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Abstract

Generally covariant unified field theory has been used to show that the equations
of classical electrodynamics are unified with those of gravitation using standard
Cartan geometry (Einstein Cartan Evans (ECE) field theory). By expressing
the ECE field equations in terms of the potential field, linear inhomogeneous
field equations are obtained for each of the fundamental laws of electrodynamics
unified with gravitation. These equations have resonant solutions, and in this
paper the possibility of resonant counter gravitation is demonstrated by show-
ing that the Riemann curvature can be affected by the electromagnetic field.
Examples are the Coulomb law and Ampère law respectively of electro-statics
and magneto-statics. At resonance the effect is greatly amplified (as for any
resonant phenomenon), so in theory, circuits can be built for effective resonant
counter gravitation and used in the aerospace industry.

Keywords: Resonant counter gravitation; Einstein Cartan Evans (ECE) field
theory; generally covariant unified field theory; linear inhomogeneous differential
equations; resonance.

9.1 Introduction

The principle of general relativity is the fundamental hallmark of objective
physics, a natural philosophy that is independent of the observer, indepen-
dent of subjective input. The principle means that every equation of physics
has to be generally covariant, meaning that it must retain its form under any
type of coordinate transformation. The principle must evidently be applied
to all equations of physics, including electrodynamics. Only in this way can

129
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an objective unified theory of physics emerge - a generally covariant unified
field theory [1]. It is well established [2] that the principle of general relativity
as applied to gravitational theory by Einstein and Hilbert [3] is very accurate
when compared with experimental data, but the principle of general relativ-
ity is not applied to electrodynamics in the standard model. In the latter [4]
electrodynamics is a theory of special relativity in which the field is thought of
as an entity independent of the frame. The space-time of electrodynamics in
the standard model is the Minkowski (”flat”) space-time. As a result standard
model electrodynamics is not generally covariant, it is Lorentz covariant, and
as such cannot be unified with generally covariant gravitational theory in the
standard model. It is well known that Riemann geometry with the Christoffel
connection is the geometrical basis of gravitational general relativity. However
in this type of geometry the torsion tensor is zero [5]. It was first suggested by
Cartan [6] that the electromagnetic field be the torsion form of Cartan geom-
etry. In 2003 [7]– [40] a generally covariant unified field theory was developed
using this suggestion and using standard Cartan geometry. It has since been
developed in many directions [1, 7]– [40].

In Section 9.2 the field equations of ECE theory are expressed as linear
inhomogeneous equations with resonant solutions. The Riemann term is isolated
and it is shown that the electromagnetic part of the unified field can change
the Riemann curvature, i.e. change the gravitational field. At resonance this
effect is greatly amplified. In Section 9.3 this general conclusion is exemplified
using the Coulomb and Ampère laws unified with gravitation. This means that
a static electric or static magnetic configuration can change the gravitational
field. In order to maximize the effect numerical methods of solution are needed
to model a circuit which optimizes resonant counter gravitation. An assembly
of such circuits can be placed aboard a device such as an aircraft or spacecraft,
and is expected to be particularly effective in regions of near zero gravitation
in outer space. Under the usual laboratory conditions it is well known that the
electromagnetic and gravitational fields are essentially independent and have no
influence on each other. This is observed experimentally in the Coulomb and
Newton inverse square laws for example. If two charged masses are considered,
then changing the charge on one of them has no effect on the Newton inverse
square law. Similarly changing the mass of one of them has no effect on the
Coulomb inverse square law. However, it is known through the Eddington
effect that gravitation and electromagnetism interact and ECE theory was the
first to give a classical explanation of the Eddington effect [7]– [40]. Einstein’s
famous prediction was based on photon mass and a semi-classical treatment.
The Eddington effect is however tiny in magnitude, the enormous mass of the
sun bends grazing light by a few seconds of arc only. Therefore resonant counter
gravitation is the only practical method of counter gravitation. All claims to
have observed an effect of electromagnetism on gravitation without resonance
are almost certainly artifactual. Recently however the Mexican group of AIAS
have observed resonantly enhanced electric power from ECE spacetime, the
output power from a circuit was observed reproducibly [41] to exceed input
power by a factor of one hundred thousand. This has been explained using
ECE theory by the use of linear inhomogeneous differential equations of the
same type as used in this paper for counter gravitation. The two phenomena
are explained by a generally covariant unified field theory based on Cartan
geometry.
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CHAPTER 9. RESONANT COUNTER GRAVITATION

9.2 The Resonance Equations Of ECE Field The-
ory

The overall aim of this section is to develop the ECE field equations to define
the effect of electromagnetism on gravitation. In order to do this the Riemann
term is isolated on the right hand side of the following field equations:

d ∧ F + ω ∧ F = A(0)R ∧ q, (9.1)

d ∧ F̃ + ω ∧ F̃ = A(0)R̃ ∧ q, (9.2)

F = d ∧A+ ω ∧A. (9.3)

In these equations we have used a notation [1] which suppresses the various
indices on the quantities on the left and right hand sides. This concise notation
is used to reveal the basic structure of the equations. Later they will be de-
veloped into differential form, tensor and vector notation. Here F denotes the
electromagnetic field, ω the spin connection, R the Riemann curvature and q
the tetrad. The symbol ∧ denotes Cartan’s wedge product. The tilde denotes
the Hodge dual [1] and A the potential field. Finally A(0) is the proportionality
constant between F and the Cartan torsion:

F = A(0)T (9.4)

which is the ECE ansatz [1]. So Eqs. 9.1 and 9.2 balance electromagnetic terms
on the left hand side and on the right hand side a gravitational term R ∧ q
multiplied by A(0). Using Eq. 9.3 in Eq. 9.1 gives a linear inhomogeneous
equation:

d ∧ (d ∧A+ ω ∧A) + ω ∧ (d ∧A+ ω ∧A) = A(0)R ∧ q, (9.5)

with resonance solutions [42]. Therefore resonance amplification of the effect
of electromagnetism on R ∧ q is possible in general relativity. In the standard
model gravitation is described by:

R ∧ q = 0 (9.6)

which is the Ricci cyclic equation [1] of Einstein Hilbert field theory. In tensorial
notation the Ricci cyclic equation is:

Rσµνρ +Rσρµν +Rσνρµ = 0 (9.7)

where Rσµνρ is the index lowered Riemann curvature tensor. Eq. 9.6 or equiv-
alently Eq. 9.7 are true if and only if the Christoffel connection is assumed:

Γκ
µν = Γκ

νµ. (9.8)

The assumption 9.8 implies that the torsion tensor is zero:

Tκ
µν = Γκ

µν − Γκ
νµ = 0. (9.9)

In the standard model the spin connection is missing because the Minkowski
frame is not spinning, and so in the standard model:

d ∧ F = 0, (9.10)
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9.2. THE RESONANCE EQUATIONS OF ECE FIELD THEORY

d ∧ F̃ = µ0J, (9.11)

F = d ∧A. (9.12)

Using Eq. 9.12 in Eq. 9.10 gives the Poincaré Lemma:

d ∧ (d ∧A) = 0 (9.13)

which does not have resonance solutions. In order to understand the influence
of electromagnetism on gravitation numerical solutions of Eq. 9.5 are needed.
At resonance the effect is greatly amplified. In the standard model J is not
recognized as originating in elements of the Riemann tensor. The interaction
between electromagnetism and gravitation is defined by:

R ∧ q 6= 0 (9.14)

and by a non-zero and asymmetric spin connection. Both conditions are needed.
It is important to note that for rotational motion, as for example in a free space
electromagnetic field in ECE theory [1], the spin connection is dual to the tetrad:

ωa
b = −κ

2
εabcq

c (9.15)

where κ is a wave-number and εabc is the index raised Levi-Civita tensor in the
tangent space-time. Eq. 9.15 implies that the Cartan torsion tensor is dual to
the Riemann tensor:

Ra
b = −κ

2
εabcT

c. (9.16)

So it must be clearly understood that there is a Riemann spin tensor for free
electromagnetism in ECE field theory. There is also a Riemann tensor for
gravitation, the well known curvature Riemann tensor. When electromagnetism
and gravitation are mutually influential R∧q is not zero, and Eqs. 9.15 and 9.16
no longer apply. This is the condition needed for resonant counter gravitation.
If R ∧ q is zero then electromagnetism does not influence gravitation. Similarly
if the spin connection is dual to the tetrad there is no mutual influence, and
when the Cartan torsion is dual to the Riemann spin tensor, there is no mutual
influence. These conclusions follow directly from Cartan geometry. For the free
electromagnetic field, the homogeneous field equation [1] reduces to:

d ∧ F a = 0 (9.17)

which for each polarization index a, and using vector notation, gives the Gauss
law applied to magnetism:

∇ ·Ba = 0 (9.18)

and the Faraday law of induction:

∇×Ea +
∂Ba

∂t
= 0 (9.19)

The inhomogeneous field equation of ECE theory [1] is:

d ∧ F̃ = A(0)
(
R̃ ∧ q − ω ∧ T̃

)
. (9.20)
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CHAPTER 9. RESONANT COUNTER GRAVITATION

When the electromagnetic field is free of gravitation:(
R̃ ∧ q

)
e/m

=
(
ω ∧ T̃

)
e/m

(9.21)

and the inhomogeneous field equation 9.20 reduces to:

d ∧ F̃ = A(0)
(
R̃ ∧ q

)
grav

:= µ0J. (9.22)

This means that the inhomogeneous current is derived from the mass of an
electron in the Einstein Hilbert limit, i.e purely from the curving of space-time
as described by the Schwarzschild metric [1]. When the electromagnetic and
gravitational fields are mutually independent, there is no interaction between
the spinning and curving of space-time. In this limit Eq. 9.22 gives for each
index a the Coulomb Law:

∇ ·Da = ρa (9.23)

and the Ampère Maxwell law:

∇ ·Da − ∂Da

∂t
= Ja. (9.24)

In the weak field limit of gravitation uninfluenced by electromagnetism the
Newton inverse square law is also recovered.

In standard differential form notation Eq. 9.1 is:

d ∧ F a + ωa
b ∧ F b = A(0)Ra

b ∧ qb (9.25)

and this in tensor notation is:

∂µF
a
νρ + ∂νF

a
ρµ + ∂ρF

a
µν + ωa

µbF
b
νρ + ωa

νbF
b
ρµ + ωa

ρbF
b
µν

= A(0)
(
Ra

bνµq
b
ρ +Ra

bρνq
b
µ +Ra

bµρq
b
ν

)
.

