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ABSTRACT 

A new wave equation is developed by Lagrangian methods for applications in 

celestial mechanics as part of ECE theory. A method is inferred for the calculation of a planar 

orbit for any force between a mass m orbiting a mass M in a plane. Two methods of solution 

of the wave equation are given and the self consistency of the method checked in the 

Newtonian limit. It is shown that the Einsteinian general relativity (EGR) is one out of an 

infinite number of force laws that give orbital precession. 

Keywords: ECE theory, celestial mechanics, Lagrangian wave equation, planar orbit for any 

force law. 



1. INTRODUCTION 

As part of this series of two hundred and forty two papers to date { 1 - 10}, 

Einsteinian general relativity (EGR) has been refuted in comprehensive detail and in many 

ways. In order to seek a replacement theory applicable for all observable orbits, a number of 

methods have been proposed in recent papers of this series. It has been found that orbital 

precession is given by an infinite number of force laws, not just the force law of Einsteinian 

general relativity (EGR). For example the Minkowski force gives a precession, and this 

process has been animated by B. Foltz on www.aias.us. Any force law proportional tor to the 

power n gives a precession, with the sole exception of n = 2, and this precession has again 

been animated on www.aias.us by B. Foltz. Essay 80 on www.aias.us lists fifty seven of the 

available refutations ofEGR, so it is a completely refuted theory, and the preceding papers of 

this series severely criticise the dogmatic claims of EGR to be a precise theory. 

In Section 2 a wave equation is inferred from a combination of the two classical 

Euler Lagrange equations of an object of mass m orbiting an object of mass M in a plane. 

These classical equations are used in EGR, despite its claim to be a relativistic theory. So 

EGR is not only incorrect in many ways, it is conceptually self inconsistent. This wave 

equation can be extended to the Minkowski spacetime straightforwardly, and that will be the 

subject of future work, but in this paper the classical limit is examined. Two solutions are 

given of the wave equation, one derived by computer algebra by H. Eckardt. This second 

solution is tested for self consistency and correctness in the Newtonian limit and applied with 

some simple force laws to find the orbit. As far as the authors are aware, this is the first time 

. 
that a method has been devised in celestial mechanics to find the orbit for any force law. The 

orbit for the Hooke Newton inverse square law is an ellipse, as is well known. The precessing 

ellipse is given by an infinite number of other types of force law. Using this method the 
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claims ofEGR can be tested in another way. 

Section 3 is a description of the numerical m~thods used by H. Eckardt: computer 

algebra used to check the hand calculations and used to solve the new wave equation. 

2. WAVE EQUATION AND PLANAR ORBITAL SOLUTIONS FOR ANY FORCE. 

Consider the orbit of a mass m around a mass M in a plane. The two equations of 

motion from a well known Lagrangian analysis { 11} are: 

.. ') . ) ~(r-<B 

and • 
""'<). e . 

Here F is the force between m and M and L is the conserved total angular momentum. The 
0 

plane polar coordinates are rand & . From Eq. (2) in Eq. (1): 

4. l: F(<J _(0 -( --
so: 
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This is a wave equation with structure: 

0 
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where 

Under a well defined constraint to be discussed below, this equation is a harmonic 

oscillator with period: 

( <;() 
\ - ~ -,_. 

S2.. 
and apsidal angle: 

- ( ") {~\~~ 
\ \ - - cw - ) 

where the angular velocity is defined by Eq. ( l ) : 
~ (1~ 

(A) Jj ::. lo - - ') 
eU V)o..( 

Therefore the angular coordinate is: 

- {u) e - "1f 
and can be found for any force. 

Eq. ( b ) has the solution: 

f-:::. 

with: 

provided that: 
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where: ~ \ ( S( + t a..JL _ (ls) 
)C -
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In order to prove this, note that Sl is a function of time, so: 

~52. t ,·_n_\: 
(tb) ~ .e.. X./L -------~ 
l·n\- - (,,) and \..SL\: (~ ~x))L tlJ. -:::.. .e., 

~ Jj 

I.e. 

