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ABSTRACT 

The Minkowski equation is used to show that an initially Newtonian orbit 

develops a precession due to the Lorentz factor. The precession can be evaluated analytically 

in the limit of nearly circular orbits, and a solution found for the polar angle as a function of 

time. An expression for precession may also be derived by considering the relativistic angular 

momentum, and put in a format suitable for animation. The search for new explanations of 

precession is made necessary by the many refutations of Einsteinian general relativity now 

available. 

Keywords: Minkowski equation, precession of planar orbits, animation . 

.. 
\ 



·""I f<- , 

1. INTRODUCTION 

During the course of development of ECE theory { 1 - 1 0} the Einsteinian general 

relativity (EGR) has been refuted in many ways. In recent papers a search has been initiated 

for a new explanation of precession in the solar system and in objects such as whirlpool 

galaxies. The most fundamental force equation of relativity is the Minkowski equation, which 

incorporates the Lorentz factor in to the Newton equation, and on the grounds of simplicity 

and Ockham's Razor is a good starting point for a new theory. In Section 2 the Minkowski 

equation derived in immediately preceding papers of this series is put in a format suitable for 

animation, and a related method developed on the grounds of the relativistic angular 

momentum. Some of the problems of the EGR are discussed. In Section 3 computation and 

animation is implemented to illustrate the Minkowski precessions of a planar orbit. 

2. DEVELOPMENT OF THE MINKOWSKI FORCE EQUATION 

Consider the format of the Minkowski force equation developed in UFT239 on 

www.ams.us: 

-

where ~ ( and ~ e are the radial and polar unit vectors, m is the mass of an object 

orbiting in a plane, c is the vacuum speed of light, CV is the angular velocity, r is the radial 

distance and ~ the Lorentz factor: 

Here L is the non relativistic angular momentum defined { 11} by: 
0 



As in UFT238 on www.aias.us: 

and the velocity of the Lorentz factor is defined by: 

~ +(~(~))) 
Assume that the orbit is initially Newtonian: 

l-- .,_ .}___ ( \ + t- Cos e) - ( t) 
( rL 

where ck is the half right latitude and E the eccentricity. It follows from Eqs. ( i ) 
and ( b ) that: 

where: 
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and: 
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in which the Lorentz factor is: 

In the Newtonian limit: 

in which: 

(oS e - t (~ 
and 
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In the limit of nearly circular orbits the apsidal angle is defined by: 

and in this limit: 

( 
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and: _(\~ 
\1 -7 0) 

so the force magnitude reduces to: 

f -
g1vmg a precessiOn: 

where 

is the so called "Schwarzschild" radius. 

From previous work the correct equation of the precessing ellipse is: 

whose force law can be worked out in the classical limit using Lagrangian methods, giving 

the result { 1 - 1 0} : 
I 1· 
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Eqs. ( ).o ) and ( }\)are the same if: 
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and: 
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and - ( ;n) ~ ('J f 

If 

then an expression can be derived for x: 

rv \ - (. . ~ c!,~ 
d._r 

X 

Therefore: 

\ - )C 

and the precession of the perihelion is: _ 

which is Eq. ( ). \ ), Q. -E. D. 

In the Newtonian limit ( \ l) the factor A can be written as: 
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Comparing Eqs. ( d..\-) and ( )~ ): 

(" ); ~ \- J._) J ( \ -); )) - ~ 

'- rl 
where the Lorentz factor is defined by: 

)
_, 
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In the limit: 

-(n) 

the precession factor x approaches unity. 

Now calculate t as a function of r as follows. First note that: 

From Eq. ( )._') ): 

with: 

k
d}j 
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and 

So 

From Eqs. ( .)~)and ( '+~ ): ( J< _ 1._ ) I{~_ ( 4).~\\ 
(<" - E-d \ -~ '] 
-- J_ ~ 
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so: 

and 
\ -

in which x is given Eqs. ( ~ 5) and ( ) b ). 
Eq. ( \-S ) can be solved by computer algebra to give r as a function oft: 

in which the factor\ is a function of the other variables appearing in the analysis. Computer 

algebra must be used to produce this function and this was carried out by Dr. Horst Eckardt to 

give the definition: 



The equation relating r to A is the orbital equation ( 'l) ). So: 

e - ~ ( b S -I ( ~ ( J< - L » -( 4-~ 
and from Eqs. ( \-l ) and ( ~~ ) the polar angle e can be calculated as a function of 

time t. This was done by computer algebra and the result animated in Section 3 using a 

numerical method to produce a regular grid for animation. 

