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Abstract

Generally covariant translational and rotational dynamics are developed on the
basis of Einstein Cartan Evans (ECE) field theory. Translational or central dy-
namics are defined as the limit of vanishing Cartan torsion where the Einstein
Hilbert (EH) theory of gravitation is recovered. Rotational dynamics are de-
fined in the limit where the translational Riemann curvature form vanishes and
where the rotational Riemann form is dual to the Cartan torsion form. The mu-
tual influence of translation and rotation is defined by the two Cartan structure
equations and the two Bianchi identities of differential geometry. The equations
of generally covariant rotational and translational dynamics are developed in
the same form as the equations of generally covariant electrodynamics.

Keywords: Einstein Cartan Evans (ECE) field theory, generally covariant dy-
namics, generally covariant electrodynamics.

1.1 Introduction

Classical dynamics has been developed continuously for more than four hundred
years. Major advances occurred in the sixteenth and seventeenth centuries [1],
notably by Galileo, Brahe, Kepler and Newton, who synthesized the laws of
classical translational dynamics. Later, rotational dynamics were developed by
Euler and Coriolis, who inferred accelerations not present in Newtonian dynam-
ics. Notable contributions came from Lagrange, Laplace and Hamilton using
variational calculus. Following upon the results of the Michelson Morley exper-
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1.2. THE EQUATIONS OF GENERALLY COVARIANT DYNAMICS

iment, length contraction was suggested by Fitzgerald, and developed into the
theory of special relativity with notable contributions from Lorentz, Poincaré,
Einstein and several others. Einstein inferred the theory of translational special
relativity in 1905 and developed it into the theory of translational general rela-
tivity. The Einstein Hilbert (EH) field equation of translational dynamics was
inferred independently by Einstein and Hilbert, and published in 1916. Later,
Einstein and Cartan corresponded on the need for incorporating Cartan torsion
into general relativity. In this paper the two Cartan structure equations and
the two Bianchi identities of differential or Cartan geometry are inferred to be
the equations of generally covariant dynamics, in which both translational and
rotational motions are considered. These dynamics are valid in any frame of
reference moving arbitrarily with respect to any other frame. The equations of
these dynamics are therefore generally covariant as required by the theory of
relativity and by objective natural philosophy.

In Section 1.2 the two Cartan structure equations and the two Bianchi iden-
tities are developed in a form which is identical to the equations of generally
covariant electrodynamics [2]– [15] within a scalar factor A(0), essentially a
primordial voltage. EH translational dynamics are defined as the limit where
the Cartan torsion form vanishes and rotational dynamics are defined as the
limit where the translational Riemann form vanishes. For rotational dynam-
ics, the rotational Riemann form is dual to the Cartan torsion form, and the
spin connection is dual to the tetrad. In Section 1.3 the Newtonian equations
and principle of equivalence are inferred from the second Bianchi identity with
zero Cartan torsion and the Euler equation is inferred from the first Cartan
structure equation. In Section 1.4 the equations of generally covariant trans-
lational and rotational dynamics are developed in vector notation in the same
form as the equations of generally covariant electrodynamics. Generally covari-
ant dynamics provides several new inferences and suggests several phenomena
not present in the EH limit. These may be tested with respect to cosmological
anomalies where EH theory is not sufficient. There appear resonance solutions
in both generally covariant dynamics and electrodynamics, and the ECE theory
also gives the equations needed to describe the interaction of gravitation and
electrodynamics.

1.2 The equations of generally covariant dynam-
ics

The equations of classical dynamics are given by ECE theory in any frame of
reference moving arbitrarily with respect to any other frame. In a condensed
notation with all indices suppressed for clarity [2]– [15] the equations of motion
are given by Cartan geometry:

T = D ∧ q (1.1)

R = D ∧ ω (1.2)

D ∧ T = R ∧ q (1.3)

D ∧ q = 0, (1.4)

D∧ = d ∧+ω ∧ . (1.5)
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CHAPTER 1. GENERALLY COVARIANT DYNAMICS

Here T is the torsion form, q is the tetrad form, ω is the spin connection, R is
the Riemann form and D denotes the covariant exterior derivative of Cartan [2]–
[15]. This notation is fully explained and developed elsewhere [2]– [15] in form,
tensor and vector notation. The condensed indexless notation of Eq.(1.1) to
(1.4) gives the basic structure most clearly. These equations of geometry are
transformed into equations of classical dynamics using the Einstein Ansatz:

R = −kT (1.6)

where in Eq.(1.6), R denotes scalar curvature, k is the Einstein constant and
T is the index contracted canonical energy momentum tensor [16]). In gen-
eral T contains contributions from all four fundamental fields (gravitational,
electromagnetic, weak and strong). In the EH theory only the gravitational
contribution is considered.

In the notation of Eqs.(1.1) to (1.5) the EH field theory of 1916 is:

T = 0 (1.7)

R ∧ q = 0 (1.8)

D ∧R = 0 (1.9)

In this limit therefore the torsion form vanishes. Eq.(1.8) is the Ricci cyclic
equation of EH theory. In tensor notation Eq.(1.8) is the familiar cyclic combi-
nation of Riemann tensors:

Rσµνρ +Rσρµν +Rσνρµ = 0 (1.10)

Eq.(1.9) is the second Bianchi identity. In tensor notation it becomes:

DµGµν = 0 (1.11)

where Gµν is the Einstein tensor:

Gµν = Rµν −
1
2
Rgµν (1.12)

In Eq.(1.12) Rµν is the Ricci tensor and gµν is the symmetric metric tensor.
The EH field equation is obtained from the second Bianchi identity (1.11) and
the Noether Theorem:

DµTµν = 0 (1.13)

From Eqs.(1.11) and (1.13) we obtain the EH field equation:

D ∧R = 0 (1.14)

Here Tµν is the canonical energy momentum tensor, whose index contracted
form in EH theory is:

T = gµνTµν (1.15)

It can be seen that the EH theory is limited by the omission of the Cartan
torsion form and is therefore confined to the pure translational part of the
general equations of dynamics, Eqs.(1.1) to (1.5). Pure rotational dynamics are
defined as [2]– [15]:

T = D ∧ q (1.16)
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d ∧ T = 0 (1.17)

and it is seen that the translational part of the Riemann or curvature form is
zero. Pure rotation is defined by:

R ∧ q = ω ∧ T (1.18)

which means that the Cartan torsion is dual to the rotational part of the Rie-
mann form. In this limit the Cartan torsion is the vector valued two-form dual
to the rotational Riemann form, a tensor valued two-form. This duality is de-
fined in the tangent (Minkowski) spacetime [2]– [15] of differential geometry
and is analogous to the type of duality between for example an anti-symmetric
tensor in three dimensions and an axial vector in three dimensions. The rota-
tional Riemann form is the dual of the Cartan torsion form. The translational
Riemann form on the other hand is not dual to the Cartan torsion form. The
translational Riemann form may therefore be zero when the Cartan form is
non-zero and vice-versa. In EH theory only the translational Riemann form is
considered, the rotational Riemann form and the Cartan torsion form are not
considered in EH theory. In the latter the connection is the symmetric Christof-
fel connection and EH theory does not consider the interaction between rotation
and translation. The equations needed to describe this interaction are Eqs.(1.1)
to (1.5).

In the notation [15] of standard differential geometry Eqs.(1.1) to (1.4) be-
come:

T a = d ∧ qa + ωa
b ∧ qb (1.19)

Ra
b = d ∧ ωa

b + ωa
c ∧ ωc

b (1.20)

d ∧ T a + ωa
b ∧ T b = Ra

b ∧ qb (1.21)

d ∧Ra
b + ωa

c ∧Rc
b −Ra

c ∧ ωc
b = 0 (1.22)

in which the indices are those of the tangent (Minkowski) spacetime at point P
to the base manifold. The indices of the base manifold are Greek indices which
are always the same on both sides of any equation of Cartan geometry. So in
the standard notation [15] of Cartan geometry the Greek indices are not written
out. In refs. [2]– [14] however the equations of Cartan geometry are written out
in full in form, tensor and vector notation.

The equations of Cartan geometry may be written as follows in the same
overall format as the ECE equations of electrodynamics [2]– [14]. The first and
second Cartan structure equations can be written as differential field equations
in which the left hand side involves only the Cartan exterior derivative, and
the right hand side is a combination of terms defining currents or source terms.
Thus Eqs.(1.21) and (1.22) can be written as:

d ∧ T a = ja = Ra
b ∧ qb − ωa

b ∧ T b (1.23)

d ∧Ra
b = ja

b = Ra
c ∧ ωc

b − ωa
c ∧Rc

b (1.24)

Here ja is the homogeneous current of ECE electrodynamics within the fac-
tor A(0). Therefore dynamics and electrodynamics both originate in Cartan
geometry, and are unified. The Hodge duals [2]– [14] of Eqs.(1.23) and (1.24)
are:

d ∧ T̃ a = Ja (1.25)
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CHAPTER 1. GENERALLY COVARIANT DYNAMICS

d ∧ R̃a
b = Ja

b (1.26)

and Ja is the inhomogeneous current of ECE electrodynamics within the factor
A(0). Similarly the two structure equations (1.19) and (1.20) may be written as
follows:

d ∧ qa = ja
1 = T a − ωa

b ∧ qb (1.27)

d ∧ ωa
b = ja

1b = Ra
b − ωa

c ∧ ωc
b (1.28)

whose Hodge duals are:
d ∧ q̃a = Ja

1 (1.29)

d ∧ ω̃a
b = Ja

1b (1.30)

Eqs.(1.23),(1.24), (1.25) and (1.26) may be written in tensor and vector nota-
tion, producing much novel information on dynamics and cosmology. Later in
this paper it will be shown that Newtonian dynamics is a limit of the vector
equation:

∇ ·Ra
b (orbital) = j

a(0)
b (1.31)

an equation which is one out of two vector equations given by the single form
equation (1.26).

1.3 Newton and Euler equations

In Eq.(1.31), Ra
b is the orbital part of the translational Riemann form, a quan-

tity which is defined fully in Section 1.4. In this section the Newton inverse
square law is derived straightforwardly from Eq.(1.31). First recognize that the
Newtonian force F is derived from the force form F a

b defined by:

Fa
b = −m1m2GR

a
bF (1.32)

Here R is the scalar curvature of Cartan geometry [2]– [14] and c is the speed
of light in vacuo, the universal constant of relativity theory. The force form is:

F a
b = m1g

a
b (1.33)

where m1 is a scalar quantity with the units of kilograms. Thus m1 is recognized
as mass and ga

b is a tensor valued two-form with the units of acceleration.
Eq.(1.31) is mathematically equivalent to:

Fa
b = −Gm1m2

r2
ka

b = m1ga
b (1.34)

where G is the Newton gravitational constant defined by:

k =
8πG
c2

(1.35)

and where r is the distance between two masses m1 and m2. Restoring the
indices of the base manifold to equation (1.33) gives:

F a
bµν = m1g

a
bµν (1.36)
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1.3. NEWTON AND EULER EQUATIONS

an equation which shows that the force F a
bµν and the acceleration ga

bµν are
both proportional to the orbital part of the translational Riemann form. In the
Newtonian limit the base manifold approaches a Minkowski spacetime, so:

Fa
b = F, ga

b = g (1.37)

and Eq.(1.34 becomes the Newton inverse square law:

F = −Gm1m2

r2
k (1.38)

and Eq.(1.33) becomes the Newton force law:

F = m1g (1.39)

Both laws are derived from the orbital part of the translational Riemann form
of Cartan geometry, and this is the principle of equivalence of inertia and ac-
celeration. The principle of equivalence states that must exist a scalar quantity
m1. It may be seen from Eq.(1.32) that mass does not enter into the relation
between force and curvature, and this is the result of the well known Galileo
experiment where two different masses dropped from the same height in the
Earth’s gravitational field hit the ground at the same time from the apocryphal
Tower of Pisa. (In fact [1] Galileo proved this result using inclined planes.)

This simple derivation of Newtonian dynamics is confirmed as follows with
reference to the well known Schwarzschild metric (SM), which by Birkhoff’s
Theorem is the unique spherically symmetric vacuum solution of the EH field
equation (1.14). The SM is thus a solution of pure translational dynamics and
takes no account of torsion in cosmology.

The SM in in spherical polar coordinates [2]– [15] is:

ds2 =
(

1− 2GM
rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2 − r2dθ2 − r2 sin2 θdφ2 (1.40)

where M is a parameter with units of kilograms identified with mass. If this pa-
rameter is identically zero Eq.(1.40) becomes the Minkowski metric in spherical
polar coordinates:

ds2 = c2dt2 − dr2 − r2dθ2 − r2 sin2 θdφ2 (1.41)

The six non-zero elements of the Riemann tensor in the SM are as follows [2]–
[15]:

R0
101 =e2(β−α)

(
∂2
0β + (∂0β)2 − ∂0α∂0β

)
+ ∂1α∂1β − ∂2

1α− (∂1α)2 (1.42)

R0
202 =− re−2β ∂1α

r2
(1.43)

R0
303 =sin2 θR0

202 (1.44)

R1
212 =re−2β ∂1β

r2
(1.45)

R1
323 =R2

323 =
(
1− e−2β

) sin2 θ

r2
(1.46)
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CHAPTER 1. GENERALLY COVARIANT DYNAMICS

where the parameters are defined by:

e2α = e−2β = 1− 2GM
rc2

(1.47)

The three orbital components of the SM are R0
101, R

0
202, and R0

303 and the
three spin components are R1

212, R
1
313, and R2

323. It is seen that:

R0
101 = e−4α

(
− (∂1α)2 − ∂2

1α− (∂1α)2
)

(1.48)

and that:
R0

202 +R0
303 = −GM

c2r3
(
1 + sin2 θ

)
(1.49)

The Newtonian limit is recovered from:

∇ · ga
b = −c2

(
R0

202 +R0
303

)
=

2GM
r3

(1.50)

This result allows us to infer:

ga
b =

1
m

Fa
b = −GM

r2
ka

b (1.51)

and to recover Eq.(1.32) in the form:

Fa
b = −GmM

r2
ka

b (1.52)

Thus the scalar curvature R of Eq.(1.32) may be identified as:

Ra
b = −ka

b

r2
(1.53)

More generally the SM produces well known departures from Newtonian dy-
namics, giving for example the perihelion advance of planets and the result of
the Eddington experiment [2]– [15], now verified to one part in one hundred
thousand accuracy. The above derivation of the Newton inverse square law
from the orbital components of the Riemann tensor of the SM assumes that the
R0

101 element goes to zero faster than the sum of the R0
202 and R0

303 elements
as M goes to zero and uses the geometry θ = 0 in spherical polar coordinates.

The Riemann form in the SM is therefore the antisymmetric tensor:

Ra
bµν =



0 R0
101 R0

202 R0
303

R0
110 0 R1

212 R1
313

R0
220 R1

221 0 R2
323

R0
330 R1

331 R2
332 0


(1.54)

and consists of orbital and spin components. The six non vanishing elements
of the SM are precisely the three orbital elements and the three spin elements.
The Riemann tensor is obtained from the Riemann form as follows [2]– [15]:

Rρ
σµν = qb

σq
ρ
aR

a
bµν (1.55)
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The orbital Riemann vector is defined from Eq.(1.54) as:

Ra
b (orbital) = R0

101i
a
b +R0

202j
a
b +R0

303k
a
b (1.56)

and the spin Riemann vector as:

Ra
b (Spin) = R2

323i
a
b +R1

331j
a
b +R1

212k
a
b (1.57)

This derivation can be developed and summarized as follows. Starting with the
second Bianchi identity in form notation:

D ∧Ra
b = 0 (1.58)

i.e.
d ∧Ra

b = ja
b = Ra

c ∧ ωc
b − ωa

c ∧Rc
b (1.59)

the homogeneous field equation of translational dynamics is obtained in the
tensor notation:

∂µR̃
a µν
b = j̃a ν

b (1.60)

The Hodge dual gives the inhomogeneous field equation of translational dynam-
ics:

∂µR
a µν
b = Ja ν

b (1.61)

The operators ∂µ are the Minkowski differential operators:

∂µ =
(

1
c

∂

∂t
,

∂

∂X
,

∂

∂Y
,

∂

∂Z

)
(1.62)

and their space part refers therefore to a Cartesian frame of reference with
Cartesian unit vectors i, j,k. Thus in vector notation in the SM:

Ra
b (orbital) = Ra

b01i +Ra
b02j +Ra

b03k (1.63)

and
Ra

b (Spin) = R2
323i +R1

331j +R1
212k (1.64)