(~ -\- )L) ( -:._ - (,~ tlJ. f 0 

-. 
Jj 

so: 

- ( ~ + X) - (\ q) '"'l 
Sl --

Q.E.D. 

Eq. ( \~)is a second order differential equation for the time dependence of S2_ 

and is a subsidiary or constraint equation that must be obeyed if the solution ( \ l) be true. 

Eq. ( \'\)can always be solved, analytically or numerically, so Eq. ( \) ) is always true. 

The second method of solution of Eq. ( b ) is due to computer algebra by H. 

Eckardt, giving the solution: 

\ -
5 

where A and B are constants of integration which have to be found by further analysis. For 

any curve { 11 } : 



where Ar is an area. Assume that in timeT an area Ar is swept out. Then in timet an area 

1\< \. /-r is swept out. Therefore: 1 I J. ~ _ ( ~ ~ \ 
Art / T ~ JAr -=- ~ ( ) 

t ~ J:_ j() ~e.- (n) 
JAr 

and in general: 

From Eqs. ( ~ D ) and ( J..) ): 

~ {(-J<sc
1

~-
for any curve and any force law. 

Using the chain rule: 

~ ;Jr ~~ - ().~) 
- < 

and the angular polar coordinate is: 



and can be found for any force law, Q.E.D. For any curve in the classical Lagrangian 

dynamics { 11} of any planar orbit: 

( 3>6) 
JJ:~ ~~ etA( ---Lo 

Integrating: rA~ - (>~ 
i~~ ).~ &A~ - ,.----

Lo () 

so: A, Lo - (_)"J) 
,-

:l.~ -\ 

for all planar orbits. 

In the Newtonian limit { 1 - 11} the force law is: L: 
where cL is the half right magnitude of the elliptical orbit: 

rJ_ 

\ ~ f (os e 
where f- is the eccentricity. It was checked by computer algebra as follows that the result 

( d..'\) gives the ellipse ( ~~ ) for the Newtonian force law ( ),S ). This is a rigorous 

test of the self consistency of the theory. The solution of Eq. ( d ~ ) with the force law ( ~ ) 

is, by computer algebra: _, cl - !_ Jh-\ ~r • 

e ..St~ -) < 
Lo\ ( ') A )')II') \- J..rL ~ 

-(3j 
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where y is a constant of integration. If: ( \ ( 
1
) ( (\ 

f.\ -=- - L; . - f - V E +- ) - ;~ 
i J.? "'- ") 

and 

-~ 

then: 

'\\' _ J_ sl" 
-\ d_ - 1 ~~f" -

B -- \ - -
lo\ ~ )1/l {(f-~(H0 +tL 

- (>~) . 
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Using Eq. ( )~ ), Eq. ( j~) simplifies to: 

\ =-

\ t f (o..f e 
which is Eq. ( ) ~ ), Q. E. D. 

So Eq. ( ~~)is rigorously correct for the Newtonian force. Having tested it in this 

way it may be applied to other forces and this is done in Section 3. 

Eq. ( 3 b ) can be simplified by noting that: 

~ -
\-f-') 

where a is the semi major axis of the ellipse { 11}. So: 



A --

In the Newtonian theory { 11}: 

so the constant of integration x is: 

A -

which has the correct units ofthe square of linear velocity. 

The precessing conical section: 

r =-
\-\ t- CoS (x8) 

is found from the force law { 1 - 11 } 

~M_& )~") 

and computer algebra is used in Section 3 to check this result, giving a precise result for the 

precession constant · X , a new result and an advance over previous work. EGR claims that 

the force law is: 

-~m& -
This claim can be tested by using Eq. ( ~I ) in Eq. ( d.1) to find the precession of the polar 

angle due to EGR, which claims that for a revolution of 'd.'{( : 

e ~ }'If ( \ + x \) - ( 4-\?J 

where: 
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o-.2(l-:-f "l) 
This claim ofEGR is based on the same Lagrangian analysis that leads to Eq. ( b ), so Eq. 