As in UFT239 on www.aias.us it can be shown that the Lorentz factor produces a 

precession factor: 

J.'tf J( 1 l\\ lh 
~ .,__ t~ r. \ _ (;•tJ \t~ ~ Jff•Sj) (b 

As in note 238(12) accompanying UFT238 on www.aias.us the timet is given b; ( \..p\) 

where xis defined by Eq. ( 't~ ). In Cartesian representation: 

so (X, Y) can be calculated as a function of 6.' and animated. For eac~ $ , the timet can 

be calculated form Eq. ( -s 0 ), so (X, Y) can be calculated as a function oftime t and 

animated. For example: 
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where: 

and: 

where: 

As in note 239(7) accompanying UFT239 on www.aias.us , if: 

then: 

~ (( I - (Sf) 
)J_ 
X r0 1._ - ( 0 (I ·H· )l 

'4:rL 
and is constant, so the animation becomes simpler. 

In order to illustrate the obsolescence of EGR consider the planets of the solar 

system and for each planet evaluate the EGR precession for nearly circular orbits using the 

methods developed in immediately preceding papers. For each planet the EGR force law is: 

). (4 
~c 



giving the precession: 

' 

for a nearly circular orbit. The total precession is: 

J__ 

(". 
l 

and the relativistic correction is applied n times where n is the number of planets. For each 

planet it can be shown as in note 241(1) that: 

so the total EGR correction is: 

The standard physics claims the incorrect result: 

\ 

(. 
\ 

Some further details of this argument are given on note 241(1) and in notes for UFT240. For 

this reason alone, EGR cannot be a correct theory. 

3. COMPUTER ALGEBRA AND ANIMATION. 

Section by H. Eckardt and B. Foltz 
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3 Computer algebra and animation

In this section we give some more details of the calculations in section 2, compute
the apsidal angle and the time dependence of the orbit. Finally we present a
calculation scheme for animation. The radial and angular component of the
Minkowski force (1) for an elliptic orbit (6) are given by Eqs.(8) and (9). These
depend on the radial and angular coordinates, they can be expressed solely by
radial coordinates via Eq.(6), leading to

A =
α2 c2mL0

2
(
ε2 r L0

2 − r L0
2 + 2αL0

2 − α c2m2 r2
)

r2
(
ε2 r L0

2 − r L0
2 + 2αL0

2 − α2 c2m2 r
)2 , (64)

B = −
α2 c2m (r − α)

√
(ε2 − 1) r2 + 2α r − α2 L0

4

r3
(
ε2 r L0

2 − r L0
2 + 2αL0

2 − α2 c2m2 r
)2 . (65)

The apsidal angle in this approxiation is de�ned by Eq.(17). When F (r) is
approximated by the radial component only, the result is

ψ =
π
√
((ε2 − 1) r + 2α) GM − α c2 r

√
((ε2 − 1) r + 2α) GM − c2 r2√

((2α ε2 − 2α) r + 4α2) G2M2 + ((c2 − c2 ε2) r3 − 6α c2 r2 + 2α2 c2 r) GM + α c4 r3
.

(66)

This expression simpli�es considerably, if we consider the radius r = α and
replace the Newtonian parameters M and G by L0 via Eq.(12):

ψ =
π
(
ε2 + 1

)
L0

2 − π α2 c2m2√
2L0

2 − α2 c2m2

√
(ε2 + 1) L0

2 − α2 c2m2

. (67)
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The graph of Eq.(66) is shown in Fig. 1 for three values of L0. Obviously there
is a common crossing point for all L0 values which is governed by ε2 − 1. The
γ factor can be calculated from Eqs.(10-12):

γ(r) =
α cm

√
r√

((ε2 − 1) r − 2α) L0
2 + α2 c2m2 r

. (68)

It is graphed in Fig. 2 for the special case r = α to study its L0 dependence. γ
rises asymptotically to in�nity for L0 values where v comes near to c.

The next results are for a precessing ellipse:

r =
α

1 + ε cos(x θ)
. (69)

From Eq.(45) the time for taking a certain radius value, the inverse function of
r(t), can be found by integration:

t =

αm

(
α sin−1

(
(ε2−1) r+α

α ε

)
+
√

(1− ε)(1 + ε)
√
(ε− 1) r + α

√
(ε+ 1) r − α

)
√
1− ε (ε− 1) (ε+ 1)

3
2 xL0

(70)

which is graphed in Fig. 3. The plot de�nes the r range of the precessing ellipse
as expected. The curve �attens when x is increased (not shown). The exact
value of x(θ), Eq.(49), cannot be computed analytically.

