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The Evans field equation is solved to give the equations governing the
evolution of scalar curvature R and contracted energy-momentum T .
These equations show that R and T are always analytical, oscillatory,
functions without singularity and apply to all radiated and matter fields
from the sub-atomic to the cosmological level. One of the implications
is that all radiated and matter fields are both causal and quantized,
contrary to the Heisenberg uncertainty principle. The wave equations
governing this quantization are deduced from the Evans field equation.
Another is that the universe is oscillatory without singularity, contrary
to contemporary opinion based on singularity theorems. The Evans
field equation is more fundamental than, and leads to, the Einstein
field equation as a particular example, and so modifies and generalizes
the contemporary Big Bang model. The general force and conserva-
tion equations of radiated and matter fields are deduced systematically
from the Evans field equation. These include the field equations of
electrodynamics, dark matter, and the unified or hybrid field.

Key words: Evans field equation, equations of R, oscillatory universe,
general field and force equations, causal quantization.

1. INTRODUCTION

The Evans unified field theory [1-10] is based on the well-known geo-
metrical concept of the tetrad [11], but uses and develops the tetrad,
in several novel ways. All physics is reduced essentially to the tetrads,
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and thus to geometry. Unification of the radiated and matter fields of
nature is achieved by the synthesis of new equations which are all based
on the properties of the tetrad in differential geometry. The basic field
equation of nature in this theory is the Evans field equation [1-10]

Rqa
µ = −kTqa

µ, (1)

which can be developed systematically in many directions. In Eq. (1),
R is scalar curvature [1-12], T the contracted energy-momentum ten-
sor, and k the Einstein constant. The tetrad is denoted by qa

µ and in
differential geometry is a vector-valued one-form [11]. In the Evans
unified field theory the tetrad is the potential field and is also governed
by the Evans wave equation [1-10]

qa
µ = −kTqa

µ, (2)

derived from the well-known tetrad postulate [11]:

Dνqa
µ = 0. (3)

Figure (1) is a schematic of how the Evans field equation reduces to
known equations of physics, and Fig. (2) is a similar schematic for the
Evans wave equation.

In this paper, the first of a series dealing with new concepts from
the Evans unified field theory, it is shown that the Evans field equa-
tion, when combined with the tetrad postulate, produces the following
equations for the evoluation of R and T :

1

R
∂µR = ±R∂µ

(
1

R

)
, (4)

1

T
∂µT = ±T∂µ

(
1

T

)
. (5)

This is shown in Sec. 2. In Sec. 3 the structure of the most gen-
eral gauge field and force equations of nature is deduced systematically
from Eq. (1). The well-known Einstein field equation for gravitation
is one example, out of several new possible structures or classes, of
equations to emerge from the Evans field equation. If we accept gen-
eral relativity, it is therefore likely that these new equations contain a
great deal of hitherto undiscovered and unexplored physics. In other
words, we proceed rigorouslly on the basic assumption that all physics
is causal and generally covariant, as originally proposed by Einstein
[12]. These papers [1-10] can therefore be viewed as completing the
theory of general relativity, and as extending it to all radiated and
matter fields in nature. This is what is meant by “unified field theory.”
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2. THE EVOLUTION EQUATIONS OF R AND T

The field equation (1) is a balance of the identity

Dµ(Rqa
µ) = 0 (6)

of differential geometry and the conservation equation

Dµ(Tqa
µ) = 0 (7)

and is therefore a geometrization of physics in terms of the tetrad. The
usual form of the Bianchi identity in the general-relativistic theory of
gravitation

DµGµν = 0, (8)

Gµν = Rµν −
1

2
Rgµν (9)

is a special case of Eq. (6), and the well-known Noether theorem

DµTµν = 0 (10)

is a special case of Eq. (7). The Einstein field equation balances Eqs. (8)
and (10) to give

Rµν −
1

2
Rgµν = kTµν (11)

and can be deduced [1-10] as a special case of the Evans field equaton.
Here

Gµν = Rµν −
1

2
Rgµν (12)

is the well-known Einstein field, where Rµν is the Ricci tensor and gµν is
the symmetric metric tensor of Einstein’s original theory [12]. Finally,
Tµν is the well-known symmetric canonical energy-momentum tensor.