( ~<\)must produce the result ( 4-'\) ifEGR is correct. It is known from Essay 80 on 

www.aias.us that EGR is incorrect in many ways. 

Finally in this Section the Minkowski force has been shown in immediately 

preceding papers to be: 

.fl. + 
-f" 

where ~ ( and e_ B ~e the unit vectors of the plane polar coordinate system. The 

Minkowski force is the Newtonian force corrected for the Lorentz factor: 

( 
1 J-1{~ 

\- " 
~ 

G-

where the velocity appearing in the Lorentz factor is given by the Minkowski metric as: 

t ( L ~ ~)~ - { S )) 

From Eq. ( ~0 ): 

so: 

--

Using the chain rule: 
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so Eq. ( S S ) can be used to find the orbit in the form: 

Jl~ 
:l _(-.;0 &vc 

) 
~ r 

~( - -- - - --- ~ Lo 2(() JJ) Lo 

for any force law. Using Eq. ( Slr) in Eq. ( d.~ ) the true anomaly (or orbital polar angle) 

can be expressed as: 

~LA-- ($t) 
( 

So the true anomaly becomes: 

e ~ Lo 1-~~ (sq) ----"""-
implying that: 

Lo {b~ JJ3 -::::.. ...----- "') 

& '("r-...( 

which is Eq. ( l. ) Q. E. D. So the theory of this section is rigorously correct and self 

consistent and is a new and powerful method of celestial mechanics. 

3. COMPUTATION OF ORBITS FOR SELECTED FORCE LAWS. 

Section by H. Eckardt. 



A new wave equation for Lagrangian dynamics:

the planar orbit for any force law

M. W. Evans∗, H. Eckardt†, B. Foltz‡

Civil List, A.I.A.S. and UPITEC

(www.webarchive.org.uk, www.aias.us,
www.atomicprecision.com, www.upitec.org)

3 Computation of orbits for selected force laws

Before considering the orbits emerging from the force laws we calculate the
apsidal angles for some cases. The apsidal angle is de�ned by Eq.(9) and can
be written with aid of (7), (8) and (60):

ψ =
π L0

mr2
√
− L0

2

m2 r4 −
F (r)
mr

. (61)

The results are presented in Table1. In most cases the apsidal angle depends
on the radius r. To �nd a reasonable value for r we calculate r for the case
ψ = π. The apsidal angle is constant only for the 1/r3 force law which gives
a precessing ellipse of canonical form. For higher exponents r varies as well as
for an exponential and even a constant force law. The same holds for a radially
oscillating force.

In the following we apply Eq.(29) to some force laws to obtain the orbital
function θ(r) in the most general way. With the general result (32) this fuction
can be written

θ =
√

2
L0

2m

∫
f(r)

r2
dr +B (62)

with

f(r) =

(
−
∫

Ω2rdr −A
)−1/2

(63)

where Ω2 is given by Eq.(7) and A and B are constants of integration. Inserting
the force law of a precessing ellipse,

F (r) = −mM Gx21
r2

−
α
(
1− x21

)
mM G

r3
, (64)
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Force law Apsidal angle Radius for ψ = π

F (r) = −mGM
r2

= − L2
0

αmr2 ψ = π√
r
α−1

r = 2α

F (r) = − β
r3 ψ = π L0√

βm−L0
2

any

F (r) = − β
r4 ψ = π

√
r L0√

βm−r L0
2

r = βm
2L0

2

F (r) = −F0 e
−β r ψ = π e

β r
2 L0√

mr3 F0−eβ r L0
2

r3 e−β r = 2L0
2

mF0

F (r) = −F0 ψ = π L0√
mr3 F0−L0

2
r = 2

1
3 L0

2
3

m
1
3 F0

1
3

F (r) = F0 sin (κ r) ψ = π L0√
mr3 sin(κ r)F0−L0

2
r3 = 2L0

2

F0m sin(κ r)

Table 1: Apsidal angles ψ and radii for ψ = π for several force laws.

leads (by computer algebra) to the orbit relation

r =
α

−ε sin(x1(θ +B)) + 1
(65)

with

ε =
L2
0 x

2
1 − 2α2Am2

L0 x1
√
L2
0 x

2
1 − 2α2Am2

(66)

=
1

L0 x1

√
L2
0 x

2
1 − 2α2Am2.