It is also possible to define:

Ra
b (orbital) = Ra 01

b i +Ra 02
b j +Ra 03

b k (1.65)

and
Ra

b (Spin) = R2 23
3 i +R1 31

3 j +R1 12
2 k (1.66)

In the SM:
R0

1 = R0 01
1 i, R0

2 = R0 02
2 j, R0

3 = R0 03
3 k (1.67)

Now define:
R = R0 01

1 i +R0 02
2 j +R0 03

3 k (1.68)

to obtain:
R (orbital) = R (1.69)

and similarly:
R (Spin) = R2 23

3 i +R1 31
3 j +R1 12

2 k (1.70)
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CHAPTER 1. GENERALLY COVARIANT DYNAMICS

The translational equations of motion are therefore:

∂µR̃
µν = j̃ν , ∂µR

µν = Jµ (1.71)

where the translational field tensor can be defined as:

Rµν =



0 R0 01
1 R0 02

2 R0 03
3

R0 10
1 0 R1 12

2 R1 13
3

R0 20
2 R1 21

2 0 R2 23
3

R0 30
3 R1 31

3 R2 32
3 0


(1.72)

In vector notation Eq.(1.70) are:

∇ ·R (Spin) = j̃0 (1.73)

∇×R (orbital) +
1
c

∂R
∂t

(Spin) = j̃ (1.74)

∇ ·R (orbital) = J0 (1.75)

∇×R (Spin)− 1
c

∂R
∂t

(orbital) = J (1.76)

Eq.(1.73) is analogous to the generally covariant Gauss law of magnetism [2]–
[14], Eq.(1.74) to the generally covariant Faraday law of induction, Eq.(1.75) to
the generally covariant Coulomb Law and Eq.(1.76) to the generally covariant
Ampere Maxwell law.

The equations of pure rotational dynamics are Eqs.(1.16) and (1.17). To end
this section Eq.(1.16) is developed by defining the angular momentum tetrad [2]–
[14] as:

Ja
µ = J (0)qa

µ (1.77)

The first Cartan structure equation (1.16) then defines the generally covariant
torque equation:

Na = c
(
d ∧ Ja + ωa

b ∧ Jb
)

(1.78)

In the classical non-relativistic limit (1.17) the Euler equation of motion is:

N =
(
dJ
dt

)
lab

=
(
dJ
dt

)
moving

+ ω × J (1.79)

where:

N =
(
dJ
dt

)
lab

(1.80)

is valid only in an inertial Cartesian frame. Eq.(1.78) on the other hand is
generally covariant, it is valid in any frame of reference moving arbitrarily with
respect to any other frame of reference. It defines the generally covariant torque
Na as the Cartan torsion T a within a scalar factor cJ (0). Therefore the Cartan
torsion always defines torque in general relativity. In Eulerian dynamics the
torque is still constructed from classical Newtonian dynamics, (classical non-
relativistic torque (N) is the arm (r) cross multiplied by Newtonian force (F)).

9



1.3. NEWTON AND EULER EQUATIONS

It has been demonstrated already that source of Newtonian dynamics is the
Riemann form, not the torsion form. Therefore ECE theory gives new insight
to the nature of both rotational and translational dynamics in the required
generally covariant formulation. Einstein Hilbert (EH) field theory deals only
with translational dynamics and is restricted to a particular Riemann geometry
where the Christoffel connection is symmetric [2]– [15].

Eq.(1.78) is closely analogous to the equation defining the electromagnetic
field:

F a = d ∧Aa + ωa
b ∧Ab (1.81)

wherein the ωa
b ∧Ab term originates in a spinning frame of reference, i.e. spin-

ning space-time itself. In general relativity (ECE theory) there is no Cartan
torsion if space-time is not spinning, so the generally covariant torque vanishes
in a static or purely curving but not spinning space-time:

Na = 0 (1.82)

This limit of zero torque is the generally covariant description of translational
dynamics, which reduces to Newtonian dynamics as we have argued in this
section. The classical non-relativistic torque [17] has therefore been inferred
historically from:

N = J̇ = r× F (1.83)

The classical, non-relativistic angular momentum J is defined as in Eq.(1.80).
The total time derivative of J is the classical non-relativistic torque N. There-
fore classical non-relativistic rotational dynamics, as inferred historically by Eu-
ler and Coriolis and others, is not a self-consistent theory of general relativity,
because it attempts to describe torque without Cartan torsion.

The self-consistent and generally covariant description of rotational dynam-
ics in objective physics must be Eq.(1.78). It follows that there are dynamical
effects in ECE theory that do not exist in EH theory, and so do not exist in
classical non-relativistic rotational dynamics. When rotational and translational
motions are mutually influential, the generally covariant torque interacts with
a gravitational field through the COMPLETE first Bianchi identity (1.21) to
give:

d ∧Na + ωa
b ∧N b = cJ (0)Ra

b ∧ qb

= cRa
b ∧ Jb

(1.84)

i.e.
D ∧Na = cRa

b ∧ Jb (1.85)

In the absence of a gravitational field:

Ra
b = 0 (1.86)

so we recover Eq.(1.85) for generally covariant rotational dynamics:

D ∧Na = 0 (1.87)

On the other hand, the source of the classical non-relativistic [17] torque (1.83)
is not the first Bianchi identity (1.21), but the second Bianchi identity:

D ∧Ra
b = 0 (1.88)
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which reduces to Newtonian dynamics as argued already in this section. The
reason is that the classical non-relativistic torque is derived through Eq.(1.32)
from the Newtonian force, and the latter derives from the Riemann curvature
Eq.(1.20), a curvature which obeys the second Bianchi identity. The Riemann
or curvature form enters into the first Bianchi identity if and only if there is
interaction between rotation and translation. If there is no such interaction
the motion is either pure rotational Eq.(1.87) or pure translational as in the
Einstein Hilbert theory of 1916.