(9.26)

Now use:
R ∧ q = −q ∧R (9.27)

and the right hand side of Eq. 9.26 becomes:

−A(0)
(
qb

µR
a
bνρ + qb

νR
a
bρµ + qb

ρR
a
bµν

)
. (9.28)

Eq. 9.27 is the same as:

∂µF̃
aµν + ωa

µbF̃
aµν = −A(0)qb

µR̃
a µν
b . (9.29)

Similarly Eq. 9.2 becomes:

∂µF
aµν + ωa

µbF
aµν = −A(0)qb

µR
a µν
b . (9.30)

In the standard model Eq. 9.29 is:

∂µF̃
µν = 0 (9.31)

and Eq. 9.30 is:
∂µF

µν = µ0J
ν . (9.32)
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9.2. THE RESONANCE EQUATIONS OF ECE FIELD THEORY

From Eq. 9.31 we obtain the Gauss law and Faraday law of induction of the
standard model, and from Eq. 9.32 we obtain the standard model’s Coulomb
Law and Ampère Maxwell Law. In ECE theory these laws must be obtained
from Eqs. 9.29 and 9.30. The details are given in Appendix K of ref. [1].

The Coulomb Law in vector notation in ECE theory will be derived and
explained in detail later in this section. The result is:

∇ ·Ea + ωa ′

b ·Eb = −cAb′ ·Ra
b. (9.33)

Similarly the Ampère Maxwell Law in vector notation in ECE theory is:

∇×Ba + ω
′a

b ×Bb − 1
c2

(
∂Ea

∂t
+ ω

′a
obE

b

)
= µ0Ja′ . (9.34)

These laws are required to understand the effect of electromagnetism on grav-
itation, and to design devices for resonant counter gravitation. Gravitation is
represented by the Riemann terms on the right hand sides of Eqs. 9.33 and
9.34, and electromagnetism by the terms on the left hand sides. The equations
therefore show that elements of the Riemann tensor can be affected by electric
and magnetic fields. The engineering challenge is to maximize the effect with
resonance amplification. The latter possibility is seen by writing out Eq. 9.3 in
vector notation [7]– [40]:

Ea = −∂A
a

∂t
− c∇A0a − cω0a

bA
b + cωa

bA
0b (9.35)

and
Ba = ∇×Aa − ωa

b ×Ab. (9.36)

By substituting Eqs. 9.35 and 9.36 into 9.33 and 9.34 linear inhomogeneous
differential equations are obtained. The final step is to solve these numerically
to design circuits that give resonance amplification of the effect of electromag-
netism on gravitation. If the Riemann tensor is decreased, gravity is lessened,
and conversely. This is a highly non-trivial problem in general and shows why
previous attempts to understand this problem are naive. In the standard model
these linear inhomogeneous differential equations are replaced by the d’Alembert
wave equation [43] using the Lorentz gauge condition. The solutions are the
Liennard- Wiechert potentials, and these are electromagnetic waves without
resonance and without the information given by the interaction for gravitation
and electromagnetism of ECE field theory.

The Ampère law of magneto-statics is obtained when there is no electric field
present, only a magnetic field, so eq. 9.34 reduces to:

∇×Ba + ω
′a

b ×Bb = µ0Ja′ . (9.37)

As discussed in the introduction the standard model’s Coulomb, Ampère and
Newton inverse square laws hold to high precision [43]. Therefore no influence
of electromagnetism on gravitation has hitherto been detected in the laboratory.
The reason is that resonance amplification has not been used, and resonance
amplification occurs only in general relativity, not in special relativity. How-
ever an influence of gravitation on electromagnetism has been detected in the
Eddington effect. ECE field theory is the first self-consistent explanation of the
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CHAPTER 9. RESONANT COUNTER GRAVITATION

Eddington effect both on the classical and quantum levels. Einstein’s famous
prediction which led to the Eddington experiment was semi-classical and was
based on Einstein Hilbert field theory, so used only gravitation and not the
required unified field theory. Light in Einstein’s prediction was a photon with
mass, the concomitant electric and magnetic fields were not considered. The
semi-classical theory happens to be very accurate for the solar system, [1], but
in general effects are expected due to the interaction of gravitation and elec-
tromagnetism. These may occur not only in a cosmological context but also
in an atom or a circuit on the microscopic scale. In the vicinity of an electron
space-time curvature is large because of the small electron radius, and electric
fields are intense, giving plenty of scope for the interaction of space-time spin
and curvature.

The origin of Coulomb’s law in ECE field theory is the inhomogeneous field
equation [1]:

∂µF
aµν = µ0J

aν = A(0)
(
Ra µν

b qb
µ − ωa

µbT
bµν
)

(9.38)

and the law is obtained by using

ν = 0 (9.39)

in Eq. 9.38 to give:

∂1F
a10 + ∂2F

a20 + ∂3F
a30 + ωa

1bT
b10 + ωa

2bT
b20 + ωa

3bT
b30

= A(0)
(
Ra 10

b qb
1 +Ra 20

b qb
2 +Ra 30

b qb
3

) (9.40)

which translates into the vector notation of Eq. 9.33. The primed quantities
arise because the metric gµν must be used to raise and lower indices, so:

Aa ′

µ := gµνA
aν , (9.41)

ωa ′

µb := gµνω
νa

b , (9.42)

where the unprimed quantities are defined by convention as metric free. Other
conventions may be adopted, but in ECE theory the metric is not the Minkowski
metric in general, so contra-variant and covariant quantities must be defined
carefully. It is no longer sufficient just to switch the sign from positive (contra-
variant space part of a four-vector) to negative (covariant space part of a four-
vector). These details must be programmed carefully in numerical applications.

