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ABSTRACT 

The theory of orbits is developed using spherical polar coordinates and the inverse 

square law of attraction. In general the orbit is three dimensional and there are several 

constants of motion defined by the total angular momentum in three dimensions and by 

components. The orbit is an intricate function of the coordinates of the spherical polar 

coordinates and is not confined to a plane perpendicular to the axis of one angular momentum 

as in plane polar coordinates. There are several types of Coriolis and centripetal acceleration 

in general. A hamiltonian and lagrangian analysis is used to develop the theory. 
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1. INTRODUCTION 

In recent papers of this series { 1 - 1 0} several fundamental phenomena have ·been 

analyzed in terms of a two dimensional conical section, notably the ellipse or precessing 

ellipse. In this paper the dynamics of the inverse square law of attraction are developed with 

spherical polar coordinates, producing the original result that orbits in general are three 

dimensional, not flat conical sections in a plane. This conclusion is the direct result of 

merging together two fundamental concepts, the inverse square law of attraction and the 

spherical polar coordinates, so the results are irrefutable mathematically. They are checked 

whenever possible by computer algebra. In Section 2 the orbit is developed rigorously 

without approximations and the various inter relations between angles given by integration 

using computer algebra. Fundamental concepts in spherical polar coordinates contain many 

more terms than in non inertial Newtonian dynamics and also more terms than dynamics 

developed in plane polar coordinates. In Section 3 the main results are graphed in three 

dimensions and animated. A discussion is given of the main features of the graphics. As usual 

this paper should be read with the background notes for UFT270 on www.aias.us. 

2. ORBITAL THEORY 

Consider the hamiltonian 

-
in spherical polar coordinates. In gravitational theory m is a mass orbiting a mass M, and r is 

the distance between m and M. The constant k is mMG'where G is Newton's constant. 

However the same theory applies to an electron orbiting a proton on the classical level, 

provided that radiation effects are neglected. In this case: 
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where e is the charge on the proton and t 0 the vacuum permittivity. The major new 

insights of this paper apply both to orbital theory and to classical electrodynamics. When Eq. 

( 1. ) is quantized it gives the hydrogenic orbitals as is well known. The orbitals are 

intricate three dimensional functions defined by a product of the radial functions and the 

spherical harmonics. The whole of quantum mechanics is therefore based on the use of the 

laplacian in spherical polar coordinates. Curiously, orbit theory on the other hand has been 

confined for over four hundred years to plane polar coordinates, thus losing a great deal of 

information. 

In spherical polar coordinates { 11, 12}, the position vector is defined by: 
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in terms of the Cartesian unit vectors. There is a cyclically symmetric relation between the 

. unit vectors: 
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The linear velocity is { 11, 12}: 
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so rand v are not coplanar as in plane polar coordinates. The angular momentum is: 

l -

and has two components. In plane polars it has only one component. Using Eqs. ( \\ ) in 

Eq. (~-~)it becomes clear that the angular n;omentum has thr;e Cartesian components: ( 

l ~ -=. - ~'( J ( 8 Si"-<f -\- 1 Sit-..8 CoJ 9 Cos r) - ~~ 
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This result is the same as that derived in UFT269 in a different way. In planar orbital theory 

there ~~only one component of angular momentum usually denoted: 

~ ~ l-z. t . - ( l>) 

In spherical polar coordinates however: 

L -
and conservation of angular momentum means that L and its three Cartesian components are 

all constants of motion: 

ctl - <i\..~ ~. ~lt -:::.. d..l£.- - 0 ~ (r-0 
~ 
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The force in spherical polar coordinates is { 11 } : 
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where: 

and contains many terms not present in plane polar coordinates or in a non inertial Newtonian 

development. These are developments of the Corio lis and centrifugal forces of planar orbits. 

