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ABSTRACT 

The hamiltonian for electron spin orbit resonance is developed to show that it is 

richly structured in general and that it is an entirely new form of resonance spectroscopy. The 

development is made possible through a novel use of Pauli algebra. It is shown that the 

hamiltonian gives results that are different from those of the anomalous Zeeman effect. The 

hamiltonian is obtained from the ECE fermion equation or chiral Dirac equation, giving great 

confidence as to its eventual experimental verification. 
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1. INTRODUCTION 

In the immediately preceding paper of this series of two hundred and fifty papers to 

date { 1 - 10} the ECE fermion equation was used to produce a new form of resonance 

spectroscopy designated electron spin orbit resonance (ESOR). The new ESOR spectroscopy 

emerges from the fermion equation (or chiral Dirac equation) by novel use of Pauli algebra. 

In Section 2 the ESOR hamiltonian is developed and refined from the original hamiltonian of 

the fermion equation and shown to consist of two main parts, independent of and dependent 

on the position vector r. So the energy eigenvalues of the hamiltonian must be evaluated with 

this spatial dependence taken into account, resulting in a rich array of new results. In Section 

3, some examples for hydrogen are given using computer algebra and graphics. 

2. CALCULATION OF THE ESOR HAMILTONIAN 

Consider the hamiltonian of the fermion equation (or chiral Dirac equation) in the 

usual approximation { 1 - 10}: 
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Here m is the mass of an electron interacting with an electromagnetic field with scalar 

potential + and vector potential A, and - e is the charge on the electron. The complete 

calculations are given in note 250(7) accompanying this paper on www.aias.us. Here we 

By regarding () as a function this term can be developed as: 



using Pauli algebra { 11}. For a uniform magnetic field: 

(J-=- \ ~xr 
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so: 
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By regarding p as a function: 
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so the hamiltonian ( 3 
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) becomes: 
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At this stage p is regarded as an operator, so the second term on the right hand side ofEq. 

( l ) does not vanish. The use of p and o as functions or operators is arbitrary, and - -
justified only by successful comparison with experimental data. From Eqs. ( ~ ) and 

( l ) the hamiltonian can be written as: 
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The total angular momentum is conserved so the result ( ~ ) is rewritten as: 

~ 
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where 
I 

~ L is the Lande factor. A complete derivation of Eq. ( q ) is given in Note 
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250(2). Here J is defined by: 

)\h-~\ 

which is a Clebsch Gordan series. The conventional spin orbit term emerges from another 

in which the first p is regarded as an operator but in which the second p is regarded as a 

function as in note 248(8) accompanying UFT248 on www.aias.us. So the conventional spin 

orbit hamiltonian is: 

\-b + 
The standard assumption: 

is now used to find that: 

o·l: -(1~ 
/ 

0 . f --
At this point is regarded as a function so: 

----
so the real valued part of the spin orbit hamiltonian is: 
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Finally the standard Coulomb law is used: 
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where the classical angular momentum is: 
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The complete conventional ESR hamiltonian is therefore: 

4-~·~-s~·i: 
Jrr--

where the spin orbit coupling constant is . - ( ~~J 

However, there are several other ways of developing the original hamiltonian of the 

fermion equation, and ESOR is the result of one of these. 

For a uniform magnetic field: 
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so: 
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and 

as in note 250(7) U . . smg these results it is found that: 
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Now introduce the operator 
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For "£ a um orm magnetic field: 
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giving the hamiltonian in the form: 



where the integration is carried out over all space and where the wavefunction is normalized: 
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Therefore as in note 250(9) the energy eigenvalues are: 
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In spherical polar coordinates: !J 1 
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integration of a function f over all space means that: 
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If the magnetic field is aligned in Z then in Cartesian coordinates: 
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and electron spin orbit resonance (ESOR) occurs at: ( ,\ ( . )\\ /43) 
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In spherical polar coordinates: 
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It is seen that this part of the hamiltonian is r dependent and must be evaluated for each 

wavefunction t . It is well known that the only analytical wavefunctions are the 

hydrogenic wavefunctions. So computer algebra is used in Section 3 to evaluate a few results. 

For example the d ~1.. orbital is: 

1 th ~ R:li /,. ~ tr'q 
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so in this case: 

However for other orbitals this part of the hamiltonian gives non - zero eigenvalues of energy 

in general, and a richly structured spectrum. 