The resonant version of Eq. 9.33 may now be developed from Eq. 9.35
substituted into Eq. 9.33 to give:

c∇ ·∇A0a + ∇ · ∂A
a

∂t
+ c∇ ·

(
ω0a

bA
b − ωa

bA
0b
)

+ ωa ′

b ·
(
∂Ab

∂t
+ c∇A0b + cω0b

cA
c − cωb

cA
0c

)
= −cAb′ ·Ra

b.

(9.43)

If we restrict consideration to a static electric field configuration Eq. 9.43 sim-
plifies as follows. In order to guide this simplification exercise consider first the
standard model’s static electric field:

∇ ·E = ρ/ε0, (9.44)
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9.2. THE RESONANCE EQUATIONS OF ECE FIELD THEORY

∇×E = 0, (9.45)

∇2Φ = −ρ/ε0, (9.46)

where Φ is the scalar potential of the Poisson equation [43]. Eq. 9.45 implies
that:

E = −∇Φ. (9.47)

For a time-dependent electric field:

E = −∇Φ− ∂A
∂t

, (9.48)

so a static electric field means:

∂A
∂t

= 0. (9.49)

If we further assume for the sake of approximation that:

∇ ·Ab = 0 (9.50)

Eq. 9.43 simplifies to:

∇ ·∇A0a −∇ ·
(
ωa

bA
0b
)

+ ωa′

b ·∇A0b

+ ωa ′

b · ω0b
cA

c − ωa ′

b · ωb
cA

0c = −Ab′ ·Ra
b

:= cµ0J
0a

(9.51)

This is still a complicated equation so to simplify further we consider the limit
of weak interaction between the electromagnetic and gravitational fields [1]:

d ∧ F̃ = µ0J −→ A(0)
(
R̃ ∧ q

)
grav

. (9.52)

In this limit: (
R̃ ∧ q

)
e/m

∼
(
ω ∧ T̃

)
e/m

, T̃grav ∼ 0. (9.53)

The structure of Eq. 9.33 simplifies to:

∇ ·Ea ∼ −cAb′ ·Ra
b (9.54)

and the spin connection in Eq. 9.35 can be considered to be approximately dual
to the tetrad. So Eq. 9.43 simplifies further to

∇ ·
(
−∂A

a

∂t
− c∇A0a − cω0a

bA
b + cωa

bA
0b

)
∼ −cAb′ ·Ra

b (9.55)

with
ωa

b ∼ −
κ

2
qcεabc. (9.56)

If we use a static electric field and asume Eq. 9.50, Eq. 9.55 simplifies to:

∇ ·∇A0a −∇ ·
(
ωa

bA
0b
)
∼ −Ab′ ·Ra

b. (9.57)

If we do not assume Eq. 9.50 we obtain:

∇ ·∇A0a + ∇ ·
(
ω0a

bA
b
)
−∇ ·

(
ωa

bA
0b
)
∼ −Ab′ ·Ra

b. (9.58)
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Eq. 9.57 is a Hooke’s Law type of resonance equation with a driving term on
the right hand side, Eq. 9.58 has an additional damping term. In both cases
gravitation is resonantly affected by a static electric field. In order for this to
occur the spin connection must be identically non-zero, meaning that κ in Eq.
9.56 must be identically non-zero. In the limit of an identically static electric
field, κ is identically zero, and we recover the standard model’s Coulomb law.
In so doing we lose the possibility of influencing gravitation with a static electric
field.

The Ampère Maxwell law can be expressed [1] in ECE theory as:

∇×Ba − 1
c2
∂Ea

∂t
= µ0Ja (9.59)

where
Ja = Ja

x i + Ja
y j + Ja

z k. (9.60)

To isolate the Riemann term Eq. 9.61 is developed as:

∇×Ba + ω
′a

b ×Bb − 1
c2

(
∂Ea

∂t
+ ω

′a
0bE

b

)
= µ0Ja′ (9.61)

where [1]:

Ja ′

x = −A
(0)

µ0

(
Ra 10

0 +Ra 12
2 +Ra 13

3

)
, (9.62)

Ja ′

y = −A
(0)

µ0

(
Ra 20

0 +Ra 21
1 +Ra 23

3

)
, (9.63)

Ja ′

z = −A
(0)

µ0

(
Ra 30

0 +Ra 31
1 +Ra 32

2

)
, (9.64)

We first check Eq. 9.61 for units. We obtain in S.I.:

A(0) = JsC−1m−1 = voltsm−1, (9.65)

R = m−2, (9.66)

µ0 = Js2C−2m−1, J = Am−2 = Cs−1m−2. (9.67)

When electromagnetism and gravitation are independent of each other the ele-
ments of the Riemann tensor appearing in Eq. 9.61 are precisely those of the
Schwarzschild metric [1], elements which represent the curvature of space-time
due to the mass of an electron or ensemble of electrons. However when electro-
magnetism and gravitation influence each other the elements of the Riemann
tensor are changed, and this gives rise to the possibility of resonant counter
gravitation.

The magneto-static Ampère law can be developed into a linear inhomoge-
neous differential equation by using Eq. 9.36 in Eq. 9.37 to give:

∇× (∇×Aa)−∇×
(
ωa

b ×Ab
)

+ω
′a

b × (∇×Aa)− ω
′a

b ×
(
ωb

c ×Ac
)

= µ0Ja′ .