These familiar Einsteinian tensors are now known to be special
cases of more general tetrad matrices of the Evans field theory and are
defined by dot products of tetrads [1-11] as follows:

Rµν = Ra
µq

b
νηab, (13)

Tµν = T a
µqb

νηab, (14)

gµν = qa
µq

b
νηab. (15)

Here ηab is the (diagonal) metric of the Euclidean orthonormal space
labelled by the a index of the tetrad [1-11]. The more general field and
force equations of nature, introduced systematically in Sec. 3, follow
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from the fundamental fact that one can define wedge (or cross) and
outer products of tetrads as well as dot products. The wedge products
give rise to antisymmetric torsion fields such as the electromagnetic
field dual to antisymmetric curvature fields such as the Riemann cur-
vature field [1-11], and the outer products gives rise to fields in nature
which are hitherto ill-understood or unexplored and must be classified
theoretically on the basis of symmetry. This is one purpose of this
series of papers. One of these fields may be that of dark matter [13].
Another type of field is the unified or hybrid field which may become
observable in the tiny and hitherto ill-understood effects of electromag-
netism on gravitation [14,15]. Most generally there exist in the Evans
unified field theory symmetric, antisymmetric, and asymmetric fields
which originate in the well-known fact [16] that any square (in gen-
eral asymmetric) matrix can be resolved into the sum of symmetric
and antisymmetric components. The geometrization of physics inher-
ent in the basic Evans field equation means that each component has
a physical significance, i.e., each component is a type of radiated or
matter field in nature, some are known, others are unexplored, but all
are understood consistently and are thus unified philosophically.

To understand nature, study geometry: the essence of general
relativity.

In order to derive Eqs. (4) and (5), start from the Evans field
Eq. (1) and use the following relations:

Ga
µ = −1

4
Rqa

µ, (16)

T a
µ =

1

4
Tqa

µ. (17)

Equations (16) and (17) are derived from the definitions [1-12] of R
and T introduced originally by Einstein [12]:

R = gµνRµν , T = gµνTµν . (18)

Using the Einstein convention [12]

gµνgµν = 4 (19)

and the Cartan convention [11]

qa
µq

µ
a = 1, (20)

together with the definitions (13) and (14), we obtain:

R = gµνRµν

= qµ
aqν

b η
abRa

µq
b
νηab

= (ηabηab)(q
ν
b q

b
ν)(q

µ
aRa

µ) = 4qµ
aRa

µ.

(21)
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Multiply either side of Eq. (21) by qa
µ to obtain

Ra
µ =

1

4
Rqa

µ, (22)

Ga
µ = Ra

µ −
1

2
Rqa

µ = −1

4
Rqa

µ, (23)

which is Eq. (16). Similarly, we obtain Eq. (17).
Substitution of Eqs. (16) and (17) in the Evans field Eq. (1)

gives
Ga

µ = kT a
µ . (24)

We first show as follows that Eq. (24) leads to the Einstein field equa-
tion as a particular case by writing Eq. (24) in the form

1

4
Rqa

µ −
1

2
Rqa

µ =
1

4
kTqa

µ. (25)

Multiply both sides of Eq. (25) by qb
νηab to get the Einstein field

Eq. (11). The latter is therefore a structure that is derivable straight-
forwardly from the more general Evans field Eqs. (1) or (24) by forming
dot products of tetrads. The latter reveal the inner or deeper struc-
ture of the well-known Einstein field equation. It follows that the most
general form of the Bianchi identity of geometry is

DµGa
µ = 0, (26)

and the most general conservation law of physics is consequently

DµT a
µ = 0. (27)

Consider now a special case of the tetrad postulate (3):