3. NUMERICAL EVALUATION WITH HYDROGENIC WAVEFUNCTIONS 

Section by Dr. Horst Eckardt 
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3 Numerical evaluation with Hydrogenic wave func-

tions

The Hydrogenic wave functions in spherical coordinates are de�ned by

ψ(r, θ, ϕ) = Rnl(r) Ylm(θ, ϕ) (48)

where n is the principal quantum number and l,m are the quantum numbers of
angular momentum. Rnl are the radial parts of the wave functions and Ylm the
spherical harmonics which represent the angular part. The spherical harmonics
are listed in [12] up to l = 3. The radial wave functions are in some tabular
works given with wrong normalization constants and therefore listed here in
Table 1. Normalization has been checked by executing the integral

N =

∫ ∞

0

Rnl(r)
2 r2 dr. (49)

The norm evaluates to N = 1 in all cases. The energy eigenvalues of Eq.(37)
respectively Eq.(45) can be written as a sum of two terms E1 and E2:

E = E1 + E2, (50)

E1 =
e ~
2 m

FJ σZ BZ , (51)

E2 =
e ~
2 m

FJ σZ BZ

∫ 2π

0

∫ π

0

∫ ∞

0

ψ∗ cos2 θ ψ r2 sin θ dr dθ dϕ (52)

with the quantum number function

FJ = J(J + 1)− L(L+ 1)− S(S + 1). (53)

The results are listed in Table 2. The energies are given in units of e~/(2m).
There is no contribution from S states. The numerical factor in eV is

e ~
2 m

= 3.63695 · 10−4 eV. (54)

This is only a very small spectral correction. It has to be multiplied by the
results given in Table 2 to obtain the quantum-number dependent energy values.
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Table 1: Radial wave functions for Hydrogenic orbitals.
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n L ML J S MS MJ Fj E1 E2 E1 + E2

1 0 0 1/2 1/2 -1/2 -1/2 0 0 0 0

1 0 0 1/2 1/2 1/2 -1/2 0 0 0 0

2 0 0 1/2 1/2 -1/2 -1/2 0 0 0 0

2 0 0 1/2 1/2 1/2 -1/2 0 0 0 0

2 1 -1 3/2 1/2 -1/2 -3/2 1 1 1
5

6
5

2 1 -1 3/2 1/2 1/2 -1/2 1 1 1
5

6
5

2 1 0 1/2 1/2 -1/2 -1/2 -1 -1 −3
5 −8

5

2 1 0 3/2 1/2 1/2 1/2 1 1 3
5

8
5

2 1 1 1/2 1/2 -1/2 1/2 -1 -1 −1
5 −6

5

2 1 1 3/2 1/2 1/2 3/2 1 1 1
5

6
5

3 0 0 1/2 1/2 -1/2 -1/2 0 0 0 0

3 0 0 1/2 1/2 1/2 -1/2 0 0 0 0

3 1 -1 3/2 1/2 -1/2 -3/2 1 1 1
5

6
5

3 1 -1 3/2 1/2 1/2 -1/2 1 1 1
5

6
5

3 1 0 1/2 1/2 -1/2 -1/2 -1 -1 −3
5 −8

5

3 1 0 3/2 1/2 1/2 1/2 1 1 3
5

8
5

3 1 1 1/2 1/2 -1/2 3/2 -1 -1 −1
5 −6

5

3 1 1 5/2 1/2 1/2 -5/2 1 1 1
5

6
5

3 2 -2 5/2 1/2 -1/2 -5/2 2 2 2
7

16
7

3 2 -2 5/2 1/2 1/2 -3/2 2 2 2
7

16
7

3 2 -1 3/2 1/2 -1/2 -3/2 -2 -2 −6
7 − 20

7

3 2 -1 5/2 1/2 1/2 -1/2 2 2 6
7

20
7

3 2 0 3/2 1/2 -1/2 -1/2 -2 -2 − 22
21 − 64

21

3 2 0 5/2 1/2 1/2 1/2 2 2 22
21

64
21

3 2 1 3/2 1/2 -1/2 1/2 -2 -2 −6
7 − 20

7

3 2 1 5/2 1/2 1/2 3/2 2 2 6
7

20
7

3 2 2 3/2 1/2 -1/2 3/2 -2 -2 −2
7 − 16

7

3 2 2 5/2 1/2 1/2 5/2 2 2 2
7

16
7

Table 2: Energies E1, E2 and E in units of e~/(2m).
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