(9.68)

This equation must be solved in general on a computer, but some simplifying
assumptions may be made as for the Coulomb Law. The gravitational term on
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the right hand side of Eq. 9.68 is balanced by the magnetic terms on the left
hand side. Eq. 9.68 reduces to the Ampère law of the standard model for each
index a when the spin connection vanishes.

In tensor notation the Coulomb and Ampère Maxwell laws are given in
resonant form by substituting

F aµν = ∂µAaν − ∂νAaµ + ωaµ
bA

bν − ωaν
bA

bµ (9.69)

into Eq. 9.30 to give the linear inhomogeneous tensorial equation:

�Aaν − ∂ν (∂µA
aµ) + ωaµ

b∂µA
bν − ωaν

b∂µA
bµ

+ ωa
µb

(
∂µAbµ − ∂νAbµ

)
+ (∂µω

aµ
b)A

bν − (∂µω
aν

b)A
bµ

+ ωa
µbω

bµ
cA

cν − ωa
µbω

bν
cA

cµ

= −A(0)Ra µν
b qb

µ = −A(0)Raµν
µ

(9.70)

in which the gravitational term on the right hand side is balanced by the elec-
tromagnetic terms on the left hand side. Eq. 9.70 is therefore the tensorial
equivalent of Eq. 9.5.

9.3 Basic Definitions And Conventions For Nu-
merical Solutions

The electric and magnetic fields in ECE theory are defined from Cartan geom-
etry by Eqs. 9.35 and 9.36. In these equations the tetrad is defined by:

qa ′

µ = gµνq
νa. (9.71)

For each index a the contravariant tetrad is defined as the four-vector:

qνa =
(
q0a,qa

)
=
(
q0a, q1a, q2a, q3a

)
=
(
q0a, qa

x , q
a
y , q

a
z

)
.

(9.72)

Similarly the spin connection is defined by:

ωa
µb

′ = gµνω
νa

b (9.73)

adopting the convention:

ωνa
b =

(
ω0a

b ,ω
a
b

)
=
(
ω0a

b , ω
1a

b , ω
2a

b , ω
3a

b

)
=
(
ω0a

b , ω
a
xb , ω

a
yb , ω

a
zb

)
.

(9.74)

The role of the spin connection in ECE theory can be illustrated with reference
to the fundamentally important Evans spin field B(3) [1] observed in the inverse
Faraday effect. The spin connection means that electromagnetism is Cartan
torsion, so the frame is spinning. Similarly gravitation is Riemann or Cartan
curvature, so the frame is curving. A spinning or curving frame means that
there must be a connection present. If there is no connection the space-time
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is Minkowski space-time, called flat” space-time, the space-time of special rel-
ativity. The spin field is defined in the complex circular basis [7]– [40] with
polarization indices denoted by:

a = (1), (2), (3) (9.75)

so:
q(1) × q(2) = iq(3)∗, (9.76)

q(2) × q(3) = iq(1)∗, (9.77)

q(3) × q(1) = iq(2)∗. (9.78)

The spin field is a special case of:

Ba
spin = −A(0)ωa

b × qb (9.79)

and exists only in general relativity. Its existence therefore shows that classical
electrodynamics is a theory of general relativity, and not of special relativity.
This is a fundamentally important finding, because the spin field is an experi-
mental observable of the inverse Faraday effect, which therefore shows experi-
mentally that classical electrodynamics is a theory of general relativity. After
realizing this, the unification of electromagnetism with gravitation follows self-
consistently from the rules of Cartan geometry, so the spin field is fundamentally
important for the development of a generally covariant unified field theory and
for the study of resonant counter gravitation. This point is emphasized here by
some technical details as follows.

If we consider a circularly polarized electromagnetic field independent of
gravitation, and use for example:

a = 3 (9.80)

the spin field is:
B3 = −A(0)

(
ω3

1 × q1 + ω3
2 × q2

)
(9.81)

where summation over repeated covariant contravariant indices has been used,
together with:

ω3
3 = 0. (9.82)

Eq. 9.82 follows because for circular polarization [1]:

ωa
µb = −κ

2
εabcq

c
µ (9.83)

where:
εabc = ηadεdbc (9.84)

and where ηad is the Minkowski metric of the tangent space-time of Cartan
geometry. Thus

ηad = ηad =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = diag (−1, 1, 1, 1) (9.85)

139



9.3. BASIC DEFINITIONS AND CONVENTIONS FOR . . .

and
εdbc = 1, even permutation

= −1, odd permutation
(9.86)

i.e.
ε123 = −ε132 = 1 etc., ε123 = ε123 = 1 etc. (9.87)

Therefore the spin connection elements are:

ω1
2 = −κ

2
ε123q

3 = −κ
2
q3, (9.88)

ω3
1 = −κ

2
ε312q

2 = −κ
2
q2, (9.89)

ω3
2 = −κ

2
ε321q

1 = −κ
2
q1, (9.90)

and the spin field is [1]:

B3 = A(0)κ

2
(
q2 × q1 − q1 × q2

)
= −A(0)κq1 × q2. (9.91)

Finally switch to the complex circular basis and use:

A1 = A(0)q1, A2 = A(0)q2 (9.92)

to find the original Evans spin field [1]:

B(3) = B(3)∗ = −i κ

A(0)
A(1) ×A(2) = −igA(1) ×A(2). (9.93)