Dµqa
µ = 0, (28)

a special case which follows from Eq. (3) on using

Dµqa
µ = D0qa

0 + D1qa
1 + D2qa

2 + D3qa
3 = 0. (29)

The Evans identity (26) can therefore be developed using Eq. (28) as:

Dµ(Rqa
µ) = RDµqa

µ + qa
µD

µR = qa
µD

µR = 0. (30)

Similarly the Evans conservation law (27) can be developed as

Dµ(Tqa
µ) = qa

µD
µT = 0, (31)
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where R = −kT for all radiated and matter fields.
On using the well-known geometrical result [11] that the covari-

ant derivative acting on any scalar quantity is the ordinary derivative:

DµR = ∂µR, DµT = ∂µT, (32)

Equations (30) and (31 become

qa
µ∂

µR = 0, qa
µ∂

µT = 0, (33)

and the Evans field equation becomes the identity

qa
µ∂

µ(R + kT ) = 0, (34)

where
qa
µ∂

µR = qa
µ∂

µT = 0. (35)

Equation (34) is similar in structure to the Evans wave equation (2),
but Eq. (34) is an identity because R is −kT . The Evans identity (30)
shows that ∂µR is orthogonal to the tetrad qa

µ in the non-Minkowski
base manifold indexed µ. Similarly, the Evans conservation law (31)
shows that ∂µT is orthogonal to the tetrad. These results give deeper
insight into the meaning of the Bianchi identity and the Noether the-
orem.

From Eq. (22),

qa
µ =

4

R
Ra

µ, (36)

and, using Eq. (28),

Dµ

(
4

R
Ra

µ

)
= 0, (37)

i.e.,

Ra
µD

µ

(
4

R

)
= 0. (38)

Therefore, Eq. (38) shows that

Rqa
µD

µ

(
1

R

)
= 0. (39)

Equations (30) and (39) show that

∂µR ∝ ±R∂µ

(
1

R

)
, (40)
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where the coefficient of proportionality must in general be scalar curva-
ture R. Thus we arrive at Eq. (4). Replacing R by −kT gives Eq. (5),
and differentiating Eq. (4) leads to

R = ±R2

(
1

R

)
. (41)

Equations (4) and (41) must have analytical solutions in general,
i.e., R must be continuously differentiable. If we consider

1

R
∂µR = −R∂µ

(
1

R

)
(42)

or, specifically, the time component

1

R

∂R

∂t
= −R

∂

∂t

(
1

R

)
, (43)

then a solution of Eq. (43) is seen to be

R = R0e
iωt, (44)

with a real part
Re(R) = R0 cos ωt. (45)

The cosine function is bounded by plus or minus unity and never goes
to infinity. Therefore there can no singularity in the scalar curvature R.
It follows from Eq. (18) that there is never a singularity in the metric
gµν or Ricci tensor Rµν . In other words, the universe evolves without
a singularity, and it follows that the well-known singularity theorems
built around the Einstein field equation do not have any physical mean-
ing. These singularity theorems are complicated misinterpretations. In
other words, general relativity must always be a field theory that is ev-
erywhere analytical [17]. Similarly, the older Newton theory must be
everywhere analytical. There are no singularities in nature. Equation
(45) shows that the universe can contract to a dense state, but then
re-expands and re-contracts. Apparently we are currently in a state of
evolution where the universe is on the whole expanding. This does not
mean that every individual part of the universe is expanding. Some
parts may be contracting or may be stable with respect to the labora-
tory observer.

