:

T (2)
11 = 0 (2.289)

T (2)
13 =

2cos(φ) sin(θ)√
3

+
2A10 sin(φ) cos(θ)√

3r
(2.290)

T (2)
31 =−2cos(φ) sin(θ)√

3
− 2A10 sin(φ) cos(θ)√

3r
(2.291)

R(1)
(3)11 = 0 (2.292)

R(1)
(3)13 =−

A10
2 sin(φ) cos(θ)

r3 sin(θ)
(2.293)

R(1)
(3)31 =

A10
2 sin(φ) cos(θ)

r3 sin(θ)
(2.294)

Now all elements of the torsion and curvature form are computed, and we are ready to evaluate
the right-hand sides of the structure equations (2.283) and (2.284), which in indexed form can be
written:

Dµqa
ν −Dνqa

µ = ∂µqa
ν −∂νqa

µ +ω
a
µb qb

ν −ω
a
νb qb

µ (2.295)

and

Dµω
a
νb −Dνω

a
µb = ∂µω

a
νb −∂νω

a
µb +ω

a
µc ω

c
νb −ω

a
νc ω

c
µb . (2.296)

The covariant derivatives have been resolved according to their definitions for each permutation of
(µ,ν). When the indices run over all values 1,2, this does not matter because the antisymmetry
property sets all quantities with equal indices, for example (µ,ν) = (1,1), to zero. In computer
algebra code [89], it is shown that the right-hand sides of the structure equations are equal to the
definitions of the torsion and curvature form defined by (2.285) and (2.286). In addition, it is shown
that re-computing the torsion and curvature tensors from their 2-forms gives the original tensors
(2.264) and (2.269):

T ρ

µν = qρ
aT a

µν , (2.297)

Rσ
ρµν = qσ

a qb
ρ Ra

bµν . (2.298)

�



3. The fundamental theorems of Cartan geometry

We have now arrived at a knowledge level in Cartan geometry that allows us to formulate the
fundamental theorems of this geometry. Some of them are known for a longer time and have been
mentioned in textbooks [14], but others have been found during the development of ECE theory.
The theorems can easily be formulated in form notation but for the proofs we have to descend to
the tensor notation and then climb to the form notation again.

3.1 Cartan-Bianchi identity
The first theorem is called Cartan-Bianchi identity [14] and is known as the first Bianchi identity
or simply the Bianchi identity in Riemannian geometry without torsion. We have added the name
of Cartan to stress that this theorem connects torsion and curvature in Cartan geometry. In form
notation, it reads:

D∧T a = Ra
b∧qb. (3.1)

This is an equation of 3-forms. To prove this equation, we recast the left-hand side into the
right-hand side. Inserting the definition of the exterior covariant derivative gives, for the left-hand
side:

(D∧T a)µνρ = (d∧T a)µνρ +(ωa
b ∧T b)µνρ . (3.2)

Since this is an antisymmetric 3-form, we can write in commutator notation (see Section 2.3):

D[µT a
νρ] = ∂[µT a

νρ] +ω
a
[µb T b

νρ] . (3.3)

In Example 2.8, we had seen that the six index permutations of a 3-form can be reduced to three
cyclic permutations of the indices, by use of antisymmetry properties. Therefore, we obtain

D[µT a
νρ] =∂µT a

νρ +∂νT a
ρµ +∂ρT a

µν (3.4)

+ω
a
µb T b

νρ +ω
a
νb T b

ρµ +ω
a
ρb T b

µν .
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Please notice that the lower b index of the spin connection is not included in the permutations,
because it is a Latin index of tangent space.

Inserting the definition of torsion

T a
νµ = Γ

a
µν −Γ

a
νµ = qa

λ

(
Γ

λ
µν −Γ

λ
νµ

)
(3.5)

then leads to

D[µT a
νρ] =∂µ

[
qa

λ

(
Γ

λ
νρ −Γ

λ
ρν

)]
+∂ν

[
qa

λ

(
Γ

λ
ρµ −Γ

λ
µρ

)]
(3.6)

+∂ρ

[
qa

λ

(
Γ

λ
µν −Γ

λ
νµ

)]
+ω

a
µb qb

λ

(
Γ

λ
νρ −Γ

λ
ρν

)
+ω

a
νb qb

λ

(
Γ

λ
ρµ −Γ

λ
µρ

)
+ω

a
ρb qb

λ

(
Γ

λ
µν −Γ

λ
νµ

)
.

The first term in brackets can be written with help of the Leibniz theorem:

∂µ

[
qa

λ

(
Γ

λ
νρ −Γ

λ
ρν

)]
=
(
∂µqa

λ

)(
Γ

λ
νρ −Γ

λ
ρν

)
+qa

λ

(
∂µΓ

λ
νρ −∂µΓ

λ
ρν

)
. (3.7)

Applying the tetrad postulate (2.236) in the form

∂µqa
λ
= qa

νΓ
ν

µλ
−qb

λ
ω

a
µb . (3.8)

then gives

∂µ

[
qa

λ

(
Γ

λ
νρ −Γ

λ
ρν

)]
=
(

qa
νΓ

ν

µλ
−qb

λ
ω

a
µb

)(
Γ

λ
νρ −Γ

λ
ρν

)
(3.9)

+qa
λ

(
∂µΓ

λ
νρ −∂µΓ

λ
ρν

)
.

Adding the first and fourth term of (3.6) causes the terms with ωa
µb to cancel out:

∂µ

[
qa

λ

(
Γ

λ
νρ −Γ

λ
ρν

)]
+ω

a
µb qb

λ

(
Γ

λ
νρ −Γ

λ
ρν

)
(3.10)

= qa
σ Γ

σ

µλ

(
Γ

λ
νρ −Γ

λ
ρν

)
+qa

λ

(
∂µΓ

λ
νρ −∂µΓ

λ
ρν

)
.

Putting all terms of (3.6) together, we obtain

D[µT a
νρ] = (3.11)

qa
σ Γ

σ

µλ

(
Γ

λ
νρ −Γ

λ
ρν

)
+qa

λ

(
∂µΓ

λ
νρ −∂µΓ

λ
ρν

)
+qa

σ Γ
σ

νλ

(
Γ

λ
ρµ −Γ

λ
µρ

)
+qa

λ

(
∂νΓ

λ
ρµ −∂νΓ

λ
µρ

)
+qa

σ Γ
σ

ρλ

(
Γ

λ
µν −Γ

λ
νµ

)
+qa

λ

(
∂ρΓ

λ
µν −∂ρΓ

λ
νµ

)
.

Rearranging the sum:

D[µT a
νρ] = (3.12)

qa
λ

[(
∂µΓ

λ
νρ −∂νΓ

λ
µρ

)
+qa

λ

(
∂νΓ

λ
ρµ −∂ρΓ

λ
νµ

)
+qa

λ

(
∂ρΓ

λ
µν −∂µΓ

λ
ρν

)]
+qa

σ

[
Γ

σ

µλ
Γ

λ
νρ −Γ

σ

νλ
Γ

λ
µρ +Γ

σ

νλ
Γ

λ
ρµ −Γ

σ

ρλ
Γ

λ
νµ +Γ

σ

ρλ
Γ

λ
µν −Γ

σ

µλ
Γ

λ
ρν

]
.
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Now, in the first line the dummy index λ is replaced by σ :

D[µT a
νρ] = (3.13)

qa
σ

[(
∂µΓ

σ
νρ −∂νΓ

σ
µρ

)
+qa

σ

(
∂νΓ

σ
ρµ −∂ρΓ

σ
νµ

)
+qa

σ

(
∂ρΓ

σ
µν −∂µΓ

σ
ρν

)
+ Γ

σ

µλ
Γ

λ
νρ −Γ

σ

νλ
Γ

λ
µρ +Γ

σ

νλ
Γ

λ
ρµ −Γ

σ

ρλ
Γ

λ
νµ +Γ

σ

ρλ
Γ

λ
µν −Γ

σ

µλ
Γ

λ
ρν

]
.

This expression can be compared to the definition of the Riemann tensor (2.269) with some
renumbering:

Rσ
ρµν := ∂µΓ

σ
νρ −∂νΓ

σ
µρ +Γ

σ

µλ
Γ

λ
νρ −Γ

σ

νλ
Γ

λ
µρ . (3.14)

Obviously (3.13) is the cyclic sum of the Riemann tensor:

D[µT a
νρ] = qa

σ Rσ

[ρµν ] = qa
σ Rσ

[µνρ]. (3.15)

According to the procedure in Eqs. (2.270-2.273), the Riemann tensor can be written as a 2-Form:

Ra
bνρ = qa

σ qµ

b Rσ
µνρ . (3.16)

To bring the right-hand side of (3.15) into this form, we extend the Riemann tensor by a unity term
according to rule (2.207):

qτ
bqb

µ = δ
τ
µ (3.17)

and re-associate the products:

qa
σ Rσ

µνρ = Ra
µνρ = Ra

τνρ(q
τ

b qb
µ)δ

τ
µ = (Ra

τνρqτ
b) qb

τδ
τ
µ = Ra

bνρ qb
µ . (3.18)

Re-introducing the cyclic sum we have

D[µT a
νρ] = qb

[µ Ra
bνρ] = Ra

b[µν
qb

ρ]. (3.19)

which in form notation gives the Cartan-Bianchi identity:

D∧T a = Ra
b∧qb. (3.20)

� Example 3.1 We check the Cartan-Bianchi identity by computing all required elements according
to Example 2.15 (the transformation from cartesian to spherical polar coordinates). The Cartan-
Bianchi identity (3.20) can be written in indexed form according to (3.19):

DµT a
νρ +DνT a

ρµ +DρT a
µν = Ra

bµν qb
ρ +Ra

bνρ qb
µ +Ra

bρµ qb
ν . (3.21)

Resolving the covariant derivatives according to (3.4) this finally gives:

∂µT a
νρ +∂νT a

ρµ +∂ρT a
µν +ω

a
µb T b

νρ +ω
a
νb T b

ρµ +ω
a
ρb T b

µν (3.22)

= Ra
bµν qb

ρ +Ra
bνρ qb

µ +Ra
bρµ qb

ν

for each index triple (µ,ν ,ρ). The left-hand and right-hand sides of this equation are computed
using computer algebra code [90], and comparison shows that both sides are equal. We note that
this result is obtained for both forms of Gamma connections (unconstrained and symmetrized). The
torsion tensor is the same for both forms, but the Gamma and spin connections are different. The
Cartan-Bianchi identity holds, irrespective of this difference. �
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3.2 Cartan-Evans identity

In the preceding section, it has been shown that the Cartan-Bianchi identity is a rigorous identity
of the Riemannian manifold in which ECE theory is defined. The Cartan-Evans identity [15–17]
is a new identity of differential geometry, and is the counterpart of the Cartan-Bianchi identity in
dual-tensor representation. Both identities will be identical with the ECE field equations as will be
worked out in later chapters. The Cartan-Bianchi identity is valid in the Riemannian manifold, and
Cartan geometry in the Riemannian manifold is well known to be equivalent to Riemann geometry,
thought to be the geometry of natural philosophy (physics). The same holds for the Cartan-Evans
identity, which reads

D∧ T̃ a = R̃a
b∧qb. (3.23)

The concept of the Hodge dual was introduced at the end of Section 2.3, and use of the Hodge
dual for Maxwell’s equations was already discussed in Example 2.12. In this section, we introduce
a Hodge dual connection for use in the covariant Hodge dual derivative. Thereafter, the proof of the
Cartan-Evans identity is worked out in full analogy to the proof of the Cartan-Bianchi identity.

As has been seen in previous sections, only the antisymmetric part of the Christoffel connection
is essential for Cartan geometry. Restricting the connection to the antisymmetric part, we can define
the Hodge dual of the Christoffel connection according to Eq. (2.114) by

Λ
λ

µν := Γ̃
λ

µν =
1
2
|g|−1/2

ε
αβ

µν Γ
λ

αβ
, (3.24)

where |g|−1/2 is the inverse square root of the modulus of the determinant of the metric, a weighting
factor, by which the Levi-Civita symbol ε

αβ µν
is made the totally antisymmetric unit tensor,

see section 2.3. In (3.24) the Levi-Civita symbol appears with mixed upper and lower indices.
Therefore, we have to raise the first two indices in accordance with (2.115):

Λ
λ

µν =
1
2
|g|−1/2gραgσβ

ερσ µν Γ
λ

αβ
. (3.25)

Since the totally antisymmetric tensor (based on the Levi-Civity symbol) does not change its form
for any coordinate transformation, we can use the metric of Minkowski space ηµν with |g|= 1:

Λ
λ

µν =
1
2

η
ρα

η
σβ

ερσ µν Γ
λ

αβ
. (3.26)

In this way, a new connection Λλ
µν is defined. It is well known that the connection does not

transform as a tensor under the general coordinate transformation, but the antisymmetry in its lower
two indices means that its Hodge dual may be defined for each upper index of the connection
as in the equation above. The antisymmetry of the connection is the basis for the Cartan-Evans
identity, a new and fundamental identity of differential geometry. In ECE theory, it will become the
inhomogeneous field equation as was already indicated for the homogeneous Maxwell equation in
Example 2.12. Note carefully that the torsion is a tensor, but the connection is not a tensor. The
same is true of the Hodge duals of the torsion and connection.

In Eq. (2.147) the fundamental commutator equation of Riemannian geometry was derived:

[Dµ ,Dν ]V ρ = Rρ

σ µνV σ −T λ
µν DλV ρ , (3.27)

which holds for any vector V ρ of the base manifold. Now take the Hodge duals of either side of Eq.
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(3.27) using:

[Dµ ,Dν ]HD =
1
2
|g|−1/2

ε
αβ

µν [Dα ,Dβ ], (3.28)

R̃ρ

σ µν =
1
2
|g|−1/2

ε
αβ

µν Rρ
σαβ , (3.29)

T̃ λ
µν =

1
2
|g|−1/2

ε
αβ

µν T λ
αβ . (3.30)

Thus:

[Dα ,Dβ ]HDV ρ = R̃ρ

σαβ
V σ − T̃ λ

αβ
DλV ρ . (3.31)

Re-label indices in Eq. (3.31) to give:

[Dµ ,Dν ]HDV ρ = R̃ρ

σ µνV σ − T̃ λ
µν DλV ρ . (3.32)

The left-hand side of this equation is defined by:

[Dµ ,Dν ]HDV ρ := Dµ(DνV ρ)−Dν(DµV ρ) (3.33)

where the covariant derivatives must be defined by the Hodge dual connection (which was defined
in Eq. (3.24)):

DµV ρ = ∂µV ρ +Λ
ρ

µλ
V λ , (3.34)

DνV ρ = ∂νV ρ +Λ
ρ

νλ
V λ . (3.35)

Working out the algebra of torsion and curvature according to Eqs. (2.132, 2.134):

T̃ λ
µν = Λ

λ
µν −Λ

λ
νµ , (3.36)

R̃λ
µνρ = ∂µΛ

λ
νρ −∂νΛ

λ
µρ +Λ

λ
µσ Λ

σ
νρ −Λ

λ
νσ Λ

σ
µρ . (3.37)

These are the Hodge dual torsion and curvature tensors of the Riemannian manifold.
Now we prove the Cartan Evans identity as follows. The identity is:

D∧ T̃ a = R̃a
b∧qb (3.38)

or

d∧ T̃ a +ω
a
b ∧ T̃ b = R̃a

b∧qb. (3.39)

In tensorial notation, in the Riemannian manifold Eqs. (3.38, 3.39) become:

Dµ T̃ a
νρ +Dρ T̃ a

µν +Dν T̃ a
ρµ = R̃a

µνρ + R̃a
ρµν + R̃a

νρµ , (3.40)

which can be written with permutation brackets as

D[µ T̃ a
νρ] = R̃a

[µνρ] = qa
σ R̃σ

[µνρ]. (3.41)

This equation is formally identical to (3.15) with the following correspondences:

T → T̃ , (3.42)

R→ R̃,

Γ→ Λ.



60 Chapter 3. The fundamental theorems of Cartan geometry

Therefore, the proof of the Cartan-Evans identity can proceed in full analogy to that of the Cartan-
Bianchi identity in the previous section. Starting with the equivalent of the left-hand side of Eq.
(3.15),

D[µ T̃ a
νρ] = ∂[µ T̃ a

νρ] +ω
a
[µb T̃ b

νρ] , (3.43)

it follows that this expression is equal to its right-hand side equivalent of (3.15):

qa
σ R̃σ

[µνρ]. (3.44)

It follows the validity of Eqs. (3.40 / 3.41), which are the counterpart of (3.19):

D[µ T̃ a
νρ] = qa

σ R̃σ

[µνρ]. (3.45)

In form notation, this is the Cartan-Evans identity:

D∧ T̃ a = R̃a
b∧qb. (3.46)

In the proof of the Cartan-Bianchi identity, the tetrad postulate (2.237) was used. For the Cartan-
Evans identity, this has to be used in the form with the Λ connection:

∂µqa
λ
+qb

λ
ω

a
µb −qa

νΛ
ν

µλ
= 0. (3.47)

Obviously, here the spin connection ω depends on the Λ connection, not the Γ connection. (It
would have been best to use a different symbol for ω , but we stay with ω for convenience.)

In summary, all geometric elements for the Cartan-Evans identity are obtained from the
following equation set:

Λ
λ

µν =
1
2
|g|−1/2

η
ρα

η
σβ

ερσ µν Γ
λ

αβ
, (3.48)

ω
a
µb = qa

νqλ
bΛ

ν

µλ
−qλ

b∂µqa
λ
, (3.49)

T̃ λ
µν = Λ

λ
µν −Λ

λ
νµ , (3.50)

R̃λ
µνρ = ∂µΛ

λ
νρ −∂νΛ

λ
µρ +Λ

λ
µσ Λ

σ
νρ −Λ

λ
νσ Λ

σ
µρ . (3.51)

Alternatively, the Hodge duals of curvature and torsion can be computed from the original quantities
(based on the Γ connection):

R̃ρ

σ µν =
1
2
|g|−1/2

ε
αβ

µν Rρ
σαβ , (3.52)

T̃ λ
µν =

1
2
|g|−1/2

ε
αβ

µν T λ
αβ . (3.53)

The 2-forms of T̃ a and R̃a
b are obtainable in the usual way by multiplying with tetrad elements:

R̃a
bµν = qa

ρqσ

bR̃ρ

σ µν , (3.54)

T̃ a
µν = qa

λ
T̃ λ

µν . (3.55)

One of the novel inferences of the Cartan-Evans identity is that there is a Hodge dual connection
in the Riemannian manifold in four dimensions. This is a basic discovery, and may be developed
in pure mathematics using any type of manifold. However, that development is not of interest to
physics by Ockham’s Razor, and the need to test a theory against experimental data.



3.2 Cartan-Evans identity 61

� Example 3.2 In analogy to Example 3.1, we check the Cartan-Evans identity by computing all
required elements according to Example 2.15 (the transformation from cartesian to spherical polar
coordinates). The Cartan-Evans identity (3.46) can be written in indexed form according to (3.45):

Dµ T̃ a
νρ +Dν T̃ a

ρµ +Dρ T̃ a
µν = R̃a

bµν qb
ρ + R̃a

bνρ qb
µ + R̃a

bρµ qb
ν . (3.56)

Resolving the covariant derivatives according to (3.4) finally gives:

∂µ T̃ a
νρ +∂ν T̃ a

ρµ +∂ρ T̃ a
µν +ω

a
µb T̃ b

νρ +ω
a
νb T̃ b

ρµ +ω
a
ρb T̃ b

µν (3.57)

= R̃a
bµν qb

ρ + R̃a
bνρ qb

µ + R̃a
bρµ qb

ν

for each index triple (µ,ν ,ρ). The left-hand and right-hand sides of this equation are computed
using computer algebra code [91, 92]. There is however a difference. While the Cartan-Bianchi
identity holds for any dimension n of Riemannian space, introducing the Hodge dual for the Cartan-
Evans identity constrains the dimension of the dual 2-forms to n− 2. So, to obtain comparable
equations for both identities, we have to use n = 4 in the example, leading to 2-forms of the Hodge
duals, as well. We have to extend the transformation matrix α (Eq. (2.213)) by the 0-component
(time coordinate), resulting in

α =


1 0 0 0
0 sinθ cosφ r cosθ cosφ −r sinθ sinφ

0 sinθ sinφ r cosθ sinφ r sinθ cosφ

0 cosθ −r sinθ 0

 . (3.58)

The time coordinate remains unaltered by the transformation. The n-dimensional metric tensor g
can be computed from the tetrad by (2.204):

gµν = n qa
µqb

νηab. (3.59)

We obtain the metric tensor:

g =


1 0 0 0
0 0 −1 0 0
0 0 0 −r2 0
0 0 0 0 −r2 sin2

θ

 (3.60)

which has the modulus of the determinant

|g|= r4 sin2
θ . (3.61)

The Levi-Civita symbol εαβ µν in four dimensions can be computed by the formula

εa0,a1,a2,a3 = sig(a3−a0) sig(a3−a1) sig(a3−a2) sig(a2−a0) sig(a2−a1) sig(a1−a0).
(3.62)

Now we have all of the elements that we need to evaluate Eqs. (3.48-3.51). With these, both sides
of Eq. (3.56) can be evaluated as was done in Example 3.1. We do this in two examples, using
computer algebra. In the first example we repeat the calculations of example 3.1 (Cartan-Bianchi
identity) in four dimensions [91]. An interesting result is that the Gamma connection, obtained
with additional antisymmetry conditions, has only 4 free parameters. This is similar to Einstein’s
theory, where the symmetric metric is only determined up to 4 parameters that can be chosen freely
and represent “free choice of coordinates”. In Cartan geometry, the metric is uniquely defined from
the tetrad. The “free choice” appears in the connections. Therefore, this choice is also present
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in torsion and curvature, and finally in the fundamental theorems. Some results from computer
algebra code [91] are:

Γ
0

12 = A4r2 (3.63)

Γ
3

01 =−
A2

r2 sin2
θ

ω
(2)

1(3) =
A3 cosφ

r2

T 2
13 =

2A3

r2

R0
213 =

A1r sinθ −A2 cosθ

sinθ

As in the preceding example, comparison of both sides of the Cartan-Bianchi identity shows that
both sides are equal, in this case for four dimensions.

In the second computer algebra code [92], the Hodge dual connections Λ and ω and the tensors
T̃ , R̃ and their corresponding 2-forms are computed. We obtain, for example, for the Hodge dual
connections and tensors:

Λ
0

03 =
A4

sin2
θ

(3.64)

Λ
3

01 =
cosθ

r2 sin3
θ

ω
(2)

1(3) =
sinφ

(
r2 cosθ sin2

θ +A2 sinθ −A1r cosθ
)

r3 sinθ

T̃ 2
13 = 0

T̃ 2
02 =− 2A3

r4 sin2
θ

R̃0
213 = 0

R̃0
202 =−

2A2 r2 cosθ sinθ −A2
2

r4 sin4
θ

Inserting these quantities into both sides of the Cartan-Evans identity, we find that both sides are
equal, thus the identity holds in the chosen example. �

3.3 Alternative forms of Cartan-Bianchi and Cartan-Evans identity
3.3.1 Cartan-Evans identity

We showed that the Cartan-Evans identity is based on the fundamental definition of the Hodge dual
torsion and curvature, and adds three of them in cyclic permutation.

By using the definition

T̃ a
µν = qa

λ
T̃ λ

µν (3.65)

it follows that:

Dµ T̃ a
νρ = ( Dµqa

κ)T̃
κ
νρ +qa

κDµ T̃ κ
νρ (3.66)

using the Leibniz rule. We use the tetrad postulate:

Dµqa
κ = 0 (3.67)
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to find that:

Dµ T̃ a
νρ = qa

κDµ T̃ κ
νρ . (3.68)

It follows that:

Dµ T̃ κ
νρ +Dν T̃ κ

ρµ +Dρ T̃ κ
µν = R̃κ

µνρ + R̃κ
νρµ + R̃κ

ρµν (3.69)

which is the Cartan-Evans identity written in the base manifold only. This equation may be rewritten
as:

DµT κµν = Rκ µν

µ . (3.70)

The easiest way to see this is to take a particular example:

D1T̃ κ
23 +D3T̃ κ

12 +D2T̃ κ
31 = R̃κ

123 + R̃κ
312 + R̃κ

231 (3.71)

and then to take Hodge dual terms with upper indices according to Eq. (2.117). The constant factors
cancel out. For the Levi-Civita symbol, the relation holds:

ε
µναβ =−εµναβ , (3.72)

so that the sign change also cancels out. Furthermore, for a two-fold Hodge dual of a tensor T , the
relation˜̃T =±T (3.73)

is valid, so that any sign change of this kind also cancels out. We take the Hodge dual of (3.71)
term by term. The Levi-Civita symbol effects that in the expressions

ε
µναβ T κ

αβ
(3.74)

the index pairs (µν) and (αβ ) are mutually exclusive:

µ 6= ν , α 6= β , (3.75)

µ /∈ {α,β},
ν /∈ {α,β}.

In total, we obtain for the Hodge dual example of (3.71):

D1T κ01 +D2T κ02 +D3T κ03 = Rκ 01
1 +Rκ 02

2 +Rκ 03
3 (3.76)

which is an example of Eq. (3.70), the alternative form of the Cartan-Evans identity:

DµT κµν = Rκ µν

µ . (3.77)

3.3.2 Cartan-Bianchi identity
Eq. (3.77) is the most useful format of the Cartan-Evans identity. The Cartan-Bianchi identity can
also be rewritten into this format. From Eq. (3.19) follows:

DµT κ
νρ +DνT κ

ρµ +DρT κ
µν = Rκ

µνρ +Rκ
νρµ +Rκ

ρµν (3.78)

which is identical to (3.69), except that these are the original tensors instead of the Hodge duals.
Therefore, the same derivation as above leads to the alternative form of the Cartan-Bianchi-identity:

Dµ T̃ κµν = R̃κ µν

µ . (3.79)

It should be noted that in the above contravariant forms of both identities, the Hodge dual and
original tensors are interchanged, compared to the covariant forms (3.19) and (3.45).
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3.3.3 Consequences of the identities
At the end of this section we will investigate the implications of antisymmetry of the Gamma
connection in Cartan geometry. The Gamma connection has to have at least antisymmetric parts
with

Γ
λ

µν =−Γ
λ

νµ . (3.80)

If µ = ν , the commutator vanishes, as do the torsion and curvature tensors. If there are only
symmetric parts in the connection:

Γ
λ

µν = Γ
λ

νµ 6=? 0 (3.81)

then torsion vanishes, leading to the special case of (3.77):

Rκ µν

µ = 0. (3.82)

It has been shown by computer algebra [18, 19] that all of the metrics of the Einstein field
equation in the presence of matter give the erroneous result:

Rκ µν

µ 6=? 0, (3.83)

DµT κµν =? 0. (3.84)

This contradicts basic properties of Cartan geometry, the superset of Riemannian geometry, and
therefore Eq. (3.77) is a constraint for theories like Einsteinian relativity, which are based on
Riemannian geometry. This error has been perpetuated uncritically for nearly a hundred years, and
allowed to create a defective cosmology that should be discarded by scholars. The cosmology of
the Standard Model is baseless and incorrect, and should be replaced by ECE cosmology, which is
based on torsion.

3.4 Further identities
There are some other identities which are not as significant to the field equations of ECE theory, but
which represent new insights into Cartan geometry. They were developed as part of ECE theory,
and we present them here, partially without proofs (which can be found in the Unified Field Theory
(UFT) Section of www.aias.us).

3.4.1 Evans torsion identity (first Evans identity)
From the Cartan-Bianchi identity another identity can be derived, containing torsion terms only.
This is the Evans torsion identity [16]. In explicit form it reads

T κ

λν
T λ

σ µ +T κ

λ µ
T λ

νσ +T κ

λσ
T λ

µν = 0 (3.85)

and can be written in short form with permutation brackets:

T κ

λ [ν T λ

σ µ] = 0 . (3.86)

The identity can be rewritten in form notation as

T κ

λ
∧T λ = 0, (3.87)

or by multiplying with qa
κ :

T a
λ
∧T λ = 0 . (3.88)

Here T a
λ

is a 1-form and T λ is a 2-form, making up a 3-form on the left-hand side. The proof
consists mainly of inserting the definitions of torsion into the Cartan-Bianchi identity, and can be
found in the literature [16].
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3.4.2 Jacobi identity

The Jacobi identity [20] is an exact identity used in field theory and general relativity. It is an
operator identity that applies to covariant derivatives and group generators [21] alike. It is very
rarely proven in all detail, so we are providing the following complete proof. The Jacobi identity is
a permuted sum of three covariant derivatives:

[Dρ , [Dµ ,Dν ]]+ [Dν , [Dρ ,Dµ ]]+ [Dµ , [Dν ,Dρ ]] = 0 . (3.89)

For the proof, we expand the commutators on the-left hand side:

L.H.S =[Dρ ,DµDν −DνDµ ]+ [Dν ,DρDµ −Dµ ,Dρ ]+ [Dµ ,DνDρ −DρDν ] (3.90)

=Dρ(DµDν −DνDµ)− (DµDν −DνDµ)Dρ

+Dν(DρDµ −Dµ ,Dρ)− (DρDµ −Dµ ,Dρ)Dν

+Dµ(DνDρ −DρDν)− (DνDρ −DρDν)Dµ ,

and this expansion is regarded as an expansion by algebra which sums up to zero:

L.H.S =DρDµDν −DρDνDµ −DµDνDρ +DνDµDρ (3.91)

+DνDρDµ −DνDµDρ −DρDµDν +DµDρDν

+DµDνDρ −DµDρDν −DνDρDµ +DρDνDµ

=0,

Q.E.D. The Jacobi identity can also be written in an alternative form:

[[Dµ ,Dν ],Dρ ]+ [[Dρ ,Dµ ],Dν ]+ [[Dν ,Dρ ],Dµ ] = 0 . (3.92)

3.4.3 Bianchi-Cartan-Evans identity

Einsteinian general relativity uses the second Bianchi identity, which is obtained from the covariant
derivative of the first Bianchi identity. General relativity ignores torsion, but the same procedure
can be applied to the Cartan-Bianchi identity of Cartan geometry, which contains both torsion and
curvature. The result is the Bianchi-Cartan-Evans identity [22–24]:

DµDλ T κ
νρ +DρDλ T κ

µν +DνDλ T κ
ρµ = DµRκ

λνρ
+DρRκ

λ µν
+DνRκ

λρµ
. (3.93)

The proof was first carried out in UFT Paper 88 [22] which is the most read paper of ECE theory.
Two variants of this identity can be produced by cyclic permutation of (µ,ν ,ρ). Eq. (3.93) is the
correct “second Bianchi identity” augmented by torsion. In Einsteinian theory the incorrect version

DµRκ

λνρ
+DρRκ

λ µν
+DνRκ

λρµ
=? 0 (3.94)

is used. This follows from (3.93) by arbitrarily omitting torsion. The Einstein-Hilbert field equation
is derived from this erroneously truncated “second Bianchi identity” [22]. Therefore, all solutions
of the Einstein-Hilbert field equation are inconsistent.

It should be noted that the Bianchi-Cartan-Evans identity gives no information beyond what is
provided by the Cartan-Bianchi identity, because it is derived from the latter by differentiation and
therefore not independent.
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3.4.4 Jacobi-Cartan-Evans identity
The Jacobi identity can be used to derive another identity. When the terms of the Cartan-Bianchi
identity are inserted into the Jacobi identity (3.89), the relation(

[Dρ , [Dµ ,Dν ]]+ [Dν , [Dρ ,Dµ ]]+ [Dµ , [Dν ,Dρ ]]
)

V κ (3.95)

=
(

DρRκ

λ µν
+DνRκ

λρµ
+DµRκ

λνρ

)
V λ

−
(

T λ
µν [Dρ ,Dλ ]+T λ

ρµ [Dν ,Dλ ]+T λ
νρ [Dµ ,Dλ ]

)
V κ

= 0

follows, where the Jacobi identity has been applied to an arbitrary vector V κ of the base manifold.
Because the Jacobi identity sums to zero, we obtain the equation(

DρRκ

λ µν
+DνRκ

λρµ
+DµRκ

λνρ

)
V λ (3.96)

=
(

T λ
µν [Dρ ,Dλ ]+T λ

ρµ [Dν ,Dλ ]+T λ
νρ [Dµ ,Dλ ]

)
V κ .

