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Abstract

Einstein Cartan Evans (ECE) field theory is shown to be a rigorous quantum
field theory in which the tetrad is both the eigenfunction or wave-function and a
quantized field that is generally covariant. Unification of fields is achieved with
standard Cartan geometry on both the classical and quantum levels. The funda-
mental commutators needed for canonical quantization of the field/eigenfunction
are derived self consistently from the same Cartan geometry. Second quantiza-
tion proceeds straightforwardly thereafter by expanding the tetrad in terms of
creation and annihilation operators. The latter are used to define the number
operator in the usual way, and a generally covariant multi particle field theory
obtained. The theory is illustrated with a discussion of the electromagnetic
Aharonov Bohm effect.

Keywords: Einstein Cartan Evans (ECE) unified field theory, quantum field
theory, canonical quantization and second quantization, Aharonov Bohm effects.
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3.1. INTRODUCTION

3.1 Introduction

Einstein Cartan Evans (ECE) unified field theory has been well developed ana-
lytically on the classical and single particle quantum levels [1]– [7]. In this paper
it is shown that ECE field theory is a rigorous quantum field theory in which the
tetrad is both the wave-function and the field. In Section 3.2, the fundamental
commutators needed for canonical quantization [8], [9] are introduced from Car-
tan geometry and developed and in Section 3.3 second quantization [8], [9] is
developed straightforwardly by expanding the tetrad in a Fourier series to give
creation and annihilation operators that define the number operator. Therefore
ECE theory produces a rigorous quantum field theory and can be given a multi
particle interpretation as required [8], [9]. The theory in this paper is illustrated
in Section 3.4 with the electromagnetic Aharonov Bohm effect.

Canonical quantization in quantum field theory is the name given to the
construction of the Heisenberg commutators of the quantum field. Canonical
quantization of the electromagnetic potential field, for example, runs into diffi-
culties [8] in the contemporary standard model because of the assumption of a
massless electromagnetic field with infinite range, and an identically zero pho-
ton mass. In special relativity this means that the special relativistic potential
field Aµ can have only two physical components [8] and these are taken as the
transverse components. However, Aµ must have four physical components to
be manifestly covariant, and this is also a fundamental requirement of general
relativity. Therefore there is a basic contradiction in the standard model, a
contradiction that leads to well known difficulties [1]– [15]. It is shown in Sec-
tion 3.2 that this contradiction is removed straightforwardly in ECE theory,
in which the photon mass is identically non-zero as required. Without photon
mass there can be no explanation of the Eddington experiment, contradicting
the well known tests of the Einstein Hilbert (EH) field theory of gravitation,
tests which are now known from NASA Cassini to be accurate to one part in
one hundred thousand for light grazing the sun. So the existence of identically
non-zero photon mass has been tested to this accuracy, because the Eddington
experiment is explained in EH theory by considering the mass of the photon and
the mass of the sun. If the photon mass is identically zero, the EH explanation
makes no sense. Thus, photon mass is known very accurately to be identically
non-zero. In Maxwell Heaviside field theory however, it is identically zero. This
diametric contradiction is inherent in the standard model because gravitation
is in that model a theory of general relativity and electromagnetism is a theory
of special relativity (the Maxwell Heaviside (MH) field theory). Electromag-
netism in the standard model is developed [8] [9] in terms of gauge theory. The
simplest example of gauge theory is illustrated as follows. In MH theory the
electromagnetic field in tensor notation is an anti-symmetric rank two tensor
independent of gravitation:

Fµν = ∂µAν − ∂νAµ. (3.1)

This field tensor is unchanged under the mathematical transform:

Aµ → Aµ + ∂µΛ (3.2)

which is a simple example of a gauge transformation [8]– [15]. Here Λ is any
scalar function and the invariance of the field under the gauge transformation
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CHAPTER 3. CANONICAL AND SECOND QUANTIZATION IN . . .

