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ABSTRACT 

The non Newtonian velocity and accelerations of a three dimensional orbit are 

calculated in spherical polar coordinates. These are the orbital linear velocity, the centrifugal 

and Coriolis accelerations, and the acceleration due to the time derivative of angular velocity. 

Two constraint equations are deduced and orbits of various kinds evaluated from these 

constraint equations. Some of the properties of the constraint equations show structure 

similar to atomic orbitals, but structure occurring in macroscopic orbits. If the angular 

momentum is constrained to be in the Z axis the orbit approaches a planar precessing ellipse. 
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1. INTRODUCTION 

In recent papers of this series the theory of three dimensional orbits has been 

initiated using the spherical polar coordinates { 1 - 1 0}. It has been shown that there is no . 

reason why the orbit from the inverse square law of attraction should be a planar ellipse. In 

general it is three dimensional and has a rich panoply of properties which can be 

demonstrated with three dimensional graphics. In Section 2 this development is continued by 

evaluating the non Newtonian properties of a three dimensional orbit: the orbital linear 

velocity and the three non Newtonian accelerations. These are the centrifugal and Coriolis 

accelerations and the acceleration due to the time derivative of angular velocity. 

Consideration ofthe non Newtonian accelerations leads to two novel constraint equations· 

which can be solved to give new types of orbits. When graphed in three dimensions these 

orbits display a macroscopic structure similar to atomic and molecular orbitals on the 

microscopic scale. Three dimensional orbits exist in general and can be searched for in 

astronomy. In Section 3 a selection of graphics is given with analysis ofthe main features. 

All the calculations of this paper are checked with computer algebra as for all UFT papers. 

2. THE NON NEWTONIAN PROPERTIES OF THREE DIMENSIONAL ORBITS. 

As usual this paper should be read in conjunction with its background notes 

accompanying UFT271 on www.aias.us. Notes 271(1) to 271(3) give some background 

analysis in preparation for Note 271( 4), which is a review of the calculation of the non 

Newtonian velocity and accelerations in plane polar coordinates carried out in previous 

papers of this series. Note 271(5) gives detail which is summarized in this section. 

It ha been shown in the immediately preceding UFT papers that the linear 

velocity in spherical polar coordinates { 11} is: 
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where the unit vectors of the sp~erical polar coordi~ate sys:em are defined { 12} by: c 
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forming the cyclically symmetric set of equations: 
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Eq. (1) can be written as: 
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where the position vector is: 
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and where the angular velocity or Cartan spin connection { 1 - 10} is 
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Therefore this theory is part of ECE unified field theory based on Cartan geometry. The 

· linear acceleration is therefore: 

a.. - t\"-1 - --~ 
•• 

.Q 
~ ---( 

Now use { 12}: 
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From Eqs. ( \ ) and ( lO ): 

It follows that: 
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From Eqs. ( \ ~ ), ( \) ) and ( \~ ): 
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Now note that: 

so the linear acceleration in spherical polar coordinates is: 

~ ":. ~ !- < -\- ~ '~'-(" )C..?) -\- ~ ')(. !. + ~ ~ "'-t: 3....- - (1 "~) 
The main results of this analysis are as follows. 

1) The angular velocity or Cartan spin connectism is: . ,. 

~ -=- & !..~ _ f 5··~e ~e 
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where L is the total angular momentum in three dimensions: 

-
with three Cartesian components in general. 

2) The orbital linear velocity is: 

• 
CJ ---;.... ( - - \ .Q. 
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and is three dimensional in general. To convert to Cartesian unit vectors use Eqs. ( J ) to 

( lt ). 
3) The centrifugal acceleration is: 

and has three Cartesian coordinates in general. 

4) The Coriolis acceleration is: 

and this is also three dimensional in general. 

5) The third type of non -Newtonian acceleration is: 

• 

and can be evaluated using: 



Now consider the following fundamental relations given in reference (12): 
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and: 

So this acceleration is again non Newtonian in general. 

The Leibniz orbital equation is therefore: 

•• - -~( ~ ~ (" )'-?) -\-- J~ ~ ~ £ { -\-~ ;>(.~) -~ ~f 
-(!~ 

and applies equally well to macroscopic orbits of a mass m around a mass M, or to the 

motion of an electron around a proton. In the former case: 

t -:_ ~M& 
where G is Newton's constant. In the latter case: 
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where e is the charge on the proton and where t 0 is the vacuum permittivity. 