By choosing the constant

B =
π

2x1
(67)

we can utilize the relation

sin(β − π

2
) = − cosβ (68)

so that we arrive at the standard orbit of a precessing ellipse:

r =
α

ε cos(x1θ) + 1
. (69)

The remaining constant A is related to the physical parameters via Eq.(66):

A =
L2
0 x

2
1

(
1− ε2

)
2α2m2

. (70)

The constraint that the square root in ε has to be real valued, leads to the
restriction

L2
0 x

2
1 − 2α2Am2 ≥ 0 (71)

or

A ≤ L2
0 x

2
1

2α2m2
. (72)
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In case of equality we have a circular orbit. The limit of a parabola (ε = 1) is
reached for A = 0, and the orbit is hyperbolic for A < 0.

The orbit of the precessing ellipse is graphed in form θ(r) and dθ/dr in Fig.
1 for comparison with other force laws. The vertical tangents at the return
points of r are signi�cant.

Next we inspect the Einstein force law

F (r) = −mM G

r2
− 3L2

0M G

m2 c2 r4
. (73)

It follows from Eq.(62) that the integral is not solveable analytically, it must be
evaluated numerically. The orbit is given by

θ = L0 c
√
m

∫
1

√
r
√

(2 c2m3 r2 + 2L2
0) GM − 2 c2Am3 r3 − L2

0 c
2mr

dr +B.

(74)

The Minkowski force law is

F (r) = −γ (r)
4
mM G

r2
− γ (r)

2
αmM

r3

(
1− γ (r)

2
)
. (75)

The orbit can be calculated �rst in the approximation of a constant relativistic
γ factor which is de�ned by

γ (r) =
1√

1− v2

c2

(76)

with v being the absolute value of the orbital velocity. Assuming a near-circular
orbit may justify the approximation v ≈ const. This results in an orbit

r = − γ4 αm2M − γ2 αm2M + L2
0

ε sin

(
(θ−B)

√
(γ4−γ2)αm2M+L2

0

L0

)
− γ4m2GM

(77)

with

ε = m
√
γ8m2G2M2 + (2 γ2 − 2 γ4) αAm2M − 2L2

0A. (78)

The result is a precessing ellipse which is �deformed� compared to the canonical
case of Eq.(65), see Fig. 2 in comparison to Fig. 1.

When the correct form of γ is to be taken into account, we have to use an
expression for the velocity. Here we took the approximation from the notes of
paper 238:

γ (r) =
1√

1− M G
c2

(
2
r −

1
a

) (79)

so that we have a radial dependence only. Then the function f(r) can be
evaluated. The structure of constants is so complicated that we only give the
expression used for the plot, the integrand of Eq.(29):

√
2L0

2m

f (r)

r2
=

1
√

2 r2
√
− 3 log(2 r−2)

4 + 3 log(r)
4 − 4 r2−4

8 r3−8 r2 + 0.45
. (80)
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This integrand represents dθ/dr and is shown in Fig. 3 as the red curve. This
function has been integrated numerically to give the blue curve. The graphics
can directly be compared to Fig. 2 for the constant gamma case. One sees that
θ(r) behaves di�erently at the lower r boundary, a clear relativistic e�ect.

It should be noted that the parameters in the formulas were experimentally
adopted for the graphs in such a way that the results were comparable. In
addition they were chosen so that bound curves came out (no hyperbolas etc.).
It would take a greater e�ort e.g. to set the integration constants in a way that
the same physical system is described in all cases.

Figure 1: θ(r) and dθ/dr for a precessing ellipse with ε = 0.3, α = 3, x = 1.1.
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Figure 2: θ(r) and dθ/dr for the Minkowski force with adopted parameters,
γ = const.

Figure 3: θ(r) and dθ/dr for the Minkowski force with adopted parameters,
numerical solution.
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