Historically the spin field was proposed in 1992 [1] from the experimental ex-
istence of the conjugate product A(1) ×A(2) in the inverse Faraday effect and
developed in several ways [7]– [40] using gauge theory. The spin field was in-
corporated into a generally covariant unified field theory from 2003 onwards [1].
The gauge theoretical methods were replaced completely by the fully self con-
sistent methods of Cartan geometry. In gauge theory the indices a are abstract
entities, in the final generally covariant unified field theory they are indices of
the tangent spacetime as in standard Cartan geometry and as such have a clearly
defined geometrical role which is rigorously self-consistent and consistent with
the principle of general relativity. Gauge theory on the other hand superimposes
an abstract a index on a flat Minkowski space-time, and so gauge theory can-
not lead to a generally covariant unified field theory. Gauge theory cannot be
used to investigate the mutual interaction of gravitation and electromagnetism,
and neither can string theory. Only a geometrically based theory can do this,
and for self-consistently the theory must be one that is in accordance with the
fundamental principle of general relativity.

In these equations the covariant derivative [1] is defined as usual by applying
a correction to the flat four-derivative:

∂µ =
(

1
c

∂

∂t
,∇
)
. (9.94)

The contravariant flat space derivative is:

∂µ = ηµν∂ν =
(

1
c

∂

∂t
,−∇

)
(9.95)
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and the flat space d’Alembertian operator is:

� = ∂µ∂µ. (9.96)

It follows that Eq. 9.95 must also be used to define ∂µ in ECE space-time,
defined as the four-dimensional space-time with curvature and torsion both
present in general. The contravariant derivative in ECE space-time is:

Dµ = gµνDν (9.97)

but:
Dµ = ∂µ + · · · (9.98)

therefore the d’Alembertian operator remains the same in ECE space-time, and
is defined by:

DµDµ = � + · · · (9.99)

Therefore � is the ”flat part” of DµDµ. Similarly:

gµν = ηµν + · · · (9.100)

and νµν is the ”flat part” of gµν . As discussed by Carroll [7]– [40] in his chapter
3, the derivative operator ∂µ in flat space-time is a map from (k, l) tensor fields to
(k, l+1) tensor fields, the derivative operator acts linearly on its arguments and
obeys the Leibnitz Theorem for tensor products. The derivative operator Dµ of
ECE theory therefore performs the functions of ∂µ in a way that is independent
of coordinates. This property is fundamentally required by general relativity.
Since Dµ obeys the Leibnitz Theorem it may always be written as the ∂µ plus
a linear transformation. In Riemann geometry and for a given vector V ν the
covariant derivative is therefore:

DµV
ν = ∂µV

ν + Γν
µλV

λ (9.101)

where Γν
µλ is the connection. Thus ∂µ in ECE theory is the same as Eq. 9.95,

and ∂µ in ECE theory is the same as Eq. 9.94. It follows that the d’Alembertian
operator of ECE theory is defined by Eq. 9.96, i.e.:

� = ∂µ∂µ =
1
c2
∂2

∂t2
−∇2. (9.102)

In order to produce a numerical solution of the ECE field equation the differ-
ential operators must be defined as in flat space-time, i.e. as:

∂µ =
(

1
c

∂

∂t
,∇
)

= (∂0, ∂1, ∂2, ∂3)

=
(

1
c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

) (9.103)

and

∂µ =
(

1
c

∂

∂t
,−∇

)
=
(
∂0, ∂1, ∂2, ∂3

)
=
(

1
c

∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
.

(9.104)
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With these definitions and conventions the ECE electromagnetic field tensor is:

F aµν = −F aνµ = ∂µAνa − ∂νAνa + ωµa
bA

bν − ωνa
bA

bµ (9.105)

which compares with the standard model’s:

Fµν = −F−νµ = ∂µAν − ∂νAµ. (9.106)

The polarization index and spin connection are missing in the standard model.
In S.I. units the following convention is adopted for the field tensor:

F aµν =


0 −Ea1/c −Ea2/c −Ea3/c

Ea1/c 0 −Ba3 Ba2

Ea2/c Ba3 0 −Ba1

Ea3/c −Ba2 Ba1 0

 . (9.107)

In this convention the units of the field tensor are those of magnetic flux density
(tesla) or electric field strength (volt m−1) divided by c. Other conventions for
the field tensor may be used if preferred, provided that care is taken that all
S.I. units are balanced on the right and left hand sides of any equation. In Eq.
9.107:

Ea1 = Ea
x , Ea2 = Ea

y , Ea3 = Ea
z ,

Ba1 = Ba
x , Ba2 = Ba

y , Ba3 = Ba
z ,

(9.108)

thus:
F a01 = −Ea1/c = −F a10, (9.109)

F a02 = −Ea2/c = −F a20, (9.110)

F a03 = −Ea3/c = −F a30, (9.111)

and
F a12 = −F a21 = −Ba3, (9.112)

F a13 = −F a31 = −Ba2, (9.113)

F a23 = −F a32 = −Ba1. (9.114)

Therefore:

F a01 = −1
c
Ea1 = ∂0Aa1 − ∂1Aa0 + ωa 0

b A
b1 − ωa 1

b A
b0

= −1
c
Ea

x =
1
c

∂Aa
x

∂t
+
∂Aa0

∂x
+ ωa 0

b A
b
x − ωa 1

xb A
b0

(9.115)

from which we obtain Eq. 9.35. In the standard model (S. I. units):

E = −∂A
∂t

− c∇A0 := −∂A
∂t

−∇φ. (9.116)

Similarly:

F a12 = −Ba3 = −Ba
z = ∂1Aa2 − ∂2Aa1 + ωa 1

b A
b2 − ωa 2

b A
b1

= −
∂Aa

y

∂x
+
∂Aa

x

∂y
+ ωa

xbA
b
y − ωa

ybA
b
x.