Eq. ( ~ \ ) splits into two equat~ons: 
• ) ) ~ D_ + s;~ &) -~ 

( 

•• 
( 

• J 
- { 8 \- -(~ 

and: 
.,_o. -(>s) 

~~ !_..; - ~ ~· ( S1>_e Cos1 i_ + u._e.s.-~ r 1 :.,- (•S e~ 

• 

showing in another way that the orbit is three dimensional. The orbit is constrained by Eq . 

and two constraint equations: • 

' e· - <: f) s /\.. e (..S e 

From the immediately preceding paper UFT270: . 

• 

f 



and: 
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where L 1 is the Z component of the total angular momentum L. 
7... -

The angular momentum in three dimensions is defined by: 

- (4-~) 

and conservation of angular momentum implies that: 

However: • 

-
so conservation of angular momentum implies that there is no net torque: 

~L - - - 0 -- -· -
The acceleration is: 

with: 
• ::_0 ---
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so the acceleration is: 

a, :: ~· ~ ~ -\- c, .,._ ( ~ )<. (~ • ~ ( ~) 
~ -;_ ( ~· -( ( 6) -\- ~h.)$ 4 )) ) t. ~ . 

- (~'\) implying that: 
0 

QED. The analysis is therefore self consistent. 

Therefore neither r nor p are confined in general to the XY plane, and L is not confined to the 

Z axis perpendicular to this plane. The usual theory of orbits { 11 } begins with these very 



restrictive and unjustifiable assumptions. The latter are equivalent to assuming that: 
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UsingEq. (J ) the usual angular momentum of planar orbital theory is obtained: 

-{S~ l -
QED. Remarkably, the restrictive assumptions (53 5\r) have been the basis of orbital theory 

) 

for over four hundred years, and so most of the information about orbits has never been 

analyzed. 

Consider the three following equations which determine all three dimensional 

orbits due to the inverse square law(: , J , ) ) ~ p .. e \ dJ sl~ () - 'l2.. 
~ \ -::... ( \ 1 "- ---:) . , '( 

e.. ~ ) 5·-~-. e (•> e + J._ r e -- 0 
\ - < l . . ~ e l 0 /; s;,·" e -\t .51"-e-\-- Jx e l Cos- -\-- ' T 

In two dimensions they become: ,. -~ J -k /() _(o) 
~\ 

-::- ~ <f 
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and Eq. ( b~) has been deduced in pre~ious UF! papers {1- 10}. In two dimensions: 

t _ L 
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- { b>) . 
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• -{u) • ' :JL so . ., 
~ \ 

r ~ L -
---T --- - -
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and Eq. ( bLr ) follows immediately, QED. 

Consider now Eq. ( t \ ) in three dimensions. Eq. ( bb ) can no longer be 
• 

used because. t is a function of r and e ' and these are not independent variable;. 

Similarly e is a function of r and f , which again are not independent variables. So in 

three dimensions Eqs. ( ~0 ) and ( ! \ ) are simultaneous differential equations. As the 

orbit approaches the planar orbit: 

~ --=; t"{f -(b) 
:J 
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and ~ -\- ~;e - 6 

\ 
{b~) • . , 

+ d; t 0 
4 -
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and Eqs. ( b 0 ) and ( '\ ) simplify to: ( , ,yr) t0 , , 

f ~ LL e ~ l - Ll... - lb 
...... 

----- ---J. "') 

~< h-.( 
.. ·~ 

It is possible to evaluate the angular accelerations e and f as follows, 

and these are graphed in Section 3. They show very interesting orbital type structure found in 

atoms and molecules, but they are macroscopic in nature. They are given by the following 
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set of equations derived in the immediately preceding papers: 

f 1 s;~-_9 C.s 8 _- l- ; 8 
• 

~ -1(6±~ +~~ 
'"t~e ( 

where the beta orbit is: 

with: l _, (os 0 
( l_J -l~~ I /J 

The half right latitude tl_ and eccentricity f of the beta orbit are: 

) 

where E is the total energy and L is the magnitude of the total angular momentum. 

