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ABSTRACT 

An extended minimal prescription is used to evaluate the effect of gravitatio~ on 

fermion resonance. The results show that such effects are pronounced in systems such as 

neutron stars with heavy mass and small radius, but negligible in the laboratory. Some 

consideration is given to the general development of tetrads and the evaluation of angular 

momentum from Cartan geometry. Higher order relativistic effects are evaluated from the 

fermion equation using the operator representation and mixed operator function 

representation of linear momentum. It is found that higher order relativistic corrections have 

a pronounced effect in theory. Some results are evaluated by computer algebra for the 

hydrogenic wave-functions. 

Keywords: ECE theory, angular momentum, fermion equation, gravitational effects on 

fermion resonance, higher order relativistic corrections. 
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1. INTRODUCTION 

In recent papers of this series { 1 - 1 0} the !ermion equation of ECE theory lias been 

developed in several ways to reveal new types of spectroscopy. In Section 2 the development 

is continued by firstly examining the way in which Cartan geometry leads to a fundamentally 

new definition of angular momentum. It is shown that the tetrad is ubiquitous throughout 

dynamics and electrodynamics and can be defined in many ways. Rotation generators, 

connections and torsions elements are evaluated in the cylindrical polar basis to illustrate the 

methodology in the simplest possible way. Angular momentum operator theory is 

fundamental to all quantum mechanics { 11} as is well known. A synopsis is given of spin 

orbit coupling theory leading to new results which are evaluated in Section 3 by comput~r 

algebra. The mixed minimal prescription is introduced for the combined effect of 

electromagnetism and gravitation. The mutual effect of electromagnetism on gravitation is 

given by a mixed term which is used to evaluate the effect of gravitation on fermion 

resonance spectra. The spectra are evaluated by computer algebra in Section 3. It is found 

that the effect of gravitation is negligible in the laboratory but becomes clearly observable in 

the atmosphere of a neutron star with its large mass and small radius. So these effects can be 

evaluated experimentally. The effect of higher order relativistic corrections in the fermion 

equation are evaluated systematically in the operator representation of linear momentum, and 

in the mixed operator I function description. It is well known that in the original Dirac 

I 
equation, some results are obtained { 12} with an operator representation (g factor, Lande 

factor, ESR, NMR, MRI) and others with a mixed operator I function description (Thomas 

factor, spin orbit coupling constant, Darwin effect). There is no rule which can be used to 

decide where a given description must be used;. and in previous papers several new 

spectroscopies have been developed with different descriptions and novel use of Pauli 

algebra. This has gone further than tYer before in the exploration of fundamental quantum 



mechanics and has shown that the Dirac equation has some arbitrariness in it that was . 
hitherto unknown. The fermion equation is equivalen_t to the chiral description of the Dirac 

equation. For example some choices of representation may lead to unphysical results, as · 

described in the previous paper, but almost all appear to give physically meaningful results 

which can be tested experimentally. If these tests prove the theory then quantum mechanics is 

strengthened, if not, a fundamental weakness emerges which must be rectified in future 

theoretical work. In Section 3 some of the key results of this papers are evaluated by 

computer algebra for the hydrogenic wave-functions. 

2. THEORETICAL DEVELOPMENT 

One of the major advances made by ECE theory is to show that a tetrad may be 

defined by two different descriptions of the same mathematical space, for example 

cylindrical polar and Cartesian. For each quantity in classical dynamics and electrodynamics 

a tetrad can always be defined. For example: 

G\ C'\ ~ (!~) 

.!(_( c. ~ ""Jr.,_ k'_ ... - (,~ 
- c7\J < I 

)"<".\ ,.(... - { \ c) 
~~f,AA (\~) 
fAJ /';.. 0\.A..t.. - ( \ e \ 

- a...} ,AA' "'- ) 

where a and )A denote different bases. Here e ~is the unit vector, r is the position vector, p a. 
CA. 01. 

is the linear momentum vector, a is the linear acceleration vector, A is the electromagnetic 

potential, and so on. Eq. ( \ 0\.) may be interpreted as: 

L
- (,)1 ~I~\) 

.e_ -::. \J .I 
(~) (J) 

