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M. W. Evans? H. Eckardt! B. Foltz?*
Civil List, A.LA.S. and UPITEC

(www.webarchive.org.uk, www.aias.us,
www.atomicprecision.com, www.upitec.org)

3 Computer algebra and animation

In this section we give some more details of the calculations in section 2, compute
the apsidal angle and the time dependence of the orbit. Finally we present a
calculation scheme for animation. The radial and angular component of the
Minkowski force (1) for an elliptic orbit (6) are given by Eqs.(8) and (9). These
depend on the radial and angular coordinates, they can be expressed solely by
radial coordinates via Eq.(6), leading to
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The apsidal angle in this approxiation is defined by Eq.(17). When F(r) is
approximated by the radial component only, the result is
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This expression simplifies considerably, if we consider the radius » = « and
replace the Newtonian parameters M and G by Lg via Eq.(12):
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The graph of Eq.(66) is shown in Fig. 1 for three values of Ly. Obviously there
is a common crossing point for all Ly values which is governed by ¢ — 1. The
~ factor can be calculated from Eqs.(10-12):
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It is graphed in Fig. 2 for the special case 7 = « to study its Lo dependence.
rises asymptotically to infinity for Ly values where v comes near to c.
The next results are for a precessing ellipse:
o
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From Eq.(45) the time for taking a certain radius value, the inverse function of
r(t), can be found by integration:
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which is graphed in Fig. 3. The plot defines the r range of the precessing ellipse
as expected. The curve flattens when x is increased (not shown). The exact
value of x(6), Eq.(49), cannot be computed analytically.

The inverse time dependence of §(¢) is defined by Eq.(50):
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The integral can be solved analytically, giving
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When the precession factor z is used from the approximation (57), we obtain
(62 + 1) L02
=l e (73)

which can be inserted into (72). The result is shown in Fig. 4. Because x
depends on Lg, the angular periods increase when L goes up. To make the
effects visible we chose values for Ly in the ultrarelativistic range.

The animation requires knowlegde of 6(t) and r(t). To avoid the effort for
calculating the inverse functions out of ¢(#) and t(r) we used a simple recursion
scheme where t can be chosen from a regular grid so that no interpolations are
required. From Eq.(38) the scheme
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is obtained. The animation can be downloaded from the AIAS web site. Some
example graphics are presented in Figs. 5 to 7. What not can be seen in the
printed version is how the velocity of the orbiting mass changes with the distance
to the center.
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Figure 1: Apsidal angle v for angular momenta L1 = 0.01, L2 = 0.03, L3 =
0.05. Other parameters: a =c=m =1, ¢ =0.3.
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Figure 2: Relativistic factor v(Lg) with parameters o« = c=m =1, e = 0.3.
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Figure 3: Time dependence t(r) with parameters a =c=m =z =1, ¢ = 0.3
for different Lg’s.
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Figure 4: Time dependence ¢(6) with parameters « = ¢ =m =1, ¢ = 0.3 for
different Lg’s.
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Figure 5: Animation example: closed orbit.
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Figure 6: Animation example
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Figure 7: Animation example: exotic orbit

with z = 0.25.