The angular velocities are given by Eqs. ( ~0 ) and ( ~ \ ) and the quantity 

is given by the hamiltonian: 

so: • 
\ -

Using these equations both f and ~ can be worked out in terms of f and e . The 
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do the graphs of r against 
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and: 

• 
where r is given by Eq. ( ll) and where: 

with: 

t 
•• 

characterize the three dimensional orbit as 

a?ainst f . For a planar orbit: 

- ( ~<6) 

- di__L - {t'\J 

j 

~( 
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So r can be graphed against f for a planar orbit and compared directly with the 

result for a three dimensional orbit for the same inverse square law. 

The relation between f 

and the relation between 

so f can be expressed in terms of 

approached: 

L-::; 

is: 

lS: 

L 

and vice versa. As the planar limit is 
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and from Eq. ( ~J.. ): 

QED. The equation ( \"3> ) correctly reduces to the planar limit showing in another way that 

the theory i~el:o:;tent ~s; the :a;a:~ ~xp~ns~ ~q (( ~1 :ets: J, l- f {) 

r ~ tS 1 L-z 3 lS 7 
- ( <t~) 

and from Eqs. ( ~ ) and ( ~ S ) the following results are obtained as the planar orbit is 

approached: 

The three dimensional beta ellipse approaches a planar precessing ellipse: 

r1 - ( ~) 
\-\- E (dS ( ~ 1) 

which becomes a static planar ellipse of and only if L -z. becomes L exactly. ......___. 
Planetary orbits are well known to be precessing ~llipses, suggesting that they are remnants 

of three dimensional beta ellipses. 
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3 Graphics and analysis

In this section we discuss orbits, radial and angular velocities and accelerations
in spherical polar coordinates. The elliptic orbit is given by Eq.(73), the angular
accelerations are de�ned in (71) and (72) and the angular velocities by (40) and
(41). The radial acceleration is given by (34) and the radial velocity by (77). The
angular quantities are independent from the potential while the radial quantities
depend on it. All orbits can be described by θ or φ. Both coordinates can be
transformed into one another via

φ =− 1

2

(
asin

(
(cos (θ) + 1) L2 − LZ

2

|cos (θ) + 1|
√
L4 − LZ

2 L2

)
(91)

+asin

(
(cos (θ)− 1) L2 + LZ

2

|cos (θ)− 1|
√
L4 − LZ

2 L2

))
,

θ =π − acos

 tan (φ)
√
L2 − LZ

2√
tan (φ)

2
L2 + LZ

2

 . (92)

The derived coordinate β can be computed from φ and θ by

β(φ) = atan

(
tan (φ) L

LZ

)
, (93)

β(θ) = −asin

(
cos (θ) L√
L2 − LZ

2

)
. (94)

The orbit is given by

r =
α

1 + ε cos(β)
(95)
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with α and ε de�ned by Eq.(75).
We �rst discuss the orbital surfaces in dependence of φ. Figs. 1-3 show the

radial orbital surface and its �rst and second time derivative. The orbital ellipses
of the derivatives are carved due to the zero crossings there. The θ derivatives
(Figs. 4-6) show an atomic-like orbital structure with lobes of di�ering size.
The φ derivatives (Fig. 6-7) show both forms.

The θ surfaces are mostly ellipsoids and tori which were already shown in
earlier papers. The surface of ṙ is a double ellipsoid (Fig. 8) and θ̈ is open at
one side like a chalice (Fig. 9). This structure is shown as a standard plot θ̈(θ)
in Fig. 10 as an example. The kink at θ = π/2 may be caused by artifacts of
inverse trigonometric functions. For the sufaces shown it should be noted that
only positive values can be displayed in the 3D plots. The graphics program
partially converts negative to positive values. A more thorough analysis requires
looking at the standard diagrams but is not so illustrative.

Figure 1: φ dependence of r.

2



Figure 2: φ dependence of ṙ.

Figure 3: φ dependence of r̈.
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Figure 4: φ dependence of θ̇.

Figure 5: φ dependence of θ̈.
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Figure 6: θ dependence of φ̇.

Figure 7: θ dependence of φ̈.
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Figure 8: θ dependence of ṙ.

Figure 9: θ dependence of θ̈.
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Figure 10: Functional θ dependence of θ̈.
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3. GRAPHICS AND ANALYSIS 

Section by Dr. Horst Eckardt 
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