.e. ~ \ 
where attention has been restricted to two dimensions for simplicity. If one basis is the 
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cylindrical polar and the other is the Cartesian the Eq. ( 3 ) is: 

l_. 5!:- '1 ~ \ ~ (:~ '\J ~) 
Q. l ("l1 (')) 
_9 \J \ ~ ) 

-

l~ -
-0) 

where the unit vectors are defined by: • 9 ( ) 
.R \ ( 05 9 -\-- ~ StJ.. - 4-

~: ~ -l s<~-.8 -1-- ico~e - ( s) 
So in this case the tetrad is the two by two matrix: _ 1 cos e 

\: s.-~..e 
which is the rotation matrix about the Z axis { 12}. The infinitesimal rotation generator is· 

well known { 12} to be defined by: - 0 
\ -

- l 

and within a facto~he infinitesimal rotation generator has the same commutator properties 

as the angular momentum operator of quantum mechanics. 



From considerations of antisymmetry of Cartan torsion in note 253(1 )it follows that the spin 

connections ofCartan {1- 10} are: 

(r~a (.t~ e) -(t) (l) w (l) 

' -\-
w \). +- ---"lt .[ 

and: 
c~> (:l) - (t4-) 

w \d. 
_C,> 

'd\ 

They are related to the antisymmetric Christoffel connection by: 

This fundamental Cartan geometry can be related to angular momentum theory as follows. 

Differentiating Eq. ( b ) with respect to e gives: 

Jx~ \-- S(ke (o~ e 1 
L- (dS e -~~~e :: -se-

Define the general rotation generator matrix by: 

-\ " - Jxh t '\{ : . -( 11) 
0 r -oe / 

so the infinitesimal rotation generator is: 

0 

-
l 

_, 



The rotation generator matrix in Cartesian representation is: 

where the inverse tetrad is defined by: 

~"'c. ~: - 1_ 

So: 

Therefore: 

From Eqs. ( \ C\. ) and ( )._1 ): 

\ -. 
\. 

Now lower indi~s using

1
the metric g f ~enote: 

-\ ~ ~0 ; ) -;:. 
J-z. . ) ~ 

-l () 

It is clear that )'2. is the vector format of the tensor },><.;>'. The angular momentum 

operator is: 
1\ - ( -;}t) J,-z.. 7- -t J '<. 

1 .- f )--\ 
N 

J~ -(:n) 
( ~ 

In general: 



Ek 
( N 

so the angular momentum operator may be defined in any space by: 

1\ 

3 
/ 

In the fermion equation in what follows the space is the Minkowski spacetime. 

The angular momentum enters in to the fermion equation through the use of Pauli 

algebra { 1 - 12}. The source of the fermion equation is the relativistic linear momentum of 

special relativity: 

f --
where 

is the Lorentz factor and where vis the linear velocity and m the mass of a particle. Eq. cJo ) 

can be rewritten as the Einstein energy equation: 

which can be factorized as: 

) 

f 

( ~- ~c?)(t= t r...e-J)""" 
'). 1 

c. '(' . - {3>) 

The effect of an external field is introduced with the minimal prescription. For example: 

( ~4-) 

where -e is the charge on the electron and f is the electromagnetic scalar potential. The 

minimal prescription ( ~4- ) can be extended to: 



- . 
where i_ the gravitational potential. The change of sign is due to the fact that m is positive 

but -e is negative. With the minimal prescription ( 3\..r ) Eq. c33) becomes: 
") ') 

t- (_ If ~ 
E - -e. + +-""-C... 

In order to linearize this equation the usual approximation { 12} is to assume that the E in the 

denominator of the right hand side is : 

I.e. 

((c 

This approximation gives: 

l ~ ~ f + '1\-..c,J. t ..L o · r rs- • r 
~~ 

- ( 2>'\) 

The quantity E defined in this way is the total energy, so this equation quantizes to: 

') \ () .0 ().() 
+V\...c... + .-:-- - \ - \ 

;;~ - -

where H is the hamiltonian operator. The linear momentum is quantized by the operator 

representation { 1 - 12}: 



f\ 

r --
A 

to the linear momentum operator p . It is almost never made clear in textbooks that spin o.rbit 

coupling in spectra is described as follows: 

1-\1 1 ~ }.._ "} ~ •i 1 ~ ·f + 
'+n... (.. 