is an example of the Poincaré Lemma. The field is said to be gauge invariant,
and in gauge field theory this is a central hypothesis which leads to a debate
concerning the nature of Fµν and Aµ. One or the other is regarded as fun-
damental, there being proponents of both views. ECE theory has shown that
this debate is superfluous, and ECE has replaced gauge theory with a generally
covariant unified field theory [1]– [7] in which the fundamental transformation
is the general coordinate transformation of general relativity. The debate in the
gauge theory of the standard model was initiated to a large extent by the dis-
covery of the magnetic Aharonov Bohm effect by Chambers [8] [9].It was shown
experimentally by Chambers that in regions where is zero, Aµ has a physical
effect. The standard classical interpretation had been that Fµν is physical but
Aµ is unphysical. This interpretation was based directly on classical gauge
theory, first proposed by Weyl and his contemporaries. In the ensuing forty
year debate concerning the Aharonov Bohm (AB) effects some proponents have
held the view that they are purely quantum effects, and in quantum theory the
minimal prescription applies:

pµ → pµ + eAµ (3.3)

Here pµ is the four-momentum of special relativity and −e is the charge on
the electron. In this view, used for example in the Dirac equation to explain
the Stern Gerlach effect, Aµ is a physical property. In gauge theory it is held
that Aµ can be transformed to Aµ + ∂µΛ without affecting the field Fµν , so
in consequence Aµ is unphysical. The philosophical basis of gauge theory is
therefore questionable, the assumption that Aµ is unphysical and that Fµν is
physical is untenable and confusing even to the experts, thus a protracted forty
year debate that reveals this confusion. In the standard model of the late
twentieth century, gauge invariance was elevated to a central hypothesis of the
electromagnetic, weak and strong fields and has been applied to the gravitational
field, where it is clearly superfluous by Ockham’s Razor. The general coordinate
transformation is already sufficient for gravitational field theory and there is no
need for the further postulate of gauge invariance. ECE theory has shown [1]–
[7] that this is also true for unified field theory. The difficulties of using gauge
theory outweigh any of its advantages, the latter being increasingly difficult to
find as ECE is increasingly developed and accepted [16]. It has been shown [1]–
[7] that ECE theory leads to a unified field theory in which the gravitational,
electromagnetic, weak and strong fields are represented by the tangent space-
time at point P to the base manifold in standard Cartan geometry. The various
fields are represented by various representation spaces in the tangent space-
time [1]– [7]. Gauge theory is superfluous in this context.

The difficulty inherent in the fundamental assumption of gauge invariance
can be illustrated as follows using differential form notation [1]– [7] [17], where
Eqs. (3.1) and (3.2) become:

A→ A+ dΛ (3.4)

F = d ∧A = d ∧ (A+ dΛ) (3.5)

because:
d ∧ dΛ := 0. (3.6)

Eq.(3.6) is the Poincaré Lemma in differential form notation. However, ECE
theory now shows that the generally covariant foundation of electrodynamics
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3.1. INTRODUCTION

unifies the latter with the other fields, notably the gravitational field. The
standard model is unable to do this despite many attempts throughout the
twentieth century. In ECE theory the relevant differential form equations of the
electromagnetic sector are [1]– [7]:

F a = d ∧Aa + ωa
b ∧Ab (3.7)

d ∧ F a = µ0j
a (3.8)

d ∧ F̃ a = µ0J
a (3.9)

Here ωa
b is the spin connection, which is identically non-zero because the electro-

magnetic field is always a spinning frame, not a static frame as in the standard
model. The homogeneous current ja is in general non-zero, it vanishes if and
only if the electromagnetic and gravitational fields become independent and do
not influence each other [1]– [7]. The presence of ja (however tiny in magnitude)
is of key importance, because it may be amplified by resonance [1]– [7] producing
easily measurable electric power from ECE space-time, a new source of energy.
In the standard model ja does not exist, there is no concept of ja in the standard
model because electromagnetism there is a concept of special relativity super-
imposed on a flat Minkowski frame. Eq.(3.9) is the Hodge dual of Eq.(3.8) and
here µ0 is the vacuum permeability in S.I. units. The electromagnetic potential
field in ECE theory is

Aa = A(0)qa (3.10)

where cA(0) is the primordial voltage and qa the tetrad field. Thus F a is con-
structed from Aa through the first Cartan structure equation (3.7), and F a

obeys the first Bianchi identity, Eq.(3.8), and its Hodge dual (3.9). These are
the classical field equations. The vector valued one-form Aa

µ and the vector
valued two-form F a

µν are covariant under the general coordinate transforma-
tion [1]– [7] [17] according to the well known rules of standard Cartan geometry.
If we attempt a “gauge transformation”:

Aa → Aa + dΛa (3.11)

then:
F a → d ∧Aa + ωa

b ∧Ab + ωa
b ∧ dΛb = F a + ωa

b ∧ dΛb (3.12)

and F a is not invariant: it must be coordinate covariant, not gauge invariant.
Another fundamental problem of gauge theory in the standard model is that it
uses a hypothesis superfluous to general relativity, the indices a of gauge theory
are abstract mathematical concepts, whereas in Cartan geometry a is the index
of the tangent space-time and thus well defined by geometry as required by rel-
ativity theory. In ECE theory the space-time that defines the electromagnetic
field is the same as the space-time that defines all fields, including the gravita-
tional field, in four physical dimensions, ct, X, Y and Z. Thus ECE is preferred
to gauge theory by Ockham’s Razor of philosophy, which asserts the use of the
minimum number of concepts. In ECE theory a is already inherent in Cartan
geometry, in gauge theory the label a is introduced as an extra mathematical as-
sumption, i.e. of Yang Mills theory. Similarly ECE theory is preferred to String
Theory by Ockham’s razor, because String Theory uses superfluous parameters
which are asserted arbitrarily to be dimensions. There is no experimental evi-
dence for String Theory, and for this reason String Theory has been described
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CHAPTER 3. CANONICAL AND SECOND QUANTIZATION IN . . .

as pre-Baconian. The experimental evidence for ECE theory is given in ref. [1]
to [7] in a representative cross section of contemporary physics.

In ECE theory the fundamental wave equation of electrodynamics is [1]– [7]:

(� + kT )Aa
µ = 0 (3.13)

where k is the Einstein constant and T is the index contracted canonical energy-
momentum density of the unified field. The Einstein Ansatz asserts that:

R = −kT (3.14)

where R is the scalar curvature. Using the correspondence principle of Einstein,
the Proca equation emerges from Eq.(3.13) in the well defined limit:

kT →
(mc

~

)
(3.15)

where m is the identically non-zero photon mass indicated by the Eddington
experiment, and ~ is the Planck constant. Note carefully that the d’Alembert
wave equation of the standard model does not emerge from ECE theory, in-
dicating that the d’Alembert wave equation is incomplete because it asserts
identically zero photon mass. In the standard model the interpretation of the
Proca equation is self-contradictory [8] because the Lagrangian needed to derive
it is not gauge invariant. So for this reason the Proca equation is not used for
canonical quantization in the standard model. The basic weak point here is
again the assumption of gauge invariance, which has so long been thought of as
the strength of gauge theory. In ECE theory there is no problem with the Proca
equation because as we have seen, gauge invariance has been replaced by coor-
dinate covariance in the unified field. Therefore the photon mass is identically
non-zero as required by general relativity (photon mass was first proposed by
Einstein) and the electromagnetic field is manifestly covariant with four physical
components: time-like and three space-like, two transverse and one longitudinal.
In the standard model the time-like and longitudinal components are dubiously
removed by the Gupta Bleuler method [1]– [15]. The latter procedure is incor-
rect in general relativity, which prohibits the existence of a massless field. A
massless field would mean no curvature R, and nothing at all (no field, no par-
ticles). Thus Aa

b is manifestly covariant in ECE theory and can be canonically
quantized in a rigorously correct way.

3.2 Canonical quantization of the ECE field

The potential field Aa
b in ECE theory can be non-zero in regions where the

electromagnetic field F a
µν is zero [7]. In this case the equations defining the

potential in form notation are:

d ∧A1 = gA2 ∧A3 (3.16)

d ∧A2 = gA3 ∧A1 (3.17)

d ∧A3 = gA1 ∧A2 (3.18)

d ∧A0 = −d ∧A3 (3.19)
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3.2. CANONICAL QUANTIZATION OF THE ECE FIELD

In deriving these equations it has been assumed, for the sake of simplicity of
argument only, that the gravitational and electromagnetic fields have become
independent. This assumption is:

ja = 0 (3.20)

It is seen that Eqs.(3.16) to (3.19) all contain commutators of potentials. This
commutator is precisely the quantity needed to construct a Heisenberg equation
in the potential. This is the required canonical quantization. The quantity g
is [9]– [14]:

g =
κ

A(0)
=
e

~
(3.21)

so the quantized field is

A2 ∧A3 =
~
e
d ∧A1

et cyclicum.
(3.22)