Further transformations, described in [24], give

DρRκ

λ µν
+DνRκ

λρµ
+DµRκ

λνρ
= T α

µν Rκ

λρα
+T α

ρµ Rκ

λνα
+T α

νρ Rκ

λ µα
, (3.97)

which is called the Jacobi-Cartan-Evans identity. This will be used in an advanced version of ECE
theory, the ECE2 theory introduced in chapter 6.
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4. The field equations of electrodynamics

In the preceding chapter, we developed the mathematical methodology for ECE theory: Cartan
geometry and its most important theorems. Now we switch our focus to physics. We first describe
how physical quantities are obtained from geometrical quantities. This is achieved by defining
suitable axioms. We then derive the field equations of electromagnetism, as well as the wave
equation. In this way, electrodynamics is transformed into an axiomatic, mathematically correct
theory. It is shown how the spin connections extend classical electromagnetism to a theory of
general relativity. The novel concepts are underpinned by a number of important applications.

4.1 The axioms

In order to obtain physical quantities, we have first to define how geometry is transformed into
physics. We do this by two fundamental axioms, relating to potentials and electromagnetic fields.
The first axiom states that the electromagnetic potential is proportional to the Cartan tetrad. Thus,
the geometry of spacetime is directly equated to physical quantities. The potential contains the
same indices as the tetrad. We use the 4-vector potential Aµ in relativistic notation. However, the
tetrad qa

µ is (formally) a matrix and contains the polarization index a. Therefore, the potential is
extended to matrix form with two indices: Aa

µ . This is the main formal difference from classical
electrodynamics: all electromagnetic ECE quantities have a polarization index, extending the
definition range by one dimension. We will see later how we can reduce these quantities to one
polarization direction, if required.

The first axiom is formally written in the form

Aa
µ := A(0)qa

µ , (4.1)

where we have introduced a factor of proportionality A(0). Since the tetrad is dimensionless, A(0)

must have the physical units of a vector potential which is V s/m or T ·m. The product c ·A(0) can be
considered as a primordial voltage, where c is the velocity of light. In detailed form, the complete
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ECE potential reads:

Aa
µ =


A(0)

0 A(0)
1 A(0)

2 A(0)
3

A(1)
0 A(1)

1 A(1)
2 A(1)

3

A(2)
0 A(2)

1 A(2)
2 A(2)

3

A(3)
0 A(3)

1 A(3)
2 A(3)

3

= A(0)


q(0)0 q(0)1 q(0)2 q(0)3
q(1)0 q(1)1 q(1)2 q(1)3
q(2)0 q(2)1 q(2)2 q(2)3
q(3)0 q(3)1 q(3)2 q(3)3

 . (4.2)

The lines number the polarization and the columns the coordinate indices. The zeroth component
of the potential is the scalar potential φ , which also gets a polarization index:

Aa
0 =

φ a

c
. (4.3)

The above equations use the mixed-index notation (contravariant and covariant). The coor-
dinates of vectors, however, correspond to contravariant indices. Therefore, we transform the
coordinate indices by the Minkowski metric, Eq. (2.39):

ηµν = η
µν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (4.4)

in the usual form

Aaµ = η
µνAa

ν . (4.5)

The diagonal form of the Minkowski metric leads to

A(0)0 = η
00A(0)

0 = A(0)
0,

A(0)1 = η
11A(0)

1 =−A(0)
1,

A(0)2 = η
22A(0)

2 =−A(0)
2, (4.6)

etc.

so that the potential components with coordinates 1,2,3 are changed in sign:

Aaµ =


A(0)0 A(0)1 A(0)2 A(0)3

A(1)0 A(1)1 A(1)2 A(1)3

A(2)0 A(2)1 A(2)2 A(2)3

A(3)0 A(3)1 A(3)2 A(3)3

=


A(0)

0 A(0)
1 A(0)

2 A(0)
3

A(1)
0 −A(1)

1 −A(1)
2 −A(1)

3

A(2)
0 −A(2)

1 −A(2)
2 −A(2)

3

A(3)
0 −A(3)

1 −A(3)
2 −A(3)

3

 . (4.7)

This is the form of the potential we will mostly use.
The relativistic electromagnetic field tensor Fµν was already introduced in Example 2.11 and

its Hodge dual in Example 2.12. These are 2-index tensors, comprising the electric and magnetic
field. Therefore, the electromagnetic field of ECE theory also has to have two coordinate indices.
We define the electromagnetic field tensor of ECE theory to be proportional to the Cartan torsion
T a

µν :

Fa
µν := A(0)T a

µν . (4.8)

Because torsion has a polarization index, the electromagnetic field has to have one, too. It is
a 3-index quantity, an indexed antisymmetric 2-form of Cartan geometry. In classical electro-
magnetism, the electromagnetic field is a derivative of the potential, therefore it has the units of
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[potential]/[length] = V s/m2 = T . Since geometrical torsion has the units 1/m, the constant of
proportionality A(0) is the same for both the potential and the field. The polarization index can
be seen as a vector index augmenting the electric field E and magnetic field (i.e. induction) B.
Therefore, we have fields Ea and Ba, which are components of the ECE electromagnetic tensor
field:

Faµν =


Fa00 Fa01 Fa02 Fa03

Fa10 Fa11 Fa12 Fa13

Fa20 Fa21 Fa22 Fa23

Fa30 Fa31 Fa32 Fa33

=


0 −Ea1 −Ea2 −Ea3

Ea1 0 −cBa3 cBa2

Ea2 cBa3 0 −cBa1

Ea3 −cBa2 cBa1 0

 . (4.9)

The Hodge dual of the classical electromagnetic field Fµν was computed in Example 2.12. As
demonstrated before, this has to be augmented by a polarization or tangent space index a, leading to

F̃aµν =


0 cBa1 cBa2 cBa3

−cBa1 0 −Ea3 Ea2

−cBa2 Ea3 0 −Ea1

−cBa3 −Ea2 Ea1 0

 . (4.10)

We have chosen the contravariant versions of F and F̃ , because these correspond to the electric and
magnetic vector components and are needed for deriving the field equations in vector form.

The ECE potential is a Cartan 1-form and the ECE electromagnetic field is a Cartan 2-form.
Both are vector-valued by the polarization index a. In summary, the basic ECE axioms are:

Aa
µ := A(0)qa

µ ,

Fa
µν := A(0)T a

µν .

(4.11)

(4.12)

4.2 The field equations
The aim of this section is to derive the ECE field equations in the form of Maxwell’s equations.
The latter are known as:

Gauss’ law:

∇ ·B = 0, (4.13)

Faraday’s law of induction:

∇×E+
∂B
∂ t

= 0, (4.14)

Coulomb’s law:

∇ ·E =
ρ

ε0
, (4.15)

Ampère-Maxwell’s law:

∇×B− 1
c2

∂E
∂ t

= µ0J, (4.16)

where ρ is the electrical charge density and J the current density. The ECE field equations will be
shown to be identical to the Cartan-Bianchi identity and the Cartan-Evans identity. These theorems
of geometry are converted into physical laws by multiplying them with the factor A(0).
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4.2.1 The field equations in covariant tensor form
From Eqs. (3.20) and (3.46), in form notation,

D∧T a = Ra
b∧qb, (4.17)

D∧ T̃ a = R̃a
b∧qb, (4.18)

follows, when inserting the ECE Axioms (4.11) and (4.12):

D∧Fa = Ra
b∧Ab, (4.19)

D∧ F̃a = R̃a
b∧Ab. (4.20)

These are the field equations, written in 3-forms at both sides of the equations. We will see that
these two equations lead to the equivalent of Maxwell’s equations (4.13 - 4.16). To develop this,
we rewrite the field equations in tensor form first. With indices written out, they read

(D∧Fa)µνρ = (Ra
b∧Ab)µνρ , (4.21)

(D∧ F̃a)µνρ = (R̃a
b∧Ab)µνρ , (4.22)

or, with wedge operation carried out, in tensor form:

D[µFa
νρ] = Ra

b[µν
Ab

ρ], (4.23)

D[µ F̃a
νρ] = R̃a

b[µν
Ab

ρ]. (4.24)

The covariant exterior derivative D∧ was defined in Eqs. (3.2/3.3):

(D∧Fa)µνρ = (d∧Fa)µνρ +(ωa
b ∧Fb)µνρ , (4.25)

or, written as a cyclic sum:

D[µFa
νρ] = ∂[µFa

νρ] +ω
a
[µb Fb

νρ] . (4.26)

Inserting this derivative into the first field equation (4.23) gives (in form notation):

d∧Fa +ω
a
b ∧Fb = Ra

b∧Ab, (4.27)

and bringing the spin connection term to the right-hand side gives:

d∧Fa = Ra
b∧Ab−ω

a
b ∧Fb. (4.28)

This equation has a form similar to the first two field equations of classical electrodynamics, Eq.
(2.173) in Example 2.11, where they are condensed into one equation:

d∧F = 0. (4.29)

These two field equations (the Gauss law and the Faraday law) are homogeneous, i.e. there are
no current terms on the right-hand side. In contrast, the right-hand side of (4.28) is not zero. It is
therefore to be assumed that a current may exist for the Gauss and Faraday laws in their generalized
form in ECE theory. This is called the homogeneous current and denoted by j. It corresponds to
magnetic charges and currents, whose existence is not universally accepted in science.

In ECE theory, the homogeneous current has to be augmented by a polarization index so that
Eq. (4.28) can be written as

d∧Fa = ja (4.30)
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with the definition of the homogeneous current being

ja := Ra
b∧Ab−ω

a
b ∧Fb. (4.31)

For the second field equation (4.24), containing the Hodge duals F̃ and R̃, we have to use the spin
connection of the Λ connection as defined by Eq. (3.49). For clarity, we add an index (Λ) here:

d∧ F̃a = R̃a
b∧Ab−ω

a
(Λ) b ∧ F̃b. (4.32)

This equation defines the other pair of generalized Maxwell equations, the Coulomb and Ampère-
Maxwell laws. We find

d∧ F̃a = µ0Ja (4.33)

with the definition

Ja :=
1
µ0

(
R̃a

b∧Ab−ω
a

(Λ) b ∧ F̃b
)
, (4.34)

which we call the inhomogeneous current. This corresponds to the well-known electrical 4-current
density. In addition, we have introduced the vacuum permeability µ0 = 4π · 10−7 Vs

Am in order
to obtain Ja in the usual units of A/m2. The 0-component of Ja is the electric charge density
ρ , augmented by a polarization index. For consistency, we will also use the factor 1/µ0 in the
homogeneous current (4.31).

Please note that the current densities here are 3-forms. For example, in tensor notation, Eq.
(4.34) reads:

(Ja)µνρ =
1
µ0

(
Ra

b[µν
Ab

ρ]−ω
a

(Λ) [µb Fb
νρ]

)
. (4.35)

=
1
µ0

(
Ra

bµνAb
ρ +Ra

bνρAb
µ +Ra

bρµAb
ν

−ω
a

(Λ) µb Fb
νρ −ω

a
(Λ) νb Fb

ρµ −ω
a

(Λ) ρb Fb
µν

)
.

The standard current density, however, is a 1-form, because the current density J is a vector with
only one coordinate index. So, ja and Ja are types of generalized currents, which cannot simply
be correlated to known quantities. However, we will see in the next section that the contravariant
formulation reduces them to 1-forms, as requested.

So far, we can write the ECE field equations in form notation with covariant tensors:

d∧Fa = µ0 ja,

d∧ F̃a = µ0 Ja.

(4.36)

(4.37)

For formal symmetry, we have added a factor of µ0 here to the homogeneous current ja. This is
arbitrary and only changes the units of ja, which of course are different from those of Ja.

4.2.2 The field equations in contravariant tensor form
In this section, the field equations are translaated into vector form so that they will be familiar to
engineers and physicists. We start with the alternative form of the Cartan-Bianchi and Cartan-Evans
identities, Eqs. (3.79 and 3.77).

Dµ T̃ κµν = R̃κ µν

µ , (4.38)

DµT κµν = Rκ µν

µ . (4.39)
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These equations were given in the base manifold, but can be transformed to tangent space. The
κ index is replaced formally by the a index, multiplying the equations with qa

κ and applying the
tetrad postulate:

Dµ T̃ aµν = R̃a µν

µ , (4.40)

DµT aµν = Ra µν

µ . (4.41)

Multiplying by the factor A(0) then gives us the second form of field equations:

Dµ F̃aµν = A(0)R̃a µν

µ , (4.42)

DµFaµν = A(0)Ra µν

µ . (4.43)

Please notice that the role of the original and Hodge dual equations have interchanged, compared
to (4.36) and (4.37). The first equation, corresponding to the first pair of Maxwell equations, is
based on the Hodge dual equation, and the second equation, corresponding to the third and forth
Maxwell equations, contains the original torsion and curvature. There is no wedge product in the
equations but there is a summation over the coordinate parameter µ . They are tensor equations with
a contraction.

Now we apply the definition of the covariant derivative, similarly as in the preceding section:

DµFaνρ = ∂µFaνρ +ω
a
µb Fbνρ , (4.44)

leading to

∂µ F̃aµν = A(0)R̃a µν

µ −ω
a

(Λ) µb F̃bµν , (4.45)

∂µFaµν = A(0)Ra µν

µ −ω
a
µb Fbµν . (4.46)

The first equation is similar to Eq. (2.185), representing the first two Maxwell equations of classical
electrodynamics in Hodge dual formulation. Therefore, we can again interpret the right-hand sides
of both equations as an homogeneous and inhomogeneous current. Similarly to (4.36, 4.37) we can
write:

∂µ F̃aµν = µ0 jaν ,

∂µFaµν = µ0Jaν

(4.47)

(4.48)

with

jaν :=
1
µ0

(
A(0)R̃a µν

µ −ω
a

(Λ) µb F̃bµν

)
, (4.49)

Jaν :=
1
µ0

(
A(0)Ra µν

µ −ω
a
µb Fbµν

)
. (4.50)

Now we have arrived at 1-forms for the currents, which can be set into relation with classical
expressions. The covariant 4-current density is written in tangent space as

(Ja)µ =


Ja

0
Ja

1
Ja

2
Ja

3

 . (4.51)
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To use the components in the usual contravariant form we have to raise the coordinate indices,
which gives a sign change of space components according to the Minkowski metric:

(Ja)ν =


Ja0

Ja1

Ja2

Ja3

=


Ja

0
−Ja

1
−Ja

2
−Ja

3

 . (4.52)

The 0-component is defined by

Ja0 = cρ
a. (4.53)

The right-hand side of Ja0 has the units of m
s

C
m3 =

C
m2s =

A
m2 , which is the same current density unit

as used for the spatial components.
We conclude this section with the hint that the currents are geometrical quantities and not

externally imposed as in Maxwell’s theory. The field equations are fully geometric, no terms are
added defining an external energy-momentum like in Einstein’s general relativity. Since the currents
depends on the fields F , for which the equations have to be solved, we have an intrinsic nonlinearity.
A similar case is known from Ohm’s law where the current density is assumed to be proportional to
the electric field via the conductivity σ , which in general is a tensor. In most cases, σ is assumed to
be a scalar quantity, and Ohm’s law is used for the current term in classical electrodynamics:

J = σE. (4.54)

Comparing this with Eq. (4.50), the conductivity takes the role of a constant scalar spin connection.
However, the ECE field equations are valid in a curved and twisted spacetime, going far beyond the
Minkowski space of Maxwell’s equations and special relativity.

4.2.3 The field equations in vector form
It was already demonstrated in Example 2.12, how the Gauss and Faraday laws are derived from a
tensor equation of the Hodge dual of the classical electromagnetic field, F̃µν . It is easy to extend
this procedure to the field equation (4.47):

∂µ F̃aµν = µ0 jaν . (4.55)

According to Eq. (4.10), the field is an antisymmetric tensor, consisting of electric and magnetic
field components. In Examples 2.11 and 2.12, the field tensor was given in electric field units of
V/m for convenience. We have the freedom of choice for these units. Here we use the units of
the magnetic field (Tesla) so that we obtain the same constants in the vector equations aswe do in
Maxwell’s equations. This means that we have to make the following replacements:

Eµ → Eµ/c,

cBµ → Bµ .

In addition, the fields have to be augmented by the polarization index a:

F̃aµν =


F̃a00 F̃a01 F̃a02 F̃a03

F̃a10 F̃a11 F̃a12 F̃a13

F̃a20 F̃a21 F̃a22 F̃a23

F̃a30 F̃a31 F̃a32 F̃a33

=


0 Ba1 Ba2 Ba3

−Ba1 0 −Ea3/c Ea2/c
−Ba2 Ea3/c 0 −Ea1/c
−Ba3 −Ea2/c Ea1/c 0

 . (4.56)

The homogeneous field equations are obtained by specific selection of indices, in the following
way. Eq. (4.55) consists of four equations (ν = 0, ...,3), each with four summands of µ on the
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left-hand side. The case µ = ν leads to diagonal elements of F , so these terms can be omitted. The
generalized Gauss law is obtained by choosing ν = 0, which leads to

∂1F̃a10 +∂2F̃a20 +∂3F̃a30 =−∂1Ba1−∂2Ba2−∂3Ba3 = µ0 ja0. (4.57)

In vector notation this is

∇ ·Ba =−µ0 ja0. (4.58)

The Faraday law of induction is obtained by choosing ν = 1,2,3 and consists of three component
equations:

∂0F̃a01 +∂2F̃a21 +∂3F̃a31 = µ0 ja1,

∂0F̃a02 +∂1F̃a12 +∂3F̃a32 = µ0 ja2, (4.59)

∂0F̃a03 +∂1F̃a13 +∂2F̃a23 = µ0 ja3.

These can be written, according to (4.56), as

∂0Ba1 +∂2Ea3/c−∂3Ea2/c = µ0 ja1,

∂0Ba2−∂1Ea3/c+∂3Ea1/c = µ0 ja2, (4.60)

∂0Ba3 +∂1Ea2/c−∂2Ea1/c = µ0 ja3.

Taking into account ∂0 =
1
c

∂

∂ t , these equations can be condensed into one vector equation, which is

∂Ba

∂ t
+∇×Ea = c µ0 ja. (4.61)

We see that these “homogeneous” equations are not actually homogeneous, because there is a
magnetic charge density ja0 and a magnetic current vector ja, in general. In nearly all practical
applications, however, we will set

ja0 = 0, (4.62)

ja = 0. (4.63)

The Coulomb and Ampère-Maxwell laws are derived in a completely analogous way from Eq.
(4.48):

∂µFaµν = µ0Jaν . (4.64)

According to Eq. (4.9), the contravariant field tensor (in Tesla units) is:

Faµν =


Fa00 Fa01 Fa02 Fa03

Fa10 Fa11 Fa12 Fa13

Fa20 Fa21 Fa22 Fa23

Fa30 Fa31 Fa32 Fa33

=


0 −Ea1/c −Ea2/c −Ea3/c

Ea1/c 0 −Ba3 Ba2

Ea2/c Ba3 0 −Ba1

Ea3/c −Ba2 Ba1 0

 . (4.65)

We obtain the generalized Coulomb law by choosing ν = 0:

∂1F10 +∂2F20 +∂3F30 = µ0Ja0, (4.66)

which, in vector notation, is

∇ ·Ea = c µ0Ja0. (4.67)
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Because the 0-component of the current density is the charge density (see Eq. (4.53)) this equation
can also be written as

∇ ·Ea =
ρa

ε0
. (4.68)

The Ampère-Maxwell law follows from choosing ν = 1,2,3, giving three component equations:

∂0Fa01 +∂2Fa21 +∂3Fa31 = µ0Ja1,

∂0Fa02 +∂1Fa12 +∂3Fa32 = µ0Ja2, (4.69)

∂0Fa03 +∂1Fa13 +∂2Fa23 = µ0Ja3,

which with the aid of (4.65) become:

−∂0Ea01/c+∂2Ba3−∂3Ba2 = µ0Ja1,

−∂0Ea02/c−∂1Ba3 +∂3Ba1 = µ0Ja2, (4.70)

−∂0Ea03/c+∂1Fa2−∂2Ba1 = µ0Ja3.

These can be condensed into one vector equation again:

− 1
c2

∂Ea

∂ t
+∇×Ba = µ0 Ja. (4.71)

Ultimately, we arrive at the Maxwell-like field equations, in vector form:

∇ ·Ba =−µ0 ja0,

∂Ba

∂ t
+∇×Ea = c µ0 ja,

∇ ·Ea =
ρa

ε0
,

− 1
c2

∂Ea

∂ t
+∇×Ba,= µ0 Ja,

(4.72)

(4.73)

(4.74)

(4.75)

which correspond, according to Eqs. (4.13 - 4.16), to the Gauss law, the Faraday law, the Coulomb
law and the Ampère-Maxwell law. These equations are valid in a generally covariant spacetime.
Because of the four values for the polarization index a, the equation system consists of 4 ·8 = 32
equations. There are only 4 ·6 = 24 variables. It is known, however, that the Gauss law is dependent
on the Faraday law, and the Coulomb law is dependent on the Ampère-Maxwell law. Therefore,
there are only 24 independent equations, and the equation system is uniquely defined. In particular,
the equations for each a index separate. The meaning of the polarization index will be clarified
next through two detailed examples.

4.2.4 Examples of ECE field equations
The Coulomb law in Cartan geometry
� Example 4.1 In Chapters 2 and 3 we demonstrated, by examples, how all elements of a given
tetrad can be calculated within Cartan geometry. Now we extend this method to physical fields.

One of the simplest and most important cases in electrodynamics is the Coulomb potential. In
4-vector notation, the potential is the 0-component

A0 =
φ(r)

c
=

1
c

qe

4πε0r
, (4.76)
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where qe is the central point charge and r is the radial coordinate of a spherical coordinate system

(X µ) =


t
r
θ

φ

 . (4.77)

According to Eq. (4.2), the potential corresponds to the first diagonal element of the tetrad:

φ(r) = c A(0)q(0)0. (4.78)

Inserting the potential into the q matrix gives

(qa
µ) =

1
2
(Aa

µ)

A(0) =
1

A(0)


φ(r)

c 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (4.79)

which is a singular matrix. Cartan Geometry, however, is only defined with non-singular tetrads
(see Section 2.5.1). Therefore, a vector potential is necessarily required, in addition to a scalar
potential. We choose the simplest form, a constant vector potential, which gives no magnetostatic
field. The final form of the tetrad then is

(qa
µ) =

1
2


C0
r 0 0 0
0 −C1 0 0
0 0 −C2 0
0 0 0 −C3

 , (4.80)

where

C0 =
qe

A(0) c4πε0
(4.81)

and the Ci are arbitrary constants for i = 1,2,3. For simplicity of results, we assume Ci > 0 and
omit the factors A(0) and c. Then, the vector potential is

A =

C1
C2
C3

 . (4.82)

Cartan geometry is now applied as follows (we repeat the relevant equations):

Metric compatibility (2.149):

Dσ gµν = ∂σ gµν −Γ
λ

σ µgλν −Γ
λ

σνgµλ = 0 (4.83)

with an explicit antisymmetry requirement for all non-diagonal Γ elements (2.156):

Γ
ρ

µν =−Γ
ρ

νµ . (4.84)

The metric (2.204):

gµν = n qa
µqb

ν ηab, (4.85)

gµν =
1
n

qµ
aqν

b η
ab. (4.86)
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The spin connection (2.235):

ω
a
µb = qa

νqλ
bΓ

ν

µλ
−qλ

b∂µqa
λ
. (4.87)

The Λ connection and its spin connection (3.48-3.49):

Λ
λ

µν =
1
2
|g|−1/2

η
ρα

η
σβ

ερσ µν Γ
λ

αβ
, (4.88)

ω
a

(Λ) µb = qa
νqλ

bΛ
ν

µλ
−qλ

b∂µqa
λ
. (4.89)

The torsion and curvature tensors:

Rλ
µνρ = ∂µΓ

λ
νρ −∂νΓ

λ
µρ +Γ

λ
µσ Γ

σ
νρ −Γ

λ
νσ Γ

σ
µρ , (4.90)

T λ
µν = Γ

λ
µν −Γ

λ
νµ , (4.91)

and their forms:

Ra
bµν = qa

ρqσ

bRρ

σ µν , (4.92)

T a
µν = qa

λ
T λ

µν , (4.93)

and contravariant forms:

Ra µν

b = η
µρ

η
νσ Ra

bρσ , (4.94)

T aµν = η
µρ

η
νσ T a

ρσ . (4.95)

Now we evaluate the equations with the tetrad (4.80) (the Maxima code is in [93]). This gives
Γ connections with four unspecified parameters D1 to D4:

Γ
0

01 =
1
r

(4.96)

Γ
0

10 =−
1
r

Γ
0

12 =
D4C2

2r2

C0
2

Γ
0

13 =−
D3C1

2r2

C0
2

. . .

It is possible to set the Di to zero:

D1 = D2 = D3 = D4 = 0. (4.97)

Then, only three non-vanishing connections remain:

Γ
0

01 =
1
r
, (4.98)

Γ
0

10 =−
1
r
, (4.99)

Γ
1

00 =
C2

0

C2
1 r3 . (4.100)

The first pair is antisymmetric, while the third connection is a diagonal element which does not
contribute to torsion.
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Applying Eq. (4.87), the non-vanishing spin connections are

ω
(0)

0(1) =−
C0

C1 r2 , (4.101)

ω
(1)

0(0) =−
C0

C1 r2 , (4.102)

which are antisymmetric in indices in a and b. (Please notice that the upper index a has to be
lowered for comparison, which gives a sign change for the second connection element.) We have
written the Latin indices in parentheses in order to distinguish these numbers from those stemming
from Greek indices.

The Hodge duals of the Γ connection are

Λ
0

23 =−
1
r
, (4.103)

Λ
0

32 =
1
r
, (4.104)

and are complementary to the Γ’s in the lower indices. The non-zero Λ spin connections are

ω
(0)

(Λ) 1(0) =
1
r
, (4.105)

ω
(0)

(Λ) 2(3) =
C0

C3r2 , (4.106)

ω
(0)

(Λ) 3(2) =−
C0

C2r2 . (4.107)

It is important to note that the connection ω
(0)

(Λ) 1(0) has the form that was derived in early papers of
the UFT series. In those papers, the spin connections for Γ and Λ had not been discerned, and which
one was meant depended on the field equations used. In the inhomogeneous current (Coulomb and
Ampère-Maxwell laws), the Λ spin connections appear.

The non-vanishing torsion and curvature tensor elements are

T 0
01 =−T 0

10 =
2
r
, (4.108)

R0
101 =−R0

110 =
2
r2 , (4.109)

R1
001 =−R1

010 =
2C2

0

C2
1r4 , (4.110)

which are all antisymmetric in the last two indices. The same holds for the torsion and curvature
forms:

T (0)
01 =−T (0)

10 =
C0

r2 , (4.111)

R(0)
(1)01 =−R(0)

(1)10 =−
2C0

C1r3 , (4.112)

R(1)
(0)01 =−R(1)

(0)10 =−
2C0

C1r3 . (4.113)

The final results are obtained by inserting the torsion elements into Eq. (4.65) leading, e.g., to

Fa01 = A(0)T a01 =
Ea1

c
, (4.114)
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from which follows

Ea1 = cA(0)T a01, (4.115)

which is the r-component of the fields Ea. The field elements for all other a values are obtained in
the same way. This gives for the electric fields

E(0) = cA(0)

C0
r2

0
0

 , (4.116)

E(1) = E(2) = E(3) = 0, (4.117)

and for the magnetic fields

B(0) = B(1) = B(2) = B(3) = 0. (4.118)

Only the electric 0-component of polarization is not a zero vector, and all polarizations of the
magnetic field vanish. This is exactly the classical result

E(0) = E =
qe

4πε0 r2 . (4.119)

It is seen that - despite the purely classical result - there are non-vanishing spin connections and cur-
vature tensor elements. This shows that ECE theory gives results beyond classical electromagnetism.
The latter is based on special relativity only. �

Circularly polarized plane wave in complex basis - the B(3) field
� Example 4.2 In the early 1990s, Myron Evans developed what is known as the B(3) field, a
longitudinal field of electrodynamics [25–27] that describes a longitudinal component of electro-
magnetic waves. He then generalized this theory to O(3) electrodynamics [27,28], in the late 1990s,
and these two theories culminated in ECE theory, in 2003.

We will now present the basics of O(3) electrodynamics and show how circularly polarized
plane waves (Figs. 4.1, 4.2) can be attributed to different polarization vectors of the electric and
magnetic fields.

The usual orthonormal basis of the three-dimensional cartesian space is described by the unit
vectors i, j,k:

i =

1
0
0

 , j =

0
1
0

 , k =

0
0
1

 . (4.120)

Figure 4.1: Right-polarized wave [112]. Figure 4.2: left-polarized wave [113].
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These fulfill the circular relations

i× j = k, (4.121)

j×k = i, (4.122)

k× i = j. (4.123)

In O(3) electrodynamics, a complex circular basis in flat space is used, denoted by q(1),q(2),q(3).
The transformation equations from the cartesian to the complex circular basis are:

q(1) =
1√
2
(i− ij), (4.124)

q(2) =
1√
2
(i+ ij), (4.125)

q(3) = k, (4.126)

where i is the imaginary unit (not to be confused with the unit vector i). These vectors have a
spacial circular relation, which is characteristic for O(3) symmetry:

q(1)×q(2) = iq(3)∗, (4.127)

q(2)×q(1) = iq(1)∗, (4.128)

q(3)×q(1) = iq(2)∗. (4.129)

In contrast to (4.121 - 4.123), the cross products of two basis vectors do not lead directly to the
third vector, but to the conjugate vector, multiplied by the imaginary unit. Eqs. (4.124 - 4.126)
are basis transformations, therefore they can be interpreted directly as a Cartan tetrad qa

µ where
indices a and µ run from 1 to 3. Consequently, we can define vector potentials according to the
first ECE axiom (4.11), multiplying the q’s by the factor A(0):

A(1) = A(0)q(1), (4.130)

A(2) = A(0)q(2), (4.131)

A(3) = A(0)q(3). (4.132)

In so doing, we have defined potentials for three polarization directions, where these directions
coincide with the axes of the coordinate system. The polarization in Z direction is constant:

A(3) = A(0)k. (4.133)

In the absence of rotation around Z, we have:

∇×A(1) = ∇×A(2) = 0. (4.134)

Now we define a wave of A vectors rotating in the XY plane:

A(1) = A(0)q(1)ei(ωt−κZ), (4.135)

A(2) = A(0)q(2)e−i(ωt−κZ), (4.136)

A(3) = A(0)q(3), (4.137)

where ω is a time frequency, and κ is a wave number (the spatial frequency of a wave, measured in
cycles per unit distance) in the Z direction. The first two A vectors define a left and right rotation
around the Z axis. They are related by

A(1) = A(2)∗. (4.138)
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A(3) is a constant vector in the Z direction.
The magnetic field of O(3) electrodynamics is defined by

B(1)∗ =−i
κ

A(0) A(2)×A(3), (4.139)

B(2)∗ =−i
κ

A(0) A(3)×A(1), (4.140)

B(3)∗ =−i
κ

A(0) A(1)×A(2), (4.141)

(notice that conjugated quantities are defined on the left-hand side). These fields obey the B cyclic
theorem:

B(1)×B(2) = iA(0)
κ B(3)∗, (4.142)

B(2)×B(3) = iA(0)
κ B(1)∗, (4.143)

B(3)×B(1) = iA(0)
κ B(2)∗. (4.144)

This is proven using computer algebra [94], along with many other theorems. It is also possible to
define the first two polarizations in the same way as in conventional electrodynamics:

B(1) = ∇×A(1), (4.145)

B(2) = ∇×A(2). (4.146)

However, then there is no B(3) field, because A(3) is constant and therefore

∇×A(3) = 0. (4.147)

So B(3) can only be defined by Eq. (4.141):

B(3) = i
κ

A(0) A(1)∗×A(2)∗. (4.148)

The B(3) field

B(3) = A(0)
κ k (4.149)

has been studied in great detail [25,27]. It is a radiated magnetic field or flux density in the direction
of wave propagation. Such a field is not known in ordinary electrodynamics. When the wave
hits matter, it creates a magnetization in the propagation direction, which is known as the inverse
Faraday effect. Besides this, there are other effects in spectroscopy that can be explained by the
B(3) field, namely in optical NMR and in laser technology [25].

Interestingly, there is no electrical E(3) field. Electric field vectors of both left and right circular
polarization can be defined by

E(1) = E(0) 1√
2
(i+ ij)ei(ωt−κZ), (4.150)

E(2) = E(0) 1√
2
(i− ij)e−i(ωt−κZ), (4.151)

and are perpendicular to the magnetic fields. The E(3) field has to be the cross product of E(1) and
E(2), giving

E(3) =
1

E(0) E(1)×E(2) =−iE(0)k, (4.152)
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with a suitable constant E(0), and is purely imaginary. Therefore, no physical E(3) field exists (and
has never been observed).