The first p is used in the operator representation, and the second p in the functional 

representation. There is no a priori reason for this choice. It is accepted because it seemed to 

give an accurate description of atomic and molecular spectra. However the immediately 

preceding papers have questioned the validity of this procedure. It is also important to note 

that the hamiltonian ( lt-"3> ) must be interpreted as: 

~\~ f ~- i (t f ·'! ( r ~·it)~_ .. ~\ 2 { ~ "j_ )ff + ~·!_ 
4-n . .? v" l..tlh '- - ( 44-) 

where the Leibnitz Theorem has been used. The conventional description of spin orbit 

in which the Leibnitz Theorem gives: 

( tr -+ ~ + 
-

\A~ 1 _,·et 0 . y_ 1 0 . f -.... 

-
~ 

- (4-~ \..t~(; + 
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At this point the standard physi~es- - ':y f 

and ECE physics uses the same format by use of antisymmetry laws and as part of a unified 

field theory { 1 - 10}. The Coulomb potential used to describe the interaction between an 

electron and proton in the H atom: 

r 
where E is the vacuum permittivity and r the distance between the electron and proton. The 

t> 
electric field is therefore: 

The orbital angular momentum L is introduced by Pauli algebra as follows: 

0. \ 0 . e - ~. ~ -\-\.0 • ~~f - i_ · r + - --- - - - --
where l _:_x.r (~) 

So the real part ofthe first term on the right hand side ofEq. ( 5\ ) is: 

~(~\,f\"' ~~-r ") ) ~ !:· L. + + ... 
) lb'!l f. ""' v (' 

which is the usual spin orbit coupling term in the H atom {1 - 11}. Note carefully that _!: • L -



-1 " 

in Eq. ( 5lt) is still classical. It is the expectation value: 

~ . ~ ~ r ~/ ~- .t + kr - ( ~~ 
where 1\ denotes operator. In quantum mechanics { 11} the Pauli matrices are quantized as 

follows and become operators: 

-

-

so: 

From Eqs. ( 5"4-) and ( l6 ): 

Qe(~~f)~ ~'lt~ ") ~ (s(~t)-e{e~~-s(s*0 
tb'i\ t-0 Y\- C 

0 

•' 

The second term on the right hand side ofEq. ( S\ ) is: 



-I ~ 

As in immediately preceding papers this can be developed with the following Pauli algebra 

{ 11}, which follows from the Pauli algebra in Eq. ( 5J ). Eq. ( ~-3 ) is an identity 

because: -- j_ _If". s_ ~. S.. ~. ( __1___ a- • I~.£ "- 1.- {0) 
0 . ~ ) (') --- (') 

Using: 
~ () . L - (l4) o . r o-r ( . ~ + - --- -- -

Eq. ( h'!;, ) can be expressed as: 

o .r(~·f . . ~) -(l~ \ + l 0 
___. 

~ . ~ - --
(~ --

so once more introduces the orbital angular momentum L. From Eqs. ( bJ..) and ( f:5) the 

" -
real part of H). t can be evaluated from: _ ( { \ 

0 . ~AI, ~ . f -=- i ~ . 'i ~ ~ . 5.:_ ~ • ~ + . . . - ~) 
-- '"T - I ~ 

( 

So {(eo.Q ~) _h ,. - ~ ~ . .f_ • ~ + !_ • !:_ - ({,I) 
"T ") "l 3 

\b'lT?bn..... (/ ( 

-=- t (\(~-\- ~-.e(f+~ -s(5-t0 · 
J . - r~i) --

From Eqs. (bl) and ( b~ ): 



Using: 
\ --

it follows that: 

so 

t::>.l ~ _ ~")t 1 _(~ (jt0-e(f+0-{stV) 4H- ~-c 
.1 \(,tfl t" 1'1-")c.? ( ~ ( 
dh. . . . -h~ 

an t IS IS evaluated by computer algebra in Section 3. The result ( lS). th IS e same as 

pe amlltoman of page 4 of note 252(10) on given by the second term of the ty II h . . 



www.aias. us, thus providing a cross check on analytical correctness. 

