
Chapter 6

Solutions Of The ECE Field
Equations

by
M. W. Evans

Alpha Foundation’s Institute for Advance Study (A.I.A.S.).
(emyrone@aol.com, www.aias.us, www.atomicprecision.com)

Abstract

Solutions of the ECE field equations are given in the dielectric formulation of
the theory. The effect of gravitation on electromagnetism is to change the am-
plitudes of the plane wave solutions of free electromagnetism, to change the
phase velocity and to shift the frequency. In the presence of gravitation the in
the free electric field strength Ea and magnetic flux density Ba become plane
waves in the displacement Da and magnetic field strength Ha.

Keywords: Solutions of the ECE field equations, unified field theory, interaction
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6.1 Introduction

The dielectric formulation of the Einstein Cartan Evans (ECE) unified field
theory [1]– [32] has recently been developed in order to provide a framework
for relatively straightforward numerical solutions without having to go immedi-
ately into the full details of Cartan geometry. In this paper it is shown that in
a specific approximation, the effect of gravitation on the plane waves of the free
electromagnetic field is to produce plane waves in the displacement (Da) and
magnetic field strength (Ha) instead of the free space electric field strength (Ea)
and the magnetic flux density (Ba). In this approximation the ECE field equa-
tions have a well defined analytical solution which can be used to test computer
code before embarking on the numerical solution of the dielectric formulation
of the ECE field equations. In Section 6.2 the stages involved in deriving the
dielectric formulation are summarized. Some important mathematical details

73



6.2. DETAILS IN THE DERIVATION OF THE ECE FIELD . . .

are given, starting from the form notation [33] of Cartan geometry on which
ECE unified field theory is directly based. These details are not easily found
elsewhere, but are important for coding purposes. In section 6.3 the dielectric
ECE field equations are solved in a well defined approximation to give an ana-
lytical solution. In general the ECE field equations must be solved numerically,
and so enough mathematical detail is given in this paper to help to achieve this
aim.

6.2 Details In The Derivation Of The ECE Field
Equations, Form, Tensor, Vector And Di-
electric Notation

The most elegant statement of the ECE field equations in mathematics uses
the form notation of differential or Cartan geometry [1]– [33]. However in field
theory in physics the tensor notation is more often used and in engineering
the vector notation is used. In chemistry the dielectric formulation is often
used. All these descriptions are interchangeable and equivalent, so it is useful
to summarize them in this section and to give sufficient mathematical detail for
coding up the equations to give graphs and animations.

The geometrical fundamentals of ECE theory are the well known fundamen-
tals of standard Cartan geometry: the two structure equations, the two Bianchi
identities, and the tetrad postulate. Two ansatzen are used to transform the
geometry into an objective unified field theory in general relativity [1]– [32].
The two Cartan structure equations are sometimes known in contemporary
mathematics as the master equations of differential geometry. The first Car-
tan structure equation defines the torsion form (T a) as the covariant exterior
derivative of the tetrad (qa), the fundamental field of ECE theory:

T a = D ∧ qa = d ∧ qa + ωa
b ∧ qb. (6.1)

The second structure equation of Cartan defines the Riemann or curvature form
(Ra

b) in terms of the spin connection (ωa
b):

Ra
b = D ∧ ωa

b = d ∧ ωa
b + ωa

c ∧ ωc
b . (6.2)

Here d∧ is the exterior derivative of Cartan. The covariant exterior derivative
[33] is the operator:

D∧ = d ∧+ω ∧ . (6.3)

It can be seen that the fundamental variables are the tetrad, (the fundamental
field), and the spin connection, which defines the way the frame is curved and /
or spun in ECE spacetime. The Latin indices are those of the tangent spacetime
at P to the base manifold. The latter is indexed with Greek letters, and the
convention [33] of standard differential geometry has been followed. In this
convention the Greek indices are omitted because they are always the same on
each side of an equation. If however the Greek indices are temporarily restored
to equations 6.1 and 6.2 for the sake of instruction, they become the differential
form equations

T a
µν = (d ∧ qa)µν +

(
ωa

b ∧ qb
)
µν

(6.4)
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Ra
bµν = (d ∧ ωa

b)µν + (ωa
c ∧ ωc

b)µν (6.5)

The tetrad is a vector valued one-form, a rank two mixed index tensor, so has
only one Greek subscript, the torsion form is a vector valued two-form which is
antisymmetric in its Greek indices:

T a
µν = −T a

νµ . (6.6)

The Riemann form is a tensor valued two-form:

Ra
bµν = −Ra

bνµ. (6.7)

The spin connection is a tensor valued one-form, but is not a tensor because
it does not transform as a tensor [33] under coordinate transformation. This
property is analogous to that of the Christoffel connection [33], which is not a
tensor for the same reason. In order to be able to transform these form equations
to tensor equations the following fundamental definitions are needed.

The exterior derivative of the differential form A [33] is defined in general
by:

(d ∧A)µ1···µp+1
= (p+ 1) ∂[µ1Aµ2···µp+1]. (6.8)

Thus the exterior derivative of a one-form is:

(d ∧A)µ1µ2
= (d ∧A)µν = 2∂[µAν]

= ∂µAν − ∂νAµ

(6.9)

and the exterior derivative of a two-form is:

(d ∧A)µ1µ2µ3
= 3∂[µ1Aµ2µ3] = ∂µAνρ + ∂νAρµ + ∂ρAµν (6.10)

The wedge product of a form A and a form B is defined in general by [33]:

(A ∧B)µ1···µp+q
=

(p+ q)!
p!q!

Aµ1···µp
Bµp+1···µp+q

. (6.11)

Therefore the wedge product of two one-forms is defined by:

p = 1, q = 1, µ1 = µ, µ2 = ν (6.12)

and is:
(A ∧B)µν =

2!
1!1!

A[µBν] = AµBν −AνBµ. (6.13)

The wedge product of a one-form and a two-form is given by:

p = 1, q = 2, µ1 = µ, µ2 = ν, µ3 = ρ (6.14)

and is:

(A ∧B)µ1µ2µ3
=

3!
2!1!