There is another interesting relation for circular plane waves. By comparison with the results of
Eqs. (4.139 - 4.141) we find that

B(1) = κ1 A(1), (4.153)

B(2) = κ2 A(2), (4.154)

B(3) = κ3 A(3), (4.155)

which, by comparison with (4.145 - 4.147), gives three Beltrami conditions:

∇×A(1) = κ A(1), (4.156)

∇×A(2) = κ A(2), (4.157)

∇×A(3) = 0 ·A(3). (4.158)

These have to do with longitudinal waves, where electric and magnetic fields are not perpendicular
to each other, and will be discussed later in this book. All calculations in this example can be
verified by computer algebra code [94]. �

4.3 The wave equation
It was shown in Section 2.5.5 that a wave equation can be derived from the tetrad postulate. This is
called the Evans lemma, Eq. (2.258):

� qa
ν +Rqa

ν = 0. (4.159)

This is an equation for the tetrad and contains a scalar curvature R, which, according to Eq. (2.257),
is defined by the tetrad, spin connection and Γ connection terms of Cartan geometry:

R = qν
a

(
∂

µ(ωa
µb qb

ν)−∂
µ(Γλ

µνqa
λ
)
)
. (4.160)

The Evans lemma can easily be transformed into a physical equation by applying the first ECE
postulate (4.11), i.e., multiplying the equation by the constant A(0), to obtain physical units of a
potential:

� Aa
ν +RAa

ν = 0. (4.161)

The d’Alembert operator � was already introduced in Section 2.5.5. In cartesian coordinates it
reads:

�=
1
c2

∂ 2

∂ t2 −
∂ 2

∂X2 −
∂ 2

∂Y 2 −
∂ 2

∂Z2 . (4.162)

Eq. (4.161) is different from the wave equation of standard electrodynamics, which is

� Aa
ν = 0. (4.163)

This equation has no curvature term and follows from (4.161) by R = 0, which indicates in a flat
space without curvature and torsion. When the potential Aa

ν is derived as a solution of this equation,
it is not uniquely determined. Aa

ν may be changed by a tensorial function φ a
ν , whose derivatives

vanish:

� φ
a
ν = 0, (4.164)
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or, in a particular case,

∂φ a
ν

∂ t
= 0 and (4.165)

∇
2

φ
a
ν = 0,

so that

� (Aa
ν +φ

a
ν ) = 0. (4.166)

The particular case is called a gauge operation, which are the basis for quantum electrodynamics.
When we use the ECE wave equation (4.161) instead, a re-gauging of the vector potential is no
longer possible. Therefore, quantum electrodynamics is obsolete in the framework of ECE theory.
All well-known effects of quantum electrodynamics, for example the Lamb shift in atomic spectra,
can be explained by ECE theory directly, as a consequence of the fact that spacetime is not flat.

As a preview of ECE quantum mechanics, we state that the wave equation (4.161) can be
quantized and is the basis of the Fermion equation, which is comparable to the Dirac equation in
establishing relativistic quantum mechanics. The Fermion equation is not based on special relativity,
but general relativity, a spacetime with curvature and torsion. The non-relativistic Schrödinger
equation can be derived as an approximation of the Fermion equation, or, alternatively, from
Einstein’s relation for total energy. Thus, the ECE wave equation provides the foundation for all of
ECE quantum mechanics.

The curvature term R in the ECE wave equation describes a coupling between spacetime or even
gravitation and electromagnetism. Therefore, R may be replaced by a mass term and a dimensional
factor. In order to obtain curvature units (1/m2), we replace R by (m0c/h̄)2, where m0 may be
constant. This ensures that the dimensions are right, and we can write

� Aa
ν +
(m0c

h̄

)2
Aa

ν = 0. (4.167)

When applied to electromagnetic waves, it follows that photons have a rest mass m0. This equation
is identical to the Proca equation [29], which was derived by Proca independently before the
advent of ECE theory. In the standard model, the Proca equation is directly incompatible with
gauge invariance. The gauge principle is not tenable in a unified field theory such as ECE because
the potential in ECE is physically relevant and cannot be “re-gauged”. In ECE theory the tetrad
postulate is invariant under the general coordinate transform, and this is the principle that governs
the potential field in ECE.

4.4 Field equations in terms of potentials
The field equations of ECE theory are formally identical to Maxwell’s equations, augmented
by a polarization index, and are valid in a spacetime of general relativity. The connections of
spacetime are not directly visible in this representation for the electric and magnetic force fields.
However, we can make the underlying structure evident by replacing the force fields with their
potentials. Because the force fields are identical with Cartan torsion, within a factor, we use the
first Maurer-Cartan structure relation to express the force fields by their potentials and connections.
The first Maurer-Cartan structure, Eq. (2.283), is the 2-form:

T a = D∧qa = d∧qa +ω
a
b ∧qb, (4.168)

or written in tensor form:

T a
µν = ∂µqa

ν −∂νqa
µ +ω

a
µb qb

ν −ω
a
νb qb

µ . (4.169)
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Applying the ECE axioms

Aa
µ = A(0)qa

µ , (4.170)

Fa
µν = A(0)T a

µν , (4.171)

then leads to the equation

Fa
µν = ∂µAa

ν −∂νAa
µ +ω

a
µb Ab

ν −ω
a
νb Ab

µ . (4.172)

It is directly seen that this is an antisymmetric tensor consisting of the potential A and spin
connection terms. In classical electrodynamics, the field tensor Fµν is defined from the potentials
as

Fµν = ∂µAν −∂νAµ . (4.173)

There is no polarization index and there are no spin connection terms, indicating that this is an
equation of Minkowski space without curved spacetime. Eq. (4.172) is a generalized version of
this equation, introducing curvature and torsion.

In the preceding section we have introduced the vector representation of the ECE field equations.
Therefore, it is useful to replace the vectors Ea and Ba by their potentials according to Eq. (4.172).
In classical physics, we have

E =−∇φ − ∂A
∂ t

, (4.174)

B = ∇×A, (4.175)

where φ is the electric scalar potential and A is the magnetic vector potential. The mapping between
the elements of F and the electric and magnetic field was given by Eq. (4.65), but Eq. (4.56) can
also be used, if the Hodge dual of F is considered. Here we use Eq. (4.65):

Ea =

Ea1

Ea2

Ea3

=−c

 Fa01

Fa02

Fa03

 , (4.176)

Ba =

Ba1

Ba2

Ba3

=

Fa32

Fa13

Fa21

 . (4.177)

Then this follows from Eq. (4.172) for µ = 0, ν = 1,2,3:

Fa
01 = ∂0Aa

1−∂1Aa
0 +ω

a
0b Ab

1−ω
a
1b Ab

0, (4.178)

Fa
02 = ∂0Aa

2−∂2Aa
0 +ω

a
0b Ab

2−ω
a
2b Ab

0, (4.179)

Fa
03 = ∂0Aa

3−∂3Aa
0 +ω

a
0b Ab

3−ω
a
3b Ab

0. (4.180)

We raise Greek indices in F , A and ω , which gives sign changes for ν = 1,2,3:

−Fa01 =−∂0Aa1−∂1Aa0−ω
a
0b Ab1 +ω

a1
b Ab0, (4.181)

−Fa02 =−∂0Aa2−∂2Aa0−ω
a
0b Ab2 +ω

a2
b Ab0, (4.182)

−Fa03 =−∂0Aa3−∂3Aa0−ω
a
0b Ab3 +ω

a3
b Ab0. (4.183)
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Inserting (4.176), we obtain:

1
c

Ea1 =−∂0Aa1−∂1Aa0−ω
a
0b Ab1 +ω

a1
b Ab0, (4.184)

1
c

Ea2 =−∂0Aa2−∂2Aa0−ω
a
0b Ab2 +ω

a2
b Ab0, (4.185)

1
c

Ea3 =−∂0Aa3−∂3Aa0−ω
a
0b Ab3 +ω

a3
b Ab0. (4.186)

With

∂0 =
1
c

∂

∂ t
and Aa0 =

φ a

c
(4.187)

this follows in vector form:

Ea =−∇φ
a− ∂Aa

∂ t
− cω

a
0b Ab +ω

a
bφ

b. (4.188)

Please notice that ωa0
b is a scalar and ωa

b is a vector:

ω
a

b =

ωa1
b

ωa2
b

ωa3
b

 . (4.189)

The representation of the magnetic field vector is found from Eq. (4.177), using the corresponding
combinations of µ and ν :

Fa
32 = ∂3Aa

2−∂2Aa
3 +ω

a
3b Ab

2−ω
a
2b Ab

3, (4.190)

Fa
13 = ∂1Aa

3−∂3Aa
1 +ω

a
1b Ab

3−ω
a
3b Ab

1, (4.191)

Fa
21 = ∂2Aa

1−∂1Aa
2 +ω

a
2b Ab

1−ω
a
1b Ab

2. (4.192)

With Greek indices raised, we obtain

Fa32 =−∂3Aa2 +∂2Aa3 +ω
a3

b Ab2−ω
a2

b Ab3, (4.193)

Fa13 =−∂1Aa3 +∂3Aa1 +ω
a1

b Ab3−ω
a3

b Ab1, (4.194)

Fa21 =−∂2Aa1 +∂1Aa2 +ω
a2

b Ab1−ω
a1

b Ab2. (4.195)

In vector form this can be written as

Ba = ∇×Aa−ω
a

b×Ab. (4.196)

The first Maurer-Cartan structure equation leads to the complete set of field-potential relations in
ECE electrodynamics:

Ea =−∇φ
a− ∂Aa

∂ t
− cω

a
0b Ab +ω

a
bφ

b,

Ba = ∇×Aa−ω
a

b×Ab.

(4.197)

(4.198)
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Inserting these relations into the field equations (4.72 - 4.75) leads to

∇ ·
(

∇×Aa−ω
a
b×Ab

)
=−µ0 ja0, (4.199)

∂
(
∇×Aa−ωa

b×Ab
)

∂ t

+∇×
(
−∇φ

a− ∂Aa

∂ t
− cω

a
0b Ab +ω

a
bφ

b
)
= c µ0 ja, (4.200)

∇ ·
(
−∇φ

a− ∂Aa

∂ t
− cω

a
0b Ab +ω

a
bφ

b
)
=

ρa

ε0
, (4.201)

− 1
c2

∂

(
−∇φ a− ∂Aa

∂ t − cωa
0b Ab +ωa

bφ b
)

∂ t

+∇×
(

∇×Aa−ω
a
b×Ab

)
= µ0 Ja. (4.202)

These equations can be simplified by using the theorems of vector algebra, giving:

∇ ·
(

ω
a
b×Ab

)
= µ0 ja0

−c∇×
(

ω
a
0b Ab

)
+∇×

(
ω

a
bφ

b
)
−

∂
(
ωa

b×Ab
)

∂ t
= c µ0 ja,

∇ · ∂Aa

∂ t
+∇

2
φ

a + c∇ ·
(

ω
a
0b Ab

)
−∇ ·

(
ω

a
bφ

b
)
=−ρa

ε0
,

∇(∇ ·Aa)−∇
2Aa−∇×

(
ω

a
b×Ab

)
+

1
c2

(
∂ 2Aa

∂ t2 + c
∂
(
ωa

0b Ab
)

∂ t
+∇

∂φ a

∂ t
−

∂
(
ωa

bφ b
)

∂ t

)
= µ0 Ja.

(4.203)

(4.204)

(4.205)

(4.206)

These are the field equations in potential form. They are much more complicated than those written
in terms of force fields. In the standard case of vanishing magnetic monopoles, we have ja0 = 0,
ja = 0, as usual. If there are no spin connections, the first two laws result in zero terms at the
left-hand side, indicating that non-vanishing magnetic monopoles are only possible in a spacetime
of general relativity.

If no polarization is present, we can omit the corresponding Latin indices. In this case, we only
have one scalar and one vector potential, and one scalar and one vector spin connection:

φ
a→ φ , (4.207)

Aa→ A, (4.208)

ω
a
0b → ω0, (4.209)

ω
a
b→ ω. (4.210)

Then, Eqs. (4.197 - 4.98) simplify to

E =−∇φ − ∂A
∂ t
− cω0 A+ωφ ,

B = ∇×A−ω×A.

(4.211)

(4.212)

Compared to their form of Maxwell-Heaviside theory, Eqs. ((4.174 - 4.175), both of the fields E
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and B contain additional spin connection terms. The field equations (4.203 - 4.206) simplify to

∇ · (ω×A) = µ0 j0,

−c∇× (ω0A)+∇× (ωφ)− ∂ (ω×A)

∂ t
= c µ0 j,

∇ · ∂A
∂ t

+∆φ + c∇ · (ω0A)−∇ · (ωφ) =− ρ

ε0
,

∇(∇ ·A)−∆A−∇× (ω×A)

+
1
c2

(
∂ 2A
∂ t2 + c

∂ (ω0A)

∂ t
+∇

∂φ

∂ t
− ∂ (ωφ)

∂ t

)
= µ0 J.

(4.213)

(4.214)

(4.215)

(4.216)

These are 8 component equations for 8 potential and spin connection variables. Formally, this
equation system is uniquely defined, but the Gauss law is not independent from the Faraday law,
and the Coulomb law is not independent from the Ampère-Maxwell law. This has to be taken into
account when solving the equation system. The solutions become unique (the equations become
independent) when the charge density and the current density are chosen in an unrelated way [33].





5. Advanced properties of electrodynamics

After having introduced ECE electrodynamics in Chapter 4, we complete the topic here by dis-
cussing special features and showing, through detailed examples, that they can be derived directly
and easily with ECE theory, but not at all (or only with difficulty and inconsistencies) using standard
physics.

5.1 The Antisymmetry laws

As shown in Section 2.5.4, the tetrad postulate can be written in form of Eq. (2.236) (with index
renaming):

qa
νΓ

ν
µν = ∂µqa

ν +qb
νω

a
µb . (5.1)

We can define a mixed-index Γ connection by

Γ
a

µλ
:= qa

νΓ
ν

µλ
= ∂µqa

ν +qb
νω

a
µb (5.2)

so that the antisymmetric Cartan torsion can be written as

T a
µν = Γ

a
µν −Γ

a
νµ . (5.3)

In Chapter 2 we have found that the Γ connection may contain non-vanishing elements for µ = ν

but only the antisymmetric parts for µ 6= ν are relevant. For a priori antisymmetric non-diagonal
elements of Γ we have

Γ
a

µν =−Γ
a

νµ (5.4)

so that for the torsion form (5.3) it follows that:

T a
µν = 2 Γ

a
µν = 2

(
∂µqa

ν +qb
νω

a
µb

)
. (5.5)
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On the other hand, torsion can be written according to Eq. (4.169) as

T a
µν = ∂µqa

ν −∂νqa
µ +ω

a
µb qb

ν −ω
a
νb qb

µ . (5.6)

Equating both expressions for T a
µν then gives the relation

2
(

∂µqa
ν +qb

νω
a
µb

)
= ∂µqa

ν −∂νqa
µ +ω

a
µb qb

ν −ω
a
νb qb

µ , (5.7)

which can be rearranged to

∂µqa
ν +∂νqa

µ +ω
a
µb qb

ν +ω
a
νb qb

µ = 0. (5.8)

This is the antisymmetry condition of ECE theory.
Next, we will discuss how this impacts the vector notation of E and B fields. Applying the ECE

axioms (4.170 - 4.171) gives

∂µAa
ν +∂νAa

µ +ω
a
µb Ab

ν +ω
a
νb Ab

µ = 0. (5.9)

For µ = 0,ν = 1,2,3 we obtain

∂0Aa
1 +∂1Aa

0 +ω
a
0b Ab

1 +ω
a
1b Ab

0 = 0, (5.10)

∂0Aa
2 +∂2Aa

0 +ω
a
0b Ab

2 +ω
a
2b Ab

0 = 0, (5.11)

∂0Aa
3 +∂3Aa

0 +ω
a
0b Ab

3 +ω
a
3b Ab

0 = 0. (5.12)

The Greek indices of A and ω can be raised with sign change for ν = 1,2,3. In vector notation this
gives

−1
c

∂Aa

∂ t
+∇Aa

0−ω
a
0b Ab−ω

a
bAb

0 = 0, (5.13)

or, with Aa
0 = φ a/c,

−∂Aa

∂ t
+∇φ

a− cω
a
0b Ab−ω

a
bφ

b = 0. (5.14)

These are the electric antisymmetry conditions, because the terms of the ECE electric field appear.
For µ 6= 0 we obtain from (5.9):

∂3Aa
2 +∂2Aa

3 +ω
a
3b Ab

2 +ω
a
2b Ab

3 = 0, (5.15)

∂1Aa
3 +∂3Aa

1 +ω
a
1b Ab

3 +ω
a
3b Ab

1 = 0, (5.16)

∂2Aa
1 +∂1Aa

2 +ω
a
2b Ab

1 +ω
a
1b Ab

2 = 0, (5.17)

and with indices raised:

−∂3Aa2−∂2Aa3 +ω
a3

b Ab2 +ω
a2

b Ab3 = 0,

−∂1Aa3−∂3Aa1 +ω
a1

b Ab3 +ω
a3

b Ab1 = 0,

−∂2Aa1−∂1Aa2 +ω
a2

b Ab1 +ω
a1

b Ab2 = 0.

(5.18)

(5.19)

(5.20)

These equations are called the magnetic antisymmetry conditions, because they relate to the
magnetic vector potential Aa. These equations have a permutational structure and cannot be written
in vector form.
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The antisymmetry conditions are constraints for the fields Ea and Ba. Therefore, Equations
(4.188) and (4.196) can be reformulated. First, let us use Eq. (5.5) directly. With the ECE axioms,
we can write

Fa
µν = 2A(0)

Γ
a

µν = 2A(0)
(

∂µqa
ν +qb

νω
a
µb

)
(5.21)

= 2
(

∂µAa
ν +ω

a
µb Ab

ν

)
.

For µ = 0 we obtain the electric field:

Ea =−

Fa01

Fa02

Fa03

=

Fa
01

Fa
02

Fa
03

= 2c

∂0Aa
1 +ωa

0b Ab
1

∂0Aa
2 +ωa

0b Ab
2

∂0Aa
3 +ωa

0b Ab
3

=−2c

∂0Aa1 +ωa
0b Ab1

∂0Aa2 +ωa
0b Ab2

∂0Aa3 +ωa
0b Ab3

 (5.22)

=−2
(

∂Aa

∂ t
+ cω

a
0b Ab.

)
For the magnetic field we obtain:

Ba =

Fa32

Fa13

Fa21

=

Fa
32

Fa
13

Fa
21

= 2

∂3Aa
2 +ωa

2b Ab
3

∂1Aa
3 +ωa

3b Ab
1

∂2Aa
1 +ωa

1b Ab
2

 (5.23)

= 2

−∂3Aa2 +ωa2
b Ab3

−∂1Aa3 +ωa3
b Ab1

−∂2Aa1 +ωa1
b Ab2


This equation cannot be written in form of vector operators.

The electric antisymmetry condition (5.14) can be used to replace the two terms containing the
Aa field with terms of the potential φ a. Inserting this into Eq. (5.22), we obtain two formulations
for the electric field vector:

Ea =−2
(

∂Aa

∂ t
+ cω

a
0b Ab

)
=−2

(
∇φ

a−ω
a
bφ

b
)
. (5.24)

This is a remarkable result. The electric field is either defined by either the vector potential or the
scalar potential, in combination with the scalar and vector spin connections. There is no counterpart
in classical electrodynamics. If we omitted the spin connections, we would have ∂Aa

∂ t = ∇φ a, which
is not generally true in Maxwellian electrodynamics.

Finally, we can also rewrite the ECE magnetic field (5.23) by means of the magnetic antisym-
metry conditions (5.18 - 5.20):

Ba = 2

−∂3Aa2 +ωa2
b Ab3

−∂1Aa3 +ωa3
b Ab1

−∂2Aa1 +ωa1
b Ab2

= 2

∂2Aa3−ωa3
b Ab2

∂3Aa1−ωa1
b Ab3

∂1Aa2−ωa2
b Ab1

 . (5.25)

This is simply the application of an antisymmetry operation. The factor of 2 appears in Eqs. (5.24)
and (5.25) for the “missing terms” when compared with the original definitions (4.197, 4.198).

� Example 5.1 In this example we show that classical electrodynamics, which uses U(1) symmetry,
is not compatible with the antisymmetry laws of ECE theory. The antisymmetric field tensor is
defined in U(1) symmetry [30]- [33] by

Fµν = ∂µAν −∂νAµ , (5.26)
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and the antisymmetry of this definition requires

∂µAν =−∂νAµ . (5.27)

There is no polarization index and there are no spin connection terms. The electric and magnetic
field vectors, in terms of potentials, have the well-known form:

E =−∇φ − ∂A
∂ t

, (5.28)

B = ∇×A, (5.29)

From the antisymmetry law (5.27) it follows that

∇φ =
∂A
∂ t

, (5.30)

then, because the curl of a gradient field vanishes:

∇×∇φ =
∂

∂ t
(∇×A) = 0. (5.31)

Therefore:

∂B
∂ t

= 0. (5.32)

From Eq. (5.31) it follows that

∇×E = 0. (5.33)

On the other hand, the Faraday law is

∇×E+
∂B
∂ t

= 0. (5.34)

If E were a time-dependent field, we would have ∂B
∂ t 6= 0; therefore, E must be a static field. From

the antisymmetry equation (5.30) it follows that

∇φ =
∂A
∂ t

= 0 (5.35)

and so, in particular for a static electric field,

E =−∇φ = 0. (5.36)

In standard theory it is assumed A = 0 for static electric fields. Therefore, we have to exacerbate
Eq. (5.32) to

B = 0. (5.37)

This has severe consequences that are described in [31] as follows:
The catastrophic result is obtained that the [static] E and B fields vanish on the U(1) level.

All attempts at constructing a unified field theory based on a U(1) sector symmetry are incorrect
fundamentally. Even worse for the standard physics is that the method introduced by Heaviside of
expressing electric and magnetic fields through Eqs. (5.28) and (5.29) must be abandoned, so all
of twentieth century gauge theory is proven to be empty dogma. This conclusion reinforces many
other ways of showing that a U(1) gauge theory of electromagnetism is incorrect and that gauge
freedom in the natural sciences is an illusion.

Here no gauge freedom means that the potential cannot be shifted arbitrarily, because it has a
physical meaning. �
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5.2 Polarization and Magnetization
5.2.1 Derivation from standard theory

Standard electrodynamics theory has been extended to media which are polarizable by electric
fields and magnetizable by magnetic fields. These material properties evoke additional fields in
the media, polarization P and magnetization M. The resulting total electric field is the dielectric
displacement

D = ε0E+P. (5.38)

For magnetic materials, the induction is the sum of the magnetic field H and magnetization M:

B = µ0(H+M). (5.39)

ε0 is the vacuum permittivity and µ0 the vacuum permeability. They are related by the velocity of
light in vacuo c:

ε0µ0 =
1
c2 . (5.40)

In the case of isotropic materials with linear polarization/magnetization properties, the material
fields depend linearly on the electric and magnetic fields and can be written

D = ε0εrE, (5.41)

B = µ0µrH, (5.42)

where εr is the relative permittivity and µr is the relative permeability. In vacuo:

εr = 1, µr = 1. (5.43)

The material equations (5.41, 5.42) can be generalized to ECE equations in a spacetime of general
relativity, as we have done for the E and B fields. Since these are linear relations, the displacement
and magnetic field can be augmented by an ECE polarization index a1:

Da = ε0εrEa, (5.44)

Ba = µ0µrHa. (5.45)

The Faraday law in vacuo

∂Ba

∂ t
+∇×Ea = 0 (5.46)

can be rewritten with aid of (5.44, 5.45) and εr = 1,µr = 1 to

1
c2

∂Ha

∂ t
+∇×Da = 0. (5.47)

In matter, the H and D fields are changed according to Eqs. (5.38, 5.39). Using the simplified
relations (5.41, 5.42), we can express these fields by the vacuum fields E and B (but we would have
to use different variable names to be fully correct). Introducing the a index as before, we obtain:

1
µr

∂Ba

∂ t
+ εr∇×Ea = 0 (5.48)

1Please notice that this “polarization” is a spacetime property and does not have anything to do with dielectric
polarization.
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which is an alternative version of the Faraday law in matter. For the Ampère-Maxwell law, we
obtain (in the same way):

−c2 ∂Da

∂ t
+∇×Ha = Ja (5.49)

and

−εr
∂Ea

∂ t
+

1
µr

∇×Ba = µ0Ja, (5.50)

where Ja is a “free” external current, independent of polarization and magnetization. The Gauss
law remains as is and the Coulomb law becomes

∇ ·Ea =
ρa

ε0εr
. (5.51)

Ultimately, we arrive at the ECE field equations for polarizable and magnetizable materials, in
vector form:

∇ ·Ba = 0,
1
µr

∂Ba

∂ t
+ εr∇×Ea = 0,

∇ ·Ea =
ρa

ε0εr
,

−εr
∂Ea

∂ t
+

1
µr

∇×Ba = µ0Ja.

(5.52)

(5.53)

(5.54)

(5.55)

The refractive index n is defined in standard dielectric theory as

n2 := εrµr. (5.56)

Inserting this into the Faraday law (5.53) gives

∂Ba

∂ t
+n2

∇×Ea = 0 (5.57)

which is a law of optics. Thus, optical properties can also be described by the ECE polarization and
magnetization laws.

5.2.2 Derivation from ECE homogeneous current
Instead of assuming an isotropic, linear medium, we can base our derivation on the more general
laws for polarization and magnetization (5.38) and (5.39) directly. Since these are vector laws, we
can transfer the ECE polarization index a to P and M:

Da = ε0Ea +Pa, (5.58)

Ha =
1
µ0

Ba−Ma. (5.59)

We insert Da and Ha into the Faraday law in vacuum (5.47), introducing the changes of this law by
polarization and magnetization:

1
c2

∂ ( 1
µ0

Ba−Ma)

∂ t
+∇× (ε0Ea +Pa) = 0. (5.60)
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Rearranging the terms gives

∂Ba

∂ t
+∇×Ea = µ0

(
∂Ma

∂ t
− c2

∇×Pa
)
. (5.61)

This is the Faraday law of ECE theory with homogeneous current ja:

∂Ba

∂ t
+∇×Ea = µ0ja (5.62)

with

ja =
∂Ma

∂ t
− c2

∇×Pa. (5.63)

In this particular approximation it is seen clearly that the homogeneous current is equivalent to a
spacetime with polarization and magnetization. The effect is like a current of magnetic charges,
which may be observable only in cosmic dimensions, where it can be amplified by the path length
to measurable levels.

� Example 5.2 We show that the cosmological red shift can be described by optical properties of
spacetime. We cite from [34]:

The homogeneous current (5.63) may appear in cosmic dimensions and is the mechanism
responsible for the interaction of gravitation with the light beam as the latter travels from source
to telescope, a distance Z. Over this immense distance it is certain that the light beam encounters
myriad species of gravitational field before reaching the telescope and the observer. However
weak these fields may be in inter-stellar and inter-galactic ECE spacetime, the enormous path
length Z amplifies the current ja to measurable levels, and appears in the telescope as a red shift.
This inference is analogous to the well known fact that the absorption coefficient in spectroscopy
depends on the path length - the greater the path length the greater the absorption of the light
beam and the weaker the signal at the detector. Therefore, what is always observed in astronomy, is
the effect of gravitation on light through the current of Eq. (5.63) - in general an absorption (or
dielectric loss) accompanied by a dispersion (a change in the refractive index).

It is also well known in spectroscopy that the more dilute the sample the sharper are the
spectral features (the effect of collisional broadening is decreased by dilution). Since inter-stellar
and inter-galactic spacetime is very tenuous (or dilute), the stars and galaxies appear sharply
defined. This does not mean at all that the spacetime is empty or void as in Big Bang theory.
The empty inter-stellar and inter-galactic spacetime of Big Bang is defined by Einstein-Hilbert
theory alone, without any classical consideration of the classical effect of gravitation on a light
beam. The red shifts are defined in Big Bang by a particular solution to the Einstein-Hilbert field
equations using a given metric. No account is taken of the homogeneous current ja and so the
effect of gravitation on light is not considered classically. These are major omissions, leading to
the apparent conclusion that the universe is expanding - simply because the metric demands this
conclusion. This is, however, a circular argument - the conclusion (expanding metric deduced) is
programmed in at the beginning (expanding metric assumed).

It is to be stressed that this explanation strongly supports the tired light theory [35]. The
common argument against this theory is that light is dispersed by myriads of collisions with
particles of the interstellar medium or even quantum vacuum. This should lead to very diffuse
images in telescopes. However, according to the explanation above, dispersion does not appear
because the inter-stellar medium is very dilute. The red shift is fully explainable on a macroscopic
level. The Faraday law can be written for a permeability and permittivity of spacetime, which is
space- (and possibly time-) dependent, in the form:

∂

∂ t

(
Ba

µr

)
+∇× (εrEa) = 0. (5.64)
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Thus, regions with varying µr and εr alter the electromagnetic properties of light. The red shift is
made plausible in the following way: Assume an electromagnetic plane wave, given in cartesian
coordinates (with basis i, j,k) by

Ea = iE0eiφ , Ba = jB0eiφ (5.65)

with phase factor

φ = ωt−κZ. (5.66)

This is a wave propagating in the k direction with time frequency ω and wave number κZ = κ . We
insert this into the Faraday equation of free space (5.46):

∂Ba

∂ t
+∇×Ea = 0 (5.67)

and obtain

∂Ba

∂ t
= iωjB0eiφ , (5.68)

∇×Ea =−iκjE0eiφ , (5.69)

(see computer algebra code [95] for details). Therefore, we obtain from the Faraday law:

ωB0−κE0 = 0. (5.70)

In free space, without dispersion, is

ω

κ
= c (5.71)

and from Section 4.2.3 (the definition of the electromagnetic field tensor) we know that

E0

B0
= c. (5.72)

Therefore, the left-hand side of (5.67) gives 1−1 = 0, and the Faraday equation is fulfilled. Now
we want to know how we have to modify the definitions of the electric and magnetic fields so that
the Faraday equation for dielectric space (5.53) is fulfilled:

1
µr

∂Ba

∂ t
+ εr∇×Ea = 0. (5.73)

Inserting the fields (5.65) leads to

ω

µr
B0− εrκE0 = 0. (5.74)

Obviously, this equation comes out if we change the definition in the phase factor in the form:

ω → ω

µr
, (5.75)

κ → εrκ, (5.76)

leading to

φ =
ω

µr
t− εrκZ. (5.77)



5.3 Conservation theorems 99

(see computer algebra code [95]). The frequency is lowered by a factor of 1/µr with µr > 1, and
this is the cosmological red shift. As explained above, this is an optical effect that has nothing to do
with an expanding universe.

From Eq. (5.74) it follows that

ω

κ
− εrµrc = 0 (5.78)

or

ω

κ
= n2c (5.79)

where

n2 = εrµr (5.80)

is the optical refraction index. In optics, n can be complex valued,

n = n′+ i n′′ (5.81)

with real part n′ and imaginary part n′′, describing absorption effects. Then, the frequency value in
Eq. (5.79) becomes complex:

ω = n2
ω0 (5.82)

where ω0 = κc is the frequency of the wave in vacuo. The frequency part of the phase factor
becomes

eiωt = ei n2ω0 t = ei(ωr+iωi)t (5.83)

with real and imaginary frequency parts

ωr = (n′2−n′′2)ω0, ωi = 2n′n′′ω0. (5.84)

This gives two phase factors

eiωt = ei(n′2−n′′2)ω0 t e−2n′n′′ω0 t . (5.85)

The first factor describes a frequency reduction, the second factor an exponential damping of
the wave. Many more details are given in [34]. We obtain a light wave that transfers energy to
spacetime, resulting in a lowering of the frequency. This is a red shift effect again. �

5.3 Conservation theorems
5.3.1 The Pointing theorem

In ECE theory, the Pointing theorem can be developed in the same way as in classical electrodynam-
ics. In addition, a coupling between electromagnetism and gravitation can be included, which is
more complete than in the classical theory, because gravitation is described much more completely,
compared to classical mechanics [36]. Here we restrict ourselves to the basic features of ECE
electrodynamics.

The total rate P of work in a volume V is given by

P =
∫

V
J ·Ed3x. (5.86)
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Since in ECE theory all electromagnetic quantities have a polarization index a, we can write this
directly as

Pa =
∫

V
Ja ·Ea d3x. (5.87)

All subsequent derivations follow the same path as in standard text books [37], except that there is
an additional polarization index for all quantities. The energy density of the force fields in materials
is

ua =
1
2
(Ea ·Da +Ba ·Ha) . (5.88)

We obtain the following from Eq. (5.86), by substituting terms using the field equations:

∂ua

∂ t
+∇ ·Sa =−Ja ·Ea. (5.89)

This is the Poynting theorem, in which the Poynting vector Sa is defined by

Sa := Ea×Ha. (5.90)

The Poynting vector has the dimensions of energy/(area·time) and describes the energy flow of
the fields. The term Ja ·Ea is the energy density originating in charges moving in an electric field.
Magnetic fields are irrelevant since the charges move perpendicularly to the magnetic field due
to the Lorentz force. The Poynting vector describes the energy flow and is proportional to the
electromagnetic momentum.