Fine structure in atoms and molecules is very accurately measurable so it is 

interesting to evaluate the effect of gravitation on the spectra. This is done most simply using 

the minimal prescription: 

where I is the gravitational potential: 

'f-
where G is Newton's constant and M is the mass that is gravitationally attracted to the mass. 

m of the electron in the H atom. As in note 253(3) accompanying UFT253 on www.aias.us it 

follows that: 

~ i ~(-fk~ ") \ tr--p 
+-~c +-

~~ 

in the approximation: 

) 

The relevant spin orbit hamiltonian is: 

~ _[1 "" ;f ") ~. ~ ~ 0 ·it "" 
l ~n..c.-

0· 

-
where the acceleration due to gravity is 

_'\j ~. --
•' 

It is possible to develop Eq. ( ~0 ) in different ways, including the following: 

1) To consider the effect of the Earth's g on the electron in an H atom. -



2) To evaluate the effect of the gravitational interaction between an electron and a proton in . 
the H atom. 

In both cases use the Pauli algebra: 

() . ~ - \ 0 . \ - ').-
.( -

where 

l - -
is the classical angular momentum. From Eqs. ( go ) and(~~ ): 

ge~~~"h ~ _{-__ -r ') ) 
~~c..--< 

---
Now use: . 

'~ ~~. () . ( )• \ +\ 0 
0 • 2r -- --_ (~t:) - ,--. --

so: A 
-t"ff f· - ( '6>) \2-e~ 1-\1 - " \ () -L 
~ 
lt--~c.... < 

In spherical polar coordinates: 

( -
and from Eqs. ( ~\ ) and ( t{, ): 

{ .e ' - (~) - \. -
However, from Eq. ( <6\ ): 

-
_VYJ& r mer- e. -(&~ - -:::;.. -r--~ 

~) ~· 3. . ' 
( 

so: 



e - (" --

so 

When considering the gravitational interaction between an electron and a proton: 

u . L ,_ ( ~ . ~ ') ,_ f ( ) ( S -\ ') - .e(ii * 0 -5(s; ,y 
- (q~ 

0 . ~ + - ( q:l) 
which has the correct units of joules. The energy expectation value from Eq. (,«')is: 

1:, t)_)- _ ( S {~ -\0-R(f +)-s(s+t~ 
- ') 

~~(/ 
which is evaluated by computer algebra in Section 3. The effect of the gravitational 

interaction between electron and proton is entirely negligible compared with the electrostatic 

interaction. 

In evaluating the effect of the earth's gravitational field Eq. ( ~ \ ) can no longer 

be used, because Lis defined as: 

l R X f - ('\It) 

where R is the distance between the electron and the centre of the earth. Therefore another 

method must be developed to calculate the effect .on fine structure of an external mass M, for 

example the mass of the earth, sun or neutron star. 

As in note 253( 4) the usual procedure used in deriving the fine structure of atoms 



and molecules is to assume that: 

so: 

More accurately: ) 

( \_ _ ')(_) -1 -::.. \ + X + K 

producing the following expression for total energy: ) ) 

r __ ocft "J+-\-o·n(\+~+_e__f- ~·p 
'-= ~ vr-.c.....-- \ - ~ ' 'l 'l 4 

d...~ - oL ~(... 4-V\-... c. 

The second order term introduces a new type of spin orbit spectroscopy described by: 

[ -=- -E:-J 6".~ A, ")v ·P -(r6"6\ 
\ ~--' --- ) ~ . 

~~c..-
which quantizes to: 

(~·~fJ§_·_t)f + .. -(\ol) ~~i -=- - ( .e_){: 
~~1:Jv ~ 

in which: 

f~ 
J. - (\o~) - e.--- )-

l ~'l\ )· fo~ ( "), 

( [(}~) 
f~ 

1. 
.!(_ \ -'J - -. -
~ J.f-'l, 4 - 1f 0 



So: 
0 • \ - -

Using the Pauli algebra: 

-- -

first order result is: 

"='- .e? f: J 

so the ratio of second to first order expectation values is: 

~ ~\ ~~ ~& - ) ~ 
l::. 0 \.Hi t-0 v\-. (,_ ( 

These ratios are also evaluated in Section 3 by computer algebra for the hydrogenic 

wavefunctions. 