The square ofthe velocity is: '"'\ • "') ( ~ 

'.J 'l - ; ') \- (. e ) + ( ) s i "'-"' e r - :l:l) . 

so the hamiltonian is: 

and the lagrangian is: 

These can be expressed in terms of the angle 

• ") • J 
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n ' defined by: 
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and the hamiltonian and lagrangian may be written as: · · \-\ - ~ - )__ ~ u "l -\-- ~ 'l ')) - \ - ( dL) 
~ 
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The basics of the lagrangian theory are given in Note 270(7). It is possible to develop 

a two variable lagrangian theory consisting ofthe Euler Lagrange equations: 

~;( ~ L~ -(~) 
~ cJi ~( 

and 

and a three variable lagrangian theory consisting of the Euler Lagrange equation ( ~g ) 

together with: 

J! ~ 
);[ 
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JJ ~ Jf - ~ 
and 

----- JJ: J1 ))f 
Eq. ( 1. ~ ) with the lagrangian ( )l ) gives the force equation: 

•• • ) p_ 
- ~'" ~ ''{2 

and Eq. ( 'l~ ) with the lagrangian ( )\ ) gives the angular velocity: 

• -(~) 

in terms ofthe constant of motion L. Eqs. ( 1 ~)and ( 33 ) give the three dimensional 
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orbital equation: 

--
\-\- f (os ~ 

which resembles a conic section, for example an ellipse. It is referred to for ease of reference 

as the beta ellipse or main orbit. The half right latitude and ellipticity are defined as follows in 

terms ofthe constants of motion E, the total energy, and L, the magnitude ofthe total angular 

momentum: 

~- ) 

If the conic section is an ellipse, the semi major and semi minor axes are defined by: 

~ -
and L --

( 
>\ 1/l 
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From the lagrangian ( )4-) and the Euler Lagrange equations ( ) 0 ) and ( 3 \ ): 

( ') . ). ) 
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and 

- ~(J Si~-.8 Co~+ r 
Therefore the angular momentum: • 
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is a constant of motion but the angular momentum: 
• 

is not a constant of motion. Eqs. ( J ~ ) and ( \ lt- ) give the same result from two 

entirely different methods, Q. E. D. The Z component of angular momentum is therefore a 

constant of motion, and in quantum mechanics it becomes the operator: 

where + is the wavefunction, ~is a quantum number, and where-his the reduced 

Planck constant. 

l"} 
From Eqs. ( t} ), ( \~ ) and ( \\;.)the square ofthe angular momentum is: • 
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so the hamiltonian ( )3 ) can be written as: 

~\ + 

and the force equation ( ) l ) can be written as the Leibniz equation: 

l) •• -- -
( 

The square of the total angular momentum is conserved: 

c\. L1 o-

and in quantum mechanics becomes: 



where 1 is a quantum numb er. 

From Eqs. ( 4-3) and ( 4o ): 

L J. "'- v-.-. ') '( "'- 8 ) t L~ 

so the three angular velocities of the system are: 
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It follows that: 
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and that: 
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from computer algebra. 

Similarly: 

and using Eq. ( S1 ): 

- ( s~) 
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Eqs. ( S) ) and ( Sl ) give the sub orbits PI&) and p (19. Computer algebra 

was used to evaluate Eqs. ( S) ) and ( s~ ). Finally the two angles of the spherical polar 

system are interrelated by: 

\ --l 

\ ( l•5S- I) I ( L 4-- L~ L)) 

- ( S<6) 
giving another sub orbit. 

The main characteristics of some of these orbits are given in Section 3, together 

·with an animation. 

It is seen that basic concepts lead to wholly unexpected results and the emergence 

of the new subject area of three dimensional orbits constructed from universal gravitation in 

spherical polar coordinates. 
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3 Graphics and animation of some of the orbital

features

In section 2 the equations for the calculation of orbits were derived. For a given
angle θ, the corresponding angle φ is computable by Eq.(58), and the angle β
depends on θ as derived in (53). With the latter equation, the three-dimensional
elliptic orbit of beta,

r =
α

1 + ε cos(β)
, (59)

is de�ned. This is an orbital surface in 3D, graphed in Fig. 1. Only the half
range of φ (0 to π) is used to visualize the three-dimensional structure in a clear
way.

The true orbit is a line on this surface and is de�ned by the dependency
β(θ, φ). This is obtained in two steps. First φ(θ) is determined from Eq.(58),
then β(φ) is inserted into the elliptic equation (59), resulting in a functional
dependence r(β(θ, φ)). The orbit extends from the upper to the lower end of
the surface of Fig. 1 and is closed. It is graphed in Fig. 2. A projection of
the orbit shows that it is planar. The edges appear because the 3D shape has
non-di�erentiable points at the upper and lower end. (Notice that the internal
cones in Fig. 1 do not belong to the surface but are artifacts of the graphics
program). The orbit can be views in some animated versions on the website
aias.us.