A[µ1Bµ2µ3] = 3A[µBνρ]

= AµBνρ +AνBρµ +AρBµν .
(6.15)
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The form notation of Cartan is more elegant than the notation of tensor analysis,
but both are equivalent. The advantage of Cartan geometry is that it allows
much more insight into the fundamental structure of equations than the more
complicated tensor notation. However the latter may be more useful for coding
and the standard vector notation used in engineering is almost always derived
from the tensor notation. Form notation and tensor notation are rarely if ever
used in engineering.

The Bianchi identities of Cartan geometry [1]– [33] are the rigorous gener-
alizations of the Ricci cyclic equation and the Bianchi identity of the type of
Riemann geometry used in Einsteinian general relativity, i.e. used in the Ein-
stein Hilbert (EH) field theory of gravitation proposed in 1915 [34]. The EH
field theory is a famous landmark of twentieth century physics but is restricted
by its omission from consideration of the torsion tensor. In Cartan geometry
the first Bianchi identity is:

D ∧ T a = d ∧ T a + ωa
b ∧ T b := Ra

b ∧ qb (6.16)

and the second Bianchi identity is:

D ∧Ra
b = d ∧Ra

b + ωa
c ∧Rc

b −Ra
c ∧ ωc

b

:= 0.
(6.17)

In Eqs.6.16 and 6.17 we have reverted to the standard notation in which the
Greek subscripts are omitted [33]. The Bianchi identities involve the exterior
derivatives of the torsion and Riemann forms, and using Eqs.6.1 and 6.2 can be
written as differential equations in the tetrad and the spin connection:

d ∧
(
d ∧ qa + ωa

b ∧ qb
)

+ ωa
b ∧
(
d ∧ qb + ωb

c ∧ qc
)

:= (d ∧ ωa
b + ωa

b ∧ ωc
b) ∧ qb

(6.18)

and

d ∧ (d ∧ ωa
b + ωa

c ∧ ωc
b) + ωa

c ∧
(
d ∧ ωa

b + ωc
d ∧ ωd

b

)
−
(
d ∧ ωa

c + ωa
d ∧ ωd

c

)
∧ ωc

b := 0.
(6.19)

In references [1]– [32] the equivalents of the structure equations and Bianchi
identities have been derived in the most general type of Riemann geometry, i.e.
the form notation has been translated into tensor notation.

Translation from differential form to tensor notation requires the well known
tetrad postulate, which can be proven in several complementary and instructive
ways [1]– [33], each proof giving the same result (the tetrad postulate) and
each proof reinforcing the other complementary proofs. The most fundamental
meaning of the tetrad postulate is perhaps the fact that the same vector field
can be expressed equivalently in different coordinate systems. Here vector field
means that a vector is defined by its vector components in base coordinate
elements such as unit vectors, spinors, or Pauli matrices [33]. The vector field
expressed in cartesian or spherical polar coordinates for example is the same
vector field but expressed in different coordinates. In Cartan geometry [1]– [33]
it follows that the covariant derivative of the tetrad vanishes:

Dνq
a
µ = 0 (6.20)
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and this fundamental property is known conventionally as the tetrad postulate.
However, nothing is postulated (i.e. nothing is needed to derive Eq.6.20) other
than the fact that a vector field in different coordinates is the same vector
field. (If it were not the same vector field then the coordinate system would
not be a valid coordinate system.) In order to correctly define the covariant
derivative of the tetrad it is necessary to define the covariant derivative of a
mixed index rank two tensor, a tensor whose upper index is a and whose lower
index is µ. In order to do this the fundamental definition of covariant derivative
is needed [33]. Examples are given here for clarity of exposition. In general the
covariant derivative of a tensor of any rank is defined by [33]:

DσT
µ1µ2···µk

ν1ν2···µl
= ∂Tµ1µ2···µk

ν1ν2···µl

+ Γµ1
σλT

λµ2···µk
ν1ν2···µl

+ Γµ2
σλT

µ1λ···µk
ν1ν2···µl

+ · · ·
− Γλ

σν1
Tµ1µ2···µk

λν2···µl
− Γλ

σν2
Tµ1µ2···µk

ν1λ···µl
− · · · .

(6.21)
For mixed Greek and Latin indices the gamma connection is replaced by the spin
connection. Therefore the covariant derivative of the tetrad is, from Eq.6.21:

Dµq
a
λ = ∂µq

a
λ + ωa

µbq
b
λ − Γν

µλq
a
ν . (6.22)

Similarly the covariant derivative of a contravariant four vector is:

DµV
ν = ∂µV

ν + Γν
µλV

λ, (6.23)

the covariant derivative of a covariant vector is:

DµVν = ∂µVν − Γλ
νµVλ, (6.24)

and the covariant derivative of a tensor is:

DµT
νρ = ∂µT

νρ + Γν
µλT

λρ + Γρ
µλT

νλ. (6.25)

The covariant derivative of a rank three tensor is:

Dµ (Dµqa
ν ) = ∂µ (Dµqa

ν ) + Γµ
µλD

λqa
ν + ωa

µbD
µqb

ν − Γλ
µνD

µqa
λ . (6.26)

The above general formulae allow one to rewrite the first Bianchi identity 6.16
in tensor notation as follows:

∂µT
a
νρ + ∂ρT

a
µν + ∂νT

a
ρµ + ωa

µbT
b
νρ + ωa

ρbT
b
µν + ωa

νbT
b
ρµ

= Ra
bµνq

b
ρ +Ra

bρµq
b
ν +Ra

bνρq
b
µ

= Ra
µνρ +Ra

ρµν +Ra
νρµ

(6.27)

and this is the basic tensorial structure of the field equations of ECE theory [1]–
[32]. The geometry 6.27 is transformed into the field equation using the ansatz:

F a
µν = A(0)T a

µν (6.28)

where A(0) is a scalar valued potential magnitude and where:

F a
µν = −F a

νµ (6.29)
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is the anti-symmetric field tensor of electromagnetism influenced by gravitation.
The basic field equation of ECE theory is therefore:

∂µF
a
νρ + ∂ρF

a
µν + ∂νF

a
ρµ

= A(0)
(
Ra

µνρ +Ra
ρµν +Ra

νρµ − ωa
µbT

b
νρ − ωa

ρbT
b
µν − ωa

νbT
b
ρµ

) (6.30)

and is rewritten as follows to define the homogeneous current of ECE field
theory [1]– [32]:

∂µF
a
νρ + ∂ρF

a
µν + ∂νF

a
ρµ = µ0

(
ja

µνρ + ja
ρµν + ja

νρµ

)
. (6.31)

In differential form notation Eq.6.31 is:

d ∧ F a = µ0j
a (6.32)

and is the homogeneous field equation of ECE theory. The way in which gravi-
tation influences electromagnetism is defined by the current ja. In Section 6.3
we give analytical solutions to the homogeneous field equation and its Hodge
dual [1]– [32], the inhomogeneous field equation. Firstly in this section enough
mathematical detail is given to develop Eq.6.31 into two vector equations, and
to derive the Hodge dual of Eq.6.31. This detail is again needed for coding
purposes.