1.4 The generally covariant field equations of ro-
tational dynamics and electrodynamics

In analogy with the Riemann form Eq.(1.54), the torsion form may also be de-
veloped as follows into an anti-symmetric tensor in four dimensions with orbital
and spin components:

Tµν =



0 −T
1
L

c
−T

2
L

c
−T

3
L

c

T 1
L

c
0 −T 3

S T 2
S

T 2
L

c
T 3

S 0 −T 1
S

T 3
L

c
−T 2

S T 1
S 0


(1.89)

The factor c has been introduced into the definition of the orbital components
for ease of comparison with generally covariant ECE electromagnetic theory [2]–
[14]. Therefore there are orbital and intrinsic (or spin) components of torque in
general relativity. The orbital component is proportional to the electric field and
the spin component is proportional to the magnetic field in generally covariant
electrodynamics. In vector notation:

Ta
L = −∂q

a

∂t
− c∇q0a − cω0a

bq
b + cωa

bq
0b (1.90)

Ta
S = ∇× qa − ωa

b × qb (1.91)

The generally covariant equation of rotational motion is obtained using:

Ja = J (0)qa (1.92)

Na = cJ (0)Ta (1.93)

thus defining the generally covariant angular momentum Ja and the generally
covariant torque Na. Therefore the generally covariant orbital torque is:

Na
L = −∂J

a

∂t
− c∇J0a − cω0a

bJ
b + cωa

bJ
0b (1.94)

and the generally covariant intrinsic or spin torque is:

Na
S = c

(
∇× Ja − ωa

b × Jb
)

(1.95)
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Eqs.(1.94) and (1.95) are the generally covariant equations of rotational dynam-
ics. They are valid in any reference frame moving arbitrarily with respect to
any other reference frame, as required by the principle of relativity and thus
of objective physics. The Eulerian limit of classical non-relativistic dynamics is
obtained as follows:

Na
L −→ −

∂Ja

∂t
, Na

S −→ −cωa
b × Jb (1.96)

Assuming that:
∇× Ja −→ 0 (1.97)

(i.e. that the angular momentum is ir-rotational) the total torque is:

Na = Na
L + Na

S = −∂J
a

∂t
− cωa

b × Jb (1.98)

and this has the same form as the Euler equation (1.79). However, as argued
in Section 1.3, Eq.(1.98) comes from the Cartan torsion form, and the Euler
equation comes from the Cartan curvature form. Therefore ECE theory has
a great deal more inherent information than the classical and non-relativistic
Euler theory. The task is to reveal such information experimentally, using high
accuracy experiments in the laboratory or in astronomy. These would amount
to rigorous experimental tests of Einsteinian philosophy itself, because ECE
theory completes the EH theory of 1916. They would therefore be important
experiments.

For pure rotational motion unaffected by the Cartan curvature but defined
by the Cartan torsion, it has been shown [2]– [14] that the spin connection is
dual to the tetrad and that the form Ra

b (torsion) is dual to the Cartan torsion:

ωa
b = −κ

2
εabcq

c (1.99)

Ra
b (torsion) = −κ

2
εabcT

c (1.100)

Here κ has the units of inverse meters and can be identified as a scalar wave-
number. Eqs.(1.99) and (1.100) are written in the tangent space-time and are
valid for all indices of the base manifold. They mean that for pure rotational
motion, the spin connection is the two index quantity dual to the one index
tetrad. The tangent space-time of Cartan geometry is a Minkowski space-
time [2]– [15] so the duality of Eqs.(1.99) and (1.100) occurs through the totally
anti-symmetric unit tensor εabc in the Minkowski space-time. If we restrict
consideration to three space indices and dimensions, this type of duality is anal-
ogous to the well known three-dimensional duality between an anti-symmetric
tensor and an axial vector [2]– [15]. Note that Ra

b(torsion) in Eq.(1.100) is not
the Riemann curvature form. The latter is not dual to the torsion form because
the Cartan curvature (or Riemann) form can be non-zero when the Cartan tor-
sion form is zero and vice-versa. Thus one cannot be the dual of the other.
The quantity Ra

b(torsion) is the two-index representation of the Cartan torsion
and the existence of Ra

b(torsion) had not been inferred or clearly defined prior
to the development [2]– [14] of ECE theory. For a complete understanding of
generally covariant dynamics, and also of generally covariant electrodynamics,
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it is necessary to realize that Ra
b(torsion) exists in Cartan geometry and that it

is different from the curvature form Ra
b. This is also important in devising new

tests of relativity, as argued already in this section, and for coding purposes in
computation.

The generally covariant angular velocity for pure rotational motion may now
be defined as:

Ωa
b = cωa

b = −ω
2
εabcq

c (1.101)

where
Ωc = ωqc, ω = κc (1.102)

So the two index Ωa
b is the dual of the one index ωc as follows:

Ωa
b = −1

2
εabcω

c (1.103)

It is now possible to define a generally covariant two index quantity with the
units of force:

F a
b = cJ (0)Ra

b (torsion) (1.104)

This definition is analogous to Eq.(1.93) for the torque. Therefore F a
b is the

two-index dual of the generally covariant torque:

F a
b = −κ

2
εabcN

c
L (1.105)

Inverting Eq.(1.105) gives an expression for torque:

N c
L = −2rεbc

aF
a
b (1.106)

in terms of the distance r defined by:

r =
1
κ
. (1.107)