(9.117)
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Now use the definition of the vector curl:

∇×A =

 i j k
∂/∂x ∂/∂y ∂/∂z
Ax Ay Az

 (9.118)

and vector cross product:

A×B =

 i j k
Ax Ay Az

Bx By Bz

 (9.119)

to obtain Eq. 9.36.
The following displays give a summary of the translation of notation. In

ECE theory:

F = d ∧A+ ω ∧A →
Ea = −∂A

a

∂t
− c∇Aa0

− cωa 0
b Ab + cωa

bA
b0,

Ba = ∇×Aa − ωa
b ×Ab.

(9.120)

In the standard model (S.I. units):

F = d ∧A →
E = −∂A

∂t
−∇φ

B = ∇×A
. (9.121)

In order to develop the resonance formulation of the Faraday law of induction
in ECE field theory it is convenient to use the ECE Faraday law of induction
in its dielectric form [7]– [40]:

∇× (εrEa) +
∂

∂t

(
Ba

µr

)
= 0 (9.122)

where µr and εr are respectively the relative permeability and permittivity of
ECE space-time considered as a dielectric. The homogeneous current of Eq. 9.1
is re-defined in the dielectric formulation as:

j̃a :=
∂Ma

∂t
− c2∇×Pa (9.123)

where the magnetization is:

Ma =
(

1
µ0
− 1
µ

)
Ba (9.124)

and the polarization is:
Pa = (ε− ε0)Ea. (9.125)

In Eqs. 9.123–9.125 and ε0 respectively are the vacuum permeability and per-
mittivity, and µ and ε are the permeability and permittivity of ECE space-time
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regarded as a dielectric. Using Eqs. 9.35 and 9.36 in Eq. 9.122 gives a resonance
equation in the dielectric formulation. The magnetization is:

Ma = A(0)

(
1
µ0
− 1
µ

)(
∇× qa − ωa

b × qb
)

(9.126)

and the polarization is:

Pa = A(0) (ε− ε0)
(
−∂q

a

∂t
−∇q0a − cω0a

bq
b + cωa

bq
0b

)
. (9.127)

The homogeneous current is:

j̃a = A(0)

(
∂

∂t

((
1
µ0
− 1
µ

)(
∇× qa − ωa

b × qb
))

−c2∇×
(

(ε− ε0)
(
−∂q

a

∂t
− c∇q0a − cω0a

bq
b + cωa

bq
0b

)))
.

(9.128)

The numerical task is to find resonance solutions of Eq. 9.128. In general µ and
ε are functions of ct, X, Y and Z:

ε = ε (ct,X, Y, Z) , (9.129)

µ = µ (ct,X, Y, Z) , (9.130)

and in general both ε and µ are tensorial quantities (as for example in crys-
tals). They are scalars only in an isotropic homogeneous dielectric. We may
approximate Eq. 9.128 by considering ε and µ as scalars, so Eq. 9.128 simplifies
using:

∂

∂t

((
1
µ0
− 1
µ

)
∇×Aa

)
=
(

1
µ0
− 1
µ

)
∇× ∂Aa

∂t
, (9.131)

c∇×
(
(ε− ε0) ∇A0a

)
= 0, (9.132)

and which is a linear inhomogeneous differential equation with mixed deriva-
tives. Eq. 9.128 has only two input parameters ε and µ.

When the electromagnetic and gravitational fields are independent:

µ = µ0, ε = ε0, j̃ = 0, (9.133)

and the relative permittivity and permeability become:

εr = 1, µr = 1. (9.134)

In this limit of independent fields we obtain self consistently the Faraday law of
induction of ECE field theory with no homogeneous current:

∇×Ea +
∂Ba

∂t
= 0. (9.135)

In this limit the spin connection is dual to the tetrad as in Eq. 9.15 and the Rie-
mann spin form is dual to the torsion form as in Eq. 9.16. In this limit the Evans
spin field is obtained self consistently as in Eq. 9.93. Note carefully that Eq.
9.135 is a standard model Faraday law of induction for each index a [1,7]– [40].
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In the standard model the Evans spin field is missing, because electrodynamics
in the standard model is a theory of special relativity (the Maxwell Heaviside
field theory). Therefore in the standard model classical electrodynamics is in-
compatible with the principle of general relativity, and this is a major weak point
of the standard model because the Evans spin field is an experimental observ-
able in the inverse Faraday effect, indicating that classical electrodynamics must
originate in the torsion of space-time, torsion indicating the presence of a spin
connection that is, indeed, detected experimentally in the inverse Faraday effect.
Classical electrodynamics is not an entity superimposed on flat space-time (the
nineteenth century view) because in this view there is no spin connection and
no inverse Faraday effect, contrary to reproducible data. The historical origin
of this major weak point is well known but worth recounting briefly as follows.
Classical electrodynamics in its modern vector formulation was developed in
the late nineteenth century (from James Clerk Maxwell’s original quaternion
equations of the mid nineteenth century), by Oliver Heaviside, before special
relativity was developed. Heaviside’s vectorial equations for electrodynamics
were put in tensorial form by Lorentz and Poincarè at the turn of the twentieth
century and were assumed to be Lorentz covariant. Only later, in 1905, did
Einstein develop special relativity for the whole of physics. In 1915 Einstein
and Hilbert developed the generally covariant field equation of gravitation in
general relativity, but electrodynamics remained a Lorentz covariant theory of
special relativity. Therefore gravitation and electrodynamics could not be uni-
fied, being conceptually (i.e fundamentally) different. Attempts at unification
have been made ever since and the first successful generally covariant unified
field theory is now generally recognised [7]– [40] as being ECE theory. This did
not begin to emerge until 2003. ECE theory now gives the basic understanding
needed to evaluate resonant counter gravitation and many other phenomena
new to physics [7]– [40].