The general Hodge dual of a tensor is defined [33] by:

Ãµ1···µn−p =
1
p!
ε
ν1···νp

µ1···µn−pAν1···νp (6.33)

where
εµ1µ2···µn = |g|1/2εµ1µ2···µn (6.34)

is the Levi-Civita tensor. The latter is defined as the square root of the modulus
of the determinant of the metric multiplied by the Levi-Civita symbol:

εµ1µ2···µn =

∣∣∣∣∣∣
1 for even subscript permutation
−1 for odd subscript permutation
0 otherwise

∣∣∣∣∣∣ . (6.35)

Using the metric compatibility condition [33]:

Dµgνρ = 0 (6.36)

it is seen that:
Dµ|g|1/2 = ∂µ|g|1/2 = 0 (6.37)

because the determinant of the metric is made up of individual elements of the
metric tensor. The covariant derivative of each element vanishes by Eq.6.36, so
we obtain Eq.6.37. The premultiplier |g|1/2 is a scalar, and in deriving Eq.6.37
we have used the definition [33]:

DρS = ∂ρS (6.38)

where S is any scalar. The Hodge dual of Eq.6.31 may now be defined using
the general formula 6.33 and used: a) to obtain the vector formulation of the
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homogeneous field equation and b) to obtain the inhomogeneous ECE field
equation from the homogeneous field equation.

The first step in obtaining the vector formulation is to prove that Eq.6.31
can be rewritten as:

∂µF̃
aµν = µ0j̃

aν (6.39)

in which:
F̃ aµν =

1
2
|g|1/2εµνρσF a

ρσ (6.40)

j̃aσ =
1
6
|g|1/2εµνρσja

µνρ (6.41)

are Hodge duals. To prove Eq.6.39 consider individual tensor elements such as
those defined by ν = 1, µ = 0, 2, 3. In this case:

∂0F̃
a01 + ∂2F̃

a21 + ∂3F̃
a31

=
1
2
|g|1/2εµ1ρσ∂µF

a
ρσ

=
1
2
|g|1/2

(
ε01ρσ∂0F

a
ρσ + ε21ρσ∂2F

a
ρσ + ε31ρσ∂3F

a
ρσ

)
= |g|1/2 (∂0F

a
23 + ∂2F

a
30 + ∂3F

a
02 )

(6.42)

which is a special case of the general result:

∂µF̃
aµν → |g|1/2

(
∂µF

a
νρ + ∂ρF

a
µν + ∂νF

a
ρµ

)
. (6.43)

Consider Eq.6.41 for σ = 1 to obtain:

j̃a1 =
1
6
|g|1/2(ε0231ja

023 + ε0321ja
032

+ε2031ja
203 + ε3021ja

302

+ε2301ja
230 + ε3201ja

320)

=
1
3
|g|1/2 (ja

023 + ja
302 + ja

230)

(6.44)

Similarly, the other two current terms:

j̃aσ =
1
6
|g|1/2ερµνσja

ρµν (6.45)

and
j̃aσ =

1
6
|g|1/2ενρµσja

νρµ (6.46)

give Eq.6.44 two more times. So the right hand side of Eq.6.31 for ν = 1 is:

j̃a1 = |g|1/2 (ja
023 + ja

302 + ja
230) . (6.47)

Finally we use Eq.6.37 to find that:

∂µ

(
|g|1/2F a

νρ

)
= |g|1/2∂µF

a
νρ (6.48)

and so derive Eq.6.39 from Eq.6.31, Q.E.D. Note that the |g|1/2 premultiplier
cancels out either side of Eq.6.39. The vector formulation of Eq.6.39 follows by
standard methods [1]– [33] and is:

∇ ·Ba = µ0j̃
a0 (6.49)
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∇×Ea +
∂Ba

∂t
= µ0j̃a (6.50)

where the four-current is defined by:

j̃aν =

(
j̃a0

c
, j̃a
)
. (6.51)

The currents terms in Eq.6.31 are defined by:

ja
µνρ =

A(0)

µ0

(
Ra

µνρ − ωa
µbT

b
νρ

)
(6.52)

and so on. Since Ra
µνρ and T b

νρ are antisymmetric in their last two Greek
indices they have Hodge duals defined by:

R̃a µν
τ =

1
2
|g|1/2εµνρσRa

τρσ (6.53)

T̃ aµν =
1
2
|g|1/2εµνρσT a

ρσ . (6.54)

The four-current of the homogeneous ECE field equation is therefore given in
terms of these Hodge duals as follows:

j̃aν =
A(0)

µ0

(
R̃a µν

µ − ωa
µbT̃

bµν
)
, (6.55)

and defines the way in which gravitation affects the Gauss law applied to mag-
netism and the Faraday law of induction.