Eq.(1.106) is the correctly and generally covariant formulation of the classical
and non-relativistic definition of orbital torque as being the arm cross multiplied
by the Newtonian force:

NL = r× F (1.108)

Eq.(1.106) is again valid in any reference frame moving arbitrarily with respect
to any other frame, while Eq.(1.108) is non-relativistic and therefore incomplete.
Eq.(1.106) originates in the spinning of space-time while Eq.(1.108) originates
in Newtonian concepts of force. In Newtonian dynamics the spin connection
does not exist as a concept. The intrinsic or spin torque:

Na
S = −cωa

b × Jb (1.109)

originates again in the spinning of space-time, while its Eulerian predecessor,
ω × J derives from considerations of one Cartesian frame moving with respect
to another Cartesian frame in absolute three dimensional space, using the sep-
arate concept of absolute time in the manner of Newton. In ECE theory these
are merged into a four dimensional space-time whose curvature and spin are
defined by Cartan geometry (Eqs.(1.1) to (1.5)). In ECE theory there is no
absolute frame of reference. This is the major philosophical advance made in

13
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dynamics between the seventeenth and twenty first centuries and many of the
experimental consequences of this advance remain to be evaluated. Added to
this advance is the unification of dynamics with electrodynamics made possible
by ECE theory [2]– [15]. It is now known how the gravitational field inter-
acts with the electromagnetic field on both classical and quantum levels. This
interaction is governed entirely by geometry in both classical and wave mechan-
ics. For physics, Cartan geometry appears to be sufficient in our current state
of knowledge, but in mathematics there are more abstract geometries which
may contain more information than Cartan geometry in the same way that
Cartan geometry contains more information [2]– [15] than Riemann geometry.
These more abstract geometries may turn out to contain physical information,
so should be borne in mind.

The orbital torque (1.94) may be simplified using certain approximations,
given here as examples only. The most general orbital torque is always Eq.(1.95).
If angular momentum is considered [18] to be a space-like property with no time-
like component the scalars J0a and J0b vanish because the 0 index is time-like
and the a and b indices have been restricted by definition to space-like. Using
this assumption, Eq.(1.94) simplifies to:

Na
L = −∂J

a

∂t
− cω0a

bJ
b (1.110)

The components of Eq.(1.110) are:

N1
L = −∂J

1

∂t
− cω01

bJ
b (1.111)

N2
L = −∂J

2

∂t
− cω02

bJ
b (1.112)

N3
L = −∂J

3

∂t
− cω03

bJ
b (1.113)

For rotational motion not affected by central gravitation:

ωa
b = −κ

2
εabcq

c (1.114)

εabc = ηadεdbc (1.115)

where ηab is the Minkowski metric [2]– [15], so

ω1
µ2 = −κ

2
q3µ (1.116)

ω3
µ1 = −κ

2
q2µ (1.117)

ω3
µ2 = −κ

2
q1µ (1.118)

It follows that:
ω1

02 = −κ
2
q30 = 0 (1.119)

ω3
01 = −κ

2
q20 = 0 (1.120)

ω3
02 = −κ

2
q10 = 0 (1.121)

14
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and:
Na

L = −∂J
a

∂t
(1.122)

This equation has the same form as the well known non-relativistic and inertial
part of torque:

N =
∂J
∂t

(1.123)

The sign change in Eq.(1.123) is a convention, and the indices a in Eq.(1.122)
refer to the Cartesian space-like part of Minkowski space-time. Thus Eqs.(1.122)
and (1.123) contain the same physical information but are philosophically dif-
ferent as argued already. The classical result (1.123) is a well defined limit of
the generally covariant result (1.94) and the latter contains more observable
information. Some of this information may already have been observed and
described as “anomalies” which cannot be described by Einstein Hilbert theory
or its Newtonian limit. These anomalies are therefore due to Cartan torsion, an
important result of ECE theory [2]– [14].

If central gravitation affects rotational motion then Eqs.(1.114) to (1.121) are
no longer true in general and there is an additional torque term as in Eq.(1.110).
This term leads to additional physical and observable effects on a rotating object
in a gravitational field. If for some reason J0a and J0b are non-zero, then all four
terms on the right hand side of Eq.(1.94) contribute in general to the generally
covariant orbital torque, and there are several effects which may for example
affect the orbit of a planet or satellite. In addition there are the effects of
the generally covariant intrinsic torque or spin torque, Eq.(1.95). Both orbital
and intrinsic torque are present in general in subjects such as astronomy and
cosmology as well as in precise laboratory experiments. Prior to this paper
such effects have not been realized to exist, and they are not considered in
EH theory, because in EH theory there is no torsion at all. These conclusions
require an extensive re-evaluation of cosmology, notably planetary cosmology
and satellite technology, and Big Bang theory, dark matter theory and so forth.
In none of these theories is Cartan torsion adequately considered, or considered
at all. Standard model textbooks in general relativity usually give at best only a
cursory mention of Cartan torsion and restrict development to Cartan curvature
in its Riemann limit (EH theory) in an un-unified field theory of gravitation only.
Thus ECE theory open up a large new area of physics hitherto unexplored. ECE
theory is a generally covariant unified field theory [2]– [14], the first of its kind,
and completes the search of Einstein, Cartan and others for this end.

The generally covariant spin torque is the required objective and generally
covariant description of the well known Coriolis and centripetal accelerations of
the classical, non relativistic limit of general relativity. In order to introduce
these classical accelerations (usually known as the “non-inertial” accelerations)
it is convenient firstly to give a summary of the original derivation of Coriolis,
(1835), a summary which is based on ref. [17].