Equations (4) and (41) suggest that all radiated and matter
fields evolve through a wave equation. This inference leads to causal
wave mechanics. The Evans wave equation (2) is an equation of wave
mechanics in which the eigenfunction is the tetrad. The evolution of
the tetrad is causal, in the sense that there is no Heisenberg uncer-
tainty principle in general relativity, and there is no need for such a
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principle to describe nature. The uncertainty principle is subjective; it
essentially asserts that nature is unknowable and that measurement is
subjective. Any assertion about the unknowable, however, is inevitably
subjective in itself, is unmeasurable by definition, and is therefore out-
side the domain of natural philosophy. General relativity is funda-
mentally incompatible with this principle, because general relativity
asserts that nature is knowable and objectively measurable, given the
equations that govern it. These are now known to be the equations
of the Evans unified field theory. Figures (1) and (2) summarize how
well-known and tested equations of classical and quantum mechanics
emerge [1-10] from the Evans unified field theory. The latter unifies all
radiated and matter fields and also unifies general relativity and quan-
tum mechanics. Wave equations may also be constructed in which the
eigenfunction is R or T , proving in another way that nature is know-
able, because R and T are governed by general relativity. In the rest
of this section we illustrate the construction of this class of wave equa-
tions from the original Einstein field theory itself. This exercise can be
repeated to give a more general class of such wave equations based on
the Evans unified field theory.

The starting point for this class of wave equation are the Ein-
steinian definitions [12]

R = Rµνg
µν , (46)

T = Tµνg
µν . (47)

Multiplication on both sides by gµν gives

Rgµν = 4Rµν , T gµν = 4Tµν , (48)

i.e.,

Rµν =
1

4
Rgµν , Tµν =

1

4
Tgµν . (49)

The restricted or conventional Noether theorem [11] therefore
reads

Dµ(Tgµν) = gµνDµT + TDµg
µν = 0. (50)

Multiplying this equation by gµν , we get

DρR = αρR, (51)

where

αρ = −1

4
gρνDµg

µν . (52)

Equation (51) is a first-order differential equation. Similarly,

DρT = αρT. (53)
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Use of Eqs. (32) gives

∂ρR = αρR, ∂ρT = αρT (54)

which are first-order equations in the ordinary rather than the covariant
derivative.

The wave equations follow straightforwardly by differentiation:

R = ∂ρ(αρR), T = ∂ρ(αρT ). (55)

On using
∂ρ(αρR) = αρ∂ρR + R∂ραρ, (56)

Equation (55) becomes the second-order differential, or wave, equation

R = (αρα
ρ + ∂ραρ)R, (57)

where

αρα
ρ =

1

16
(gρνDµg

µν) (gρνDµgµν) . (58)

The wave equation can be written as

( + β)R = 0, (59)

where
β = −(∂ραρ + αραρ). (60)

Similarly,
( + β)T = 0. (61)

Equations (59) and (61) have the structure (see Fig. (2)) of the main
wave equations of physics; but, along with the Evans wave equation [1-
10], they are also equations of general relativity and therefore causal.
They show that R and T are quantized for all radiated and matter
fields of nature. We describe this procedure as “causal quantization,”
to distinguish it from Heisenberg’s quantization, which is subjective
as argued and should have no place within objective, and objectively
measurable, natural philosophy. The Evans unified field theory imparts
a deterministic structure to nature and resolves the twentieth century
debate between the Copenhagen school and the deterministic school in
physics, coming down firmly on the latter’s side. The Evans unified
field theory also suggests the existence of unexplored areas of physics
and develops the standard model into a generally covariant field the-
ory of all radiated and matter fields, while recovering (see Figs. (1)
and (2)) the previously known and tested equations of physics. Some
of them, for example the Maxwell-Heaviside equations, are developed
into structures such as O(3) electrodynamics [18], which has been fully
tested experimentally and is compatible with general relativity.
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3. GENERAL WAVE, FIELD AND FORCE EQUATIONS
OF THE EVANS THEORY

The wave and field equations of this section are generalizations to uni-
fied field theory of the well-known wave and gauge field equations of
electrodynamics [19]. Consider the Evans field equation in the form

Gqa
µ = kTqa

µ. (62)

The unified potential field is the tetrad or vector-valued one-form qa
µ,

which is in general an asymmetric square matrix. The latter can always
be written as the sum of symmetric and antisymmetric component
square matrices, components that are physically meaningful potential
fields of nature:

qa
µ = qa(S)

µ + qa(A)
µ . (63)