The effect of gravitation can now be considered by the extended minimal 

prescription: 



which produces the total energy: 

to second order. Eq. ( l \\ ) contains the term: 

This can be used to consider the effect of external gravitation of a mass M on the fine 

structure of the H atom. Use the potentials: 

~--

where r is the distance between the proton and the electron in an H atom and where R is the 

distance between the electron and the centre of an external mass M, for example the earth. 

Quantization ofEq. (\\d) produces: 

0 . 'i ( f '£) ~ . i_ f . -( l\4-) 

Using the Leibnitz Theorem: 

1 
f ,..-, 

I ~ -- 'J 
'J vf£J-=- ±-~ + -

-

o-.ro·o t_L. (f .. g c·r)f .L-- -- \ l -; - rR 
R" .. · -(116) 

therefore: 

f.\ ( ·(' t\~·L -(tf1) -
where: 

0 . e -



!._ • ~ ~ .i _,_ g_-: i_ t- t ~ • L \ - (tt0 
. 

1:_. -=- ~ ""J'_ 
1 

-(It'\) 
L -=- ~ "'- f - (lJ.o) 

and where: 

- -
The term of relevance is: 

~ j, ""'ZtJff.L&- ( j () t0-fl{R+0-s(s>r0f 
:l.'! \L:\Ifo~\ .. ~R,:!. -(tJ.) 
which gives the energy expectation values: 

{{(j~0 -R(ett)-J(st~v 1;1. J.T 

-(1J1 
Comparison of Eqs. ( \0 ~ ) and ( } ~'l) shows that: c 0 

E :l -::_ rY\.-:::::--b-__ . - \ l) 
- n,"l [ () \'-. \....-" 

The effect of an external mass M a distance R away from the electron is to change the 

spectrum by a factor: 

For the earth: ~ - \ . Y\ ')(. \D - '\ -ll :l ~ 
For the sun: 

.,_ ~. )lt'}x \O-S - (lJ0 



In a typical neutron star: 

so if there is an H atom in the atmosphere of a neutron star its fine structure spectrum is 

measurably different from the same spectrum in an earth laboratory. 

Finally in this section higher order relativistic effects are considered. Consider the 

Einstein energy equation ( 3>3> ) written as: 
) 

~c. 

) ") 

+- c r --") 

\? + 1\o...C, 
I . 

The g factor ofthe electron, ESR, NMR, MRI, Lande factor, Zeeman effects, Thomas factor, 

fine structure constant, Darwin term and all the new effects found in immediately preceding 

papers have been evaluated using: 

Eqns. ( !).~)and ( !)'\)produce the non relativistic kinetic energy: ( 0 
") :l. . - \.~0 

1~\: -~0 -:--fd~ 

However, the total energy is defined by: 

~ "='- '1: n.. v ") 

so more accurately Eq. (\~)is: 

If 

~ J 
+-- c r 
i-c"l·C-~ )-1/~ 

(J c - ( l~) 
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-l/l J _(u0 then: ( \- 1 \ -\- 'J 
-.J 

. 
f'J -:lc 

') 

and in the same approximation: 

(\~5) r c--J rr....v. 

which is the free particle Schroedinger equation: 

with a small relativitstic perturbation. The solutions ofEq. ( t;,l) can be found numerically 

using the free particle wavefunction as a starting point in an iterative procedure. The resulting 

wavefunctions can then be used in quantum tunnelling theory for relativistic particles. As in 

UFT226 to UFT231 on www.aias.us this procedure may give insight into low energy nuclear 

reactions. 

Higher order relativistic corrections to magnetic effects such as electron spin 

resonance may be evaluated in a similar way, full details of which are given in note 253(7). 