Consider two sets of Caretsian coordinate axes. One is fixed (“inertial”) and
the other is in arbitrary motion with respect to the first. These are designated
”fixed” and ”rotating” as in the following figure [17]: For any point P :

r′ = R + r (1.124)

as in Fig. 1.1. It is always possible [17] to represent an arbitrary infinitesimal
displacement by a pure rotation and an axis called the instantaneous axis of
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Figure 1.1: Fixed and Rotating Coordinate Axis

rotation. For example, if a disk rolls down an inclined plane, the motion is a
rotation about the point of contact of the disk with the plane. Therefore if the
xi system undergoes an infinitesimal rotation ∂θ, corresponding to an arbitrary
infinitesimal displacement,

(dr)fixed = dθ × r (1.125)

Note that Eq.(1.125) is the result of geometry and so must be a limit of Cartan
geometry, specifically a limit of Cartan torsion. The quantity dr is measured
in the x

′

i, or fixed, coordinate system. The point P is considered to be at rest
with respect to the xi system, but P is moving with respect to the x

′

i system.
Now divide Eq.(1.124) by the time interval during which the infinitesimal dis-
placement takes place, using the Newtonian fluxions (differential calculus) to
give: (

dr
dt

)
fixed

=
dθ

dt
× r (1.126)

Identify the angular velocity as:

ω =
dθ

dt
(1.127)

so: (
dr
dt

)
fixed

= ω × r (1.128)

Now make the theory more general by considering P to have a velocity with
respect to the xi system: (

v =
dr
dt

)
moving

(1.129)

The total velocity is therefore:(
dr
dt

)
fixed

=
(
dr
dt

)
moving

+ ω × r (1.130)

16



CHAPTER 1. GENERALLY COVARIANT DYNAMICS

Eq.(1.130) is valid for any vector Q [17]:(
dQ
dt

)
fixed

=
(
dQ
dt

)
moving

+ ω ×Q (1.131)

If for example Q denotes linear velocity then:(
dv
dt

)
fixed

=
(
dv
dt

)
moving

+ ω × v (1.132)

where from Eq.(1.129):

vfixed = vmoving + ω × r (1.133)

The quantity ω× v is proportional to the non-relativistic Coriolis acceleration.
Now differentiate Eq.(1.133) to obtain:(

dv
dt

)
fixed

=
(
dv
dt

)
moving

+
dω

dt
× r + ω × dr

dt
(1.134)

From Eq.(1.130):

ω ×
(
dr
dt

)
fixed

= ω ×
(
dr
dt

)
moving

+ ω × (ω × r) (1.135)

and the quantity ω × (ω × r) is proportional to the non-relativistic centripetal
acceleration. The third type of “non-inertial” and non-relativistic acceleration
which emerges form this analysis is ω̇ × r. The non-inertial accelerations link
a translating object in the fixed frame with the same translating object in the
rotating frame. The three non-inertial accelerations are therefore observable
in both frames: the observer or fixed frame and the rotating frame. There-
fore a link with relativity theory is clearly indicated, but in a general context
where both translations and rotations are considered, and where accelerations
are considered. In other words general relativity with torsion is needed, and
ECE theory.

The original derivation by Coriolis is given in ref. [17] as follows. Coriolis
considered an observer in a rotating Cartesian coordinate system using the
concepts of absolute space and absolute time. Ref. [17] reproduces this 1835
derivation by differentiating Eq.(1.124) to give:(

dr′

dt

)
fixed

=
(
dR
dt

)
fixed

+
(
dr
dt

)
fixed

=
(
dR
dt

)
fixed

+
(
dr
dt

)
moving

+ ω × r
(1.136)

Now define:

vf = ṙf =
(
dr
dt

)
fixed

(1.137)

V = Ṙf =
(
dR
dt

)
fixed

(1.138)
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vr = ṙr =
(
dr
dt

)
rotating

(1.139)

so:
vf = V + vr + ω × r (1.140)

The Newtonian acceleration is the term [17]:

af = m

(
dvf

dt

)
fixed

(1.141)

F = maf (1.142)

while differentiation of Eq.(1.140) gives extra terms:(
dvf

dt

)
fixed

=
(
dV
dt

)
fixed

+
(
dvr

dt

)
fixed

+ ω̇ × r + ω ×
(
dr
dt

)
fixed

(1.143)

Denote:

R̈f =
(
dV
dt

)
fixed

(1.144)

The second term in Eq.(1.143) is evaluated by substituting vr for Q in Eq.(1.131):(
dvr

dt

)
fixed

=
(
dvf

dt

)
rotating

+ ω × vr = ar + ω × vr (1.145)

The last term in Eq.(1.143) is obtained from:

ω ×
(
dr
dt

)
fixed

=ω ×
(
dvf

dt

)
rotating

+ ω × (ω × r)

=ω × vr + ω × (ω × r)

(1.146)

So:

F = maf = mR̈f +mar +mω̇ × r +mω × (ω × r) + 2mω × vr (1.147)

To an observer in a rotating coordinate system:

Fr = mar = F−mR̈f −mω̇ × r−mω × (ω × r)− 2mω × vr (1.148)

The standard centripetal force is thus −mω × (ω × r), and is directed outward
from the center of rotation. The Coriolis force is −2mω × vr. Thus:

Fr = maf + non-inertial terms. (1.149)

The classical derivation by Coriolis is incomplete because it is not relativistic,
i.e. it is not generally covariant. The latter theory of the Coriolis and centripetal
forces must be based on the Cartan structure equation:

T a = d ∧ qa + ωa
b ∧ qb (1.150)
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and the first Bianchi identity:

d ∧ T a = Ra
b ∧ qb − ωa

b ∧ T b (1.151)

In an inertial or central treatment such as that of Einstein and Hilbert there is
no Cartan torsion and:

T a = 0, Ra
b ∧ qb = 0 (1.152)

However in the required ECE theory there are non-zero terms:

Ra
b ∧ qb = d ∧ T a + ωa

b ∧ qb 6= 0 (1.153)

T a 6= 0, (1.154)

which come from the rotational motion or spinning of space-time itself. It is
important to realize that this spinning motion is not that of one frame with
respect to another, it is a generally covariant motion with no preferred frame of
reference. The space-time ITSELF is both spinning and curving. Analogously,
in EH theory, the space-time itself is curving but not spinning.