In standard theory, only the energy density and energy flow that originate from the force fields
are considered. In ECE theory, the potential also is physical. Spacetime itself can be considered
as a background potential. Therefore, a potential without fields is a kind of flux field and has a
field energy. This type of potential is not taken into account in the Poynting theorem. There is no
classical counterpart for the background potential. There are some possible approaches in [38], for
example, for the vector and scalar potential of ECE theory:

uAECE (r, t) =
1

2µ0
∑

i

(
1
c2 |ω0Ai|2 + |ωiAi|2

)
, (5.91)

uΦECE (r, t) =
1
2

ε0

(
1
c2 (ω0Φ)2 +∑

i
|ωiΦ|2

)
. (5.92)

The i index numbers the components of the vectors A and ω .

5.3.2 The continuity equation
In electrodynamics, charges and current densities are conserved. In ECE theory, both are geometri-
cal quantities, which are subject to change due to the structure of spacetime. Nevertheless, they are
conserved as in classical theory, indicating that the ECE approach is in agreement with essential
physics concepts. The second field equation (4.48) reads

∂µFaµν = µ0Jaν , (5.93)

where Jaν is the ECE 4-current density as given by Eq. (4.50). According to (4.172), the electro-
magnetic field tensor is rewritten to contravariant form:

Faµν = ∂
µAaν −∂

νAaµ +ω
aµ

b Abν −ω
aν

b Abµ . (5.94)
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The derivative in (5.93) can therefore be written:

∂µFaµν = ∂µ∂
µAaν −∂µ∂

νAaµ +∂µ(ω
aµ

b Abν)−∂µ(ω
aν

b Abµ). (5.95)

We apply an additional derivative ∂ν to both sides of (5.93). The left-hand side then becomes

∂ν∂µFaµν = ∂ν∂µ∂
µAaν −∂ν∂µ∂

νAaµ +∂ν∂µ(ω
aµ

b Abν)−∂ν∂µ(ω
aν

b Abµ). (5.96)

µ and ν are dummy indices, their names can be interchanged. Partial derivatives can also be
commuted:

∂ν∂µFaµν = ∂ν(∂µ∂
µ)Aaν −∂ν(∂µ∂

µ)Aaν +∂ν∂µ(ω
aν

b Abµ)−∂ν∂µ(ω
aν

b Abµ). (5.97)

The terms at the rigut-hand side of the last equation cancel out, resulting in

∂ν∂µFaµν = 0. (5.98)

Inserting this into Eq. (5.93) gives the continuity equation in generally covariant form:

∂νJaν = 0, (5.99)

which is the 4-divergence of the 4-current density. By applying Eq. (4.53), Ja0 = cρa, this can be
written in vector form:

∂ρa

∂ t
+∇ ·Ja = 0. (5.100)

This form of the continuity equation is identical to that of standard electrodynamics, but holds in a
spacetime with curvature and torsion. Thus, the range of validity has been expanded significantly.

5.4 Examples of ECE electrodynamics
5.4.1 Gravity-induced polarization changes

� Example 5.3 As shown in Example 5.2, the electromagnetic fields of spacetime have optical
properties, leading to magnetization and polarization. Here we apply this to polarization changes,
which are induced by gravity. Assume that a circularly polarized electromagnetic wave travels
through space in the Z direction. We assume only one polarization of the a index, therefore the
index can be omitted. According to Eqs. (4.150, 4.151) of Example 4.2, the electric and magnetic
field (induction) of the wave are then:

E =
E(0)
√

2
(i+ ij)eiφ , (5.101)

B =
B(0)
√

2
(i− ij)e−iφ (5.102)

with phase factor

φ = ωt−κZ. (5.103)

In an optically active region of spacetime with µr 6= 1 and εr 6= 1 the phase is changed to

φ1 =
ω

µr
t− εrκZ. (5.104)
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With the definition of the refraction index

n2 = µrεr (5.105)

the Faraday law in media, Eq. (5.73), then reads

1
n

∂Ba

∂ t
+n∇×Ea = 0. (5.106)

The force fields are changed according to

E→ nE, B→ 1
n

B. (5.107)

The real and physical part of Eq. (5.101) in vacuo is

E =
E(0)
√

2
(icos(φ)+ jsin(φ)) (5.108)

(see computer algebra code [96]). In an optically active spacetime the phase factor φ is modified to
φ1 as described above. Then:

E =
E(0)
√

2
(icos(φ1)+ jsin(φ1)) . (5.109)

Since E depends on the phase factor in a nonlinear way, the ratio between the X and Y components
changes. If

cos(φ1) = acos(φ), (5.110)

sin(φ1) = bsin(φ), (5.111)

we then have

E =
E(0)
√

2
(a icos(φ)+b jsin(φ)) . (5.112)

This is an elliptically polarized wave. For example, for φ = 45◦, φ1 = 60◦, we obtain the values
a = 0.707, b = 1.225 (see computer algebra code [96]).

It has been shown that changes of the optical properties of spacetime, due to matter, effect
a change of polarization in light passing through a region where these properties are affected by
gravitation. Such polarization changes from a white dwarf have been reported by Preuss et al. [39].
Details are discussed in [40]. The ECE theory for this example describes the change of polarization
qualitatively and straightforwardly, and a quantitative description could be developed for given
parameter functions µr(r) and εr(r) or, alternatively, for given curvature/torsion parameters of the
homogeneous current in the respective region. This effect is not present in Einsteinian general
relativity, so ECE is a preferred theory. �

5.4.2 Effects of spacetime properties on optics and spectroscopy
� Example 5.4 We show that the Sagnac effect is a consequence of rotating spacetime [41].
Consider the rotation of a beam of light of any polarization around a circle in the XY plane at an
angular frequency ω1 to be determined. The rotation is a rotation of spacetime described by the
rotating tetrad field vector

q(1) =
1√
2
(i− ij)eiω1t , (5.113)
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Figure 5.1: Sagnac interferometer [114].

i.e., rotation around the rim of the circular platform of the static Sagnac interferometer with the
beam of light, see Fig. 5.1. The ECE ansatz converts the geometry into physics as follows:

A(1) = A(0)q(1). (5.114)

This equation describes a vector potential field rotating around the rim of the circular Sagnac
platform at rest. Rotation to the left is described by:

A(1)
L =

A(0)
√

2
(i− ij)eiω1t , (5.115)

and rotation to the right by:

A(1)
R =

A(0)
√

2
(i+ ij)eiω1t . (5.116)

This can be seen by computing the real and physical parts:

Re(A(1)
L ) =

A(0)
√

2
(icos(ω1t)+ jsin(ω1t) , (5.117)

Re(A(1)
R ) =

A(0)
√

2
(icos(ω1t)− jsin(ω1t) , (5.118)

which are circular motions in the left and right directions (see computer algebra code [97]).
When the platform is at rest, a beam going around left-wise takes the same time to reach its

starting point on the circle as a beam going around right-wise. The time delay between the two
beams is:

∆t = 2π

(
1

ω1
− 1

ω1

)
= 0. (5.119)

Note carefully that Eqs. (5.115) and (5.116) do not exist in special relativity because electromag-
netism is thought of as an entity superimposed on a passive or static frame which never rotates.
Now consider the beam (5.115) rotating left-wise and spin the platform left-wise at an angular
frequency Ω. The result is an increase in the angular frequency of the rotating tetrad, (because the
spacetime is spinning more quickly):

ω1→ ω1 +Ω. (5.120)
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Similarly, consider the beam (5.115) rotating left-wise and spin the platform right-wise at the
same angular frequency Ω. The result is a decrease in the angular frequency of the rotating tetrad
(because the spacetime is spinning more slowly):

ω1→ ω1−Ω. (5.121)

The time delay between a beam circling left-wise with the platform and a beam circling left wise
against the platform is:

∆t = 2π

(
1

ω1−Ω
− 1

ω1 +Ω

)
=

4πΩ

ω2
1 −Ω2 (5.122)

and this is the Sagnac effect. Winding more turns of fiber on the interferometer, as indicated in Fig.
5.1, increases the time difference as a multiple of the number of windings.

In order to calculate the angular frequency ω1 of the rotating light, we start with the fact that
the time it takes for light to traverse an infinitesimal length element dl is

dt =
dl
c
. (5.123)

The apparatus rotates in this time by an angle Ωdt, and the radius of the interferometer is r. Then
the tangential velocity v of mechanical rotation at radius r is v = Ωr (in the case v << c). The
amount of increase or decrease in the path length of the beam, in a tangential direction, is

dx = Ω r dt =
Ω r
c

dl. (5.124)

For a complete rotation we obtain

x =
∮

dx =
∮

Ω r
c

dl =
Ω

c
·2πr · r = Ω

c
·2A, (5.125)

where A = πr2 is the area enclosed by a circular beam. The difference between the paths of both
circulating light beams is 2x, therefore from (5.123):

∆t =
2x
c

=
4Ω

c2 A (5.126)

and equating this with (5.122):

4Ω

c2 πr2 =
4πΩ

ω2
1 −Ω2 . (5.127)

For Ω << ω1 we obtain (see computer algebra code [97]):

ω1 =
c
r
= cκ (5.128)

with a wave number κ = 1/r. This is the angular frequency of the rotating tetrad, or rotating
spacetime. �

The Sagnac effect is an example of a geometrical phase effect, which is also called a Berry
phase. In quantum physics, the phase of the wave function changes when a quantum mechanical
object is moved on different paths from point A to point B, or from B back to point A. Prominent
examples are the Aharonov-Bohm effect (see later in this book) and the Tomita-Chiao effect. The
latter has been explained by ECE theory in [42]. The essential result of this effect is that light in an
optical fiber changes its phase, when the fiber is laid straight or in a curved way. This is not due to
differences in refraction when the fiber is bent or wound around a cylinder. In standard physics, a
Berry phase is explained by complicated quantum mechanical methods, but ECE theory is able to
give explanations on the classical level, as we did for the Sagnac interferometer.
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Figure 5.2: Principle of the homopolar generator (Faraday disk) [115].

5.4.3 The homopolar generator
� Example 5.5 The homopolar generator or Faraday disk is the first electric generator, invented by
Faraday in 1831. The original experiment by Faraday was recorded in his diary on Dec 26th 1831,
and consisted of a disc placed on top of a permanent magnet and separated from the magnet by paper.
The assembly was suspended by a string and the complete assembly rotated. An electro-motive
force (electric field) was observed between the center of the disc and the outer edge of the disc. The
electro-motive force vanished when the mechanical torsion (rotation) was absent.

The Faraday law of induction of the standard model (special relativistic electrodynamics) later
emerged to describe the induction seen when a magnet is translated with respect to a stationary
induction loop. This law does not cover the Faraday disk generator, in which the magnet is
stationary. In standard electrodynamics, the Faraday disk is explained by the Lorentz force law,
which is the translation law of charges moving in a magnetic field. Since the Lorentz force law is
not part of the Maxwell-Heaviside equations, it is sometimes stated that the homopolar generator is
not explainable by standard electrodynamics, although this point of view is more or less arbitrary.

In standard theory, any field is considered to be an entity distinct from the passive frame,
especially if the field is moving or spinning. When the Faraday disc is described by ECE theory, the
frame itself is spinning. This can be described by the circular complex basis as shown, for example,
in Eq. (5.113). The two transversal basis vectors q(1) and q(2) can be described by

q(1) = q(2)∗ =
1√
2
(i− ij)eiΩt . (5.129)

Ω is the frequency with which the disc is mechanically spun. According to the Evans ansatz (5.114),
this generates vector potentials

A(1) = A(0)q(1) =
A(0)
√

2
(i− ij)eiΩt , (5.130)

A(2) = A(1)∗ =
A(0)
√

2
(i+ ij)e−iΩt . (5.131)

Both vector potentials have the same real and physical part:

Re(A(1)) = Re(A(2)) =
A(0)
√

2
(icos(Ωt)+ jsin(Ωt)) . (5.132)
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According to Eq. (4.197), the ECE electric field is

Ea =−∇φ
a− ∂Aa

∂ t
− cω

a
0b Ab +ω

a
bφ

b. (5.133)

Since the electric potential φ and the spin connections are zero (there is no a priori given electric
structure), the electric field evoked by mechanical rotation is

Ea =−∂Aa

∂ t
. (5.134)

With (5.130, 5.131) this leads to the electric fields

E(1) =
A(0)Ω√

2
(−ii− j)eiΩt , (5.135)

E(2) =
A(0)Ω√

2
(ii− j)e−iΩt , (5.136)

whose real part is

E = Re(E(1)) = Re(E(2)) =
A(0)Ω√

2
(isin(Ωt)− jcos(Ωt)) , (5.137)

(see computer algebra code [98]). This electric field (with strength in volts per meter) spins around
the rim of the rotating disk. As observed experimentally, it is proportional to the product of A(0) and
Ω, and the factor A(0) stems from the permanent magnet. An electromotive force is set up between
the center of the disk and its rim, as first observed by Faraday, and this quantity is measured by a
voltmeter at rest with respect to the spinning disk.

The frequency Ω of mechanical rotation can be considered as a spin connection. Then Eq.
(5.133) can be written as

Ea =−∂Aa

∂ t
−ΩAa. (5.138)

The real part of E(1) and E(2) contains sin and cos terms, but gives a graph equivalent to (5.137)
(see computer algebra code [98]). In [43,44] the spin connection was defined with a complex phase
factor:

Ea =−∂Aa

∂ t
− iΩAa. (5.139)

This gives the simpler result:

E = Re(E(1)) = 2
A(0)Ω√

2
(isin(Ωt)− jcos(Ωt)) , (5.140)

which is - except for a constant factor - identical to (5.137). �

ECE not only gives a consistent description of the Faraday disk through the field equations, but
also allows for resonance enhancements of the induced voltage. This is reported in detail in [44].
Typical simple resonance effects are described next.
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5.4.4 Spin connection resonance
� Example 5.6 We now consider the resonant Coulomb law. One of the most important con-
sequences of general relativity applied to electrodynamics is that the spin connection enters the
relation between the field and potential as described in Section 4.4. The equations of electrodynam-
ics, as written in terms of the potential, can be reduced to the form of Euler-Bernoulli resonance
equations. The method is most simply illustrated by considering the vector form of the Coulomb
law deduced in Section 4.2.3:

∇ ·E =
ρ

ε0
, (5.141)

where we have written the fields without polarization index. Assuming the absence of a vector
potential (absence of a magnetic field), the electric field in the standard model is

E =−∇φ , (5.142)

where φ is the electric potential. Under the same assumption, the electric field in ECE theory,
according to Eq. (4.197), is

E =−∇φ +ωφ , (5.143)

where ω is the vector spin connection. Therefore, Eq. (5.141) takes on the form

∇
2
φ −ω ·∇φ − (∇ ·ω)φ =− ρ

ε0
. (5.144)

The equivalent equation in the standard model is the Poisson equation, which is a limit of Eq.
(5.144) when the spin connection is zero. The Poisson equation does not give resonant solutions.
However, Eq. (5.144) has resonant solutions of Euler-Bernoulli type, as can be seen in the following
discussion. Restricting consideration to one cartesian coordinate, we have only the dependencies
φ(X) and the spin connection has only an X component ωX(X). Then Eq. (5.144) reads:

d2φ

dX2 −ωX
dφ

dX
− dωX

dX
φ =− ρ

ε0
. (5.145)

This equation has the structure of a damped Euler-Bernoulli resonance of the form

d2φ

dx2 +α
dφ

dx
+κ

2
0 φ = F0 cos(κx), (5.146)

if we assume ωX < 0. Below we will see that this is not a real restriction. Here, κ0 is the spatial
eigenfrequency, measured in 1/m, and α is the damping constant. At the right-hand side, there is
a periodic driving force with spatial frequency (wave number) κ . The particular solution of this
differential equation is

φ = F0
ακ sin(κx)+

(
κ0

2−κ2
)

cos(κx)
(κ2

0 −κ2)2 +α2κ2 . (5.147)

For vanishing damping, we have

φ → F0
cos(κx)
κ2

0 −κ2 . (5.148)

For κ → κ0 the amplitude of φ(x) approaches infinity. In the case of damping, the amplitude in the
resonance point remains finite (see examples in Fig. 5.3).



108 Chapter 5. Advanced properties of electrodynamics

Figure 5.3: Y axis: steady-state amplitude φ/φstatic of a damped driven oscillator with different
damping constants D = α/2. X axis: frequency ratio κ/κ0 [116].

By comparing Eqs. (5.145) and (5.146), it is seen that the Coulomb equation (5.144) has no
constant coefficients and thus is not an original form of the Euler-Bernoulli resonance. Therefore,
we can expect that the solutions may differ significantly from those of the original Euler-Bernoulli
equation. To investigate this, we consider an example in spherical polar coordinates. We assume
that the potential and the spin connection depend only on the radial coordinate r. For the radial
(and only) component of the spin connection we assume

ωr =
1
r
. (5.149)

The differential operators in (5.144) then take the form

∇
2
φ =

∂ 2φ

∂ r2 +
2
r

∂φ

∂ r
, (5.150)

∇φ =
∂φ

∂ r
· er, (5.151)

∇ · (ωr er) =−
1
r2 . (5.152)

Then Eq. (5.144), with the right-hand side replaced by an oscillatory driving term, reads:

∂ 2φ

∂ r2 +
1
r

∂φ

∂ r
− φ

r2 = F0 sin(κr). (5.153)

This equation can be solved analytically (see computer algebra code [99]). The solution contains
an expression −cos(κr)/r, leading to the limit φ(r)→−∞ in the case r→ 0, as graphed in Fig.
5.4. Other model examples for ω are listed in the code. Although the Coulomb law with the spin
connection term resembles a resonance equation with damping, there is no damping for r→ 0
because of the non-constant coefficients in the equation. �
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Figure 5.4: Solution of Eq. (5.153), κ = 1 and κ = 0.5, other constants normalized.

The spin connection has already been incorporated during the course of development of ECE
theory into the Coulomb law, which is the basic law used in the development of quantum chemistry.
This process has been illustrated with the hydrogen atom [45]. It serves as a model system for the
huge class of atomic, molecular and solid-state physics. (The most used method for computation
of electronic properties of solids is Density Functional Theory.) We will come back to this in the
quantum physics part of this book.

The ECE theory has also been used to design or explain circuits, which use spin connection
resonance to take power from spacetime, notably in papers 63 and 94 of the ECE series on
www.aias.us [45, 46]. In paper 63, the spin connection was incorporated into the Coulomb law
and the resulting equation in the scalar potential shown to have resonance solutions using an Euler
transform method. In paper 94, this method was extended and applied systematically to the Bedini
machine, which was shown to have the chance of producing energy from spacetime, although
nobody has succeeded in achieving this to date. In addition, spacetime effects in transformers have
been found by Ide and successfully explained by ECE theory [47].

� Example 5.7 As another important example, we consider resonant forms of the Ampère-Maxwell
law. In potential representation, see Eq. (4.206), it reads

∇(∇ ·Aa)−∇
2Aa−∇×

(
ω

a
b×Ab

)
+

1
c2

(
∂ 2Aa

∂ t2 + c
∂
(
ωa

0b Ab
)

∂ t
+∇

∂φ a

∂ t
−

∂
(
ωa

bφ b
)

∂ t

)
= µ0 Ja. (5.154)

Ja is a current, which may have a polarization dependence. Assuming the simple case that there is
no scalar potential, and that the vector potential is independent of space location and has a pure
time dependence only, we obtain the equation

∂ 2Aa

∂ t2 + c
∂
(
ωa

0b Ab
)

∂ t
=

1
ε0

Ja. (5.155)
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Restricting this equation to one polarization index, we have

∂ 2A
∂ t2 + c

∂ (ω0A)

∂ t
=

1
ε0

J. (5.156)

This equation is formally identical to (5.145), except that it is a vector equation and the (only)
coordinate is the time coordinate. Here, the spin connection is the scalar spin connection ω0 with
units of 1/m. We replace it by a time frequency, subsuming the factor c:

ωt = c ω0 (5.157)

so that (5.156) can be written:

∂ 2A
∂ t2 +ωt

∂A
∂ t

+
∂ωt

∂ t
A =

1
ε0

J, (5.158)

in full analogy to (5.145). Therefore, the existence of the time spin connection makes the Ampère-
Maxwell law a resonance equation in the same way as discussed for the Coulomb law in the
preceding example.

Another resonance is possible, when we assume that the vector potential is only space-dependent
and there is no scalar potential, for example in magnetic structures. If A is divergence-free, we
obtain from Eq. (5.154), again for one direction of polarization:

−∇
2A−∇× (ω×A) = µ0 J. (5.159)

Here the vector spin connection ω appears again. Using the vector identity

∇× (a×b) = a(∇ ·b)−b(∇ ·a)+(b ·∇)a− (a ·∇)b (5.160)

and that A is divergence-free, we obtain

∇× (ω×A) =−A(∇ ·ω)+(A ·∇)ω− (ω ·∇)A (5.161)

so that Eq. (5.159) becomes

∇
2A+A(∇ ·ω)− (A ·∇)ω +(ω ·∇)A =−µ0 J. (5.162)

It can be seen that this equation contains differentiations of A in zeroth, first and second order.
Obviously, resonances are possible for this special form of the Ampère-Maxwell law. To show this,
we first define a special system, where A is restricted to two dimensions and the spin connection is
perpendicular to the plane of A. In cartesian coordinates, we then have

A =

AX

AY

0

 , ω =

 0
0

ωZ

 , J =

JX

JY

JZ

 , (5.163)

where all variables depend on coordinates X and Y . As shown in computer algebra code [100], it
follows that

∇
2A =

 ∂ 2AX
∂X2 + ∂ 2AX

∂Y 2

∂ 2AY
∂X2 + ∂ 2AY

∂Y 2

0

 , (5.164)

ω×A =

−AY ωZ

AX ωZ

0

 , (5.165)

∇× (ω×A) =

 0
0

∂ωZ
∂X AX + ∂ωZ

∂Y AY + ∂AX
∂X ωZ +

∂AY
∂Y ωZ

 . (5.166)
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Inserting this into Eq. (5.159), leads to three component equations:

∂ 2AX

∂X2 +
∂ 2AX

∂Y 2 =−µ0JX , (5.167)

∂ 2AY

∂X2 +
∂ 2AY

∂Y 2 =−µ0JY , (5.168)

∂ωZ

∂X
AX +

∂ωZ

∂Y
AY +

∂AX

∂X
ωZ +

∂AY

∂Y
ωZ =−µ0JZ. (5.169)

The first two equations decouple from the third, which is of first order in derivatives only. In order
to get an impression of how resonances can occur, we simplify this equation set further, so that
only one variable AX(X) is left:

A =

AX

0
0

 , (5.170)

where ω and J remain as in (5.163) but depend on the X variable only. Then the equation set
(5.167-5.169) simplifies to

∂ 2AX

∂X2 =−µ0JX , (5.171)

0 =−µ0JY , (5.172)
∂ωZ

∂X
AX +

∂AX

∂X
ωZ =−µ0JZ. (5.173)

From Eq. (5.172) follows JY = 0 as a constraint. Eqs. (5.171) and (5.173) are not compatible
any more, but we add both equations to obtain an analytically solvable equation that combines the
properties of both equations:

∂ 2AX

∂X2 +
∂AX

∂X
ωZ +

∂ωZ

∂X
AX =−µ0(JX + JZ). (5.174)

(Below, we will see that this is a meaningful operation.) This is a resonance equation with non-
constant coefficients, as were Eqs. (5.145) and (5.158). For demonstration, we present some
solutions for this equation in cartesian coordinates. In Table 5.1 we show four solutions of Eq.
(5.174) for given combinations of current density J and spin connection ωZ . These are graphed
in Fig. 5.5. All solutions have divergence points for X → 0, X →±∞, or elsewhere. Eq. (5.171)
has an oscillatory solution as expected, but Eq. (5.173), although only of first order, has diverging
solutions (solutions 5-7, see Table 5.1 and Fig. 5.6). Therefore, the combined equation (5.174) is
an approximation to a full-blown calculation where all components of A and ω are present, as in
Eq. (5.159). �

It is known from the work of Tesla, for example, that strong resonances in electric power can
be obtained with a suitable apparatus, and such resonances cannot be explained using the standard
model. One consistent explanation of Tesla’s well-known results is given by the incorporation of
the spin connection into classical electrodynamics.
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Equation Fig. ref. JX , JZ ωZ Solution

(5.174) solution 1 J0 1/X 2
3 J0µ0X2

solution 2 J0/X 1/X −J0µ0(X log(X)+ 1
2 X)

solution 3 J0 sin(aX) 1/X 2 J0µ0
a3 (sin(aX)+ cos(aX)

X )

solution 4 J0 X2 1/X 2
15 J0µ0X4

(5.171) solution 5 J0 cos(κ0X) µ0
κ2

0
cos(κ0X)

(5.173) solution 6 J0 cos(κ0X) κ0 cos(κX) −X µ0
κ2

0

sin(κ0X)
cos(κX)

solution 7 J0 cos(κ0X) 1/X −X µ0
κ0

sin(κ0X)

Table 5.1: Solutions of model resonance equations.

Figure 5.5: Solutions of Eq. (5.174), all constants normalized.

Figure 5.6: Solutions of Eqs. (5.171) and (5.173) with κ0 = 1.5 and κ = 0.7, other constants
normalized.



6. ECE2 theory

All developments of ECE theory, so far, have been based on the ECE axioms. The field equations
of electromagnetism have been derived from the Cartan-Bianchi and Cartan-Evans identities as
worked out in the preceding chapters. In this chapter, a new era of ECE theory is initiated from
the Jacobi-Cartan-Evans identity (Section 3.4.4) by defining a new type of curvature, which is
transformed directly into fields using a new ECE hypothesis. This identity gives field equations
for the four fundamental fields: electromagnetism, gravitation, weak and strong nuclear. The field
equations are exemplified in this chapter with electromagnetism, and it is shown that the Jacobi-
Cartan-Evans identity produces the Maxwell-Heaviside field equations in a space with non-zero
torsion and curvature, and with geometrically well-defined magnetic and electric charge-current
densities [48].

In this new era of ECE theory there are no indices of tangent space in the field equations, so for
electromagnetism, for example, their format is the same as for the Maxwell-Heaviside equations.
The field-potential relation can be defined without using the spin connections explicitly. However,
because of using Cartan geometry, the magnetic and electric charge-current densities are defined
geometrically, and the equations are those of a generally covariant unified field theory (ECE theory),
and not special relativity. The field equations of gravitation and of the weak and strong nuclear
fields have precisely the same format as the field equations of electromagnetism, and specialized
field equations for the interaction of the fundamental fields can be developed.

6.1 Curvature-based field equations
6.1.1 Development from the Jacobi-Cartan-Evans identity

To develop the field equations in ECE2 theory, we go back to Cartan geometry as introduced in
Chapter 3. The Jacobi-Cartan-Evans identity corrects the original 1902 second Bianchi identity for
torsion, and was inferred in [24]. It was written out in Eq. (3.97) with curvature and torsion tensors
R and T for the base manifold, i.e., with Greek indices only. As often demonstrated in Chapter 3,
the κ index of the curvature tensor in Eq. (3.97) can be replaced by the a index of tangent space:

DρRa
λ µν

+DνRa
λρµ

+DµRa
λνρ

= T α
µν Ra

λρα
+T α

ρµ Ra
λνα

+T α
νρ Ra

λ µα
, (6.1)



114 Chapter 6. ECE2 theory

where Ra
λ µν

is a mixed-index tensor [48]. This is a cyclic sum of covariant derivatives of curvature
tensors. In a space of four dimensions, a second form of the Jacobi-Cartan-Evans identity can be
written with Hodge-dual tensors:

Dρ R̃a
λ µν

+Dν R̃a
λρµ

+Dµ R̃a
λνρ

= T̃ α
µν Ra

λρα
+ T̃ α

ρµ Ra
λνα

+ T̃ α
νρ Ra

λ µα
. (6.2)

Using the methods of section 3.3.1, the last two indices of the tensors R and T can be pulled up by
Hodge-dual operations, giving sums of the form

Dµ R̃a µν

λ
= T̃ αµνRa

λ µα
, (6.3)

DµRa µν

λ
= T αµνRa

λ µα
. (6.4)

Now we define a new curvature tensor Rµν by

Rµν := qλ
aRa µν

λ
(6.5)

and its Hodge-dual by

R̃µν := qλ
aR̃a µν

λ
. (6.6)

These fundamentally new curvature definitions were designed to accomplished curvature tensors in
the base manifold while avoiding indices of tangent space.

Using the tetrad postulate

Dµqa
λ
= 0, (6.7)

it follows for the left-hand side of Eq. (6.3) that

Dµ R̃a µν

λ
= Dµ(qa

λ
R̃µν) = (Dµqa

λ
)R̃µν +qa

λ
Dµ R̃µν = qa

λ
Dµ R̃µν . (6.8)

Inserting this into (6.3) and multiplying with qλ
a, we obtain, with using the covariant version of

(6.5):

Dµ R̃µν = T̃ αµνRµα , (6.9)

and, using the same way procedure for (6.4):

DµRµν = T αµνRµα . (6.10)

From the definition of the covariant derivative (2.130) of a rank-2 tensor, it follows for both
equations that:

∂µ R̃µν +Γ
µ

µλ
R̃λν +Γ

ν

µλ
R̃µλ = T̃ αµνRµα , (6.11)

∂µRµν +Γ
µ

µλ
Rλν +Γ

ν

µλ
Rµλ = T αµνRµα . (6.12)

These equations can be abbreviated as

∂µ R̃µν = jν , (6.13)

∂µRµν = Jν , (6.14)

where:

jν = T̃ αµνRµα −Γ
µ

µλ
R̃λν −Γ

ν

µλ
R̃µλ , (6.15)

Jν = T αµνRµα −Γ
µ

µλ
Rλν −Γ

ν

µλ
Rµλ . (6.16)
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We now define new axioms for transforming the geometric elements Rµν and R̃µν into the electro-
magnetic fields Fµν and F̃µν :

Fµν :=W (0)Rµν , (6.17)

F̃µν :=W (0)R̃µν , (6.18)

where W (0) is a scalar with units of magnetic flux (Tesla·m2 or V·s or Weber). Then the equations
(6.13, 6.14) take the same form as (4.47, 4.48), but without the index a of tangent space:

∂µ F̃µν =W (0) jν , (6.19)

∂µFµν =W (0)Jν . (6.20)

The electromagnetic fields are defined as in standard theory (2.175, 2.188), with both being in Tesla
units here:

Fµν =


0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0

 , (6.21)

F̃µν =


0 B1 B2 B3

−B1 0 −E3/c E2/c
−B2 E3/c 0 −E1/c
−B3 −E2/c E1/c 0

 . (6.22)

We identify the contravariant tensor elements with the cartesian elements of the electric and
magnetic field, as usual. With the current vector definitions

( jµ) =


j0

jX
jY
jZ

=

[
j0

j

]
, (6.23)

(Jµ) =


J0

JX

JY

JZ

=

[
J0

J

]
(6.24)

we then obtain, as explained in examples (2.11) and (2.12) in all detail, the field equations in vector
form :

∇ ·B =W (0) j0, (6.25)

∇×E+
∂B
∂ t

= cW (0)j, (6.26)

∇ ·E = cW (0)J0, (6.27)

∇×B− 1
c2

∂E
∂ t

=W (0)J. (6.28)

Written in this form, the units of jν and Jν are 1/m3, so that all right-hand sides have the correct
physical units. These field equations, which are valid in a spacetime with torsion and curvature,
have thus taken the form that we developed in Chapter 5. The homogeneous current jν vanishes for
the case

T̃ αµνRµα = Γ
µ

µλ
R̃λν +Γ

ν

µλ
R̃µλ , (6.29)
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and the electric current Jν is zero for

T αµνRµα = Γ
µ

µλ
Rλν +Γ

ν

µλ
Rµλ . (6.30)

In this representation from pure curvature, the field equations do not have more indices than
Maxwell’s equations, in particular there is no index of tangent space. Because the axioms (6.17,
6.18) are based on curvature only, this is reminiscent of Einstein’s theory. However, the geometric
current definitions (6.15, 6.16) contain a torsion term, whereby Cartan geometry enters.