In the Evans unified field theory the gravitational potential field is
identified [1-10] as the tetrad qa

µ and the electromagnetic potential field

as A(0)qa
µ, where A(0) is measured in volts. The unit of magnetic flux,

i.e., the weber (or V ·s) belongs to ~/e, the magnetic fluxon, and both ~
and e are manifestations of the principle of least curvature [1-10] of the
Evans unified field theory. Both the gravitational and the electromag-
netic potential fields can in general have symmetric and antisymmetric
components:

Aa
µ = A(0)qa

µ = Aa(S)
µ + Aa(A)

µ , (64)

and all four components appearing in Eqs. (63) and (64) are objectively
measurable fields of nature. Geometry shows that there can be two

types of gravitational potential fields: q
a(S)
µ and q

a(A)
µ , and two types

of electromagnetic potential field, A
a(s)
µ and A

a(A)
µ . These four types of

field are governed by four Evans field equations:

R1q
a(S)
µ = −kT1q

a(S)
µ , (65)

R2q
a(A)
µ = −kT2q

a(A)
µ , (66)

R3A
a(S)
µ = −kT3A

a(S)
µ , (67)

R4A
a(A)
µ = −kT4A

a(A)
µ , (68)

in which appear four types of canonical energy momentum tensor: sym-
metric gravitational, antisymmetric gravitational, symmetric electro-
magnetic, and antisymmetric electromagnetic. In Einstein’s generally
covariant theory of gravitation [12], only one type of canonical energy-
momentum tensor appears, the symmetric gravitational. In the weak-
field limit, the latter gives Newtonian dynamics, in which the force
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field is centrally directed along the line between two point masses in
Newton’s inverse square law. The latter emerges from Einstein’s the-
ory of 1915 [12] as a flat spacetime limit of Riemannian geometry with
curvature but no torsion. There is no sense of torsion or spin in New-
tonian dynamics and no sense of torsion or spin in Einstein’s generally
covariant theory of gravitation [12]. In electrostatics, the force field
corresponding to the Coulomb inverse square law is also central, and
there is no torsion present. In electrodynamics however, there exists
the magnetic field, signifying spin, and electrodynamics in the Evans
unified field theory [1-10] is a generally covariant theory with torsion as
well as curvature. We conclude that the symmetric part of the tetrad

q
a(S)
µ represents the central, gravitational potential field, and the sym-

metric A
a(S)
µ represents the central, electrostatic potential field. The

antisymmetric A
a(A)
µ represents the rotating and translating electrody-

namic potential field.

The antisymmetric q
a(A)
µ represents a type of spinning poten-

tial field which is C positive, where C is charge conjugation symmetry
[20]. This fundamental potential field of nature is not present in the
Einsteinian or Newtonian theories of gravitation as argued and is a
field that is governed by the Evans equation (66). It may be the po-
tential field of dark matter [13], which is observed to constitute the
great majority of mass in the vicinity of spiral galaxies. Significantly,
the latter are thought to be formed by spinning motion, responsible

for their characteristic spiral shape. The field q
a(A)
µ is not centrally di-

rected and so does not manifest itself in the Newtonian inverse square
law in the weak-field limit. (Similarly, the antisymmetric electrody-

namic A
a(A)
µ does not reduce to the Coulomb inverse square law, which

must be obtained [1-10] from the symmetric electrostatic A
a(S)
µ .) The

antisymmetric q
a(A)
µ is also the root cause of the well-known Coriolis

and centripetal accelerations, which conventionally require a rotating
frame not present in Newtonian dynamics. The rotating frame is built
into the Evans unified field theory as spacetime torsion.