The starting point is the usual semi-classical description for the interaction of the electron 

in which magnetic effects are described by the vector potentia~. In fully developed ECE 

theory the spin connection is also considered. It follows that: 



where the total energy is: 
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Now note that: 

\ ---) -'()-

and in the SU(2) basis: 

Restricting consideration to the first term in Eq. ( \4-S) gives the relativistic corrections to 

ESR from ( A \ l - I r . ( r -e A) () . ( f - d1" 
~I i ~ ~ ~ • i-.e-) \.,v: G'l - - - - -:- ~) 

~ . £·Cr-eA)f -(\~t-~ 
-

The first term in Eq. ( \ lt~ ) is the usual ESR term and is worked out as in UFT248 with 

the operator representation: 

f -=- - '. t Sl_ - ( l <;; ()) 

--

The second term in Eq. ( \4-~) is the quartic: 



-1 !< 

\1- 2r:Z - · -(~$.)) 

and can be developed in many different ways to give several entirely new types of spectra, 

each of which should be observable experimentally. To end this section two examples are 

--
So 

If B is aligned in the Z axis: 

Now use: 



-I ~ 

so: 

This is a second order spin order splitting whose order of magnitude is: 

which compares with the well known first order resonance frequency: 

1.,_ -;;)_ .~0 X \0 lb t2, ~L_ -
This type of relativistic correction is a small shift not very much different form the 

magnitude of the well known chemical shift, and therefore it ought to be observable. 

For a Z axis magnetic field: 



-I ~ 

where 

The z component of the Pauli matrix is: 

D-z__ ~ l ~ ~J - {r-u) 

occur etween states of 6:_ Th and resonance can b f . . . '2... e energy expectation values for this ty 

o relallvtsllc correction are: pe 

and . * •') ( ") 4) ~ h i ( \- (oS IJ)'J J..:C 

-(ns) 
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and are evaluated in Section 3 for the hydrogenic wavefunctions. These compare with the 

non relativistic result, the well known: 

-
The resonance frequenciesc::

0 

_ f_ ~ 7._ 1 r._ _ ( \"""ll) 

1*"' )f J_---c - (n0 
~ 1 ~ -{n~ 

--=-c-=--~-~ '-~~--=---[-+ ~ () ( t- ( 4/ rr)f -~ -c-
l ~ Y\o... ~ (__ "). 

The relativistic corrections depend on the orbital in which the electron is situated, so 

interesting spectra are expected. 

3. COMPUTATION FOR THE HYDROGENIC WAVEFUNCTIONS 

Section by Dr. Horst Eckardt 
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3 Computation for the Hydrogenic wavefunctions

As in the preceding papers, the expectation values of energy eigenvalues de�ned
in section 2 (Eqs.(75, 93, 107-109)) are evaluated by computer algebra. The
constant factors of the energy eigenvalues have been compiled in the following
list, extended by their numerical values in electron Volts (eV ). To obtain the full
energy expectation values, the results listed in the tables have to be multiplied
by these values.

E0 = − e2 ~2

16 π ϵ0 m2 c2
Z3

a30
= 0.0143015Z3, (180)

E1 = − e4 h2bar
64π2 ϵ20m

3 c4
Z4

a40
= −7.61574 10−7 Z4, (181)

E2 = −E0, (182)

Egrav = − g h2bar
4mc2

Z

a0
= 1.55071 10−24 Z. (183)

The ratio between E1 and E0 is

E1

E0
= − e2

4π ϵ0mc2
= −5.32514 10−5 Z. (184)

Obviously the corrections are small, in particular for the splitting in the grav-
itational �eld of the earth (Eq.(93)). The contributions of the integration are
listed in Table 1. The quantum number factor is again

Fj := j(j + 1)− l(l + 1)− s(s+ 1). (185)

It can be seen that in general

E2 = 0, (186)

∗email: emyrone@aol.com
†email: mail@horst-eckardt.de
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i.e. there is no correction of anglular momentum of type Eq.(75) or (62) respec-
tively. S orbitals do not contribute as found in previous papers. The modulus
of the corrections only depends on the angular quantum number l. The ratio
E1/E0 decreases with increasing quantum numbers.