We now show, through an example, how a purely curvature-based theory has produced convinc-
ing numerical results.

� Example 6.1 In this example, we will discuss a unification between geometric and electromag-
netic equations. Such an approach was developed quite soon after Einstein’s general relativity, by
Rainich [49]. It is known under the name Einstein-Maxwell Equations. Its basis is the Einstein field
equation

Rµν −
1
2

Rgµν =−kTEµν , (6.31)

where Rµν is the Ricci tensor, R the Ricci scalar, k the Einstein constant, and TEµν the energy-
momentum tensor of the system under consideration. The Ricci tensor and Ricci scalar are defined
by

Rµν = Rλ

µλν
, (6.32)

R = gµνRµν . (6.33)

These are contractions of the Riemann tensor Rλ
µρν , which is derived from a symmetric Christoffel

connection in Einstein’s general relativity. It has been shown that the Einstein field equation,
although not directly compatible with ECE theory, can be considered as an approximation, at least
in cosmological problems [50].

The Einstein-Maxwell theory uses the electromagnetic energy-momentum tensor of the form
[51]:

TEµν = FµαF α
ν − 1

4
gµνFαβ Fαβ . (6.34)

Fµν is the covariant, antisymmetric electromagnetic field tensor as defined by Eq. (2.177), in
electric units. Its covariant form is given in Eq. (6.21). Bruchholz [52] neglected the scalar
curvature in Einstein’s field equation (6.31) and, consequently, equated the Ricci tensor with the
energy-momentum tensor:

Rµν =−kTEµν . (6.35)

Because of energy conservation, the covariant divergence of the energy-momentum tensor has to
vanish:

DνT ν
Eµ = 0, (6.36)

which implies

DνR ν
µ = 0. (6.37)

Rainich assumed that masses and charges are concentrated in point masses. He exempted these
points from the space to be considered. In these “vacuum” regions around the point masses, the
covariant divergence of the field tensor Fµν has to vanish also:

DνFµν = 0. (6.38)
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For the electromagnetic field in vacuo, the first two Maxwell equations can be written according to
example (2.11):

∂λ Fµν +∂µFνλ +∂νFλ µ = 0, (6.39)

or in form notation:

d∧F = 0. (6.40)

The other two Maxwell equations have to be expressed by the Hodge dual according to Eq. (2.185)
in example (2.12):

∂µ F̃µν = 0 (6.41)

and are not considered in the Einstein-Maxwell theory. Eq. (6.39) is automatically satisfied, if the
electromagnetic field tensor is expressed by potentials Aµ , as is done in Einstein-Maxwell-theory:

Fµν = ∂µAν −∂νAµ . (6.42)

It is seen that the field Fµν is defined by special relativity, in a spacetime without curvature and
torsion. In Einsteinian relativity, the energy-momentum tensor of the gravitational field vanishes in
regions of the vacuum, but the corresponding electromagnetic tensor does not. This is a deficiency
of Einstein-Maxwell theory, but it may be irrelevant here because electromagnetic forces are
stronger than gravitational forces by at least 21 orders of magnitude.

In total, the equations to be solved are (6.34, 6.35) and (6.38):

Rµν = k
(

1
4

gµνFαβ Fαβ −FµαF α
ν

)
, (6.43)

∂νFµν +Γ
µ

νλ
Fλν +Γ

ν

νλ
Fµλ = 0. (6.44)

where Fµν is defined by the potentials in (6.42). The Γ’s follow from the metric, and there are
10 independent components of the metric and 4 components of the electromagnetic potential
to be determined, in total. There are only 10 equations available, 4 of 14 components remain
undetermined. The corresponding result also holds in ECE theory (see example 4.1). The equations
are nonlinear in their variables. This fact always produces chaotic solutions.

Ulrich Bruchholz found an unrivaled way to determine properties of elementary particles from
the Einstein-Maxwell equations without having to solve them directly [53–55]. This is described
immediately below. Although elementary particles belong to the realm of quantum mechanics,
Bruchholz succeeded in describing their properties with a classical method.

He developed a computation scheme for elementary physical qualities like particle masses,
charges, spin and magnetic moments, using this classical method. Wave equations are used as first
approximations of the field equations. Non-zero solutions stem from integration constants of these
wave equations. The under-determinacy of solutions may lead to many different solutions, but
the integration constants do not change with variation of these additional choices. The integration
constants are defined by the particle qualities mentioned above.

When we try to solve the geometric equations numerically, the Einstein-Maxwell equations
might be fairly difficult to handle. Instead of this, Bruchholz used sampling methods, going from
known geometrical regions through unknown regions up to a geometric limit by finite steps. For
central problems, he integrated the solution from an outer starting radius to a certain inner radius.
The end radius is reached, when the solutions exceed a certain limit, i.e., when they begin to diverge.
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Figure 6.1: Bruchholz results for the electron neutrino, masses < 4eV [54].

The integration constants are parameters inserted into the wave solutions, to serve as initial
values for the numerical integration of the field equations. The initial metric elements for the
coordinates (t,r,θ ,φ) are defined by

g00 = 1− c1

r
+

1
2

((c3

r

)2
+
(c4

r2

)2
cos2

θ

)
, (6.45)

g11 = 1+
c1

r
− 1

2

(c3

r

)2
+

1
10

(c4

r2

)2 (
1+ sin2

θ
)
, (6.46)

g22 = r2
(

1+
(c4

r2

)2
(

1
3

sin2
θ − 3

10
,

))
, (6.47)

g33 = r2 sin2
θ

(
1+
(c4

r2

)2
(

sin2
θ

15
− 3

10
,

))
, (6.48)

g23 = r sin2
θ

(
c2

r2 −
1
2

c3c4

r3

)
, (6.49)

and the electromagnetic potentials are given by

A0 =
c3

r
, (6.50)

A3 = r sin2
θ

c4

r2 , (6.51)

with constants

c1 =
k

4π
m, (6.52)

c2 =
ks

4πc
, (6.53)

c3 =

√
kµ0

4π
Q, (6.54)

c4 =

√
kε0

4π
M (6.55)
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for mass m, spin s, charge Q and magnetic moment M. k is the Einstein constant.
The desired solutions are the discrete values of the integration constants that produce minima

with respect to the geometric limits (the inner end-radii mentioned above). One can numerically
determine these discrete values through repeated calculations. These results differ from experimen-
tally known values (e.g., of the electron, nuclei) by not more than 5%. While these differences may
be (comparatively) significant, the large number of constants of Nature that have been determined
in this way supports the validity of the method. Moreover, the masses of neutrinos have been
predicted [54]. An example is shown in Fig. 6.1. The abscissa describes the mass values, and the
thickness of points describes convergence strength. The more iterations that can be made until
divergence, the better the convergence, and the thicker the point. The initial radius was chosen to
be 5 ·10−15m. The horizontally stacked lines indicate different numbers of computational steps
(see right-most column). The results are in the range of assumed mass energies. Reliable values
still remain to be found through experiments that are being carried out by several institutions. �

6.1.2 Alternative development from the Jacobi-Cartan-Evans identity
In the preceding section, we defined new ECE axioms based on curvature only. This leads to a
formulation of ECE2 theory based on the tensors of the base manifold, without reference to the
tangent space. The benefit is that no interpretation of polarization indices of the tangent space
is required, and the Maxwell-like equations are formally identical to Maxwell-Heaviside theory.
However, there is no possibility for introducing potentials, which are essential for ECE theory
because they have a physical meaning. The potentials have been developed on the basis of the first
Maurer-Cartan structure equation (2.268), which only involves torsion. In this section we develop
a version of ECE2 theory where the second structure equation (2.282) is used, which relates to
curvature [56, 57]. This allows us to define potentials, and tangent space indices can be removed
for simplicity.

We again start with the Jacobi-Cartan-Evans identity (6.1) and its Hodge dual, Eq. (6.2). These
can be rewritten to covariant form, see Eqs. (6.3, 6.4):

Dµ R̃a µν

λ
= T̃ αµνRa

λ µα
, (6.56)

DµRa µν

λ
= T αµνRa

λ µα
. (6.57)

Then we define a new curvature 2-form Ra µν

b by

Ra µν

b := qλ
bRa µν

λ
(6.58)

and its Hodge-dual by

R̃a µν

b := qλ
bR̃a µν

λ
. (6.59)

The subsequent derivations are very similar to those in Section 6.1.1. By multiplying Eqs. (6.56,
6.57) by qλ

b and using the tetrad postulate, we can formally replace the λ index by the b index of
tangent space, giving:

Dµ R̃a µν

b = T̃ αµνRa
bµα , (6.60)

DµRa µν

b = T αµνRa
bµα . (6.61)

From the definition of the covariant derivative of a 2-form, it follows for both equations that:

∂µ R̃a µν

b +ω
a
µc R̃c µν

b −ω
c
µb R̃a µν

c = T̃ αµνRa
bµα , (6.62)

∂µRa µν

b +ω
a
µc Rc µν

b −ω
c
µb Ra µν

c = T αµνRa
bµα . (6.63)
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Now we define new axioms for transforming the geometric curvature 2-form Ra µν

b to a 2-form
of the electromagnetic field Fa µν

b . The Hodge dual is defined in the same way. The expression
“defined” for the Hodge dual is not precise because it is a consequence of the definition of Fa µν

b :

Fa µν

b :=W (0)Ra µν

b , (6.64)

F̃a µν

b :=W (0)R̃a µν

b . (6.65)

Again, W (0) is a scalar with units of magnetic flux (Tesla·m2 or Weber) as in the definitions (6.17,
6.18). Then, the electromagnetic field equations follow from (6.60, 6.61):

Dµ F̃a µν

b = T̃ αµνFa
bµα , (6.66)

DµFa µν

b = T αµνFa
bµα . (6.67)

From these equations, their vector form can be developed, but both the electric and magnetic field
vectors have two indices a and b, making physical interpretation quite difficult. However, there is a
method to get rid of these indices, as we will see later.

Torsion appears as a tensor of the base manifold, so the situation is different, compared to the
original derivation of the ECE field equations in earlier chapters, where the torsion 2-form was
used to define the physical fields.

Using the axioms (6.64, 6.65), Eqs. (6.62, 6.63) can be expressed by fields:

∂µ F̃a µν

b +ω
a
µc F̃c µν

b −ω
c
µb F̃a µν

c = T̃ αµνFa
bµα , (6.68)

∂µFa µν

b +ω
a
µc Fc µν

b −ω
c
µb Fa µν

c = T αµνFa
bµα . (6.69)

Again, these equations can be abbreviated as

∂µ F̃a µν

b = µ0 ja ν
b , (6.70)

∂µFa µν

b = µ0Ja ν
b , (6.71)

with current definitions

ja ν
b =

1
µ0

(
T̃ αµνFa

bµα −ω
a
µc F̃c µν

b +ω
c
µb F̃a µν

c

)
, (6.72)

Ja ν
b =

1
µ0

(
T αµνFa

bµα −ω
a
µc Fc µν

b +ω
c
µb Fa µν

c

)
. (6.73)

So far, these currents, the homogeneous and inhomogeneous currents, are 1-forms as before,
however, they are augmented by two indices of tangent space.

The electromagnetic fields are also defined as before, but with two indices of tangent space:

Fa µν

b =


0 −Ea 1

b /c −Ea 2
b /c −Ea 3

b /c
Ea 1

b /c 0 −Ba 3
b Ba 2

b
Ea 2

b /c Ba 3
b 0 −Ba 1

b
Ea 3

b /c −Ba 2
b Ba 1

b 0

 , (6.74)

F̃a µν

b =


0 Ba 1

b Ba 2
b Ba 3

b
−Ba 1

b 0 −Ea 3
b /c Ea 2

b /c
−Ba 2

b Ea 3
b /c 0 −Ea 1

b /c
−Ba 3

b −Ea 2
b /c Ea 1

b /c 0

 . (6.75)

The field equations (6.70, 6.71) can be expressed in vector form. This is fully analogous to the
procedure described in Sections 4.2.2 and 4.3.3. The results are the field equations in vector form
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(4.72-4.75), but with a twofold index of tangent space:

∇ ·Ba
b =−µ0 ja 0

b , (6.76)
∂Ba

b
∂ t

+∇×Ea
b = c µ0 ja

b, (6.77)

∇ ·Ea
b =

ρa 0
b

ε0
, (6.78)

− 1
c2

∂Ea
b

∂ t
+∇×Ba

b,= µ0 Ja
b. (6.79)

The current vectors are defined as in Eqs. (6.23, 6.24) by

( ja
b)

µ =


ja 0

b
ja

bX
ja

bY
ja

bZ

=

[
ja 0

b
ja

b

]
, (6.80)

(Ja
b )

µ =


Ja 0

b
Ja

bX
Ja

bY
Ja

bZ

=

[
Ja 0

b
Ja

b

]
. (6.81)

Removing tangent space indices
The indices a, b of tangent space in the field tensor Fa µν

b can be removed by multiplication with
the basis vectors. The basis vectors of tangent space are the covariant 4-vectors ea:

e(0) =


1
0
0
0

 , e(1) =


0
1
0
0

 , e(2) =


0
0
1
0

 , e(3) =


0
0
0
1

 (6.82)

and the contravariant vectors ea:

e(0) =


1
0
0
0

 , e(1) =


0
−1
0
0

 , e(2) =


0
0
−1
0

 , e(3) =


0
0
0
−1

 , (6.83)

where the lower indices have been pulled up by the Minkowski metric, as usual. The scalar product
of both is a constant:

ea ea = 1−1−1−1 =−2. (6.84)

We can apply this to remove the Latin indices in the torsion and curvature forms. In the original ECE
theory developed in Chapter 4, we can define a vector potential and field tensor by a contraction
process with unit 4-vectors:

Aµ = eaAa
µ = A(0)eaqa

µ = A(0)qµ (6.85)

where qµ is a 4-vector in the space of the base manifold, derived from the tetrad matrix qa
µ . For

the electromagnetic field we obtain

Fµν = eaFa
µν = A(0)eaT a

µν = A(0)Tµν , (6.86)
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which corresponds to a kind of reduced torsion form:

Tµν = T (0)
µν +T (1)

µν +T (2)
µν +T (3)

µν . (6.87)

In ECE2 theory, we have a double-indexed field tensor Fa
bµν

. Therefore, we have to apply
linear algebra to reduce this tensor to a conventional-looking field tensor:

Fµν = ea ebFa
bµν (6.88)

and also obtain a corresponding result for the contravariant tensor Fµν . Using axiom (6.64) we can
also write:

Fµν =W (0)ea ebRa µν

b , (6.89)

which relates F to the curvature form R.
We will now take a more detailed look at the summations in Eq. (6.88). Using the law of

associativity, we can write

Fµν = e T
a

(
Fa

bµν eb
)
, (6.90)

where e T
a is a transposed unit vector. This equation has the form (omitting indices µ,ν):

([
1,0,0,0

]
+ · · ·+

[
0,0,0,1

])Fa
(0)


1
0
0
0

+ · · ·+Fa
(3)


0
0
0
−1


 . (6.91)

Fa
b is a matrix, and the right parenthesis contains a sum of matrix-vector multiplications. Since the

vectors are unit vectors, they produce terms only from that line of the matrix where the unit vector
component is different from zero. Therefore, the matrix can be factored out and the unit vectors
can be summed up. The same holds true for the left-hand part:

[
1,1,1,1

]Fa
b


1
−1
−1
−1


 . (6.92)

Thus, when denoting the contracted unit vectors in this equation by e(ctr)a and e b
(ctr) , we can write

for (6.90):

Fµν = e T
(ctr)a Fa

bµν e
(ctr)b . (6.93)

� Example 6.2 We compute the values of Fµν by summing over indices a and b. For the one-
indexed torsion form, it is simply the sum of the elements over the a index, as was done in Eqs.
(6.86, 6.87). In the double-indexed case (6.93) it is more complicated.

The values of Fµν are computed using computer algebra code [101]. The evaluation of the
matrix-vector operations (omitting the indices µ,ν at the right-hand side again) leads to the result:

Fµν =F(0)
(0) −

(
F(0)

(1) +F(0)
(2) +F(0)

(3)

)
(6.94)

+F(1)
(0) −

(
F(1)

(1) +F(1)
(2) +F(1)

(3)

)
+F(2)

(0) −
(

F(2)
(1) +F(2)

(2) +F(2)
(3)

)
+F(3)

(0) −
(

F(3)
(1) +F(3)

(2) +F(3)
(3)

)
.
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This sum has been written in matrix form. It can be seen that the first column is taken as positive
summands and the other columns as negative summands. This is a consequence of the signs in the
contravariant unit vector eb. �

The above simplifications can be applied to both sides the field equations (6.70, 6.71), leading
to reduced 1-forms of current at the right-hand side. The field equations then take the familiar form:

∂µ F̃µν = µ0 jν , (6.95)

∂µFµν = µ0Jν . (6.96)

This set can be handled in the same way as in Section 6.1.1, leading to the familiar vector form
of electromagnetic field equations (6.25-6.28). In the present case, we have defined the currents
in units of A/m2 as usual, therefore the constants on the right-hand side differ. The results are the
well-known equations (6.25-6.28) without any indices of tangent space:

∇ ·B =−µ0 j0,

∂B
∂ t

+∇×E = c µ0 j,

∇ ·E =
ρ

ε0
,

− 1
c2

∂E
∂ t

+∇×B,= µ0 J.

(6.97)

(6.98)

(6.99)

(6.100)

If no magnetic monopoles are present, the homogeneous currents vanish. Then, these equations are
formally identical to the Maxwell-Heaviside equations, but they are valid in a space with torsion
and curvature, thus exceeding the range of validity of Maxwell-Heaviside theory by far.

6.1.3 ECE2 field equations in terms of potentials
The information contained in electromagnetic fields can be enlarged significantly by considering
the potentials, which are physical in ECE theory. In Section 4.4, the relationship between force
fields and potentials was derived from the first Maurer-Cartan structure equation, Eq. (4.169),
which connects the torsion with the tetrad and the spin connection:

T a
µν = ∂µqa

ν −∂νqa
µ +ω

a
µb qb

ν −ω
a
νb qb

µ . (6.101)

The force fields then follow from the first ECE axiom:

Fa
µν = A(0)T a

µν . (6.102)

In ECE2 theory, the force fields are derived from the axiom

Fa
bµν =W (0)Ra

bµν , (6.103)

which is based on curvature. Therefore, we have to use the second Maurer-Cartan structure equation,
which connects curvature with the spin connection (see Eq. (2.282)). In tensor notation this equation
reads:

Ra
bµν = ∂µω

a
νb −∂νω

a
µb +ω

a
µc ω

c
νb −ω

a
νc ω

c
µb . (6.104)

The left-hand side describes the field tensor according to ECE2 axiom (6.102) above. The right-
hand side has to be equated to potentials. To make a consistent definition of ECE2 potentials, we
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can compare Eq. (6.104) with Eq. (6.101). The left-hand sides give the fields according to the ECE
axiom

Fa
µν = A(0)T a

µν (6.105)

and the ECE2 axiom

Fa
bµν =W (0)Ra

bµν . (6.106)

Since the left-hand sides are physically equivalent, the right-hand sides must be as well. In ECE
theory, the potential is defined by

Aa
µ = A(0)qa

µ . (6.107)

In ECE2 theory, it must be defined in a compatible way. This can be accomplished through the
following identifications:

• index a→ indices a,b,
• qa

ν → ωa
νb .

Then the second Maurer-Cartan structure equation (6.104) can be transformed formally to the first
Maurer-Cartan structure equation (6.101), and, for consistency, the ECE2 potential named W a

bµ

has to be defined by

W a
bµ =W (0)

ω
a
µb , (6.108)

i.e., the ECE2 potential is the spin connection, augmented by the constant W (0). The lower indices
have been interchanged in order; for convenience, since this is only a definition. Then the ECE2
axioms read

W a
bµ =W (0)

ω
a
µb ,

Fa
bµν =W (0)Ra

bµν ,

(6.109)

(6.110)

and the ECE2 field-potential relationship is

Fa
bµν = ∂µW a

bν −∂νW a
bµ +ω

a
µcW c

bν −ω
a
νcW c

bµ . (6.111)

The remaining ωs are from the Maurer-Cartan structure equation. In order to give this equation a
unified structure, it makes sense to replace the remaining spin connections by the potenials as well:

Fa
bµν = ∂µW a

bν −∂νW a
bµ +

1
W (0)

(
W a

cµ W c
bν −W a

cν W c
bµ

)
. (6.112)

Remarkably, the fields depend on the potentials only, without explicit appearance of a spin connec-
tion, but in a non-linear way.

Next, we will transform this equation into a vector representation. Using the form of (6.111),
we can proceed in full analogy to Section 4.4, starting with Eq. (4.178). For µ = 0, we obtain

Fa
b01 = ∂0W a

b1 −∂1W a
b0 +ω

a
0cW c

b1 −ω
a
1cW c

b0 , (6.113)

Fa
b02 = ∂0W a

b2 −∂2W a
b0 +ω

a
0cW c

b2 −ω
a
2cW c

b0 , (6.114)

Fa
b03 = ∂0W a

b3 −∂3W a
b0 +ω

a
0cW c

b3 −ω
a
3cW c

b0 . (6.115)
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We introduce a scalar potential φ a
W b in analogy to φ a:

W a
b0 =

φ a
W b
c

. (6.116)

Then it follows in vector form:

Ea
b =−∇φ

a
W b −

∂Wa
b

∂ t
− cω

a
0c Wc

b +ω
a
cφ

c
W b , (6.117)

where ωa
b is a vector as defined by Eq. (4.189). The magnetic field is computed in vector form in

full analogy to Eqs. (4.190 ff.), giving

Ba
b = ∇×Wa

b−ω
a

c×Wc
b. (6.118)

Replacing the ωs by W , we obtain the vector form of Eq. (6.112):

Ea
b =−∇φ

a
W b −

∂Wa
b

∂ t
+

1
W (0) (−φ

a
W c Wc

b +φ
c

W b Wa
c) ,

Ba
b = ∇×Wa

b−
1

W (0) Wa
c×Wc

b.

(6.119)

(6.120)

Now we can remove the indices a, b of tangent space as described in Section 6.1.2. The index c is
a dummy index, so that the procedure of multiplying with unit vectors ea and eb can be applied
directly. It follows that the nonlinear terms in W cancel out. The result is

E =−∇φW −
∂W
∂ t

,

B = ∇×W.

(6.121)

(6.122)

This remarkable result means that in ECE2 theory the potentials φW and W play the same role as the
scalar potential φ and vector potential A in Maxwellian theory. ECE2 can be applied formally in
the same way as standard theory, but with a much greater scope in generally relativistic spacetime.

6.1.4 Combining ECE2 and ECE theory
So far, we have used the current 1-forms (6.72, 6.73), which have two tangent space indices in the
same way as the ECE2 fields Ea

b and Ba
b. In the case, where we summed over these indices, we

obtained the Maxwell-like equations (6.97 - 6.100) with current vectors j and J, as well as charge
densities j0 and ρ . In the following discussion, we develop the charge and current expressions in
vector form. We will see that this leads to a combination of double-indexed vectors, like Ea

b, while
those of ECE theory will continue to have only one index, like Ea.

First we go back to the original ECE theory with one tangent space index. According to Eqs.
(4.49, 4.50), the 1-forms for currents are

jaν =
1
µ0

(
A(0)R̃a µν

µ −ω
a

(Λ) µb F̃bµν

)
, (6.123)

Jaν =
1
µ0

(
A(0)Ra µν

µ −ω
a
µb Fbµν

)
. (6.124)

The currents contain the spin connections, which could be transformed into ECE2 potentials as was
done in the previous section. The field tensor has one Latin index and can be replaced by electric
and magnetic field vector components according to Eqs. (4.56, 4.65). We develop the vector forms
of the currents as described in the notes of [57]. Computer algebra code for evaluating the current
components is available [102].
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We start with the homogeneous current jaν . First, the curvature tensor R̃a µν

µ needs to be
transformed by replacing the lower Greek index µ with an index of tangent space by writing

R̃a µν

µ = qb
µ R̃a µν

b . (6.125)

R̃a µν

b is a curvature element of ECE2 theory, corresponding to vector components of Ea
b and Ba

b
as defined in Eq. (6.75). With the ECE and ECE2 axioms

Aa
ν := A(0)qa

ν , (6.126)

F̃a µν

b :=W (0)R̃a µν

b , (6.127)

we obtain:

jaν =
1
µ0

(
Ab

µ R̃a µν

b −ω
a

(Λ) µb F̃bµν

)
(6.128)

=
1
µ0

(
1

W (0) Ab
µ F̃a µν

b −ω
a

(Λ) µb F̃bµν

)
.

To obtain vector representations, we proceed as in Section 4.2.3. For ν = 0, µ = 1,2,3, we obtain
the current component

ja0 =
1
µ0

(
1

W (0)

(
Ab

1F̃a 10
b +Ab

2F̃a 20
b +Ab

3F̃a 30
b

)
(6.129)

−ω
a

(Λ) 1b F̃b10−ω
a

(Λ) 2b F̃b20−ω
a

(Λ) 3b F̃b30
)
.

From (4.56) and (6.75) it follows that F̃a10 =−Ba1, ... and F̃a 10
b =−Ba 1

b , ... Therefore:

ja0 =
1
µ0

(
1

W (0)

(
−Ab

1Ba 1
b −Ab

2Ba 2
b −Ab

3Ba 3
b

)
(6.130)

+ω
a

(Λ) 1b Bb1 +ω
a

(Λ) 2b Bb2 +ω
a

(Λ) 3b Bb3
)
,

and pulling up the indices of the vector potential and the spin connection gives a sign change:

ja0 =
1
µ0

(
1

W (0)

(
Ab1Ba 1

b +Ab2Ba 2
b +Ab3Ba 3

b

)
(6.131)

−ω
a1

(Λ) b Bb1−ω
a2

(Λ) b Bb2−ω
a3

(Λ) b Bb3
)
.

In vector notation, this equation is

ja0 =
1
µ0

(
1

W (0) Ab ·Ba
b−ω

a
(Λ) b ·B

b
)
. (6.132)

All terms on the right-hand side contain a double sum over b. This could be simplified as described
in Example 6.2. Therein, all components of Fa

b were summed up. Alternatively, we can assume
that there is a common value of Fa

b for all a and b, say F . Then the double sum gives

Fa
b → ebFa

b =−2Fa. (6.133)

We can apply this to the scalar products in Eq. (6.132). The sum over a additionally gives

Fa→ eaFa = 4F (6.134)
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and is applied to both sides of the equation so that the factor of 4 cancels out. The result is then

j0 =− 2
µ0

(
1

W (0) A ·B−ω(Λ) ·B
)

(6.135)

with indexless vectors. The Gauss Law (6.97) then takes the form

∇ ·B = 2
(

1
W (0) A−ω(Λ)

)
·B. (6.136)

The magnetic charge density vanishes if

1
W (0) A = ω(Λ), (6.137)

which usually is the case, as is known from experiments. This means that the spin connection of
the Λ connection (the Hodge dual of the Christoffel connection) is parallel to the vector potential.
The Gauss law can be rewritten as

∇ ·B = 2

(
A(0)

W (0) q−ω(Λ)

)
·B = 2

(
1

r(0)
q−ω(Λ)

)
·B (6.138)

where

r0 =
W (0)

A(0) (6.139)

is a constant with dimension of length. In this notation, the magnetic charge density is described by
geometric quantities only, namely the tetrad and spin connection.

Next, we analyze the components of the homogeneous current (6.123) for ν = 1,2,3. From Eq.
(6.128), for ν = 1, we obtain:

ja1 =
1
µ0

(
1

W (0)

(
Ab

0F̃a 01
b +Ab

2F̃a 21
b +Ab

3F̃a 31
b

)
(6.140)

−ω
a

(Λ) 0b F̃b01−ω
a

(Λ) 2b F̃b21−ω
a

(Λ) 3b F̃b31
)
,

and by inserting the field components:

ja1 =
1
µ0

(
1

W (0)

(
Ab

0Ba 1
b +Ab

2Ea 3
b /c−Ab

3Ea 2
b /c

)
(6.141)

−ω
a

(Λ) 0b Bb1−ω
a

(Λ) 2b Eb3/c+ω
a

(Λ) 3b Eb2/c
)
,

and with lower indices raised (please notice that raising the index 0 does not give a sign change):

ja1 =
1
µ0

(
1

W (0)

(
Ab0Ba 1

b −Ab2Ea 3
b /c+Ab3Ea 2

b /c
)

(6.142)

−ω
a0

(Λ) b Bb1 +ω
a2

(Λ) b Eb3/c−ω
a3

(Λ) b Eb2/c
)
.

Proceeding in the same way for ν = 2,3, we obtain the following result in vector form:

ja =
1
µ0

(
1

W (0)

(
Ab0Ba

b−Ab×Ea
b/c
)
−ω

a0
(Λ) b Bb +ω

a
(Λ) b×Eb/c

)
. (6.143)
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Removing the indices a, b as before (see (CH06:EQ84)) gives a factor of -2 at the right-hand side:

j =− 2
µ0

(
1

W (0)

(
A0B−A×E/c

)
−ω

0
(Λ) B+ω(Λ)×E/c

)
. (6.144)

With

A0 =
φ

c
(6.145)

this is

j =− 2
µ0c

((
1

W (0) φ − cω
0

(Λ)

)
B−

(
1

W (0) A−ω(Λ)

)
×E
)
. (6.146)

The inhomogeneous current (6.124) can be evaluated in the same way. The Hodge-dual field tensors
F̃ have to be replaced by the original tensors F , and the Λ-based spin connection by the Γ-based
spin connection. The replacement rules, according to Eqs. (6.74) and (6.75), are:

F̃a 10
b =−Ba 1

b → Ea 1
b /c = Fa 10

b (6.147)

F̃a 20
b =−Ba 2

b → Ea 2
b /c = Fa 20

b

F̃a 30
b =−Ba 3

b → Ea 3
b /c = Fa 30

b

F̃a 01
b = Ba 1

b → −Ea 1
b /c = Fa 01

b

F̃a 21
b = Ea 3

b /c → Ba 3
b = Fa 21

b

F̃a 31
b =−Ea 2

b /c → −Ba 2
b = Fa 31

b

Therefore, we can transform Eq. (6.129) (with additional index raising) to

Ja0 =
1

µ0 c

(
1

W (0)

(
−Ab

1Ea 1
b −Ab

2Ea 2
b −Ab

3Ea 3
b

)
(6.148)

+ω
a
1b Eb1 +ω

a
2b Eb2 +ω

a
3b Eb3

)
=

1
µ0 c

(
1

W (0)

(
Ab1Ea 1

b +Ab2Ea 2
b +Ab3Ea 3

b

)
−ω

a1
b Eb1−ω

a2
b Eb2−ω

a3
b Eb3

)
,

which leads to the vector form representation

J0 =− 2
µ0 c

(
1

W (0) A−ω

)
·E. (6.149)

With

J0 = cρ (6.150)

the electric charge density is

ρ =−2ε0

(
1

W (0) A−ω

)
·E (6.151)

or, in geometric terms,

ρ =−2ε0

(
1

r(0)
q−ω

)
·E. (6.152)
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Then, the Coulomb law is

∇ ·E =
ρ

ε0
=−2

(
1

W (0) A−ω

)
·E. (6.153)

For the 1-component of the current vector J, it follows from Eqs. (6.124) and (6.147) that:

Ja1 =
1
µ0

(
1

W (0)

(
−Ab0Ea 1

b /c−Ab2Ba 3
b +Ab3Ba 2

b

)
(6.154)

+ω
a0

b Eb1/c+ω
a2

b Bb3−ω
a3

b Bb2
)
.

Please notice again that raising the index 0 does not give a sign change. Proceeding in the same
way for the two other components, we obtain the vector form of the electric current

J =− 2
µ0

(
1

W (0)

(
−A0E/c−A×B

)
+ω

0E/c+ω×B
)
. (6.155)

With

A0 =
φ

c
(6.156)

this is

J =
2
µ0

((
1

c2W (0) φ − 1
c

ω
0
)

E+

(
1

W (0) A−ω

)
×B
)
. (6.157)

The factors in front of E can be interpreted as conductivity terms, as discussed in connection with
Eq. (4.54).

The full set of ECE2 field equations with expanded current terms is:

∇ ·B = 2
(

1
W (0) A−ω(Λ)

)
·B,

∂B
∂ t

+∇×E = 2
((

1
W (0) φ − cω

0
(Λ)

)
B−

(
1

W (0) A−ω(Λ)

)
×E
)
,

∇ ·E =−2
(

1
W (0) A−ω

)
·E,

− 1
c2

∂E
∂ t

+∇×B = 2
((

1
c2W (0) φ − 1

c
ω

0
)

E+

(
1

W (0) A−ω

)
×B
)
.