The inhomogeneous field equation is derived from the homogeneous field
equation by taking the Hodge duals term by term of each two-form in the
homogeneous equation:

d ∧ F a = µ0j
a = A(0)

(
Ra

b ∧ qb − ωa
b ∧ T b

)
. (6.56)

The two-form in this equation are: F a
µν , Ra

bµν , and T b
µν . Writing out each

two-from in tensor notation, the three Hodge duals are:

F̃ aαβ =
1
2
|g|1/2εαβµνF a

µν , (6.57)

R̃a αβ
b =

1
2
|g|1/2εαβµνRa

bµν , (6.58)

T̃ bαβ =
1
2
|g|1/2εαβµνT b

µν , (6.59)

and each Hodge dual is equivalent to an anti-symmetric rank two tensor. There-
fore the inhomogeneous ECE field equation [1]– [32] is:

d ∧ F̃ a = µ0J
a = A(0)

(
R̃a

b ∧ qb − ωa
b ∧ T̃ b

)
(6.60)

and the pre-multiplier |g|1/2 cancels out either side of the equation. In tensor
notation, Eq.6.60 is:

∂µF̃
a
νρ + ∂ρF̃

a
µν + ∂ν F̃

a
ρµ = µ0

(
Ja

µνρ + Ja
ρµν + Ja

νρµ

)
. (6.61)
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In summary, the homogeneous and inhomogeneous ECE field equations are:

d ∧ F a = µ0j
a (6.62)

d ∧ F̃ a = µ0J
a. (6.63)

In differential form notation, the Maxwell Heaviside (MH) field equations of the
standard model are well known to be [33,34]:

d ∧ F = 0, (6.64)

d ∧ F̃ = µ0J. (6.65)

It is seen that the field form and its Hodge dual appear in the MH equations, but
the homogeneous current is missing, indicating that there is no mechanism in
MH theory for considering the effect of gravitation on electromagnetism. Also,
the inhomogeneous current J of MH theory is introduced empirically (i.e. from
experiment), and not from the first theoretical principles of Cartan geometry
and generally covariant unified field theory as required in objective physics. The
ECE field equations 6.62 and 6.63 identify the source of ja and Ja in geometry.

The properties of the Hodge dual can be checked with the Schwarzschild
metric (SM) [1]– [33]. The SM is a solution of the famous EH field equation of
1915. In EH theory:

Ra
b ∧ qb = 0, (6.66)

T a = 0. (6.67)

In tensor notation Eq.6.66 is the Ricci cyclic equation:

Rσµνρ +Rσρµν +Rσνρµ = 0 (6.68)

and Eq.6.67 is:
Tκ

µν = Γκ
µν − Γκ

νµ = 0 (6.69)

where Γκ
µν is the Christoffel connection [33]. In the SM the non-zero elements

of the Riemann tensor are:

R0
101, R

1
212, R

1
313, R

2
323, R

0
202, R

0
303 6= 0, (6.70)

so Eq.6.68 is true automatically in the SM because the last three subscripts of
the Riemann tensors appearing in the Ricci cyclic equation must be all different,
i.e. occur in cyclic permutation. However no such elements are non-zero in the
SM. The relevant Hodge dual of Eq.6.66 is defined by:

Ra
b ∧ qb −→ R̃a

b ∧ qb (6.71)

i.e. by:

R̃αβµν =
1
2
|g|1/2ε ρσ

µν Rαβρσ. (6.72)

Therefore, upon taking Hodge duals such as:

R̃0123 = |g|1/2R0101, (6.73)

R̃0231 = |g|1/2R0202, (6.74)
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R̃0312 = |g|1/2R0303, (6.75)

it is concluded that
R̃0123 + R̃0231 + R̃0312 6= 0 (6.76)

i.e.:
R̃a

b ∧ qb 6= 0. (6.77)

Eq.6.77 means, importantly, that the inhomogeneous current Ja can be very
large even if the homogeneous current may be vanishingly small. This result
has been illustrated here for the SM, but is true for any metric. This result of
ECE field theory explains why the homogeneous current can become zero (as
in MH theory), while the inhomogeneous current can become very large. It is a
property of geometry.

In deriving Eq.6.63 from Eq.6.62 we have used the Hodge dual of a two-
form in four dimensional space-time, a special case of the general Hodge dual
formula 6.33. In this case the result is another two-form as argued. The currents
in Eqs.6.31 and 6.61 are three-forms, whose Hodge duals in four dimensional
space-time are one-forms as we have argued. Denoting the Hodge dual of ja

by j̃a, and the Hodge dual of Ja by J̃a, then the tensorial homogeneous and
inhomogeneous field equations of ECE theory, Eqs.6.31 and 6.61, become [1]–
[32]:

∂µF̃
aµν = µ0j̃

aν , (6.78)

∂µF
aµν = µ0J

aν . (6.79)

The homogeneous and inhomogeneous currents in tensor notation are:

j̃aν =
A(0)

µ0

(
R̃a µν

µ − ωa
µbT̃

bµν
)
, (6.80)

J̃aν =
A(0)

µ0

(
Ra µν

µ − ωa
µbT

bµν
)
. (6.81)

The current four-vectors are defined in S.I. units by:

j̃aν =
(

1
c
j̃a0, j̃a

)
, (6.82)

J̃aν =
(

1
c
J̃a0, J̃a

)
, (6.83)

The two field equations 6.78 and 6.79 in vector notation therefore become the
four objective laws of classical electrodynamics in general relativity:

∇ ·Ba = µ0j̃
a0, (6.84)

∇×Ea +
∂Ba

∂t
= µ0j̃a, (6.85)

∇ ·Ea = µ0cJ̃
a0, (6.86)

∇×Ba − 1
c2
∂Ea

∂t
=
µ0

c
J̃a. (6.87)

Unlike the MH theory, the laws 6.84 to 6.87 can describe the effect of gravita-
tion on electromagnetism. This was a major aim of both Einstein and Cartan.
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Eq.6.84 is the Gauss law applied to magnetism; Eq.6.85 is the Faraday law of
induction; Eq.6.86 is the Coulomb law; and Eq.6.87 is the Ampère-Maxwell law.
It is important to realize that the four laws are now written in the presence of a
gravitational field, whereas the familiar MH laws are for electromagnetism with-
out consideration of the gravitational field. This is of course the fundamental
aim of a unified field theory.