The inverse time dependence of θ(t) is de�ned by Eq.(50):

t =
mα

L0

∫
dθ

(1 + ε cos(xθ))
2 . (71)

The integral can be solved analytically, giving

t =
α2m

x L0(1− ε2)

(
2√

1− ε2
tan−1

(
(1− ε) sin(xθ)√

1− ε2(1 + cos(xθ))

)
− ε sin(xθ)

1 + ε cos(xθ)

)
.

(72)

When the precession factor x is used from the approximation (57), we obtain

x = 1−
(
ε2 + 1

)
L0

2

2α2 c2m2
(73)

which can be inserted into (72). The result is shown in Fig. 4. Because x
depends on L0, the angular periods increase when L0 goes up. To make the
e�ects visible we chose values for L0 in the ultrarelativistic range.

The animation requires knowlegde of θ(t) and r(t). To avoid the e�ort for
calculating the inverse functions out of t(θ) and t(r) we used a simple recursion
scheme where t can be chosen from a regular grid so that no interpolations are
required. From Eq.(38) the scheme

θ1 = 0, (74)

ri =
α

1 + ε cos(x θi)
, (75)

θi+1 =
L0

m r2i
ti. (76)
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is obtained. The animation can be downloaded from the AIAS web site. Some
example graphics are presented in Figs. 5 to 7. What not can be seen in the
printed version is how the velocity of the orbiting mass changes with the distance
to the center.

Figure 1: Apsidal angle ψ for angular momenta L1 = 0.01, L2 = 0.03, L3 =
0.05. Other parameters: α = c = m = 1, ε = 0.3.
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Figure 2: Relativistic factor γ(L0) with parameters α = c = m = 1, ε = 0.3.

Figure 3: Time dependence t(r) with parameters α = c = m = x = 1, ε = 0.3
for di�erent L0's.
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Figure 4: Time dependence t(θ) with parameters α = c = m = 1, ε = 0.3 for
di�erent L0's.

Figure 5: Animation example: closed orbit.
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Figure 6: Animation example: open orbit.

Figure 7: Animation example: exotic orbit with x = 0.25.

6



' 
ACKNOWLEDGMENTS 

The British Government is thanked for a Civil List Pension and the staff of AlAS and 

others for many interesting discussions. Dave Burleigh is thanked for posting, Alex Hill and 

Robert Cheshire for translation and broadcasting. 

REFERENCES 

{ 1} M. W. Evans, Ed., "Definitive Refutations of the Einsteinian General Relativity", 

(Cambridge International Science Publishing, CISP, www.cisp-publishing.com, 2012). 

{2} M .W. Evans, J. Found. Phys. Chern. (CISP, 2011). 

{3} M. W. Evans, S. J. Crothers, H. Eckardt and K. Pendergast, "Generally Covarian tUnified 

Field Theory" (CISP 2011). 

{ 4} M. W. Evans, H. Eckardt and D. W. Lindstrom, "Generally Covariant Unified Field 

Theory" (Abramis 2005- 2011) in seven volumes. 

{5} L. Felker, "The Evans Equations of Unified Field Theory" (Abramis 2007, Spanish 

translation by Alex Hill on www.aias.us). 

{6} M. W. Evans, H. Eckardt and D. W. Lindstrom, papers and plenary of the Serbian 

Academy of Sciences, 2010 to present. 

{7} M. W. Evans and L. B. Crowell, "Classical and Quantum Electrodynamics and the B(3) 

Field" (World Scientific 2001). 

{8} M. W. Evans and S. Kielich, Eds., "Modern Nonlinear Optics" (Wiley, New York, 1992, 

1993, 1997, 2001) in two editions and six volumes. 

' 
{9} M. W. Evans and J.-P. Vigier, "The Enigmatic Photon" (Kluwer 1994- 2002), in ten 

volumes softback and hardback. 

{10} M. W. Evans and A. A. Hasanein, "The Photomagneton in Quantum Field Theory" 



.-...I f<-. 

(World Scientific 1994). 

{11} J. B. Marion and S. T. Thornton, "Classical Dynamics" (Harcourt, New York, 1988, 3rct. 

Edition). 