(6.158)

(6.159)

(6.160)

(6.161)

Obviously, the Λ-based spin connection is connected with the homogeneous current (this spin
connection was introduced in Chapter 4 for the Hodge-dual field equation, see Eq. (4.89)). The
formulas for the inhomogeneous current are very similar but contain the “usual”, Γ-based spin
connection.

A sufficient condition for the magnetic charge density to vanish is Eq. (6.137). The magnetic
current density also becomes zero when the additional condition 1

W (0) φ = cω 0
(Λ) is true. In free

space, the electric charge density vanishes also, then we have 1
W (0) φ = cω0 and ω = ω(Λ).

The field equations can be simplified further by introducing wave numbers (in scalar and vector
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form) defined by

κ(Λ)0 =
1

cW (0) φ −ω
0

(Λ) , (6.162)

κ(Λ) =
1

W (0) A−ω(Λ), (6.163)

κ0 =
1

cW (0) φ −ω
0, (6.164)

κ =
1

W (0) A−ω. (6.165)

Then, Eqs. (6.158-6.161) can be written as

∇ ·B = 2κ(Λ) ·B, (6.166)

∂B
∂ t

+∇×E = 2
(

cκ(Λ)0 B−κ(Λ)×E
)
, (6.167)

∇ ·E =−2κ ·E, (6.168)

− 1
c2

∂E
∂ t

+∇×B = 2
(

1
c

κ0E+κ×B
)
. (6.169)

The homogeneous currents vanish, for example, when both Λ-based wave numbers are zero.
Another case is when κ(Λ) is parallel to E, and B is zero.

Instead of using the original spin connections of geometry in Eqs. (6.162-6.165), we can use
the W potentials of ECE2 theory, see Eqs. (6.109) and (6.116), with Latin indices removed:

ΦW = cW0 = cW (0)
ω

0, (6.170)

W =W (0)
ω. (6.171)

Then, Eqs. (6.162-6.165) take the form

κ(Λ)0 =
1

cW (0)

(
φ −φ(Λ)W

)
, (6.172)

κ(Λ) =
1

W (0)

(
A−W(Λ)

)
, (6.173)

κ0 =
1

cW (0) (φ −φW ) , (6.174)

κ =
1

W (0) (A−W) . (6.175)

Because we have two types of spin connections (with and without Λ), we have two types of W
potentials. However, the Λ-based potentials play a role only for the homogeneous currents. They
vanish if

φ = φ(Λ)W and (6.176)

A = W(Λ). (6.177)

In the same way, the inhomogeneous currents vanish if

φ = φW and (6.178)

A = W. (6.179)

In this case, we have an electromagnetic field in free space without charges and currents.
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� Example 6.3 The electromagnetic fields with one or two tangent space indices can be interpreted
as geometrical quantities with spin and orbital character [58]. We define the vector parts of torsion
and curvature by

Ba = A(0)Ta(spin), (6.180)

Ea = cA(0)Ta(orbital), (6.181)

Ba
b =W (0)Ra

b(spin), (6.182)

Ea
b = cW (0)Ra

b(orbital). (6.183)

The components of geometric spin and orbital vectors can then be derived from comparison with
the field tensors (4.65) and (6.74).

Faµν =


0 −Ea1/c −Ea2/c −Ea3/c

Ea1/c 0 −Ba3 Ba2

Ea2/c Ba3 0 −Ba1

Ea3/c −Ba2 Ba1 0

 (6.184)

= A(0)


0 −T a1(spin) −T a2(spin) −T a3(spin)

T a1(spin) 0 −T a3(orbital) T a2(orbital)
T a2(spin) T a3(orbital) 0 −T a1(orbital)
T a3(spin) −T a2(orbital) T a1(orbital) 0

 ,

Fa µν

b =


0 −Ea 1

b /c −Ea 2
b /c −Ea 3

b /c
Ea 1

b /c 0 −Ba 3
b Ba 2

b
Ea 2

b /c Ba 3
b 0 −Ba 1

b
Ea 3

b /c −Ba 2
b Ba 1

b 0

 (6.185)

=W (0)


0 −Ra 1

b (spin) −Ra 2
b (spin) −Ra 3

b (spin)
Ra 1

b (spin) 0 −Ra 3
b (orbital) Ra 2

b (orbital)
Ra 2

b (spin) Ra 3
b (orbital) 0 −Ra 1

b (orbital)
Ra 3

b (spin) −Ra 2
b (orbital) Ra 1

b (orbital) 0

 .
The field equations can be formulated in terms of these geometric representations of the field
tensors. Details can be found in [58]. �

Consequences for the ECE potentials

In Section 4.4 the ECE potentials were introduced by applying the first Maurer-Cartan structure.
This led to equation (4.172):

Fa
µν = ∂µAa

ν −∂νAa
µ +ω

a
µb Ab

ν −ω
a
νb Ab

µ . (6.186)

The last two terms are sums over the tangent space index b. This summation is retained in the vector
representations of the electric and magnetic fields, Eqs. (4.197-4.198). When no polarizations
are present, the Latin indices have been omitted, leading to the simplified field-potential relations
(4.211-4.212):

E =−∇φ − ∂A
∂ t
− cω0 A+ωφ , (6.187)

B = ∇×A−ω×A. (6.188)
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Alternatively, we can apply a summation process over the b index, as was done above in this section.
Then, a factor of -2 is obtained:

E =−∇φ − ∂A
∂ t

+2(cω0 A−ωφ) , (6.189)

B = ∇×A+2ω×A. (6.190)

Equating this with the ECE2 potentials (6.121-6.122), we obtain:

E =−∇φW −
∂W
∂ t

=−∇φ − ∂A
∂ t

+2(cω0 A−ωφ) , (6.191)

B = ∇×W = ∇×A+2ω×A, (6.192)

which defines the relationship between the ECE potentials φ ,A and the ECE2 potentials φW ,W.
For further consistency, the occurrences of spin connections in the ECE part can be replaced by the
ECE2 potentials. Using

φW =W (0)cω0, (6.193)

W =W (0)
ω (6.194)

we obtain:

E =−∇φW −
∂W
∂ t

=−∇φ − ∂A
∂ t

+
2

W (0) (φW A−Wφ) , (6.195)

B = ∇×W = ∇×A+
2

W (0) W×A. (6.196)

Under the free space conditions (6.178, 6.179), we see that the right-hand sides of these equations
reduce to the ECE2 equations, which are formally equal to the Maxwell-Heaviside case:

E =−∇φW −
∂W
∂ t

, (6.197)

B = ∇×W. (6.198)

From the Gauss law without magnetic monopoles follows

∇ ·B = ∇ ·
(

∇×A+
2

W (0) W×A
)
= 0 (6.199)

and from this:

∇ · (W×A) = 0, (6.200)

which, in geometric quantities and with indices re-inserted, is:

∇ ·
(

ω
a
b ×qb

)
= 0. (6.201)

This is an additional condition for the vanishing of magnetic monopoles.
Myron Evans writes in note 9 of [57]:

So everything that is known about electrodynamics can be derived from the Cartan geometry. The
fundamental philosophical difference is that ECE2 is a generally covariant unified field theory,
whereas Maxwell-Heaviside is special relativity. ECE2 has more information than Maxwell-
Heaviside, given by the relation between field and potential. The spin connection is the key
difference between ECE2 and Maxwell-Heaviside.
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� Example 6.4 We consider the Coulomb potential as an example. We want to determine the wave
vector κ , and some spin connections. The electric Coulomb field has only the radial component

Er =
q

4πε0r2 (6.202)

for the field at radial distance r from a point charge q. The Coulomb law (6.168) then reads:

∂Er

∂ r
=−2κrEr, (6.203)

where κr is the radial component of the wave vector κ . Evaluating the above equation gives

−2
q

4πε0r3 =−2κr
q

4πε0r2 , (6.204)

from which follows

κr =
1
r
. (6.205)

The full Cartan geometry of the Coulomb potential was exercised in example 4.1. The radial
Λ-based spin connection (the 1-component) for Latin indices a = b = 0 was listed in Eq. (4.105):

ω
(0)

(Λ) 1(0) =
1
r

(6.206)

and is identical to κr. By the condition of vanishing homogeneous currents we obtain from (6.158):

1
W (0) A−ω(Λ) = 0. (6.207)

For the radial component follows with Ar/W (0) = qr/r(0):

qr

r(0)
= ω(Λ)r , (6.208)

giving for the radial tetrad element:

qr =
r(0)

r
. (6.209)

For the Coulomb field, we have no magnetic field and no time dependence of the electric field.
Therefore, from the Ampère-Maxwell law (6.169), we see that

κ0 = 0, (6.210)

which implies φ = φW from (6.174). Hence

φ =
q

4πε0r
= φW = cW (0)

ω
0 (6.211)

and

ω
0 =

q
4πε0cW (0)r

, (6.212)

which has no direct counterpart in Example 4.1. �
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6.2 Beltrami solutions in electrodynamics
Towards the end of the nineteenth century, the Italian mathematician Eugenio Beltrami developed
a system of equations for the description of hydrodynamic flow, in which the curl of a vector is
proportional to the vector itself [60]. An example is the use of the velocity vector. For a long
time, this solution was not used outside the field of hydrodynamics, but in the 1950s it started
to be used by researchers such as Alfven and Chandrasekhar in the area of cosmology, notably
whirlpool galaxies. The Beltrami field, as it came to be known, has been observed in plasma
vortices and, as argued by Reed [61, 62], is indicative of the type of electrodynamics such as
ECE. Therefore, this section is concerned with the ways in which ECE electrodynamics reduces to
Beltrami electrodynamics. ECE theory is based on geometry and is ubiquitous throughout nature at
all scales, and so is Beltrami theory, which can be viewed as a sub-theory of ECE theory, see [59]
and Chapter 3 of [4].

In ordinary electrodynamics, it is assumed that electromagnetic waves are transverse. Then, the
electric field vector is always perpendicular to the magnetic field vector, and the curl of the fields is
perpendicular to the fields themselves:

∇×E ⊥ E, (6.213)

∇×B ⊥ B. (6.214)

Deviations from this property are commonly accepted only for fields in materials, in particular
where material properties are anisotropic, for example, where the permeability and permittivity are
tensors with directional dependence. However, we will see that the above property does not hold in
general, and that there are large classes of solutions of the field equations where the opposite is true.
These are the Beltrami solutions.

6.2.1 Beltrami solutions of the field equations
It has been known for more than a hundred years that the curl of a vector field and the field itself
need not be perpendicular to one another. In particular, they can be in parallel. Such solutions of
the Maxwell-Heaviside equations are called Beltrami solutions and have the properties

∇×E = κ E, (6.215)

∇×B = κ B. (6.216)

The curl of the electric field and of the magnetic field is proportional to the respective field itself. κ

is a scalar factor which has the dimension of inverse meters and is a wave number in principle1.
We consider the Faraday and Ampère-Maxwell laws of the field equations (6.97-6.100) without

polarization indices and homogeneous currents:

∂B
∂ t

+∇×E = 0, (6.217)

− 1
c2

∂E
∂ t

+∇×B = µ0J. (6.218)

For magnetostatics or a slowly varying electric field, the second equation becomes:

∇×B = µ0J. (6.219)

With the Beltrami condition for B this reduces to

B =
µ0

κ
J. (6.220)

1According to Beltrami theory, κ is allowed to be a non-constant function, but we restrict consideration to κ=const.
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Applying the curl operator gives

∇×B =
µ0

κ
∇×J, (6.221)

which, after again applying the Beltrami condition for B, results in

B =
µ0

κ2 ∇×J. (6.222)

Comparing Eqs. (6.220) and (6.222) shows that

∇×J = κJ, (6.223)

i.e., the current J obeys a Beltrami condition also.
Applying a reverse Beltrami condition to the Gauss law

∇ ·B = 0 (6.224)

gives

1
κ

∇ · (∇×B) = 0, (6.225)

which is always fulfilled for vanishing magnetic charge density, since the divergence of the curl of
a vector field must always be zero:

∇ · (∇×B) = 0. (6.226)

However, from the Coulomb law

∇ ·E =
ρ

ε0
(6.227)

follows

1
κ

∇ · (∇×E) =
ρ

ε0
. (6.228)

The above vector condition is only fulfilled for ρ = 0. Therefore, the electric field can only be a
Beltrami field in free space.

We will now show that the vector potential and vector spin connection in free space are also
Beltrami fields. In this case, we have

A = W =W (0)
ω. (6.229)

Therefore, ω is parallel to A, and the cross product ω ×A vanishes. Then, the magnetic field
(6.188) is simply

B = ∇×A. (6.230)

Applying the Beltrami condition to B gives

∇×B = ∇×∇×A = κB = κ∇×A = ∇× (κA). (6.231)

Comparing the second and last terms of the chain shows that

∇×A = κA, (6.232)
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i.e., the vector potential is a Beltrami field. From (6.229) it follows that the vector spin connection
is also a Beltrami field:

∇×ω = κω. (6.233)

This means that spacetime itself has a Beltrami structure. This may have consequences on what
is called “”aether flow” or “fluid spacetime” in later chapters. Another consequence is that the
magnetic field is parallel to the vector potential:

B = κA. (6.234)

From the definition of Beltrami fields, it follows directly that these fields are divergenceless in free
space:

∇ ·E = ∇ ·B = ∇ ·A = ∇ ·ω = 0. (6.235)

In addition, these fields (except the electric field), but including the current in magnetostatics, are
all in parallel:

B ‖ A ‖ ω ‖ J. (6.236)

In the case of longitudinal fields (see examples below), the electric field is also parallel to the fields
mentioned above. This follows from the Faraday law

∂B
∂ t

+∇×E =
∂B
∂ t

+κE = 0. (6.237)

If B is longitudinal, then ∂B/∂ t ‖ B, and it further follows that

E ‖ B. (6.238)

Another consequence of Beltrami solutions is the possibility of spin connection resonance. For
a fixed current J and vanishing scalar potentials:

φ = 0, φW = 0, (6.239)

Eq. (6.197) is

E =− ∂

∂ t
W. (6.240)

Assuming a complex-valued Beltrami vector potential with ∇×W = iκW, the Ampère-Maxwell
law then reads

− 1
c2

∂

∂ t
E+∇×B =− 1

c2
∂ 2

∂ t2 W−κ
2W = µ0J. (6.241)

If the current is of the form J = J0 cos(ωt), this is a three-component equation of Euler-Bernoulli
resonances

∂ 2

∂ t2 W+ω
2
0 W =− 1

ε0
J (6.242)

with resonance frequency

ω0 = cκ. (6.243)

However, a method has to be found to experimentally construct such a vector potential with
imaginary eigenvalue. A complex-valued W means that certain phase relations have to be provided.
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6.2.2 Continuity equation
The time derivative of the Coulomb law (6.227) is:

∂

∂ t
∇ ·E =

1
ε0

∂ρ

∂ t
. (6.244)

Applying the divergence operator to the Ampère-Maxwell law (6.100) gives

− 1
c2

∂

∂ t
∇ ·E+∇ ·∇×B = µ0∇ ·J. (6.245)

Rewriting the latter equation and observing that the divergence of a curl vanishes, this becomes

∂

∂ t
∇ ·E =−c2

µ0∇ ·J. (6.246)

Equating (6.244) with (6.246) gives

1
ε0

∂ρ

∂ t
=−c2

µ0∇ ·J (6.247)

and finally

∂ρ

∂ t
+∇ ·J = 0, (6.248)

which is the continuity equation. This holds for ECE and ECE2 theory in general, as well as for
special cases, such as the Beltrami fields.

6.2.3 Helmholtz equation
We now show that the Helmholtz equation can be derived directly from a Beltrami condition.
Applying the curl operator twice, we obtain

∇×∇×E = κ∇×E = κ
2E, (6.249)

∇×∇×B = κ∇×B = κ
2B, (6.250)

which are also called Trkalian equations. The left-hand sides can be rewritten by a vector-analysis
theorem:

∇×∇×E = ∇(∇ ·E)−∇
2E = κ

2E, (6.251)

∇×∇×B = ∇(∇ ·B)−∇
2B = κ

2B. (6.252)

In free space, all fields are divergence-free, and the equations become

∇
2E+κ

2E = 0, (6.253)

∇
2B+κ

2B = 0, (6.254)

which are the Helmholtz equations. These are wave equations with oscillating solutions, whose
time dependence is harmonic, i.e., is a multiplicative factor. For example, plane waves

E(r, t) = E0 ei(κ·r−ωt), (6.255)

B(r, t) = B0 ei(κ·r−ωt), (6.256)
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fulfill the Helmholtz equations, with a wave vector

κ =

κX

κY

κZ

 (6.257)

and constant amplitudes E0,B0. Applying the derivative twice gives:

∇
2E =−

(
κ

2
X +κ

2
Y +κ

2
Z
)

E, (6.258)

or

∇
2E =−κ

2E, (6.259)

and in the same way

∇
2B =−κ

2B. (6.260)

Inserting these expressions into Eqs. (6.253, 6.254) shows that the Helmholtz equations are fulfilled
by these solutions. The same procedure can be applied for the vector potential, giving the Helmholtz
equation

∇
2A+κ

2A = 0. (6.261)

6.2.4 Wave equation
The wave or d’Alembert equation is obtained for the magnetic field in the following way. In free
space, the curl of the Ampère-Maxwell law is

∇×∇×B− 1
c2

∂

∂ t
∇×E = 0. (6.262)

Replacing the curl of E by means of the Faraday law

∇×E =− ∂

∂ t
B (6.263)

gives

∇×∇×B+
1
c2

∂ 2

∂ t2 B = 0. (6.264)

Replacing the doubled curl by using the vector analysis theorem as before, leads to

1
c2

∂ 2

∂ t2 B−∇
2B = 0 (6.265)

or, written with the d’Alembert operator,

� B = 0. (6.266)

An analogous derivation can be performed to abtain the wave equation for the electric field:

� E = 0. (6.267)

The wave equation for the vector potential has already been derived in Section 4.3, which for the
standard theory reads

� A = 0. (6.268)
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An alternative form follows from applying the Trkalian equation for the doubled curl to (6.264):

1
c2

∂ 2

∂ t2 B+κ
2B = 0. (6.269)

This form of the wave equation is specific to Beltrami fields. The Helmholtz equation is for the
space part of the fields, while the wave equation includes the time development. In the same way,
the Beltrami wave equation for the electric field is

1
c2

∂ 2

∂ t2 E+κ
2E = 0. (6.270)

An equivalent equation for the vector potential is obtained by replacing the magnetic field in (6.269)
by

B = κA, (6.271)

which gives

1
c2

∂ 2

∂ t2 A+κ
2A = 0. (6.272)

Gauge invariance and additional properties
Gauge invariance is destroyed by Beltrami fields. The vector potential of Maxwell-Heaviside theory
has the property that the field equations are unaltered when the vector potential is augmented by
the gradient of a scalar function ψ(r):

A→ A′ = A+∇ψ, (6.273)

for example,

∇×A→ ∇× (A+∇ψ) = ∇×A, (6.274)

because the curl of a gradient field vanishes. However, for Beltrami fields, according to Eq. (6.271):

B = κA→ κ(A+∇ψ). (6.275)

The magnetic field depends on changes in the vector potential. This destroys the gauge invariance,
which is also called U(1) symmetry. Gauge invariance is also broken by the Proca equation, whose
space part, according to (4.167), is:(

�+
(m0c

h̄

)2
)

A = 0. (6.276)

There is a constant term of A therein, thus a Gauge operation on the vector potential gives a different
solution.

By adding the Proca equation and Helmholtz equation (6.261) we get:(
1
c2

∂ 2

∂ t2 +κ
2
0 +κ

2
)

A = 0 (6.277)

with

κ0 =
m0c

h̄
, (6.278)
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where m0 is a particle mass. In particular, this can be identified with the photon rest mass. A
solution of Eq. (6.277) is

A = A0ei(ωt−κ·x) (6.279)

with time frequency ω , wave vector κ , and space coordinate vector x. By inserting this solution
into Eq. (6.277) we get

ω
2 = c2(κ2

0 +κ
2). (6.280)

The energy of a particle with rest mass m0 and momentum h̄κ is

E = h̄ω = m2
0c4 + c2h̄2

κ
2. (6.281)

ω is the de Broglie frequency or, in the case of a photon, the frequency of its electromagnetic
oscillation. In this way, the ECE wave equation for Beltrami fields is connected with the quantum-
mechanical realm. In particular, the photon has a rest mass and U(1) symmetry of electrodynamics
does not exist.

The inhomogeneous d’Alembert equation of classical physics can be derived in the following
way. Inserting the potentials (6.197, 6.198) into Eq. (6.241) gives

κ
2W = µ0J+

1
c2

∂

∂ t

(
−∇φW −

∂

∂ t
W
)
, (6.282)

which can be rewritten as

κ
2W+

1
c2

∂ 2

∂ t2 W+
1
c2 ∇

∂φW

∂ t
= µ0J. (6.283)

In space regions outside of the current distribution, we can apply φW = φ and W = A, and use the
Helmholtz equation (6.261) to get

−∇
2A+

1
c2

∂ 2

∂ t2 A+
1
c2 ∇

∂φ

∂ t
= µ0J. (6.284)

The Lorenz condition of ECE theory is

∂µAaµ = 0, (6.285)

and its space part reads (without polarization index a):

1
c2

∂φ

∂ t
+∇ ·A = 0. (6.286)

Since A is a Beltrami field, ∇ ·A = 0, i.e., the scalar potential is static. Inserting this into (6.284)
gives (

1
c2

∂ 2

∂ t2 −∇
2
)

A = µ0J, (6.287)

which is the d’Alembert or classical wave equation with source term:

� A = µ0J. (6.288)

This equation is connected with the Proca equation [63] as follows. If we identify the inhomoge-
neous term in the Proca equation (6.276) with the current density:

J =− 1
µ0

(m0c
h̄

)2
A, (6.289)
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we directly obtain the classical wave equation (6.288) with a source term at the right-hand side.
The source term is proportional to the vector potential itself. In a similar way, we can proceed with
the 0-component of the Proca equation (4.167):(

�+
(m0c

h̄

)2
)

Aa0 = 0. (6.290)

In full analogy to (6.289), we define

Ja0 =− 1
µ0

(m0c
h̄

)2
Aa0, (6.291)

which, without a index, can be written as:

J0 =− 1
µ0

(m0c
h̄

)2
A0, (6.292)

or, with

A0 =
ρ

c
, J0 = cρ, (6.293)

becomes

ρ =− 1
µ0c2

(m0c
h̄

)2
φ =−ε0

(m0c
h̄

)2
φ . (6.294)

The scalar part of the Proca equation (6.290) then follows:

� φ =
1
ε0

ρ. (6.295)

This is an inhomogeneous wave equation for the electric potential.
In the discussion above, charge densities and currents have been defined via potentials, and

not via conventional charged masses. Therefore, they can be considered as vacuum structures,
conglomerating into matter with a rest mass m0. The vacuum potentials themselves are sources
of charges and currents. In a philosophical sense, matter may be considered to consist of vacuum
or spacetime structures. A photon with mass fits well into this approach, which is fundamentally
different from that of quantum electrodynamics (special relativity only).

6.2.5 Interpretation of Beltrami fields, with examples
After the theoretical aspects of Beltrami fields have been described, we will clarify their essential
properties using practical examples.

First, we consider Beltrami solutions in vacuo with harmonic time dependence. The Faraday
and Ampère-Maxwell laws in vacuo are

∂B
∂ t

+∇×E = 0, (6.296)

− 1
c2

∂E
∂ t

+∇×B = 0. (6.297)

We use the following two approaches for electric and magnetic fields:

1) Time dependence:

E(r, t) = E(r)eiωt , (6.298)

B(r, t) = B(r)eiωt , (6.299)
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with an angular time frequency ω .

2) Beltrami field assumptions for the space parts:

∇×E(r) = κ E(r), (6.300)

∇×B(r) = κ B(r). (6.301)

κ is a constant wave number.

Inserting both approaches into (6.296-6.297) gives

κE+ iωB = 0, (6.302)

κB− i
ω

c2 E = 0. (6.303)

From Eq. (6.302) it follows that

B = i
κ

ω
E, (6.304)

which, inserted into (6.303), gives

i
κ2

ω
E− i

ω

c2 E = 0 (6.305)

or

i
(

κ2

ω
− ω

c2

)
E = 0. (6.306)

Since E is not zero in general, the factor in parentheses must vanish:

κ2

ω
− ω

c2 = 0. (6.307)

This gives

κ
2 =

ω2

c2 (6.308)

or

κ =
ω

c
, (6.309)

which is the usual definition of the wave number belonging to the time frequency ω .
The time-dependence approach (6.298, 6.299) means that E and B describe standing waves.

For example, a wave of type

E0 cos(κX)cos(ωt) (6.310)

is a standing wave in the X direction, modulated by time. Thus, the space part of Beltrami fields
represents standing waves, if the time dependence can be separated, as in the above equation. An
example is graphed in Fig. 6.2.

It has even been shown that, using the potential-based approaches (6.289) and (6.294), the ECE
potential is a Beltrami field in general [59].

Next, we consider some concrete examples.
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Figure 6.2: Example of a standing wave: A = cos(X)sin(t) for different t values.

� Example 6.5 In example 4.2, circularly polarized plane waves were discussed, which are
fundamental to the B(3) field and O(3) electrodynamics. The three polarization vectors of the vector
potential, A(i), i = 1,2,3, represent a rotating circular basis. It was shown that these vectors obey
Beltrami conditions, see Eqs. (4.156 - 4.158):

∇×A(1) = κ A(1), (6.311)

∇×A(2) = κ A(2), (6.312)

∇×A(3) = 0 ·A(3). (6.313)

The third equation has the wave number κ = 0 and represents a special case. The reason is
that the magnetic field in Z direction, derived from these polarization vectors, is constant. The
non-vanishing κ values describe the space oscillation of the waves (see Eqs. (4.150-4.151) for
definitions). This shows that O(3) electrodynamics is essentially a Beltrami theory. �

� Example 6.6 Reed [61, 62] has shown that the most general Beltrami field v can be described by

v = κ ∇× (ψa)+∇×∇× (ψa) , (6.314)

where ψ is an arbitrary function, κ is a constant and a is a constant vector. We present two examples.
First we define (see computer algebra code [103])

ψ =
1
L3 XY Z (6.315)

with

a = [0,0,1]. (6.316)

The field resulting from Eq. (6.314) is graphed in Fig. 6.3. The field has only XY components and
describes a hyperbolic vortex. Nevertheless, the divergence is zero.

A second example is

ψ = sin(κX) sin(κY ) cos(κZ), (6.317)
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which has a more complicated structure (Fig. 6.4). The projection of several Z levels on the XY
plane is shown in Fig. 6.5. One can see that the vectors rotate around the Z axis. Such rotational
structures in all three dimensions are typical for Beltrami fields. �

Figure 6.3: General Beltrami field of Eqs. (6.314-6.316).

Figure 6.4: General Beltrami field of Eqs. (6.314, 6.316-6.317).

Figure 6.5: General Beltrami field of Eqs. (6.314, 6.316-6.317), projection on the XY plane.
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� Example 6.7 Marsh [64] defines a general Beltrami field with cylindrical geometry by

B =

 0
Bθ (r)
BZ (r)

 (6.318)

with cylindrical coordinates r, θ , Z. There is only an r dependence of the field components. For
this to be a Beltrami field, the Beltrami condition in cylindrical coordinates

∇×B =


1
r

∂BZ
∂θ
− ∂Bθ

∂Z
∂Br
∂Z −

∂BZ
∂ r

1
r

(
∂ (r Bθ )

∂ r −
∂Br
∂θ

)
= κ B (6.319)

must hold. The divergence in cylindrical coordinates is

∇ ·B =
1
r

∂ (r Br)

∂ r
+

1
r

∂Bθ

∂θ
+

∂BZ

∂Z
. (6.320)

Obviously, the field (6.318) is divergence-free, which is a prerequisite to be a Beltrami field. Eq.
(6.319) simplifies to

∇×B =

 0
− ∂BZ

∂ r
∂Bθ

∂ r + 1
r Bθ .

= κ

 0
Bθ

BZ

 . (6.321)

We consider the case for constant κ . From the second component of Eq. (6.321) we get

− ∂

∂ r
BZ = κ Bθ (6.322)

and from the third component

r
∂

∂ r
Bθ +Bθ = κ r BZ. (6.323)

Integrating Eq. (6.322) and inserting the result for BZ into (6.323) gives

∂

∂ r
Bθ +

Bθ

r
=−κ

2
∫

Bθ dr, (6.324)

and differentiating this equation leads to the second order differential equation

r2 ∂ 2

∂ r2 Bθ + r
∂

∂ r
Bθ +κ

2 r2 Bθ −Bθ = 0. (6.325)

Finally, we change the variable r to κr which leads to Bessel’s differential equation

r2 d2

d r2 Bθ (κ r)+ r
d

d r
Bθ (κ r)+

(
κ

2 r2−1
)

Bθ (κ r) = 0. (6.326)

The solution is the Bessel function

Bθ (r) = B0 J1(κr) (6.327)

(with a constant B0), and from (6.322) it follows that

BZ(r) = B0 J0(κr) (6.328)
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(see computer algebra code [104]). This is the known solution of Reed/Marsh, scaled by the wave
number κ , with longitudinal components. It is graphed in Fig. 6.6. It can be seen that the vector
field changes from transverse to longitudinal when approaching the Z axis. However, there are
always longitudinal components at certain distances, as well. This is obvious from Fig. 6.7, where
the decomposition into both components is plotted. According to the oscillating nature of the Bessel
functions (with zero crossings), the field changes periodically from transverse to longitudinal, with
increasing radius.

Figure 6.6: Beltrami field of Bessel functions.

Figure 6.7: Beltrami field of Bessel functions, decomposition into transversal and longitudinal
vectors.
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Figure 6.8: Beltrami field of Bessel functions, streamlines.

The flow of test particles in the field (if it is assumed to be hydrodynamic) can best be seen from
a streamline picture. The streamlines are shown in Fig. 6.8. Streamlines show how a test particle
moves in the vector field, which is considered to be a velocity field. The particle is transported
according to

x+∆x = x+v(x) ∆t (6.329)

with a velocity v. In Fig. 6.8, all streamlines start with nine points in parallel on the X axis. At the
center, the flow is fast and longitudinal, while at the periphery (near the first zero crossing of the
Bessel function J0) the flow is circling and has only a small Z component.

There is a remarkable similarity to the technical innovations of Nicola Tesla. In Fig. 6.8, the
transverse parts resemble the current distribution in a Tesla flat coil. The longitudinal part in the
middle corresponds to the current going to the sphere in a Tesla transmitter (for example, see a
Tesla patent [65]. According to Eq. (6.223), the current density for producing a Beltrami field is a
Beltrami field itself. Therefore, it should be possible to transmit free Beltrami fields by constructing
a transmitter that has a current distribution as shown, for example, in Fig. 6.8.

A flat coil is only a rough approximation, since therein the current density is constant and
does not depend on the radius. An improvement could be to use concentric conducting rings
with differing currents, and with a dipole-like structure perpendicular to the rings at the center.
The spatial dimensions are determined by the wave number, which enters Eq. (6.326) through
κ = 2π/λ . The wavelength λ is defined by the frequency, which should not be too high, otherwise
the Maxwell displacement current of Eq. (6.218) has to be taken into account. �

� Example 6.8 The last example shows a longitudinal vortex flow of Victor Schauberger (Fig. 6.9,
as cited by Reed [61]). Schauberger described natural phenomena that often consisted of vortex
phenomena. Similar vortex structures are mentioned by Reed in connection with interstellar
magnetic fields without forces. Fig. 6.9 is highly similar to the Beltrami flow of the Bessel function
example, Fig. 6.8. In addition, there are small toroidal counter-vortices near the surrounding pipe.
This is a transport phenomenon in fluids. �
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Figure 6.9: Helical flow according to Schauberger [61].

Some more interesting examples of Beltrami fields are described in [59] and [4]. These are
examples for longitudinal solutions of the field equations, even in the case of Maxwell-Heaviside
equations of special relativity. In particular, it is remarkable that standing waves can be generated
from only one side of a transmission. Normally, two sides with “fixed ends” are required for
this. It is not clear how communication mechanisms could be established by standing waves.
Mathematicians argue that changes in standing waves propagate instantaneously, and this could
even enable superluminal communication.
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7. ECE dynamics

7.1 ECE dynamics and mechanics
In the preceding part of this textbook, ECE electrodynamics has been worked out in great detail.
Now, we turn to the subject of mechanics, which includes a number of areas. Newtonian mechanics
is the area of dynamics, including Lagrange theory, where time-dependent processes are handled,
up to the special case of statics, for example, structural mechanics. One of the most important
mechanical forces is gravitation, which defines a realm of its own, with relativistic effects playing a
very significant role. Many books have been written about Einsteinian gravitation. The bases of
these areas are the mechanical equations of motion, and they will be derived first.