In tensor notation, Eq.(3.22) is:[
A2

µ, A
3
ν

]
=

~
e

[
∂µ, A

1
ν

]
et cyclicum

(3.23)

This is the Heisenberg type equation needed in canonical quantization, but it
is important to realize that Eq.(3.23) is an equation of general relativity. The
original Heisenberg equation is one of non-relativistic quantum mechanics as is
well known. In regions where both F a

µν and Aa
µ are non-zero (which is the

case in general):
F 1 = d ∧A1 − gA2 ∧A3,

et cyclicum
(3.24)

and the commutators in tensor notation are:[
A2

µ, A
3
ν

]
=

~
e

([
∂µ, A

1
ν

]
− F 1

µν

)
et cyclicum

(3.25)

Therefore it is seen that the commutators of potential needed for canonical
quantization of the electromagnetic field, for example, are derived directly from
Cartan geometry through the fundamental postulate (3.21). All four compo-
nents of Aa

µ are non-zero in general and physical. The fundamental wave equa-
tion of the electro-dynamical sector of ECE theory is Eq.(3.13), which reduces
to the Proca equation (3.15) using the correspondence principle. The principle
of gauge invariance in special relativity is discarded in favor of the older prin-
ciple of coordinate covariance in general relativity. Canonical quantization is
then inherent in the method.

Finite electromagnetic fields in the approximation (3.20) are given by:

F 1 = d ∧A1 − gA2 ∧A3 (3.26)

F 2 = d ∧A2 − gA3 ∧A1 (3.27)
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F 3 = d ∧A3 − gA1 ∧A2 (3.28)

Translating into the complex circular basis [1]– [7], [9]– [14]:

F (1)∗ = d ∧A(1)∗ + igA(2) ∧A(3)

et cyclicum
(3.29)

and in tensor notation:

F
(1)∗
µν = ∂µA

(1)∗
ν − ∂νA

(1)∗
µ + ig

(
A

(2)
µ A

(3)
ν −A(2)

ν A
(3)
µ

)
.

et cyclicum
(3.30)

The magnetic components in the complex circular basis for example are:

B(1)∗ = ∇×A(1)∗ + igA(2) ×A(3).
et cyclicum

(3.31)

A possible mathematical solution of Eqs.(3.26) to (3.31) is:

A(1) =
A(0)

√
2

(ii + j) eiφ (3.32)

A(2) = A(1)∗ =
A(0)

√
2

(−ii + j) e−iφ (3.33)

A(3) = −A(0)k = A(3)∗, B(0) = κA(0) (3.34)

If the electromagnetic phase is denoted:

φ = ωt− κZ (3.35)

it is found that the magnetic fields are:

B(1)∗ = B(2) =
2B(0)

√
2

(−ii + j) e−iφ (3.36)

B(2)∗ = B(1) =
2B(0)

√
2

(ii + j) eiφ (3.37)

B(3)∗ = B(3) = −B(0)k, ∇×A(2) = kA(2) (3.38)

These are the results of O(3) electrodynamics [1]– [7], [9]– [14], to which ECE
theory reduces when gravitation has no influence on electromagnetism. The
Evans (later ECE) spin field B(3) is identically non-zero, and is the direct result
of the spin connection in Eq. (3.7), i.e. the direct result of general relativity
applied to electrodynamics self-consistently with gravitation. Quantization oc-
curs from Eq.(3.21) using the de Broglie wave/particle dualism in combination
with the minimal prescription

p = ~k (3.39)

i.e.
p = eA(0) (3.40)
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3.2. CANONICAL QUANTIZATION OF THE ECE FIELD

to obtain the Heisenberg commutators of the canonically quantized field:[
A

(2)
µ, A

(3)
ν

]
=
−i
g

(
F

(1)∗
µν −

[
∂µ, A

(1)∗
ν

])
.

et cyclicum
(3.41)

Note that A(2)
µ (and so on) is an energy-momentum within the factor e, via the

minimal prescription, so energy-momentum Heisenberg commutators are given
by Eq.(3.41): [