The relevant S.I. units [35] are as follows:

Ba = JsC−1m−2 = Tesla, (6.88)

Ea = JC−1m−1 = V m−1, (6.89)

µ0 = 4π × 10−7Js2C−2m−1, (6.90)

j̃a0 = Cs−1m−2 = Am−2, (6.91)

j̃a0/c = Cm−3, (6.92)

1
c
j̃a0 =

1
c
J̃a0 = charge density, (6.93)

j̃a = J̃a = current density. (6.94)

Eqs.6.84 to 6.87 use the fundamental S.I. relation [35] in free space:

E(0) = cB(0). (6.95)

In the limit of zero gravitation the electromagnetic component of the unified
ECE field splits off, and is referred to as the free electromagnetic field. The
Cartan geometry of the free electromagnetic field is defined [1]– [32] by the fact
that in this limit the homogeneous current ja vanishes, so it follows that:

Ra
b ∧ qb = ωa

b ∧ T b. (6.96)

A solution of Eq.6.96 is:
Ra

b = κεabcT
c (6.97)

ωa
b = κεabcq

c, (6.98)

where the scalar κ has the units of wave-number (inverse meters). It is important
to understand that there may be a Riemann form for a spinning frame. The
Riemann form is the curvature form only for the free gravitational field. For
rotational motion (i.e. the spinning of the free electromagnetic field) Eqs.6.97
and 6.98 show that for each µ and ν, the Riemann form is the antisymmetric
tangent space-time tensor corresponding to the axial vector T c. Similarly, for
each µ, the spin connection is the antisymmetric tensor corresponding to the
axial vector qc. The Hodge dual of Eq.6.96 is:

R̃a
b ∧ qb = ωa

b ∧ T̃ b, (6.99)

and in consequence, for the free electromagnetic field:

j̃aν = J̃aν = 0. (6.100)

Therefore, for the free electromagnetic field, the four laws 6.84 to 6.87 simplify
to:

∇ ·Ba = 0 (6.101)
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∇×Ea +
∂Ba

∂t
= 0 (6.102)

∇ ·Ea = 0, (6.103)

∇×Ba − 1
c2
∂Ea

∂t
= 0. (6.104)

These equations have analytical solutions [1]– [32] and describe the electromag-
netic field in the hypothetical limit of vanishing mass. These are sometimes
known as source-free fields in the standard literature on MH theory, because a
source, by definition, must be a radiating electron whose mass is not zero.

The converse limit of zero electromagnetism, (the free gravitational field), is
defined [1]– [32] by zero torsion:

F a = A(0)T a = 0, (6.105)

Ra
b ∧ qb = 0. (6.106)

Polarization and magnetization are defined [35] in ECE theory by a straight
forward extension of their MH counterparts to include the polarization index a.
Thus:

Da = εEa = ε0Ea + Pa, (6.107)

Ha =
1
µ
Ba =

1
µ0

Ba − 1
µ0

Ma, (6.108)

where Da is the electric displacement (Cm−2) and Ha the magnetic field strength
(Am−1). Here Pa is the polarization, Ma the magnetization, ε the dielectric
permittivity, µ the magnetic permeability, ε0 the vacuum permittivity and µ0

the vacuum permeability. The relative permittivity and permeability are there-
fore [35]:

εr = ε/ε0, (6.109)

µr = µ/µ0, (6.110)

and the refractive index is
n2 = εrµr. (6.111)

In general εr and µr are inhomogeneous functions of spacetime:

εr = εr (ct,X, Y, Z) (6.112)

µr = µr (ct,X, Y, Z) , (6.113)

and in the presence of absorption may become complex valued [35,36]:

εr = ε′r + iε′′r , (6.114)

µr = µ′r + iµ′′r . (6.115)

The power absorption coefficient (neper m−1) is defined [36] by:

α =
ωε′′r
n′c

, (6.116)

and by the Beer Lambert law:

I = I0e
(−αZ). (6.117)
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Here Z is the sample length, I0 the intensity of incident and I the intensity
of absorbed radiation. The effect of classical gravitation on the classical elec-
tromagnetic field is therefore in general to refract, reflect, diffract and absorb
electromagnetic radiation, and this is developed in Section 6.3. In other words
gravitation acts as a dielectric material which may be a reflector, an absorber,
a polarizable medium, a magnetizable medium, a conductor, a superconductor
and so forth. Finally in this Section 6.2 the wave equation of ECE field theory
is discussed and cross-checked mathematically prior to computation.

The basic wave equation of ECE field theory [1]– [32] is derived straight-
forwardly form the tetrad postulate (6.20) through a lemma, or subsidiary ge-
ometric proposition, the ECE Lemma. The fundamental structure of the latter
is:

Dµ (Dµq
a
ν ) := 0 (6.118)

and is seen from Eq.6.20 to be an identity of Cartan geometry. From Eq.6.38
the lemma is seen to be:

∂ν (Dµq
a
ν ) := 0 (6.119)

i.e.
∂µ
(
∂µq

a
λ + ωa

µbq
b
λ − Γν

µλq
a
ν

)
:= 0. (6.120)

The dAlembertian operator is defined [33,34] as:

� := ∂µ∂µ (6.121)

so Eq.6.120 is:
�qa

λ = ∂µ
(
Γν

µλq
a
ν − ωa

µbq
b
λ

)
. (6.122)

Now define the scalar curvature:

R := qλ
a∂

ν
(
Γν

µλq
a
ν − ωa

µbq
b
λ

)
(6.123)

and use the fundamental [33] inverse identity of tetrads:

qa
λq

λ
a = 1 (6.124)

to deduce the ECE Lemma [1]– [32]:

�qa
λ := Rqa

λ . (6.125)

To check this derivation use Eq.6.20 in the form:

Γν
µλq

a
ν − ωa

µbq
b
λ = ∂µq

a
λ (6.126)

to find:
R = qλ

a∂
µ∂µq

a
λ = qλ

a�qa
λ (6.127)

Q.E.D.
The ECE wave equation [1]– [32] is obtained from the ECE lemma by using

the Einstein Ansatz:
R = −kT (6.128)

where k is the Einstein constant and T the index contracted energy-momentum
tensor. Einstein [37] asserted that the ansatz 6.128 must be applied to all the
radiated and matter fields of physics, not only the gravitational field. However

85



6.2. DETAILS IN THE DERIVATION OF THE ECE FIELD . . .

until the emergence of ECE theory in 2003 [1]– [32] the ansatz necessarily had
to be restricted to gravitation. In gravitational theory Eq.6.128 can be deduced
directly from the EH field equation:

Rµν −
1
2
Rgµν = kTµν . (6.129)

using the inverse metric definition [1]– [32,37]:

gµνgµν := 4. (6.130)

Multiply both sides of Eq.6.129 by gµν to obtain Eq.6.128 [37], as first shown by
Einstein. Here Rµν is the symmetric Ricci tensor of EH field theory, R the scalar
curvature of EH field theory, gµν the symmetric metric of EH field theory, and
Tµν the symmetric canonical energy-momentum tensor of EH field theory. In
the more general unified ECE theory the Einstein Ansatz 6.128 has been proven
in several ways. The key point is that the Einstein Ansatz in ECE field theory
applies to all radiated and matter fields, i.e., in logic, to the unified field. There
is only ONE unified field by definition, and so Einstein’s fundamental link of
physics and geometry must apply to that unified field. All other fields in nature
are components of the unified field: the gravitational, electromagnetic, weak,
strong and matter fields are variations of the tetrad field [1]– [33] in the Palatini
formulation of general relativity, and thus of causal and objective physics. This
is a major philosophical advance of ECE field theory from the standard model.

Therefore from Eqs.6.125 and 6.128 the ECE wave equation is:

(� + kT ) qa
µ = 0 (6.131)

and is the archetypical wave equation of objective physics, i.e. of general rela-
tivity applied to the unified field.

The Dirac equation for the fermionic matter field, for example, is the linear
limit of Eq.6.131 defined by:

kT →
(mec

~

)2

(6.132)

where me is the mass of the fermion, ~ is the reduced Planck constant and c
the vacuum speed of light, a universal constant of all relativity theory. In the
linear limit, as the name suggests, the ECE field equation linearizes, because its
eigenvalues are no longer intrinsically functions of the tetrad. More generally the
ECE wave equation is non-linear because R depends on the tetrad as in Eq.6.123.
Numerical methods are needed therefore to solve the ECE wave equation in
general. The Dirac equation is therefore:(

� +
(mec

~

)2
)
qa

µ = 0 (6.133)

where the tetrad defines the Dirac four-spinor [1]– [32]. Using the ECE Ansatz
in the form:

Aa
µ = A(0)qa

µ (6.134)

we define the electromagnetic potential field. The governing wave equation of
the electromagnetic part of the unified field (the electromagnetic field for short)
is therefore:

(� + kT )Aa
µ = 0. (6.135)
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In the linear limit 6.132 we obtain the Proca equation from Eq.6.135:

kT →
(mpc

~

)2

(6.136)

where mp is the mass of the photon, a boson. It is important to understand
that a different representation space [1]– [32] is used for the tetrads defining
the fermion and boson. Similarly a different representation space of the tetrad
is used for gluons and quarks [1]– [32], but the fundamental field is always the
tetrad field. Thus quantum electrodynamics in ECE theory proceeds by solv-
ing Eqs.6.131 and 6.135 simultaneously with exchange of photons between two
electrons [1]– [32]. Similarly quantum chromodynamics proceeds by setting up
simultaneous ECE field equations with exchange of gluons between two quarks.
These procedures must be carried out numerically to avoid singularities and
renormalization. The Feynman calculus and the unobjective path integral for-
malism [34]are by-passed completely by the numerical methods of ECE field
theory. Singularities do not occur in nature, and do not occur in the theory
of relativity and in objective and causal physics. In Feynman’s path integral
formalism the electron ”can do anything it likes”, ”go backwards in time”, and
so on [34]. These hypothetical trajectories are essentially summed to give what
APPEARS superficially to be an accurate result for the anomalous magnetic
moment of the electron and so forth. These ideas of quantum electrodynamics
are obviously and diametrically at odds with a causal and objective relativity
theory such as ECE field theory, wherein each event must be preceded by a
cause, as in Newtonian natural philosophy. The claimed accuracy of quantum
electrodynamics and quantum chromo-dynamics has more to do with the selec-
tive use of several parameters than with a first principles theory of physics such
as ECE field theory or EH field theory.

The derivation of the ECE Lemma can be cross checked in at least two ways.
Apply the Leibnitz Theorem to Eq.6.118:

Dµ (Dµq
a
ν ) = (DµDµ) qa

ν = 0 (6.137)

and to Eq.6.119:

∂µ (Dµq
a
ν ) = (∂µDµ) qa

ν +Dµ (∂µqa
ν ) = 0. (6.138)

Therefore Eq.6.118 is:

Dµ
(
∂µq

a
λ + ωa

µbq
b
λ − Γν

µλq
a
ν

)
(Dµ∂µ) qa

λ +
(
Dµωa

µb

)
qb

λ −
(
DµΓν

µλ

)
qa

ν = 0,
(6.139)

where we have used Eq.6.20 again. Now use the results:

Dµ∂
µ = � + Γµ

µλ∂
λ, (6.140)

Dµ = gµνDν , (6.141)

∂µ = gµν∂
ν , (6.142)

to find:
Dµ∂µ = gµνDνgµν∂

ν = 4Dµ∂
µ. (6.143)
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From Eq.6.143 in Eq.6.139:

4 (Dµ∂
µ) qa

λ +
(
Dµωa

µb

)
qb

λ −
(
DµΓν

µλ

)
qa

ν = 0 (6.144)

Now use the Leibnitz Theorem again:

(Dµ∂
µ) qa

λ = Dµ (∂µqa
λ) + ∂µ (Dµq

a
λ) (6.145)

to find:

4
(
Dµ (∂µqa

λ) + ∂µ (Dµq
a
λ) +

(
Dµωa

µb

)
qb

λ −
(
DµΓν

µλ

)
qa

ν

)
= 0. (6.146)

Comparing Eqs.6.146 and 6.119:

4Dµ (∂µqa
λ) +Dµωa

µb −
(
DνΓν

µλ

)
qa

ν = 0 (6.147)

i.e.
Dν
(
∂µq

a
λ + ωa

µbq
b
λ − Γν

µλq
a
ν

)
= 0 (6.148)

which is:
Dµ (Dµq

a
λ) = 0 (6.149)

implying self-consistently the tetrad postulate 6.20, Q.E.D.
Secondly the ECE Lemma may be cross-checked using the general formula

6.20 for the covariant derivatve of any tensor. Regarding Dµqa
ν as a rank three

mixed index tensor with two upper indices, µ and a, and one lower index, ν,
Eq.6.21 gives:

Dµ (Dµqa
ν ) = ∂ν (Dµqa

ν ) + Γµ
µλD

λqa
ν

+ ωa
µbD

µab
ν − Γλ

µνD
µqa

λ = ∂µ (Dµqa
ν )

(6.150)

where we have used Eq.6.20 again, Q.E.D.