7.1.1 The field equations of dynamics
We start by reviewing how the field equations of electrodynamics were derived. They are based on
the alternative form of the Cartan-Bianchi and Cartan-Evans identities, Eqs. (4.40, 4.41):

Dµ T̃ aµν = R̃a µν

µ , (7.1)

DµT aµν = Ra µν

µ . (7.2)

These are equations of Cartan geometry, with torsion form T aµν and curvature form Ra µν

µ , in
contravariant representation. Electromagnetism is introduced by the ECE axioms, connecting the
tetrad qa

µ with the potential Aa
µ , and the torsion T a

µν with the electromagnetic field Fa
µν :

Aa
µ = A(0)qa

µ , (7.3)

Fa
µν = A(0)T a

µν , (7.4)

where A(0) is a constant with physical units. Then, the field equations follow directly from Eqs.
(7.1, 7.2) by inserting the axioms:

Dµ F̃aµν = A(0)R̃a µν

µ , (7.5)

DµFaµν = A(0)Ra µν

µ . (7.6)
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These are the electromagnetic field equations in contravariant form (see Eqs. (4.42, 4.43)). From
these, the vector equations in Maxwell-Heaviside notation can be derived, as has been fully worked
out in Chapter 4.

Since ECE is a unified field theory, we proceed in the same way for the mechanical sector. After
defining the appropriate axioms, we will eventually arrive at dynamics field equations equivalent to
(7.5, 7.6). We start by comparing Newton’s law of gravitation with the Coulomb law of electrostatics.
Both have the same radial dependence and are formally identical. Newton’s law must be a part of
the more general field equations of ECE dynamics. The Coulomb law is

E =
q

4πε0r2 r̂, (7.7)

while Newton’s gravitational law reads

g =−MG
r2 r̂. (7.8)

Here G the gravitational constant, q is the electric charge and M the gravitational mass. r̂ is the unit
vector in the direction of a probe charge or mass, respectively, where r is its modulus. It can be
seen that M takes the role of a “gravitational charge” in this law. Both fields decrease with 1/r2

over distance. The force on a probe charge e or mass m is, correspondingly:

Fel = eE, (7.9)

Fgrav = mg. (7.10)

Newton’s equivalence principle between gravitaion and dynamics force law, “force equals mass
times acceleration”, follows from the second law. E and g correspond to one another and represent
a unification of fields. The related field equation in the electromagnetic case is the Coulomb law for
distributed charges ρ , written in divergence form:

∇ ·E =
ρ

ε0
. (7.11)

Therefore, an equivalent equation should exist in the case of dynamics. Rewriting the Coulomb law
by use of the scalar potential φ ,

E =−∇φ , (7.12)

gives us

∇
2
φ =− ρ

ε0
, (7.13)

which is the Poisson equation. This equation is also present in classical mechanics, where the
acceleration field is derived from the mechanical potential Φ by

g =−∇Φ, (7.14)

in full analogy. Therefore, the Poisson equation of dynamics is

∇
2
Φ = αρm, (7.15)

where ρm is the mass density and α is a constant. This constant is found by comparison with
electrodynamics, in the following way. The electrostatic field can be computed from the charge
density ρ by

E(r) =
1

4πε0

∫
ρ(r′)

r− r′

|r− r′|3
d3r′ (7.16)
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(see [66]). This equation is derived from inserting what is called the Coulomb integral,

φ(r) =
1

4πε0

∫
ρ(r′)
|r− r′|

d3r′, (7.17)

inserted into Eq. (7.12). In the case of mechanics, we write analogously to (7.16):

g(r) =−G
∫

ρm(r′)
r− r′

|r− r′|3
d3r′, (7.18)

with −G being a constant. This constant provides the right physical units for g, as the factor
1/(4πε0) does in the electric case. The minus sign stems from the fact that masses are always posi-
tive, but the force between them is attractive, not repulsive. This is different from electrodynamics,
and appropriate adjustments must be made. For a point mass, ρm takes a Dirac delta function,
which produces a factor of 4π so that this factor cancels out in the electrical Poisson equation [66].
In the case of mechanics, this factor is preserved, leading to α = 4πG in (7.15):

∇
2
Φ = 4πGρm (7.19)

or

∇ ·g =−4πGρm. (7.20)

This is one of the ECE field equations of dynamics. The factor G was experimentally found to be
Newton’s constant of gravitation.

For consistency with electrodynamics, there must be three additional field equations, so that a
set of Maxwell-like equations is obtained for dynamics. To derive these equations, we proceed in
the same way as we did for the field equations of electrodynamics. First, we define the ECE axioms
in analogy to Eqs. (7.3, 7.4). Instead of Aa

µ , we use the 4-potential Qa
µ , and instead of Fa

µν , we
use the field tensor Ga

µν . Both are defined to be identical with the tetrad and curvature, via a factor
Q(0):

Qa
µ = Q(0)qa

µ , (7.21)

Ga
µν = Q(0)T a

µν . (7.22)

Then, the field equations of dynamics in contravariant form read, in analogy to (7.5, 7.6):

DµG̃aµν = Q(0)R̃a µν

µ , (7.23)

DµGaµν = Q(0)Ra µν

µ . (7.24)

We have already seen from Eq. (7.20) that the gravitational acceleration field g corresponds to
E. The latter is of translational character, and so is g. In addition, there must be a mechanical
field of rotational character in the field tensor, corresponding to B. We call this Ω. Both of these
mechanical fields must have a polarization index a, as is the case in ECE elctrodynamics. They
are designated ga and Ω

a, in ECE dynamics. Then, the gravitational field tensor, in analogy to Eq.
(4.65), has the form:

Gaµν =


Ga00 Ga01 Ga02 Ga03

Ga10 Ga11 Ga12 Ga13

Ga20 Ga21 Ga22 Ga23

Ga30 Ga31 Ga32 Ga33

=


0 −ga1/c −ga2/c −ga3/c

ga1/c 0 −Ωa3 Ωa2

ga2/c Ωa3 0 −Ωa1

ga3/c −Ωa2 Ωa1 0

 , (7.25)
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and its Hodge dual, corresponding to (4.56), is:

G̃aµν =


G̃a00 G̃a01 G̃a02 G̃a03

G̃a10 G̃a11 G̃a12 G̃a13

G̃a20 G̃a21 G̃a22 G̃a23

G̃a30 G̃a31 G̃a32 G̃a33

=


0 Ωa1 Ωa2 Ωa3

−Ωa1 0 −ga3/c ga2/c
−Ωa2 ga3/c 0 −ga1/c
−Ωa3 −ga2/c ga1/c 0

 . (7.26)

In analogy to the electromagnetic case, the ga field is divided by c, the velocity of light in vacuo,
so that all tensor elements have the same units, namely inverse seconds. Thus, it can be seen
directly that Ω

a is a rotational field. Since torsion has units of inverse meters, it follows from Eq.
(7.22) that the constant Q(0) has units of m/s, i.e., it is a velocity. From Eq. (7.21) we see that the
vector potential of dynamics, Qa

µ , has units of a velocity also. It can be interpreted as a velocity of
vacuum flux in classical mechanics. This property is completely unknown in standard theory.

The charge and current densities are defined in analogy to Eqs. (4.45-4.50) by

∂µG̃aµν = Q(0)R̃a µν

µ −ω
a

(Λ) µb G̃bµν =: jaν , (7.27)

∂µGaµν = Q(0)Ra µν

µ −ω
a
µb Gbµν =: Jaν . (7.28)

The field equations of dynamics can be transformed into vector form in the same way as was
worked out in Section 4.2.3, in all detail. We can use Eqs. (4.72-4.75) directly, by making the
following replacements:

Ea→ ga,

Ba→Ω
a,

ρ
a
h → ρ

a
mh, (7.29)

ρ
a→ ρ

a
m,

ja→ ja
m,

Ja→ Ja
m.

In addition, the potentials are replaced by

φ
a→Φ

a, (7.30)

Aa→Qa.

The constants on the right-hand sides are adapted to Newton’s law, as derived for Eq. (7.20). As
described above, we have a sign change compared to the constants of electrodynamics. Finally, we
arrive at the vector equations

∇ ·Ωa = 4πG ρ
a
mh, Gauss law of dynamics

∂Ω
a

∂ t
+∇×ga =−4πG

c
ja
m, gravitomagnetic law

∇ ·ga =−4πG ρ
a
m, Newton’s law (Poisson equation)

− 1
c2

∂ga

∂ t
+∇×Ω

a =−4πG
c2 Ja

m. Ampère-Maxwell law of dynamics

(7.31)

(7.32)

(7.33)

(7.34)

The units of all components are listed in Table 7.1, together with the corresponding electromagnetic
components, for comparison. In the dynamics case, the homogeneous and inhomogeneous currents
have the same units. In the electromagnetic case, they differ by how they were defined in their
respective unit system.
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electromagnetic mechanics/dynamics

symbol field/constant units symbol field/constant units

E electric field V/m g gravitational field m/s2

B magnetic field T=Vs/m2 Ω gravitomagnetic field 1/s
φ scalar potential V Φ gravitational potential m2/s2

A vector potential Vs/m Q grav. vector potential m/s
A(0) ECE constant Vs/m Q(0) grav. ECE constant m/s
ρ charge density C/m3 ρm mass density kg/m3

J current density C/(m2s) Jm mass current density kg/(m2s)
ρh hom. charge density A/m2 ρmh hom. mass density kg/m3

Jh hom. current density A/(ms) Jmh hom. mass current density kg/(m2s)
ε0 vacuum permittivity As/(Vm) G gravitational constant m3/(kg s2)
µ0 vacuum permeability Vs/(Am) k Einstein constant 1/N=s2/(kg m)

Table 7.1: Comparison between electromagnetic and gravitational quantities.

The mechanical 4-currents are defined in detail by

( ja)ν =


cρa

mh
ja1

ja2

ja3

=

[
cρa

mh
ja

]
, (7.35)

(Ja)ν =


cρa

m
Ja1

Ja2

Ja3

=

[
cρa

m
Ja

]
. (7.36)

Usually, the homogeneous currents vanish, as is known by experiment for the electromagnetic case.
We define the 4-potential in analogy to Eq. (4.33):

(Qa)ν =


Φa/c
Qa1

Qa2

Qa3

=

[
Φa/c
Qa

]
. (7.37)

With this definition, we can write the field-potential relations of dynamics in the same form as
(4.197, 4.198):

ga =−∇Φ
a− ∂Qa

∂ t
− cω

a
0b Qb +ω

a
bΦ

b,

Ω
a = ∇×Qa−ω

a
b×Qb.

(7.38)

(7.39)

This is a significant difference when compared to standard theory, where only the gravitational
scalar potential Φ and the gravitational field g are known, being connected by:

g =−∇Φ. (7.40)

ECE dynamics has a much richer structure. Specifically, it is a theory of general relativity with
spacetime torsion and curvature. Therefore, the spin connections appear in these equations as they
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do in electromagnetism. The gravitomagnetic field Ω has been observed experimentally. This will
be described in a few examples, later. Even in Einsteinian general relativity, some authors speak of
this field in terms of linear approximation to the Einstein field equations. In ECE theory, this is not
an approximation, but rather a genuine field of nature.

7.1.2 Additional equations of the mechanical sector
It has been shown that there is a full analogy between mechanics and electromagnetism in ECE
theory. Therefore, the mechanical sector can be developed further by adapting important laws of
electrodynamics to dynamics. In this way, new laws of nature are found that were not completely
known hitherto.

An important equation, following from the field equations, is the generally covariant continuity
equation.When its electromagnetic counterpart, Eq. (5.100), is adapted to dynamics, it reads:

∂ρa
m

∂ t
+∇ ·Ja

m = 0. (7.41)

A variation of a mass density in time is connected with a divergence of the mass current density.
For example, removing mass from a volume results in a time-dependent density and, consequently,
to an equivalent mass current density.

Next, we derive Lorentz force equations from the Lorentz transform of special relativity. If
an electromagnetic system (E, B) is observed in another frame of reference, moving with respect
to the original Frame 1 with a velocity vector v, then the electric and magnetic fields in Frame 2,
denoted by E′, B′, are obtaiend according to the transformation equations [67]:

E′ = γ (E+v×B)− γ2

1+ γ

v
c

(v
c
·E
)
, (7.42)

B′ = γ

(
B− 1

c2 v×E
)
− γ2

1+ γ

v
c

(v
c
·B
)

(7.43)

with the relativistic “gamma factor”

γ =
1√

1− v2

c2

. (7.44)

In the nonrelativistic approximation,

v� c, γ → 1, (7.45)

these equations reduce to

E′ = E+v×B, (7.46)

B′ = B− 1
c2 v×E. (7.47)

The first of these equations, when multiplied by a charge, is the well-known Lorentz force. The
second equation is the less used magnetic counterpart to it. If there is no original electric field in
the frame at rest, Eq. (7.46) can be written as

E′ = v×B, (7.48)

which is the form used in most applications.
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The ECE dynamics counterparts are the gravitational Lorentz force

g′ = g+v×Ω , (7.49)

and its gravitomagnetic equivalent

Ω
′ = Ω− 1

c2 v×g, (7.50)

also called thegravitomagnetic equation. Ω is quite small in general, and the effects of these forces
cannot be experienced in daily life, in contrast to the electromagnetic Lorentz force, which is a
basis of many kinds of technical applications. The term v× g in Eq. (7.50) is not as small, but
is weighted with 1/c2; therefore, it acts as a relativistic correction, and its scale also makes it
undetectable through standard measurement.

The ECE wave equation of dynamics follows from the geometrical Evans lemma (4.159) via
the postulate (7.21):

� Qa
ν +RQa

ν = 0 (7.51)

with a scalar curvature R as described in Section 4.3. It is also possible to write the Proca equation
with the mechanical potential Qa

ν :

� Qa
ν +
(m0c

h̄

)2
Qa

ν = 0. (7.52)

Finally, the equations of ECE2 theory can be formulated for mechanical fields and potentials.
Denoting the scalar and vector ECE2 potentials of Section 6.1.3 by ΦW and QW , we obtain for the
ECE2 field-potential relations of dynamics:

g =−∇ΦW −
∂QW

∂ t
,

Ω = ∇×QW .

(7.53)

(7.54)

The ECE2 field equations of electromagnetism, Eqs. (6.97-6.100), can be transformed directly into
the ECE2 field equations of dynamics. For vanishing homogeneous currents, they are:

∇ ·Ω = 0, Gauss law of dynamics
∂Ω

∂ t
+∇×g = 0, Gravitomagnetic law

∇ ·g =−4πG ρm, Newton’s law (Poisson equation)

− 1
c2

∂g
∂ t

+∇×Ω =−4πG
c2 Jm. Ampère-Maxwell law of dynamics

(7.55)

(7.56)

(7.57)

(7.58)

Compared to the field equations of dynamics, Eqs. (7.31-7.34), the only difference is that the
tangent space index a has disappeared.

Since the Cartan geometry for electromagnetism and dynamics is the same, the same antisym-
metry laws for both field types exist. Therefore, we can directly translate the antisymmetry laws
(5.14) and (5.18 - 5.20) of the electric and magnetic case to the respective laws of dynamics. With
the replacement rules (7.30), the electric antisymmetry condition reads

−∂Qa

∂ t
+∇Φ

a− cω
a
0b Qb−ω

a
bΦ

b = 0, (7.59)
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and the magnetic antisymmetry condition consists of the three equations wit permutational structure:

−∂3Qa2−∂2Qa3 +ω
a3

b Qb2 +ω
a2

b Qb3 = 0,

−∂1Qa3−∂3Qa1 +ω
a1

b Qb3 +ω
a3

b Qb1 = 0,

−∂2Qa1−∂1Qa2 +ω
a2

b Qb1 +ω
a1

b Qb2 = 0.

(7.60)

(7.61)

(7.62)

� Example 7.1 Gravity Probe B [68,69] was a satellite constructed to verify two effects of general
relativity. The satellite contained four gyroscopes, and the angular precession of the gyro axes was
measured by high-precision instruments. The larger effect is the so-called geodetic precession,
which stems form the fact that the earth creates a spherical, non-Newtonian gravitational field. The
second effect is a small additional effect, the so-called Lense-Thirring effect, which describes the
frame dragging of spacetime. This should be observable also.

Figure 7.1: Polar satellite orbit around the earth.

The satellite for Gravity Probe B was started in 2004 and was operational until 2005. It orbited
at a hight of 650 km above the earth surface, i.e., it was a low-orbit satellite, whose mean distance
above the earth’s surface was small compared with the earth’s radius. The orbit was over the poles
(see Fig. 7.1).

There arose, however, big problems in evaluating the recorded data. The electromagnetic
interaction of the gyroscopic spheres with the walls of the satellite had not been taken in to account
properly. In the first evaluation, the results were much less precise than expected, there was a
variance of the precession angle (error bar) by 0.1 rad/year. This unexpected variance contained the
Lense-Thirring effect, which was not observable separately.

The ECE theory explains the frame dragging out of its own, from the gravitomagnetic field.
The AIAS paper 117 [68] was written in about 2008 and so it seemed that it would be logical to
assign the variance of 0.1 rad/year to the corresponding ECE calculation. The ECE result was
0.099 rad/year and was a consistent explanation of the experimental variance. Later, in 2011, a final
report was published about Gravity Probe B, mentioning the precession result of the Lense-Thirring
effect to be 0.0372±0.0072 rad/year [69]. To obtain this result, a lot of data corrections had to be
developed so that - besides lack of grant support - it took six years until the final results could be
made available. There was a concomitant theoretical explanation, in which a dipole approximation
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was made for the earth mass. However, a sphere of uniform mass has no multipoles except the
familiar monopole, the Newtonian potential. This makes the calculation of the Lense-Thirring
effect at least questionable.

In ECE theory, the part of gyroscopic precession we are focussing on (the Lense-Thirring effect
of Einsteinian theory) is explained by the gravitomagnetic field. This is, according to Eq. (7.50),

Ω =− 1
c2 v×g, (7.63)

where v is the velocity of the “observer” and g is the gravitational field of the earth with mass M:

g =−MG
r3 r. (7.64)

Inserting this into Ω gives

Ω =− 1
c2 v×

(
−MG

r3 r
)
=−MG

c2r3 r×v. (7.65)

This looks similar to an angular momentum, which is defined for a position r and velocity v of a
mass m as

L = r×p = m r×v, (7.66)

where p is the linear momentum. Since the earth is an extended body, the total angular momentum
sums up from its single mass elements mi with their corresponding positions and velocities to

L = ∑
i

miri×vi, (7.67)

which describes the angular momentum of the earth due to its rotating mass; it is a spin momentum.
Integration over all mass elements gives the well-known result

Lsph =
2
5

MR2
ω (7.68)

for a homogeneous sphere with radius R. The angular frequency ω = v/r is the rotational speed,
360 degrees in one day. The masses mi sum up to M, therefore, from Eq. (7.65):

Ω =− G
c2r3 Lsph (7.69)

or

Ω =
2
5

MGR2

c2r3 ω. (7.70)

This is the gravitomagnetic field of the earth’s spin. With the parameters listed in [68], Eq. (24.21)
therein, the result is

Ω = 1.5878 ·10−14 rad/s. (7.71)

With t = 1 year, the angular precession of the gyroscopic axes in the satellite then is

θ = Ω · t = 0.0987 rad. (7.72)

All calculations can be found in the computer algebra code [106].



160 Chapter 7. ECE dynamics

In the earlier AIAS paper of 2008, this was interpreted as agreement with experiment, which
gave a variance in measurement of 0.1 rad per year (see discussion above). When considering the
newer result for the Lense-Thirring effect, which is 0.0372±0.0072 rad/year, the ECE result is
larger but in the same order of magnitude. For a precise comparison, we have to take account the
approximations made in the calculation, for example the assumption of a homogeneous sphere
for the earth with homogeneous density. Another point is, where the angular momentum vector is
defined in space. Normally, it is assumed that this vector is valid at the position of the rotation axis
(origin of the coordinate system). This would mean that it has the assumed value only when the
satellite is over the poles. When it has moved to an angle of θ = 90◦ of the spherical coordinate
system, the local vector of the angular momentum should be minimal. If we assume that it varies
with the cosine function, the mean value of the gravitomagnetic field then is

Ωav = Ω · 1
π/2

∫
π/2

0
cosθdθ = Ω · 2

π
≈ 0.637 Ω. (7.73)

The angular precession of Eq. (7.72) then reduces to

θ = 0.063 rad, (7.74)

which comes nearer to the experimental result. Given the lengthy calculations and assumptions,
which led to the experimental value, this is a reasonable agreement. �

� Example 7.2 A case, in which Eq. (7.50) plays a role, is equinoctial precession [70]. During
a terrestrial year, the equinoxes are those days in spring and autumn, where the times of sunlight
and night are equal. As can be seen from Fig. 7.2, at these days in the year the rotation axis of the
earth is perpendicular to the plane of motion of the earth (and the other planets) around the sun,
which is called the ecliptic. The appearance of seasons is a consequence of the fact that the rotation
axis of the earth is is not perpendicular to the ecliptic but is tilted by an angle of 23.5 degrees. The
celestial equator is an elongation of the earth equator (see Fig. 7.3) and its plane is inclined to the
ecliptic by this angle.

The time between two venal or autumnal equinoxes defines a year with respect to the ecliptic
orbit of the earth, the tropical year. Another definition is the sideral year, this is the time that
elapses until the fixed stars are seen under the same angle again. If the axis of the earth were
fixed, both years were identical, i.e., one would see the same background of the fixed stars during
equinoxes. There is, however, a difference between both because of a precession of the earth axis.
The background of fixed stars changes by 50.25 arcsec per year. In the past, This was tried to
explain by influences of other planets of the solar system, however this was contradictory and led
only to some empirical formulas to predict precession angles.

In [69] it is explained in detail that the true reason for equinoctial precession is the motion
of the sun in our galaxy. The sun orbits the galactic center in 230 million years. If the ecliptic is
dragged with this motion, we arrive at the picture graphed in Fig. 7.4. After one earth year, the
same position relative to the sun leads to a change of the background of fixed stars due to this
orbital motion of the sun. We can compute this “precession” for one year as

ε = 2π · 1
230 ·106 = 0.005 arcsec, (7.75)

which is smaller than the observed 50.25 arcsec by several orders of magnitude. The period of the
observed precession is only about 25 800 years. Therefore, another mechanism must be at work.
This is the gravitomagnetic field described by Eq. (7.50). The velocity in this equation is the orbital
velocity of the sun in the galactic orbit. The distance from the galactic center is 8178 parsec, or
2.523 ·1020 m. The orbital velocity of the sun is then



7.1 ECE dynamics and mechanics 161

Figure 7.2: Terrestrial equinoxes in spring and autumn [117].

Figure 7.3: Celestial equator and ecliptic in earth-centered view [118].

Figure 7.4: Direction effect due to motion of sun around the galactic center.
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v =
2π

230 ·106 y
·2.523 ·1020 m = 218 448 m/s, (7.76)

which is very close to the value of 220 km/s, known from other observations. All calculations are
contained in the computer algebra code [107] for this example.

If there is no gravitomagnetic field in the rest system of the sun, the gravitomagnetic equation
(7.50) is simply

Ω =− 1
c2 v×g. (7.77)

Its modulus is

|Ω|= 1
c2 vgsin(θ), (7.78)

where θ is the angle between the orbital velocity and gravitational field, in which the earth rotates.
It is mainly the acceleration field of the earth. In [69] it is proposed that it is the field at the position
of the observer, but the precession of the earth axis cannot depend on this. It will rather be an
average value over all directions of g, and even over the radius of the earth, because each mass
element will experience a different accelearation at its radius. With

v = 218 448 m/s, g = 9.81 m/s2, c = 2.9979 ·108 m/s, (7.79)

we obtain as a maximum value, when v and g are perpendicular to each other:

Ω = 2.38439 ·10−11/s. (7.80)

With this value, we would obtain a precession angle of

Ω ·1year = 155.2 arcsec/year, (7.81)

which is much more than the observed 55.25 arcsec/year. We conclude that the average angle
between v and g then would be

θ = arcsin
55.25
155.2

= 18.9◦, (7.82)

if we take the value of g = 9.81 m/s2 at the earth’s surface. Alternatively, we can compute an
effective gravitational field

geff = gsinθ = 3.179 m/s2, (7.83)

or an effective orbital velocity

veff = vsinθ = 70 782 m/s. (7.84)

The result geff < g is reasonable. The gravitomagnetic field is a plausible, non-Newtonian explana-
tion for the equinoctial precession. It is based on a generally covariant theory of dynamics and not
on the general relativity of Einstein. �
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7.1.3 Mechanical polarization and magnetization
In Section 5.2, we have introduced electrodynamic polarizaton and magnetization, which are well
known in standard physics. We can also transfer these concepts to dynamics: a polarization,
inferred by the gravitational field, and magnetization of matter, inferred by the gravitomagnetic
field. In dynamics, we have the special situation that no “charges” of different sign are present, so
polarization may work differently, if it exists in the case of gravitation.

We define the analogs of electromagnetic displacement D and magnetic field H (not the
induction) in the same way as in Section 5.2. For this, we map the electromagnetic fields to the
fields of dynamics in the following way:

Ea→ ga
0,

Da→ ga, (7.85)

Ba→Ω
a,

Ha→Ω
a
0.

For convenience, g is associated with th displacement field D, not with E. The counterpart of the
electric field E in presence of polarization is denoted by g0. The magnetic field H is associated
with Ω0, while the magnetic induction B is associated with Ω as before.

The unit system of dynamics is simpler than that of electrodynamics, because there are no
historic developments we would have to take care of. Therefore, we simply define a mechanical
polarization Pm and magnetizaton Mm so that (omitting the polarization index a)

g = g0 +Pm (7.86)

and

Ω = Ω0 +Mm. (7.87)

The resulting equations of motion are presented in Table 7.2, in comparison with their electromag-
netic equivalents. Contrary to electrodynamics, the pairs of fields (g0, g) and (Ω0, Ω) have the same
units.

In case of a linear dependence of polarization and magnetization, we can write as in electrody-
namics:

g = εmg0, (7.88)

Ω = µmΩ0. (7.89)

We do not need constants like ε0 and µ0 as in the electromagnetic case. Instead, we only need a
relative mechanical permittivity εm and permeability µm as introduced in the above equations. Then,

electromagnetic mechanical

∇ ·Ba = 0
1
c2

∂Ha

∂ t
+∇×Da = 0

∇ ·Da =
ρa

ε0

−c2 ∂Da

∂ t
+∇×Ha = Ja

∇ ·Ωa = 0
∂Ω

a
0

∂ t
+∇×ga = 0

∇ ·ga =−4πGρ
a
m

− 1
c2

∂ga

∂ t
+∇×Ω

a
0 =−

4πG
c2 Ja

m

Table 7.2: Comparison between electromagnetic and gravitational polarization and magnetization.
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electromagnetic mechanical

∇ ·Ba = 0,
1
µr

∂Ba

∂ t
+ εr∇×Ea = 0,

∇ ·Ea =
ρa

ε0εr
,

−εr
∂Ea

∂ t
+

1
µr

∇×Ba = µ0Ja.

∇ ·Ωa = 0
1

µm

∂Ω
a

∂ t
+ εm∇×ga

0 = 0

∇ ·ga
0 =−

4πG
εm

ρ
a
m

−εm

c2
∂ga

0
∂ t

+
1

µm
∇×Ω

a =−4πG
c2 Ja

m

Table 7.3: Comparison between electromagnetic and gravitational polarization and magnetization
for linear materials.

the equations of motion can be formulated with these constants in full analogy to the electromagnetic
case, as listed in Table 7.3.

The question, when these effects become evident, is still open. It is not known that different
kinds of matter produce such effects, because the gravitational field depends only on mass. However,
the gravitational constant is only known to some few digits. This could be a hint that certain local
deviations may depend on gravitational polarization. For gravitational waves (see next section),
there could also be an effect. Myron Evans has proposed to consider the spin connection term
ωa

b×Qb in Eq. (7.39) as a magnetization effect in the electromagnetic case [71]. It could also
appear in mechanics directly as argued here. A gravitomagnetic moment - the counterpart to the
magnetic moment - can be defined as in the following example.

� Example 7.3 We compute the gravitomagnetic field that the earth generates on its path around
the sun. A general method would be to solve the static Ampère-Maxwell law

∇×Ω =−4πG
c2 Jm (7.90)

for the current density Jm evoked by the earth. However, the current consists of motion of a single
mass and there is no continuous current. Therefore, we choose a different approach. The angular
momentum of the earth’s motion is an orbital angular momentum, in contrast to the spin momentum
we considered in Example 7.1. The angular momentum of the earth orbit is

L = r×p = m r×v, (7.91)

where m is the mass and v the orbital velocity of the earth. r is the distance from the sun. Assuming
a circular orbit, we have

m = 5.972 ·1024 kg,

v = 2.978 ·104 m/s, (7.92)

r = 6.371 ·106 m,

which leads to an orbital angular momentum of

L = 1.133 ·1036 kg m2/s. (7.93)

From electrodynamics we know [72] that the angular momentum of an orbiting charge q, with mass
M, is connected with a magnetic moment m by

m =
q

2M
L. (7.94)
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This result can be transferred directly to dynamics by replacing the charge by the “charge of
dynamics” m so that the ratio charge per mass is eliminated:

mm =
1
2

L. (7.95)

This gravitomagnetic moment is directly proportional to the angular momentum.
The gravitomagnetic field of the earth orbit can be derived in a dipole approximation. In case

of a magnetic dipole moment, the induction field is [72]:

B =
µ0

4π

(
3n(n ·m)−m

|r|3
+

8π

3
mδ (r)

)
, (7.96)

where n = r̂ is the unit vector in direction of r. The coordinate origin is assumed to be in the center
of the dipole, the location of the sun in our example. Dirac’s δ function gives a contribution for the
divergence at r = 0 and is required only for the correct volume integral over B [72].

The expression for B can directly be taken over for a gravitomagnetic dipole field. The factor
µ0 comes from the current density used in the derivation of the dipole field. In our case, it has to be
replaced by

µ0→−
4πG
c2 , (7.97)

so that the gravitomagnetic field in dipole approximation is

Ω =−G
c2

(
3n(n ·mm)−mm

|r|3
+

8π

3
mmδ (r)

)
. (7.98)

The term with the δ function can be omitted if only the field outside the origin is considered. A
graphical example of a dipole field is shown later in this textbook. At the earth’s position, it is of
the order of magnitude of 1.3 ·10−25/s. �

7.1.4 Gravitational waves
Physical waves of any kind can be described as solutions of respective wave equations. The wave
equations of dynamics are derived in analogy to the wave equations of electrodynamics. We
have already used this method of analogy several times. We start with the gravitomagnetic and
Ampère-Maxwell law of dynamics, Eqs. (7.56, 7.58):

∂Ω

∂ t
+∇×g = 0, (7.99)

− 1
c2

∂g
∂ t

+∇×Ω =−4πG
c2 Jm, (7.100)

and apply the same procedure as in Section 6.2.4. We take the curl of the gravitomagnetic law:

∇× ∂Ω

∂ t
=−∇×∇×g (7.101)

and the time derivative of Ampère-Maxwell law:

− 1
c2

∂ 2g
∂ t2 +∇× ∂Ω

∂ t
=−4πG

c2
∂Jm

∂ t
. (7.102)
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inserting (7.101) in (7.102) gives

− 1
c2

∂ 2g
∂ t2 −∇×∇×g =−4πG

c2
∂Jm

∂ t
. (7.103)

Replacing the double curl and reversing the sign of the eqaution leads to

1
c2

∂ 2g
∂ t2 −∇

2g+∇(∇ ·g) = 4πG
c2

∂Jm

∂ t
. (7.104)

Assuming that no independent charge density is there, the divergence of g vanishes, and we obtain:

1
c2

∂ 2g
∂ t2 −∇

2g =
4πG
c2

∂Jm

∂ t
, (7.105)

which is the inhomogeneous wave equation. With the d’Alembert operator (2.253), it can be written
in compacted form:

� g =
4πG
c2

∂Jm

∂ t
. (7.106)

Applying the analogue procedure for the gravitomagnetic field gives the wave equation

� Ω =−4πG
c2 ∇×Jm. (7.107)

The electric counterpart of (7.106), which is derivable in the same way, is

� E =−µ0
∂J
∂ t

. (7.108)

Solutions of the wave equations are, for example, plane waves. By comparing Eqs. (7.106)
and (7.108), we see that gravitational waves obey the same laws and will show up an equivalent
behaviour.