All of these fields emerge systematically from the tetrad qa
µ by

splitting it into its symmetric and antisymmetric components and by
multiplying them by a C negative coefficient whose unit is the volt.
The original asymmetric tetrad is the unified potential field of nature.
The C negative manifestation of the unified field is ζ(0)qa

µ, where ζ(0)

must be determined experimentally. The coefficient ζ(0) determines for
example the way in which an electrostatic field affects the gravitational
field. All forms of energy-momentum are interconvertible, implying
that

T a
µ = T a(S)

µ + T a(A)
µ . (69)

The interaction field ζ(0)qa
µ and its concomitant T a

µ may for example be
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measurable in the influence of an electrostatic field on the gravitational
field [14,15]. If so, the total interaction between two charged particles
would be the sum of the Newton and Coulomb inverse square laws and
a hitherto unknown interaction component which must be looked for
with high precision balance experiments [14]. For example, there may
be a tiny effect of an electrostatic field on a perfect insulator in one
arm of a high precision (e.g., picogram resolution) balance. There may
also be a tiny effect of mass (perfect insulators) used to unbalance a
high precision device such as a Wheatstone bridge. In other words,
the fundamental term ζ(0) is not present in Einstein’s original theory
of general relativity, because that deals only with gravitation. So ζ(0)

is an example of a new concept of the Evans theory, the subject of
this series of papers. The concept of ζ(0) has its fundamental origin in
thermodynamics: All types of energy-momentum are interconvertible,
and so all types of potential field are interconvertible. The mechanism
of the interconversion must be found by experiment. Reproducible and
repeatable effects of an electric field on gravitation, for example, can
be understood within the Evans unified field theory, but not within the
standard model.

We may always define the unified field by

Ga
µ = G(0)

(
Ra

µ −
1

2
Rqa

µ

)
(70)

and the unified energy-momentum by

Ga
µ = G(0)kT a

µ . (71)

The unified (i.e., most general form of the) Bianchi identity is Eq. (26),
and the unified conservation theorem is Eq. (27). By covariant differ-
entiation, we obtain

Dµ(DµGa
µ) = (DρD

ρ)Ga
µ = 0, (72)

and therefore [1-10] arrive at the unified wave equations

( + kT )Ga
µ = ( + kT )T a

µ = 0, (73)

whose eigenfunctions are the unified field Ga
µ and the unified T a

µ . Self-
consistently, these wave equations can be obtained straightforwardly
from the Evans wave Eq. (2) on using Eqs. (16) or (17). If ζ(0) exists,
it is also governed by a wave equation

( + kT )(ζ(0)qa
µ) = 0. (74)

The Evans lemma [1-10]
qa
µ = Rqa

µ (75)

14



gives rise to a class of identities:

Ga
µ = RGa

µ, (76)

T a
µ = RT a

µ , (77)

so that the Bianchi identity is generalized to the wave equation

Ga
µ = RGa

µ = −1

4
R2qa

µ (78)

and the Noether theorem to the wave equation

T a
µ = RT a

µ =
1

4
RTqa

µ. (79)

The most general asymmetric gauge field is

Gab
µν =

G

4
qa
µq

b
ν (80)

and most general T ab
µν tensor is

T ab
µν =

T

4
qa
µq

b
ν . (81)

These can also be written as sums of symmetric and antisymmetric
components:

Gab
µν = Gab(S)

µν + Gab(A)
µν , (82)

T ab
µν = T ab(S)

µν + T ab(A)
µν . (83)

The homogeneous field equation is then defined by the Jacobi identity
for any antisymmetric matrix,

DµGab(A)
µν = 0, (84)

and the general inhomogeneous field equation is defined by

DµG̃ab(A)
µν = Jab

ν , (85)

where G̃
ab(A)
µ is the dual of Gab

µν :

G̃ab
µν =

1

2
εµνρσG

ρσab(A) (86)
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and where Jab
ν is a general charge-current density. It is also possible to

define a general force equation from the asymmetric matrix T ab
µν :

DµT ab
µν = −fab

ν . (87)

Note that Eq. (87) is valid only for a subsystem [21]. For a closed
system the net force of Eq. (87) may be zero. Finally, the most general
form of the Lorentz force equation may be written as

fab
ν (Lorentz) = Gab

µνJ
νab, (88)

showing that the Lorentz force equation is also an equation of general
relativity.
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