If the Faraday law of induction is considered from Eq. 9.1 to be [7]– [40]:

∇×Ea +
∂Ba

∂t
= µ0j̃a, (9.136)

and if we restrict consideration to scalar, time-independent µ and ε, Eqs. 9.126
and 9.127 used in Eq. 9.123 give:

(
1
µ0
− 1
µ

+ c2(ε− ε0))∇× ∂Aa

∂t
− (

1
µ0
− 1
µ

)
∂

∂t
(ωa

b ×Ab)

c3∇× (ω0a
bA

b − ωa
bA

0b) = j̃a
(9.137)

Now use the approximation:

ωµa
b −→ −κ

2
qµcεabc (9.138)

which is equivalent to:
j̃ → 0. (9.139)

For index a = 1:(
1
µ0
− 1
µ

+ c2 (ε− ε0)
)

∇× ∂A1

∂t
−
(

1
µ0
− 1
µ

)
∂

∂t

(
ω1

2 ×A2 + ω1
3 ×A3

)
− κ

2
c3∇×

(
q03A2 − q02A3 − q3A02 + q2A03

)
= j̃1 → 0

(9.140)
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i.e.:((
1
µ0
− 1
µ

)
+ c2 (ε− ε0)

)
∇× ∂A1

∂t
+ κ

(
1
µ0
− 1
µ

)
∂

∂t

(
q2 ×A3

)
− κ

2
c3∇×

(
q03A2 − q02A3 − q3A02 + q2A03

)
= j̃1 → 0.

(9.141)

Now use:
q03 = q02 = A03 = A02 → 0 (9.142)

and switch to the complex circular basis to obtain:(
1
µ0
− 1
µ

+ c2 (ε− ε0)
)

∇× ∂A(1)∗

∂t
+ κ

(
1
µ0
− 1
µ

)
∂A(1)∗

∂t
= j̃(1)∗ → 0.

(9.143)
The structure of this equation is:

x∇× ∂A(2)

∂t
+ yκ

∂A(2)

∂t
= j̃(2) → 0 (9.144)

where the scalars x and y are:

x =
1
µ0
− 1
µ

+ c2 (ε− ε0) , (9.145)

y =
1
µ0
− 1
µ
. (9.146)

Eq. 9.144 is again a linear inhomogeneous differential equation with resonant
solutions. So in ECE theory the fundamental equations of classical electro-
dynamics all develop a resonant structure never considered previously in the
history of physics and engineering because a generally covariant unified field
theory was not available.

Finally in this section the standard model’s Lorentz force law is developed
into a generally covariant equation of unified field theory. This shows how
gravitation is expected to affect the law. In the standard model the Lorentz
force law originates in the Lorentz transformation of the field tensor [1]:

F
′µν =

∂x
′µ

∂xρ

∂x
′ν

∂xσ
F ρσ (9.147)

where xµ is the four-coordinate:

xµ = (ct,X, Y, Z) . (9.148)

In the standard model the Lorentz transformation is used from K to a frame K ′

translating uniformly at v with respect to K . Using the Lorentz transformation
in Eq. 9.147 gives [7]– [40] in S.I. units:

E′ = γ (E + v ×B)− γ2

γ + 1
v
c

(v
c
·E
)
, (9.149)

B′ = γ
(
B− v

c2
×E

)
− γ2

γ + 1
v
c

(v
c
·B
)
, (9.150)

146



CHAPTER 9. RESONANT COUNTER GRAVITATION

where:

γ =
(

1− v2

c2

)−1/2

. (9.151)

The Lorentz force law as usually given in the textbooks as:

F = eE′ = eγ (E + v ×B) (9.152)

and is an approximation to Eq. 9.149 when:

v � c, γ 6= 1. (9.153)

The non-relativistic limit of the Lorentz force law is obtained from the approx-
imation 9.153 in the limit:

γ → 1 (9.154)

and is the familiar:
F = e (E + v ×B) . (9.155)

In ECE theory [7]– [40] the Lorentz force law is obtained from the rules [7]– [40]
of general coordinate transformation of the torsion tensor in Cartan geometry,
i.e.:

T a′

µ′ν′ = Λa′

a

∂xµ

∂xµ′
∂xν

∂xν′
T a

µν (9.156)

where only Λa′

a is a Lorentz transformation matrix and where ∂xµ/∂xµ′ and
∂xν/∂xν′ are general coordinate transformation matrices. The electromagnetic
field tensor is [7]– [40]:

F a
µν = A(0)T a

µν (9.157)

so the Lorentz force in ECE field theory manifests itself in:

F a′

µ′ν′ = A(0)T a′

µ′ν′ (9.158)

multiplied by charge. Contained within the Cartan torsion is the spin connec-
tion, which is related to the Riemann curvature and to gravitation.
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