Now define the generally covariant version of the vector Q. This is the tetrad
within a dimensional scalar Q(0) Invariant under frame transformation. Thus:

Qa
µ = Q(0)qa

µ (1.155)

For example there is a position tetrad and velocity tetrad:

ra
µ = r(0)qa

µ , V a
µ = V (0)qa

µ (1.156)

Thus:
Ra

b ∧ rb =d ∧
(
d ∧ ra + ωa

b ∧ rb
)

+ ωa
b ∧
(
d ∧ rb + ωb

c ∧ rc
) (1.157)

Ra
b ∧ V b =d ∧

(
d ∧ V a + ωa

b ∧ V b
)

+ ωa
b ∧
(
d ∧ V b + ωb

c ∧ V c
) (1.158)

From Eq.(1.157) we find the generally covariant centripetal term:(
Ra

b ∧ rb
)
centripetal

= ωa
b ∧
(
ωb

c ∧ rc
)

(1.159)

and from Eq.(1.158) the generally covariant Coriolis term:(
Ra

b ∧ V b
)
coriolis

= d ∧
(
ωa

b ∧ V b
)

+ ωa
b ∧
(
ωb

c ∧ V c
)

(1.160)

When there is no space-time spin:

ωa
b = 0 (1.161)

ωa
b ∧
(
ωb

c ∧ rc
)

= 0 (1.162)

ωa
b ∧ V b = 0 (1.163)

d ∧ qa = 0 (1.164)

d ∧ V a = d ∧ ra = 0 (1.165)
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and so:
T a = 0 (1.166)

In this limit the Newtonian acceleration is recovered from a limit of the second
Bianchi identity as shown in Section 1.3. In the generally covariant develop-
ment of the non-inertial accelerations there are several terms and phenonema
not present in the non-relativistic development of Coriolis. The computational
task is to solve for these in order to compare with data from novel or known
experiments.

In summary therefore the equations of generally covariant rotational dynam-
ics are:

d ∧ T a = ja (1.167)

d ∧ T̃ a = Ja (1.168)

where
ja = Ra

b ∧ qb − ωa
b ∧ T b (1.169)

Ja = R̃a
b ∧ qb − ωa

b ∧ T̃ b (1.170)

In tensor notation Eqs.(1.167) and (1.168) become:

∂µT̃
aµν = j̃aν (1.171)

∂µT
aµν = J̃aν (1.172)

where
j̃aν = R̃a µν

b − ωa
µbT̃

bµν (1.173)

J̃aν = Ra µν
b − ωa

µbT
bµν (1.174)

In vector notation the currents are defined by

j̃aµ =
(

1
c
j̃a0, j̃a

)
(1.175)

J̃aµ =
(

1
c
J̃a0, J̃a

)
(1.176)

and Eqs.1.171 and 1.172 become four vector equations:

∇ ·Ta
s =

j̃a0

c
(1.177)

∇×Ta
L +

1
c

∂Ta
s

∂t
= j̃a (1.178)

∇ ·Ta
L = J̃a0 (1.179)

∇×Ta
s −

1
c2
∂Ta

L

∂t
= J̃a (1.180)

Analogously, the equations of generally covariant translational dynamics are:

d ∧Ra
b = ja

b (1.181)

d ∧ R̃a
b = Ja

b (1.182)
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where
ja

b = Ra
c ∧ ωc

b − ωa
c ∧Rc

b (1.183)

Ja
b = R̃a

c ∧ ωc
b − ωa

c ∧ R̃c
b (1.184)

The equations of generally covariant electrodynamics are obtained from the ECE
Ansatzen:

Aa = A(0)qa (1.185)

F a = A(0)T a (1.186)

In form notation they are:
d ∧ F a = µ0j

a (1.187)

d ∧ F̃ a = µ0J
a (1.188)

where:

ja =
A(0)

µ0

(
Ra

b ∧ qb − ωa
b ∧ T b

)
(1.189)

Ja =
A(0)

µ0

(
R̃a

b ∧ qb − ωa
b ∧ T̃ a

)
(1.190)

In tensor notation:
∂µF̃

aµν = µ0j̃
aν (1.191)

∂µF
aµν = µ0J̃

aν (1.192)

where:

j̃aν =
A(0)

µ0

(
R̃a µν

µ − ωa
µbT̃

bµν
)

(1.193)

J̃aν =
A(0)

µ0

(
Ra µν

µ − ωa
µbT

bµν
)

(1.194)

and in vector notation:
∇ ·Ba = µ0j̃

a0 (1.195)

∇×Ea +
∂Ba

∂t
= µ0j̃a (1.196)

∇ ·Ea = µ0cJ̃
a0 (1.197)

∇×Ba − 1
c2
∂Ea

∂t
=
µ0

c
J̃a (1.198)

It is seen that the generally covariant equations of electrodynamics and dynamics
have the same overall structure and are inter-influential in general. This means
that gravitation may influence electrodynamics as well as rotational dynamics.
Many types of novel cross influences of this kind are indicated by ECE theory,
on both classical and quantum levels [2]– [18].
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