The orbit depends on the parameters L, LZ , α and ε. So far we have used
L = 3, LZ = 1, α = 1, ε = 0.5. The transition L → LZ is graphed in Fig.
3 in a projection to the XZ plane. It can be seen that the orbit shrinks to a
2D ellipse which is the two-dimensional limit for θ → π/2. The e�ect of the
eccentricity ε has been demonstrated in Fig. 4. The rim of the orbital surface
becomes sharper for increasing ε. If we set ε > 1, the elipsoidal part changes
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into a hyperbolic surface as is to be expected, because the conic section equation
(59) describes a hyperbola in that case.

In the last two images the sub-orbits have been studied. The dependencies
φ(θ), β(θ) and β(φ) are one-dimensional, therefore they are shown in a standard
plot (Fig. 5). θ pertains from 0 to 2π which is the doubled standard range to
give a closed curve. The sign of the curves had partially to be changed at θ = π
to avoid jumps in the curves, this is an artifact of spherical polar coordinates.
From Fig. 5 can be observed that the dependencies of the sub-orbits are nearly
linear in the middle of their range. This means that the orbit is elliptic there.
In Fig. 6 the corresponding sub-orbits r(θ), r(φ), r(β) are graphed. They are
elliptic in the middle of their ranges as predicted. At the borders there is no
vertical tangent, showing that there is a non-di�erentiable point when this range
is passed.

Figure 1: Orbital surface r(β).
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Figure 2: Orbit r(β). This is a planar orbit over the surface of Fig. 1.

Figure 3: Orbital surface projections to the XZ plane for several ratios L/LZ .
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Figure 4: Orbital surfaces for several eccentricities ε.
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Figure 5: Sub-orbits φ(θ), β(θ) and β(φ).

Figure 6: Radius functions r(θ), r(θ) and r(β).
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3. GRAPHICS AND ANIMATION OF SOME OF THE ORBITAL FEATURES 

Section by Dr. Horst Eckardt 

ACKNOWLEDGMENTS 

The British Government is thanked for a Civil List Pension and the staff of AlAS 

and others for many interesting discussions. Dave Burleigh is thanked for posting, Alex Hill 

of translation and broadcasting, and Robert Cheshire for broadcasting. 

REFERENCES 

{ 1 } M . W. Evans, Ed., "Definitive Refutations of the Einsteinian General Relativity" 

(Cambridge Scientific Science Publishing, CISP, 2012). 

{2} M .W. Evans, H. Eckardt, D. W. Lindstrom and S. J. Crothers, "Principles ofECE 

Theory (open source on www.aias.us and in book format, in prep.) 

{ 3} M . W. Evans, S. 1. Crothers, H. Eckardt and K. Pendergast, "Criticisms ofthe Einstein 

Field Equation" (open source on \\'WW.aias. us. CISP, 2011 ). 

{4} M .W. Evans, H. Eckardt and D. W. Lindstrom, "Generally Covariant Unified Field 

Theory" (Abramis Academic, 2005 to 2011 and open source on www.aias.us). 

{5} L. Felker, "The Evans Equations ofUnified Field Theory" (Abramis, 2007). 

{6} M. W. Evans. H. Eckardt and D. W. Lindstrom, papers and plenary Serbian Academy of 

Sciences. 

{7} M. W. Evans and L. B. Crowell, "Classical and Quantum Electrodynamics and the B(3) 

Field" (World Scientific, 2001 ). 

{8} M .W. Evans and S. Kielich (Ed.), "Modern Nonlinear Optics" (Wiley Interscience, 

1992, 1993, 1997 and 2001) in two volumes and six editions. 

{9} M .W. Evans and J.-P. Vigier, "The Enigmatic Photon" (Kluwer, 1994 to 2002) in ten 



-I ~ 

volumes hardback and softback. 

{10} M .W. Evans and A. A. Hasanein, "The Photomagneton in Quantum Field Theory" 

(World Scientific, 1994 ). 

{ 11} E. G. Milewski (Ed.), "The Vector Analysis Problem Solver" (Res. Ed. Association, 

New York, 1987). 

{ 12} J. B. Marion and S. T. Thornton, "Classical Dynamics of Particles and Systems" 

(Harcourt, New York, 188, 3rct. Edition) 