6.3 Dielectric ECE Theory, Analytical And Nu-
merical Solutions

In this Section an analytical solution is given in a well defined approximation
of the simultaneous equations 6.85 and 6.87; in general these must be solved
numerically along with the other two equations 6.84 and 6.86. First develop the
free fields Ea and Ba as follows using Eqs.6.107 and 6.108:

Ea =
1
ε0

(Da −Pa) (6.151)

Ba = µ0 (Ha + Ma) (6.152)

From Eqs.6.151 and 6.152 in Eq.6.85 we obtain:

1
ε0

∇×Da + µ0
∂Ha

∂t
= µ0j̃a +

1
ε0

∇×Pa − µ0
∂Ma

∂t
. (6.153)

Therefore if the homogeneous current is defined as:

j̃a :=
∂Ma

∂t
− c2∇×Pa, (6.154)
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then we obtain:

∇× (εrEa) +
∂

∂t

(
1
µr

Ba

)
= 0, (6.155)

which can be reexpressed as:

∇×Da +
1
c2
∂Ha

∂t
= 0. (6.156)

Eqs.6.155 and 6.156 are true if and only if Eq.6.154 is true. However, the homo-
geneous current can always be expressed as a combination of polarization and
magnetization as in Eq.6.154. The latter can therefore serve as a general defi-
nition of the homogeneous current. In other words there is no loss of generality
in the derivation of Eqs.6.155 and 6.156 from Eq.6.85.

Similarly, using Eqs.6.151 and 6.152 in Eq.6.87, we obtain:

∇×Ha
1 −

∂Da
1

∂t
=

1
c
J̃a −∇×Ma

1 −
∂Pa

1

∂t
. (6.157)

Therefore if we define the inhomogeneous current as:

J̃a := c

(
∇×Ma

1 +
∂Pa

1

∂t

)
(6.158)

we obtain the equation:

∇×Ha
1 −

∂Da
1

∂t
= 0. (6.159)

This equation can be expressed in terms of the relative permittivity εr1 and
permeability µr1 as:

∇×
(

Ba

µr1

)
− 1
c2
∂

∂t
(εr1Ea) = 0. (6.160)

Therefore the analytical and computational problem has been reduced to solving
the simultaneous equations 6.155 and 6.160. It is important to note [38] that
εr1 is in general different from εr, and that µr1 is in general different from µr.
The reason is that the current J̃a is in general different from the current j̃a.
Therefore the input parameters for the numerical solution of the simultaneous
equations 6.155 and 6.160 are εr, εr1, µr and µr1.

In the special case:
εr = εr1, µr = µr1 (6.161)

analytical solutions can be obtained of the simultaneous equations 6.155 and
6.160, because in this special case:

Da
1 = Da, (6.162)

Ha
1 = Ha, (6.163)

giving the simultaneous equations:

∇×Da +
1
c2
∂Ha

∂t
= 0, (6.164)

∇×Ha − ∂Da

∂t
= 0. (6.165)
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These can be written as:

∇× (cDa) +
∂

∂t

(
Ha

c

)
= 0, (6.166)

∇× (
Ha

c
)− 1

c2
∂

∂t
(cDa) = 0, (6.167)

and so have the same structure as:

∇×Ea +
∂Ba

∂t
= 0, (6.168)

∇×Ba − 1
c2
∂Ea

∂t
= 0. (6.169)

The plane wave solutions of Eqs.6.168 and 6.169 are well known. For example,
for a = (1) in the complex circular basis [1]– [32], the plane wave solutions are:

E(1) =
E(0)

√
2

(i− ij) e(ωt−κZ), (6.170)

B(1) =
B(0)

√
2

(ii + j) ei(ωt−κZ). (6.171)

It follows that Eqs.6.164 and 6.165 have solutions such as:

D(1) =
D(0)

√
2

(i− ij) e(ωt−κZ), (6.172)

H(1) =
H(0)

√
2

(ii + j) ei(ωt−κZ), (6.173)

where:
H(0) = cD(0). (6.174)

Now use:
D(0) = εE(0), (6.175)

H(0) =
1
µ
B(0), (6.176)

to find:
E(0) = vB(0) =

c

n2
B(0) (6.177)

where the refractive index is:
n2 = εrµr (6.178)

and the phase velocity is:
v =

c

n2
. (6.179)

In the special case 6.161 there are also the simultaneous equations:

j̃a =
∂Ma

∂t
− c2∇×Pa, (6.180)

J̃a = c

(
∇×Ma +

∂Pa

∂t

)
, (6.181)

where J̃a and j̃a are linked by Hodge duality (Section 6.2). Therefore in the
special case 6.161 the effect of gravitation on electromagnetism can be deduced
analytically from ECE theory as follows.

90



CHAPTER 6. SOLUTIONS OF THE ECE FIELD EQUATIONS

1. Gravitation changes the amplitudes of the plane waves:

E(0) −→ D(0), (6.182)

B(0) −→ H(0). (6.183)

2. Gravitation changes the phase velocity of the free space plane waves from
c to v, causing diffraction as in the Eddington effect [1]– [32].

3. Gravitation causes a red shift in angular frequency for a given κ because
the phase velocity is defined by

v =
ω

κ
(6.184)

and has been decreased from c to v if the refractive index is greater than
unity.

Acknowledgments The British Government is thanked for a Civil List pen-
sion and the AIAS group and environment for many interesting discussions.

91



6.3. DIELECTRIC ECE THEORY, ANALYTICAL AND . . .

92



Bibliography

[1] M. W. Evans, Found. Phys. Lett., 16, 367, 507 (2003).

[2] M. W. Evans, Found. Phys. Lett., 17, 25, 149, 267, 301, 393, 433, 535, 663
(2004).