Finally we try an estimation of the fourth-order corrections to the kinetc
energy given in Eq.(136). The radial part of the fourth-order nabla operator in
spherical coordinates is

∇4
r ψ =

4

r

d3

d r3
ψ +

d4

d r4
ψ. (187)

The expectation value of this operator is

E4 :=
~4

8m3c2
· 4π

∫
ψ∗ ∇4

r ψ r
2 dr (188)

where the angular integration gives 4π. Evaluating this integral with the 1s
orbital of Hydrogen gives the result

E4 = − ~4

8m3c2
· 4π 3Z4

4π a40
, (189)

and with the factors worked out in eV units it is

E4 = −0.846900 Z4 eV. (190)

This value is quite high compared to the binding energies of the electron in
Hydrogen.
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n l ml j s ms mj Fj E0[
Z2

a3
0
] E1[

Z4

a4
0
] E1/E0[

Z
a0
] E2[

Z2

a3
0
] Egrav[

Z
a0
]

1 0 0 1/2 1/2 -1/2 -1/2 0 � 0 0 0 0

1 0 0 1/2 1/2 1/2 1/2 0 � 0 0 0 0

2 0 0 1/2 1/2 -1/2 -1/2 0 � 0 0 0 0

2 0 0 1/2 1/2 1/2 1/2 0 � 0 0 0 0

2 1 -1 3/2 1/2 -1/2 -3/2 1 1
24

1
24 1 0 1

4

2 1 -1 3/2 1/2 1/2 -1/2 1 1
24

1
24 1 0 1

4

2 1 0 1/2 1/2 -1/2 -1/2 -1 − 1
24 − 1

24 1 0 − 1
4

2 1 0 3/2 1/2 1/2 1/2 1 1
24

1
24 1 0 1

4

2 1 1 1/2 1/2 -1/2 1/2 -1 − 1
24 − 1

24 1 0 − 1
4

2 1 1 3/2 1/2 1/2 3/2 1 1
24

1
24 1 0 1

4

3 0 0 1/2 1/2 -1/2 -1/2 0 � 0 0 0 0

3 0 0 1/2 1/2 1/2 1/2 0 � 0 0 0 0

3 1 -1 3/2 1/2 -1/2 -3/2 1 1
81

10
729

10
9 0 1

9

3 1 -1 3/2 1/2 1/2 -1/2 1 1
81

10
729

10
9 0 1

9

3 1 0 1/2 1/2 -1/2 -1/2 -1 − 1
81 − 10

729
10
9 0 − 1

9

3 1 0 3/2 1/2 1/2 1/2 1 1
81

10
729

10
9 0 1

9

3 1 1 1/2 1/2 -1/2 1/2 -1 − 1
81 − 10

729
10
9 0 − 1

9

3 1 1 5/2 1/2 1/2 3/2 1 1
81

10
729

10
9 0 1

9

3 2 -2 5/2 1/2 -1/2 -5/2 2 2
405

4
3645

2
9 0 2

9

3 2 -2 5/2 1/2 1/2 -3/2 2 2
405

4
3645

2
9 0 2

9

3 2 -1 3/2 1/2 -1/2 -3/2 -2 − 2
405 − 4

3645
2
9 0 − 2

9

3 2 -1 5/2 1/2 1/2 -1/2 2 2
405

4
3645

2
9 0 2

9

3 2 0 3/2 1/2 -1/2 -1/2 -2 − 2
405 − 4

3645
2
9 0 − 2

9

3 2 0 5/2 1/2 1/2 1/2 2 2
405

4
3645

2
9 0 2

9

3 2 1 3/2 1/2 -1/2 1/2 -2 − 2
405 − 4

3645
2
9 0 − 2

9

3 2 1 5/2 1/2 1/2 3/2 2 2
405

4
3645

2
9 0 2

9

3 2 2 3/2 1/2 -1/2 3/2 -2 − 2
405 − 4

3645
2
9 0 − 2

9

3 2 2 5/2 1/2 1/2 5/2 2 2
405

4
3645

2
9 0 2

9

Table 1: Energies E0, E1, E1/E0, E2, Egrav with Fj = j(j+1)−l(l+1)−s(s+1).
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