By using our results, we can answer the question why it is so difficult to find gravitational
waves experimentally. The answer can be found from comparing the numerical values of the factors
for the currents in Eqs. (7.106) and (7.108). For gravitational waves, we have

4πG
c2 = 9.332 ·10−27 m

kg
, (7.109)

while, for the electromagnetic case, we obtain

µ0 = 4π ·10−7 Vs
Am

= 1.257 ·10−6 Vs
Am

. (7.110)

Comparing the numerical values, there is a difference of 21 orders of magnitude!
The gravitational red shift, derived for electromagnetic plane waves in Example 5.2, can also

be considered as an effect of gravitaional waves. The optical refraction index is according to Eq.
(5.56):

n2 = εrµr. (7.111)

We can define a gravitational refraction index in full analogy:

n2
m = εmµm. (7.112)
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Then, the gravitomagnetic equation is, for example,

∂Ω
a

∂ t
+n2

m ∇×ga
0 = 0. (7.113)

In Einsteinian general relativity, gravitational waves are difficult to describe. They follow
from a linear approximation of the field equations and require – at least – a quadrupole momemt
as a source. There are no waves emanating from a dipole. This is completely different from
the results of ECE theory. Therein, gravitational waves can arise from varying currents of any
kind. Considering the formal identity of electromagnetic and gravitational waves, we can say that
each electromagnetic wave is connected with a gravitational wave of the same form. Due to the
large difference in factors, however, the gravitational counterpart is normally not detectable. This
unified behaviour should be observable in the universe where huge events, like a collision of heavy
astronomical objects, lead to detectable gravitational waves directly. Then, an electromagnetic
pulse should be obervsable as a simultaneous event.

Gravitational waves are oscillations of spacetime itself. They are an effect of general relativity,
i.e., curving and spinning of spacetime. They cannot be described by classical theory, because there
is only Newton’s gravitational law available.

7.2 Generally covariant dynamics

Dynamics has been introduced in physics by Newton’s laws. These hold for linear motion. If
rotational motion is considered, additional forces like centrifugal force and Coriolis force occur.
In this section, we show that these are examples of spin connections, in a framework of generally
covariant dynamics [74, 75].

7.2.1 Velocity
The first classical reference law is that the velocity vector v is the time derivative of the position
vector r:

v =
dr
dt

. (7.114)

The natural extension of this law to make it generally covariant is using the covarinat derivative, as
it appears, for example, in the first Maurer-Cartan structure. The torsion 2-form is defined as the
derivative of the tetrad (see Eq. (2.283)):

T a = D∧qa. (7.115)

In analogy, we define the covariant velocity

va = c(D∧ ra). (7.116)

The factor c (velocity of light in vacuo) appears for getting the right units of m/s. Eq. (7.116) is an
equation of 2-forms, in detail it is

(va)µν = c(D∧ ra)µν , (7.117)

so the covariant velocity is a two-index tensor of the base manifold. The position vector can be
defined to be a tetrad of position with a constant r(0) being a scaling factor with units of length:

ra
µ = r(0)qa

µ . (7.118)
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Eq. (7.117) reads, when written out in tensor form, in analogy to Eq. (4.169):

va
µν = c

(
∂µra

ν −∂νra
µ +ω

a
µb rb

ν −ω
a
νb rb

µ

)
. (7.119)

This is a valid equation of Cartan geometry. However, the tetrad is not the spacetime tetrad,
therefore the spin connection is not that of spacetime but is specific to the velocity tensor.

As a result, we have the same situation as in electrodynamics or general dynamics. The field is
an antisymmetric two-dimensional tensor, but we are used to deal with field vectors. Therefore,
we define two types of field vectors as in (Eq. (7.25), for example. According to this equation, the
contravariant form of the velocity tensor can be written as

vaµν =


0 −va1 −va2 −va3

va1 0 −wa3 wa2

va2 wa3 0 −wa1

va3 −wa2 wa1 0

 . (7.120)

The tensor, and, consequently, the tensor elements, have a polarization index a of Cartan geometry,
running from 0 to 3. As discussed earlier, the v elements are of translational character, while the w
elements have a rotational character. They define velocity vectors va and wa in the usual way. The
upper indices 1, 2, 3 denote the space components. Another notation is

va
X = va1, va

Y = va2, etc., (7.121)

and, with lower indices, there is a sign change:

va
X =−va

1, va
Y =−va

2, etc. (7.122)

All this has been discussed in detail in Chapter 4. Overall we have:

va =

va
X

va
Y

va
Z

=

va1

va2

va3

=

−va01

−va02

−va03

 , (7.123)

wa =

wa
X

wa
Y

wa
Z

=

wa1

wa2

wa3

=

−va23

va13

−va12

 . (7.124)

The spin connection has the vectorial form

ω
a

b =

−ωa
1b

−ωa
2b

−ωa
3b

=

ωa1
b

ωa2
b

ωa3
b

 , (7.125)

and the position 4-vector is, similarly,

(ra)ν =


ra0

ra1

ra2

ra3

=

[
ra0

ra

]
. (7.126)

Eq. (7.119) can be written as two vector equations like (7.38, 7.39):

va = c
(
−∇ra

0−
1
c

∂ra

∂ t
−ω

a
0b rb +ω

a
bra

0

)
, (7.127)

wa = c
(

∇× ra−ω
a

b× rb
)
. (7.128)
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Currently it is not clear how to interpret the potential-like time component ra
0. The total velocity

vector is

va
tot = va +wa. (7.129)

In case of a flat space, all spin connections vanish. There is no polarization, and if r is a trajectory
of a mass point as in classical mechanics, there is no “scalar” potential ra

0 and no curl of r. Then
the translational velocity is

v =−∂r
∂ t

. (7.130)

The minus sign is a convention and can be avoided by defining the position tetrad (7.118) with a
negative sign:

ra
µ =−r(0)qa

µ . (7.131)

For trajectories of mass points, there is no spatial field dependence, and the partial time derivative
is equal to the total time derivative so that we have in total:

v =
dr
dt

, (7.132)

in agreement with (7.114).
When the coordinate system is rotated, this corresponds to a spin connection vector ωa

b. This
vector can be transformed to a vector of angular velocity in classical mechanics by setting

cω
a

b→ ω, (7.133)

where ω has the units of 1/s as usual. Under the above assumptions, we now obtain a rotational
velocity vector

w = ω× r, (7.134)

and the velocity, observed in the rest frame, is

vtot =
dr
dt

+ω× r. (7.135)

This equation is identical to the result of rotational motion in classical mechanics, as we will see
later.

Both vectors va and wa are space-like components of 4-vectors (in covariant representation):

va
µ = (va

0,−va), (7.136)

wa
µ = (wa

0,−wa). (7.137)

The components va
0, wa

0 are time-like and have a special meaning in dynamics. According to the
relativistic energy-momentum relation without restmass,

Er = cp, (7.138)

where Er is the relativistic energy, the 4-momentum can be written in the form

pa
µ = (

Er

c
,−pa). (7.139)

The 4-velocity is connected with the 4-momentum by pa
µ = mva

µ . In particular, it is pa
0 = mva

0 =
Er/c.
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7.2.2 Acceleration
We define acceleration as the covariant external derivative of the velocity in analogy to Eq. (7.116)
for both velocities:

aa = c(D∧ va), (7.140)

α
a = c(D∧wa). (7.141)

aa is the translational acceleration, and αa is the rotational acceleration. Both have an orbital and a
spin part, according to Eqs. (7.127, 7.128). This gives four vector equations, which are derived in
full analogy to the velocities:

aa
orbital = c∇va

0 +
∂va

∂ t
+ cω

a
0b vb− cω

a
bva

0, (7.142)

aa
spin = c

(
−∇×va +ω

a
b×vb

)
, (7.143)

α
a
orbital = c∇wa

0 +
∂wa

∂ t
+ cω

a
0b wb− cω

a
bwa

0, (7.144)

α
a
spin = c

(
−∇×wa +ω

a
b×wb

)
. (7.145)

The zero components of the velocities va
0 and wa

0, are potentials, whose gradient gives mechanical
forces, in particular we can identify va

0 with the gravitational potential Φa:

Φ
a = cva

0. (7.146)

If the factor c is omitted in the spin accelerations, they have the units of angular velocities and
correspond to the gravitomagnetic field. In ECE theory, the velocity is a tensor, consisting of vector
fields. For example, the equations of fluid dynamics are based on a velocity field. This will be
described later in this book.

Comparison with classical mechanics
The above equations for velocity and acceleration can be compared to the classical motion of mass
points in a rotating coordinate system. This is a subject of classical (or Newtonian) mechanics. The
basic explanations can be found, for example, in [73], and are shortly repeated and commented
in [74]. Her we recall the results only.

Figure 7.5: Rotating coordinate system.
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In Fig. 7.5, a masspoint P is drawn with respect to two coordinate systems, where the primed
coordinates refer to the rest frame and the unprimed coordinates to the rotating frame. The origin
of the rotating frame is displaced from the origin of the fixed frame by R and may also move in
time with a velocity V. The point P has the coordinate r′ in the fixed frame and r in the rotating
frame. Velocities are assigned to these coordinates by

v f = Velocity relative to the fixed axes,
vr = Velocity relative to the rotating axes,
ω = Angular velocity relative to the rotating axes,
V = Linear velocity of the moving origin.

The velocity in the fixed frame is

v f = V+vr +ω× r (7.147)

and is identical to Eq. (7.135), which was derived from ECE theory for a Minkowski space without
curvature and torsion. The term ω× r describes the rotation of P.

For acceleration, classical dynamics gives a more complicated result. With denoting the total
derivative d/dt with a dot, as usual, the relative acceleration between the frames alone is

R̈ =
dV
dt

= V̇. (7.148)

The total force acting on the masspoint with mass m in the fixed frame is

F = ma f = mR̈+mar +mω̇× r+mω× (ω× r)+2mω×vr. (7.149)

The effective force, acting on m, is, therefore,

Feff = mar = F−mR̈−mω̇× r−mω× (ω× r)−2mω×vr. (7.150)

In this equation, three force terms appear that are a consequence of the rotation of the local frame
of m, the force due to angular acceleration, the centrifugal force and the Coriolis force (the latter
appears only if the masspoint moves in the rotating frame with a velocity vr):

Frot.frame =−mω̇× r, (7.151)

Fcentrifugal =−mω× (ω× r), (7.152)

FCoriolis =−2mω×vr. (7.153)

These forces are sometimes called “virtual forces”, because they do not arise from a physical
potential; but they are real, as we know from daily life. They arise solely from the attempt to extend
the form of Newton’s force law to a non-inertial system. In the accelerations of ECE theory, they
appear as follows. The Coriolis force is part of Eq. (7.142) for vb = vr. When inserting Eq. (7.134)
into (7.145), we obtain a term identical with the centrifugal force. The force of the rotating frame,
(7.151), results as a part of (7.142), when we evaluate the time derivative

dvr

dt
=

d(ω× r)
dt

= ω̇× r+ω×vr. (7.154)

Besides a term of the rotating frame, this gives a Coriolis term in addition.
We see that the ECE equations for acceleration (7.142 - 7.145) contain the terms of classical

dynamics, plus a lot of additional terms stemming from Cartan geometry of curving and twisting
spacetime. It should be noticed that these equations are generally covariant, they hold in any coordi-
nate system. In contrast, the classical derivation assumes one fixed frame and one moving/rotating
frame. Therefore, the components of acceleration are present in each frame in principle. In ECE
theory, there is no differentiation between rest and moving frames, according to the principle of
relativity.
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� Example 7.4 We compute the velocity and acceleration vectors in plane and spherical polar
coordinates and compare the result of spherical polar coordinates with an expectation from general
covariance.

In two dimensions, the unit vectors of plane polar coordinates (r, φ ) are

er =

[
cosφ

sinφ

]
, eφ =

[
−sinφ

cosφ

]
(7.155)

(see also Fig. 2.1). The position vector of any point in space is determined by the direction of its
unit vector er and its length r:

r = rer. (7.156)

The velocity vector is

v = ṙ =
d
dt

(rer) = ṙer + rėr. (7.157)

Since the direction of er changes over time, this change has to be taken into account, in contrast to
a cartesian coordinate system, where all unit vectors remain fixed. From Eqs. (7.155) follows that

ėr = φ̇eφ , (7.158)

ėφ =−φ̇er, (7.159)

therefore:

v = ṙer + rφ̇eφ . (7.160)

Similarly, the acceleration is

a = v̇ =
(
r̈− rφ̇

2)er +
(
2ṙφ̇ + rφ̈

)
eφ . (7.161)

In three dimensions, we use a spherical coordiante system (r, θ , φ ), as illustrated in Fig. 2.3.
The transformation of basis vectors has already been given in Eq. (2.32). Starting from unit vectors

er =

1
0
0

 , eθ =

0
1
0

 , eφ =

0
0
1

 , (7.162)

the cartesian unit vectors are the column vectors of the transformation matrix

(eX ,eY ,eZ) =

cosφ sinθ sinφ sinθ cosθ

cosφ cosθ sinφ cosθ −sinθ

−sinφ cosφ 0

=: S. (7.163)

In this example, we need the unit vectors of the spherical coordinate system, which are the column
vectors of the inverse transformation:

(er,eθ ,eφ ) = S−1 = ST =

cosφ sinθ cosφ cosθ −sinφ

sinφ sinθ sinφ cosθ cosφ

cosθ −sinθ 0

 . (7.164)

The position vector in a cartesian frame is

r = XeX +Y eY +ZeZ (7.165)
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with coordinate values, transformed to the polar frame,

X = r sinθ cosφ ,

Y = r sinθ sinφ , (7.166)

Z = r cosθ

(see Eq. (2.29)). Then, the velocity in this frame is

v = ẊeX + Ẏ eY + ŻeZ. (7.167)

From (7.166), we have

Ẋ = ṙ sinθ cosφ + rθ̇ cosθ cosφ − rφ̇ sinθ sinφ ,

Ẏ = ṙ sinθ sinφ + rθ̇ cosθ sinφ + rφ̇ sinθ cosφ , (7.168)

Ż = ṙ cosθ − rθ̇ sinθ .

We insert this into Eq. (7.167) and substitute the cartesian unit vectors by Eq. (7.163). The lengthy
calculation has been carried out by computer algebra (see code [108]) and gives the result

v = vrer + vθ eθ + vφ eφ (7.169)

with

vr = ṙ,

vθ = rθ̇ , (7.170)

vφ = rφ̇ sinθ .

The acceleration vector in the cartesian frame is

a = ẌeX + Ÿ eY + Z̈eZ. (7.171)

In the same way, an even more complicated calculation gives, with aid of computer algebra,

a = arer +aθ eθ +aφ eφ (7.172)

with

ar = r̈− rθ̇
2− rφ̇

2 sin2
θ ,

aθ = 2ṙθ̇ + rθ̈ − rφ̇
2 sinθ cosθ , (7.173)

aφ = (rφ̈ +2ṙφ̇)sinθ +2rθ̇ φ̇ cosθ .

Now, we try to write the acceleration in form of a covariant derivative. As can be seen from
Eqs. (7.172, 7.173), the acceleration is the partial derivative of the velocity plus additional terms,
which can be written by a matrix-vector product with a matrix Ω:

a =
D
Dt

v =
∂

∂ t
v+Ωv. (7.174)

By insertion, it can be verified that this equation reads

D
Dt

 ṙ
rθ̇

rφ̇ sinθ

=
∂

∂ t

 ṙ
rθ̇

rφ̇ sinθ

+
 0 −θ̇ −φ̇ sinθ

θ̇ 0 −φ̇ cosθ

φ̇ sinθ φ̇ cosθ 0

 ṙ
rθ̇

rφ̇ sinθ

 , (7.175)
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from wich the form of Ω can be derived. It is an antisymmetric matrix of the form

Ω =

 0 Ω12 Ω13
−Ω12 0 Ω23
−Ω13 −Ω23 0

=

 0 −θ̇ −φ̇ sinθ

θ̇ 0 −φ̇ cosθ

φ̇ sinθ φ̇ cosθ 0

 . (7.176)

So far, we have shown that the acceleration in the spherical polar coordinate system has the the
form of a covariant derivative as intended by Eq. (7.174). However, by comparing with the form
of spin accelerations (7.143, 7.145), we would rather expect a vector product of the form ω×v
instead of the matrix-vector operation Ωv:

D
Dt

v =
∂

∂ t
v+ω×v. (7.177)

This implies

ω×v = Ωv, (7.178)

which gives a linear equation system for determining the components of ω , when written out:ω2 v3−ω3 v2
ω3 v1−ω1 v3
ω1 v2−ω2 v1

=

 Ω13 v3 +Ω12 v2
Ω23 v3−Ω12 v1
−Ω23 v2−Ω13 v1

 . (7.179)

The computer algebra code shows that this equation system is of rank 2, i.e., it is underdetermined.
The general solution is

ω1 =−
Ω23v3− (Ω12 +C1)v1

v3
,

ω2 =
Ω13v3 +(Ω12 +C1)v2

v3
, (7.180)

ω3 =C1,

with an arbitrary constant C1. We can set its value to C1 = −Ω12 so that the result becomes as
simple as possible:

ω1 =−Ω23,

ω2 = Ω13, (7.181)

ω3 =−Ω12.

Inserting this solution into (7.177) then gives the desired form of the covariant equation with the
cross product:

D
Dt

 ṙ
rθ̇

rφ̇ sinθ

=
∂

∂ t

 ṙ
rθ̇

rφ̇ sinθ

+
 φ̇ cosθ

−φ̇ sinθ

θ̇

×
 ṙ

rθ̇

rφ̇ sinθ

 . (7.182)

ω is the spin connection vector for acceleration. �

7.2.3 Angular momentum and torque
In a fixed frame, the classical torque N is the time derivative of the angular momentum L:

N = L̇. (7.183)
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In presence of a rotating frame, a term with the angular velocity vector is added:

Nfixed = L̇fixed +ω×L. (7.184)

This equation even holds for any vector considered in both frames, not only angular momentum [73].
It is close to the definition of the first Maurer-Cartan structure (2.283),

T a = d∧qa +ω
a
b ∧qb, (7.185)

where the term ωa
b ∧qb originates in spinning of spacetime. We can define a generally covariant

angular momentum 1-form Ja and torque 2-form Na by

Ja
µ =−J(0)qa

µ , (7.186)

Na
µν = cJ(0)T a

µν , (7.187)

where T a is the torsion form, and a sign change was introduced for giving conformity with the
classical result. This is in full analogy to Eqs. (7.118) and (7.116). Then follows, as in (7.117),

(Na)µν = c(D∧ Ja)µν , (7.188)

which can be devoloped in two vectors of torque as before: a translational torque Na
orbital and an

intrinsic or spin torque Na
spin:

Na
orbital = c∇Ja

0 +
∂Ja

∂ t
+ cω

a
0b Jb− cω

a
bJa

0 , (7.189)

Na
spin = c

(
−∇×Ja +ω

a
b×Jb

)
. (7.190)

In a pure translational spacetime, the intrinsic torque vanishes. The classical limit of these equations
is

Na = Na
orbital +Na

spin → ∂Ja

∂ t
+ cω

a
b×Jb, (7.191)

where the polarization indices have to be reduced to a = b = 1 as before. Myron Evans writes [74]:
ECE theory has a great deal more inherent information than the classical and non-relativistic

Euler theory. The task is to reveal such information experimentally, using high accuracy experiments
in the laboratory or in astronomy. These would amount to rigorous experimental tests of Einsteinian
philosophy itself, because ECE theory completes the Einstein-Hilbert theory of 1916. They would
therefore be important experiments.

7.2.4 Equivalence principle
Newton has introduced the law that heavy mass and inert mass are identical. This is called the
equivalenc principle and has been proven experimentally to high precision. Here we derive this
principle from ECE theory. In Newtonian theory, the equivalence principle says that the dynamical
force of acceleration on a mass is identical to the force of the gravitational field:

ma = mg =−m∇Φ, (7.192)

where Φ is the gravitational potential. In ECE theory, we start with the orbital acceleration (7.142):

aa
orbital = c∇va

0 +
∂va

∂ t
+ cω

a
0b vb− cω

a
bva

0, (7.193)
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This equation is derived from the first Maurer-Cartan structure and, therefore, the acceleration form
can be written as the multiple of a torsion form [76]:

aa
µν = a(0)T a

µν = cv(0)T a
µν . (7.194)

For torsion, the antisymmetry laws have been derived in Section 5.1. Therefore, we can
transduce Eq. (5.13),

−1
c

∂Aa

∂ t
+∇Aa

0−ω
a
0b Ab−ω

a
bAb

0 = 0, (7.195)

into the equivalent equation of dynamics directly. By the replacement Aa→ va, cva
0→ Φ, we

obtain

−∂va

∂ t
+∇Φ

a− cω
a
0b vb−ω

a
bΦ

b = 0. (7.196)

For the flat space of classical mechanics, the spin connections vanish, and this equation reads

m
∂va

∂ t
= m∇Φ

a. (7.197)

This is, besides a sign convention change, the equivalence principle of classical mechanics. Alter-
natively, this equation follows, when it is assumed that the orbital acceleration in (7.193), i.e., the
sum of all forces, vanishes:

aa
orbital = 0. (7.198)

Then, even the sign of the potential comes out in the usual form:

m
∂va

∂ t
=−m∇Φ

a. (7.199)

If no additional forces are present (no rotational forces, for example), this means that a mass moves
in a force-free equilibrium. Examples are the free fall or satellites, which are in “free fall arount the
earth”.

The equivalence principle has been proven by ECE theory, while Newton had to introduce
it as an axiom. In Einsteinian general relativity, the equivalence principle exists in two forms:
According to the weak equivalence principle, the mass of a body alone (i.e. the measure of its
inertia) determines, which gravity acts on it in a given homogeneous gravitational field. Its other
properties such as chemical composition, size, shape etc. have no influence. According to the
strong principle of equivalence, gravitational and inertial forces are equivalent on small distance
and time scales in the sense that their effects cannot be distinguished by mechanical or any other
observations. The weak follows from the strong equivalence principle. The strong principle of
equivalence is founded on the fact that the Einsteinian Lagrange density is independent of the
choice of the coordinate system.

7.3 Lagrange theory
In classical mechanics, Lagrange theory plays a very important role for computing the dynamics
of mass points. It is based on Newtonian mechanics with the extensions of Euler for rotational
motion, so it is applicable for all kinds of “machines”, which can be reduced to the motion of mass
points with constraints. We only give a short overview here. Relativistic extensions of this theory
will be developed later in this book. The basics of Lagrange theory can be found in textbooks of
mechanics, for example [77].
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Lagrange theory uses generalized coordinates, denoted by qi. These can be length and angular
coordinates, connected with linear and angular momenta. Constraints of motion are used to reduce
the number of coordinates so that only independent coordinates and their momenta remain, whose
number is identical to the degree of freedom of a mechanical system. There is no general method
of finding these coordinates, this is a task of the modeler. The equations of motion are obtained
from the Lagrange function or Lagrangian, which is the difference between kinetic energy T and
potential energy U :

L = T −U. (7.200)

Both energies have to be expressed by generalized coordiates qi. The kinetic energy will become
a complicated expression in most cases. Therefore, it is advisable to write the kinetic energy in
cartesian coordinates,

T =
1
2 ∑

i
miẋ2

i , (7.201)

and insert the coordinate transformations xi(q j), i, j = 1, ...N so that an expression for T (qi, q̇i) is
formed, which is suitable to be used in the Euler-Lagrange equations

d
dt

∂L

∂ q̇i
− ∂L

∂qi
= 0. (7.202)

These are N equations for a system with degree of freedom N. They lead to differential equations
of motion with time derivatives of second order and can be transfomed to 2N equations of first
order by replacing each time derivative of qi by a new variable vi,

vi = q̇i. (7.203)

The vi are handled as independent variables, as is done in the Hamilton equations, for example.
This is beneficial for numerical solution of the equations of motion, because numerical solvers like
Runge-Kutta are designed for solving ordinary differential equations of first order only.

The Euler-Lagrange theory is developed from the principle of energy conservation. Therefore,
energy is conserved for all solutions. It is possible, however, to introduce external forces. Then
energy is not conserved but added or extracted by these forces. They are called generalized forces
because they can be ordinary forces or torques, dependending in the type of coordinates they are
connected with. When denoted by Qi, the Lagrange equations take the generalized form

d
dt

∂L

∂ q̇i
− ∂L

∂qi
= Qi. (7.204)

From the Lagrange equations, terms that remain conserved during motion can be derived. If the
time derivative of the Lagrangian according to a variable q̇i vanishes, it follows that

d
dt

∂L

∂ q̇i
= 0 → ∂L

∂ q̇i
= const. (7.205)

This describes constants of motion. Normally, these are linear momenta and angular momenta.
Although Newtonian theory says that linear momenta in free space are always conserved, this is
not the case for machines, in which, for example, only angular coordinates are present. There is,
however, no guarantee to find all constants of motion of a system, because there is the freedom of
choice for coordiates, and any “unfavourable” choice can veil some constants of motion.
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� Example 7.5 As an example for Lagrange theory of classical mechanics, we consider the
dynamics of a gyroscope. Although this is to be described by a rigid body and not by mass points
alone, it belongs to the class of Lagrangian mechanics. Actually, there are two problems. First, the
equations of motion are complicated so that it is cumbersome to derive them by hand. Therefore,
the full equation set (for all coordinates) can nowhere be found in textbooks for a complete motion
in three dimensions. Second, analytical solutions are not known even for subsets of the equations.
Therefore, no analytical solutions exist for the general equation set, which is described in this
example. The equations have to be solved numerically on a computer. With aid of computer algebra
and numerical solution methods, we were able to set up the full equation set and present solutions
without approximations (see code [109]).

We compute the motion of a symmetric top with one point fixed, for example a spinning top on
a table, by a Lagrangian formulation based on ECE2 theory [78]. The basics are very extensive and
described in detail in [79]. In particular, there is worked out how rigid bodies can be modeled by
point mechanics. Rigid bodies are characterized by their moments of inertia for rotations about
their major body axes. A symmetric spinning top has two such moments of inertia, one for rotation
around the vertical axis and two identical moments for rotations about the axes perpendicular to the
vertical axis. They are denominated I3 and I1 = I2. According to the explanations in Section 7.2,
the motion in the body-fixed coordinate system has to be transformed to the observer’s coordinate
system. For the gyroscope, this is accomplished by introducing Eulerian angles (see Fig. 7.6).

Figure 7.6: Rotational axes and Eulerian angles of a gyroscope with one point fixed.

The fixed point is assumed to be the centre of a coordinate system consisting of three Eulerian
angles θ ,φ ,ψ . The latter describes the rotation around the Z axis x3 of the spinning top. θ and φ

are identical to angles of a spherical coordinate system (polar and azimuthal angle, see Fig. 2.3). ψ

is the rotation angle around the x3 body axis. The spinning top exhibits a rotation around the Z axis
by the angle φ , which is called the precession angle. In addition, there is a “nod” described by θ ,
the nutation angle.

According to the Lagrange calculus, the body coordinates are to be transformed to the (θ , φ ,
ψ) coordinate system. The kinetic energy then is purely rotational:

Trot =
1
2

I12
(
φ̇

2 sin(θ)2 + θ̇
2)+ 1

2
I3
(
φ̇ cos(θ)+ ψ̇

)2
, (7.206)

where I12 = I1 = I2 and I3 are the moments of inertia around the three principle axes (for details
see [79]). The potential energy is defined by the gravitational field at the earth’s surface:

U = mgZ = mghcos(θ) (7.207)
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with constant gravitational acceleration g and gyro mass m. The Lagrangian is

L = Trot −U (7.208)

=
1
2

I12
(
φ̇

2 sin(θ)2 + θ̇
2)+ 1

2
I3
(
φ̇ cos(θ)+ ψ̇

)2−mghcos(θ).

The three Euler-Lagrange equations for the angular coordinates q j,

d
dt

(
∂L

∂ q̇ j

)
− ∂L

∂q j
= 0, (7.209)

lead to three equations containing first and second time derivatives of the angular coordinates and
can be re-arranged, giving the ordinary differential equation system

θ̈ =

(
(I12− I3) φ̇ 2 cos(θ)− I3 φ̇ ψ̇ +mgh

)
sin(θ)

I12
, (7.210)

φ̈ =−
(
(2I12− I3) φ̇ cos(θ)− I3 ψ̇

)
θ̇

I12 sin(θ)
, (7.211)

ψ̈ =

(
(I12− I3) φ̇ cos(θ)2 + I12φ̇ − I3 ψ̇ cos(θ)

)
θ̇

I12 sin(θ)
. (7.212)

These equations can be solved numerically in principle. There is however some more informa-
tion contained in the Lagrange equations (7.209). There are two constants of motion representing
the angular momenta around the Z axis and body axis:

Lφ = I12 φ̇ sin(θ)2 + I3 cos(θ)
(
φ̇ cos(θ)+ ψ̇

)
, (7.213)

Lψ = I3
(
φ̇ cos(θ)+ ψ̇

)
. (7.214)

These equations contain only the first time derivatives of φ and ψ . Using these equations instead of
Eqs. (7.211, 7.212) leads to the simpler differential equation system

θ̈ =

(
(I12− I3) φ̇ 2 cos(θ)− I3 φ̇ ψ̇ +mgh

)
sin(θ)

I12
, (7.215)

φ̇ =
Lφ −Lψ cos(θ)

I12 sin(θ)2 , (7.216)

ψ̇ =
Lψ − I3 φ̇ cos(θ)

I3
(7.217)

(see code [109] again). The constants Lφ and Lψ have to be chosen appropriately for a solution.
Even for this simpler equation system, a numerical solution procedure is required. The difference
to Eqs. (7.211, 7.212) is that no initial conditions for φ̇ and ψ̇ are applicable.

The above equations have been solved numerically [109]. In Figs. 7.7 and 7.8, the 3D motion of
the center of mass is plotted for different parameter settings. Precession is always present, nutation
may be either periodic (Fig. 7.7) or superimposed with a back-and-forth precession, leading to a
spiralling motion (Fig. 7.8).

External forces can be applied to a gyroscope in form of additional torques upon the rotation
axes. Then, the constants of motion are no more valid, and one has to apply the original equation
set (7.210 - 7.212). With external torques Qθ ,Qφ ,Qψ , the equations read
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Figure 7.7: Precession of center of mass
for a gyroscope (spikes).

Figure 7.8: Precession of center of mass
for a gyroscope (spiralling).

θ̈ =

(
(I12− I3) φ̇ 2 cos(θ)− I3 φ̇ ψ̇ +mgh

)
sin(θ)

I12
+

Qθ

I12
, (7.218)

φ̈ =−
(
(2I12− I3) φ̇ cos(θ)− I3 ψ̇

)
θ̇

I12 sin(θ)
+

Qφ −Qψ cos(θ)
I12 sin(θ)2 , (7.219)

ψ̈ =

(
(I12− I3) φ̇ cos(θ)2 + I12φ̇ − I3 ψ̇ cos(θ)

)
θ̇

I12 sin(θ)
(7.220)

+

(
I12 sin(θ)2 + I3 cos(θ)2

)
Qψ − I3 Qφ cos(θ)

I12 I3 sin(θ)2 ,

as derived in code [110]. It can be seen that the φ and ψ coordinate are coupled by both Qφ and
Qψ . For example, when a gyro is driven on its body axis, this will have an effect on its precession
and vice versa. The results for an external torque Qφ around the Z axis are graphed in Figs. 7.9
and 7.10. The torque is negative, i.e. contrary to the “natural” direction of motion, therefore the
initial angular velocity φ̇ goes to zero in an oscillation (Fig. 7.9), then makes a strong spike and
increases in the negative range with oscillations. Due to the coupling, the spike is also there for
ψ̇ . The effects are not so dramatic in the angular trajectories themselves (Fig. 7.10). Mainly the
direction of φ rotation is changed due to the external torque. The oscillations in all three angles
(and angular velocities) increase in frequency with increasing precessional speed.

The theory of gyros can further be extended for a free falling gyro. Then, the typical precession
and nutation effects vanish. It can even be proven that a falling gyro can move upward a short time,
if suitable initial conditions are given. There are points in time where the vertical acceleration is
zero. At these points, the gyro can be handled like a weightless mass, as was shown in experiments
by Laithwaite (see UFT Paper 369 [78] for details and equations of motion). An example for the
vertical motion is graphed in Fig. 7.11. It can be seen that the gyro shortly rises at the beginning of
motion. �
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Figure 7.9: Time development of angular velocities for gyroscope driven by Qφ .

Figure 7.10: Time development of angles for driven gyroscope driven by Qφ .
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Figure 7.11: Example curve of vertical velocity v(t) and vertical position R(t) for the Laithwaite
experiment.
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