[3] M. W. Evans, Found. Phys. Lett., 18, 139, 259, 519 (2005), and papers in
Found. Phys. Lett. and Found. Phys. (1994 to present).

[4] M. W. Evans, Generally Covariant Unified Field Theory (in press 2005,
preprints on www.aias.us and www.atomicprecision.com).

[5] L. Felker, The Evans Equations of Unified Field Theory (in press, preprint
on www.aias.us and www.atomicprecision.com).

[6] M. W. Evans, The Objective Laws of Classical Electrodynamics, the Effect
of Gravitation on Electromagnetism, (2005, preprint on www.aias.us and
www.atomicprecision.com).

[7] M. W. Evans, First and Second Order Aharonov Bohm Effects in
the Evans Unified Field Theory, (2005, preprint on www.aias.us and
www.atomicprecision.com).

[8] M. W. Evans, The Spinning of Spacetime as Seen in the Inverse Faraday
Effect, (2005, preprint on www.aias.us and www.atomicprecision.com).

[9] M. W. Evans, On the Origin of Polarization and Magnetization, (2005,
preprint on www.aias.us and www.atomicprecision.com).

[10] M. W. Evans, Explanation of the Eddington Experiment in the
Evans Unified Field Theory, (2005, preprint on www.aias.us and
www.atomicprecision.com).

[11] M. W. Evans, The Coulomb and Ampère Maxwell Laws in the
Schwarzschild Metric: A Classical Explanation of the Eddington Ef-
fect from the Evans Field Theory, (2005, preprint on www.aias.us and
www.atomicprecision.com).

[12] M. W. Evans, Generally Covariant Heisenberg Equation from the
Evans Unified Field Theory, (2005, preprint on www.aias.us and
www.atomicprecision.com).

[13] M. W. Evans, Metric Compatibility and the Tetrad Postulate, (2005,
preprint on www.aias.us and www.atomicprecision.com).

93



BIBLIOGRAPHY

[14] M. W. Evans, Derivation of the Evans Lemma and Wave Equation from
the First Cartan Structure Equation, (2005, preprint on www.aias.us and
www.atomicprecision.,com).

[15] M. W. Evans, Proof of the Evans Lemma from the Tetrad Postulate, (2005,
preprint on www.aias.us and www.atomicprecision.com).

[16] M. W. Evans, Self-Consistent Derivation of the Evans Lemma and Ap-
plication to the Generally Covariant Dirac Equation, (2005, preprint on
www.aias.us and www.atomicprecision.com).

[17] M. W. Evans, Quark-Gluon Model in the Evans Unified Field Theory,
(2005, preprint on www.aias.us and www.atomicprecision.com).

[18] M. W. Evans, The Origin of Intrinsic Spin and the Pauli Exclusion Principle
in the Evans Unified Field Theory, (2005, preprint on www.aias.us and
www.atomicprecision.com).

[19] M. W. Evans, General Covariance and Co-ordinate Transformation in Clas-
sical and Quantum Electrodynamics, (2005, preprint on www.aias.us and
www.atomiprecision.com).

[20] M. W. Evans, The Role of Gravitational Torsion : the S Tensor, (2005,
preprint on www.aias.us and www.atomicprecision.com).

[21] M. W. Evans, Explanation of the Faraday Disc Generator in the
Evans Unified Field Theory, (2005, preprint on www.aias.us and
www.atomicprecision.com).

[22] M. W. Evans et al., (AIAS Author Group), Experiments to Test the Evans
Unified Field Theory and General Relativity in Classical Electrodynamics,
(preprints on www.aias.us and www.atomicprecision.com).

[23] M. W. Evans et al., (AIAS Author Group), ECE Field Theory of the Sagnac
Effect (preprints on www.aias.us and www.atomicprecision.com).

[24] M. W. Evans et al., (AIAS Author Group), ECE Field Theory: the Influ-
ence of Gravitation on the Sagnac Effect, (preprints on www.aias.us and
www.atomicprecision.com).

[25] M. W. Evans et al., (AIAS Author Group), Dielectric Theory of ECE
Spacetime (preprints on www.aias.us and www.atomicprecision.com).

[26] M. W. Evans et al., (AIAS Author group), Spectral Effects of Gravitation,
(preprints on www.aias.us and www.atomicprecision.com).

[27] M. W. Evans, Cosmological Anomalies: EH Versus ECE Field Theory,
(preprints on www.aias.us and www.atomicprecision.com).

[28] M. W. Evans, (ed.), Modern Non-Linear Optics, in I. Prigogine and S. A.
Rice (eds.), Advances in Chemical Physics, (Wiley-Interscience, New York,
2001, 2nd ed.), vols. 119(1)-119(3).

[29] M. W. Evans and L. B. Crowell, Classical and Quantum Electrodynamics
and the B(3) Field, (World Scientific, Singapore, 2001).

94



BIBLIOGRAPHY

[30] M. W. Evans and J.-P. Vigier, The Enigmatic Photon (Kluwer, Dordrecht,
1994 - 1002, hardback and softback).

[31] M. W. Evans and A. A. Hasanein, The Photomagneton in Quantum Field
Theory (World Scientific, Singapore, 1994).

[32] M. W. Evans and S. Kielich (eds.), first edition of ref. (28) (Wiley-
Interscience, New York, 1992, reprinted 1993, softback 1997), vols. 85(1) -
85(3).

[33] S. P. Carroll, Lecture Notes in General Relativity (graduate course in the
public domain, Harvard, UCSB and Chicago, arXiv : gr - gc 973019 v1
1997).

[34] L. H. Ryder, Quantum Field Theory (Cambridge Univ Press, 1996, 2nd
ed.).

[35] P. W. Atkins, Molecular Quantum Mechanics (Oxford Univ. Press, 2nd
ed., 1983).

[36] M. W. Evans, G. J. Evans, W. T. Coffey and P. Grigolini, Molecular Dy-
namics and the Theory of Broad Band Spectroscopy (Wiley-Interscience,
New York, 1982).

[37] A. Einstein, The Meaning of Relativity (Princeton Univ. Press, 1921 -
1954).

[38] H. Eckardt, personal communication, (Oct. 2005)

95



BIBLIOGRAPHY

96