Aa
µ, A

b
ν

]
= A(0)2

[
qa

µ , q
b
ν

]
(3.42)

where qa
µ and qa

ν are tetrad field/wave- functions. In ECE theory the tetrad
is both the field and the wave-function, so due to this fact of Cartan geometry,
ECE theory is a rigorous quantum field theory as required. Heisenberg-type
commutators emerge naturally from the same geometry (i.e. from general rel-
ativity). These generally covariant commutators cannot be constructed in the
standard model, which uses special relativity and intellectual gymnastics such
as those of Gupta and Bleuler [8]to “remove” the time-like and longitudinal
components of the four-potential. This removal is necessitated in turn by hav-
ing to work with the fact that in special relativity (Poincaré group), only two
components of a massless potential field can be physical, and the consequent
but arbitrary assumption that these must be the transverse components of a
plane wave. This flawed procedure is necessitated by the flawed assumption of
a massless electromagnetic field, and the correct Proca equation cannot be used
in the standard model because of the flawed assumption of gauge invariance.
These flaws are all consequences of pathological science in the twentieth cen-
tury, the pathology, or anthropomorphism, being that the Maxwell Heaviside
theory“cannot be wrong”. It was first realized as late as 1991 [18] that the B(3)

spin field was missing entirely from Maxwell Heaviside field theory [10]– [14] and
ECE theory [1]– [7] is a direct consequence of that realization. ECE theory is a
logical and self-consistent application of general relativity to all fields, including
the electromagnetic field, and ECE theory is now generally accepted [16]. ECE
replaces the convoluted, special relativistic, arguments of the standard model
with a straightforward canonical quantization inherent in the method of general
relativity. ECE theory can therefore be regarded as a benchmark theory or
“new standard model” of physics.

Before proceeding to second quantization in Section 3.3 some discussion is
given of single particle quantization [1]– [9] in ECE theory. In single particle
quantization there is present a wave-function, for example the Dirac spinor,
but on the traditional single particle level in the standard model [8] this wave-
function has not yet been interpreted as a field. This means that multi particle
phenomena such as transmutation cannot be given a satisfactory interpretation
without “second quantization”. In the standard model the latter procedure is
the name given to the construction of Heisenberg commutators of the wave-
function itself, which is thus interpreted as a quantum field. In ECE theory
second quantization is automatic, (inherent in the method), because the tetrad
is both the fundamental field and the wave-function on all levels. So to set
the scene for the development of the fully rigorous ECE quantum field theory
Section 3.3, the tetrad is first used here to obtain the fundamental single particle
wave equations of special relativistic quantum mechanics [1]– [7] in well defined
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limits of the ECE wave equation via the correspondence principle of Einstein.
These include the Klein-Gordon, Dirac and Proca equations.

The basic equations of generally relativistic quantum mechanics in ECE
theory [1]– [7] are all obtained from basic equations of standard Cartan geometry
[17]. The wave-function is always the tetrad qa

µ as we have argued already. Two
of these basic geometrical equations are the normalization condition:

qa
µq

µ
a = 1 (3.43)

and the tetrad postulate:
Dµq

a
ν = 0 (3.44)

The ECE Lemma is obtained directly from the tetrad postulate, from the iden-
tity:

Dµ (Dµq
a
ν ) := 0 (3.45)

It follows straightforwardly [1]– [7] from Eq. (3.45) that:

�qa
µ = Rqa

µ (3.46)

where the scalar curvature of Eq.(3.46) must always be defined by:

R := qλ
b∂

µ
(
Γν

µλq
a
ν − ωa

µbq
b
λ

)
(3.47)

Here Γν
µλ is the gamma connection. The latter becomes the Christoffel con-

nection of Riemann geometry if and only if the torsion tensor vanishes:

Tκ
µν = Γκ

µν − Γκ
νµ = 0 (3.48)

The fundamental wave equation of ECE theory follows directly from the Lemma
or subsidiary proposition (3.46) of Cartan geometry using the Einstein Ansatz
(3.14). So the fundamental wave equation is always:

(� + kT ) qa
µ = 0 (3.49)

for all field/wave-functions qa
µ . Eq.(3.49) is seen to be the direct result of

Cartan geometry and the Einstein Ansatz. Different representation spaces of
the tetrad [1]– [7] then give the different fundamental fields of physics: the
gravitational, electromagnetic, weak and strong, together with matter fields
such as the fermions and bosons. Note that the wave-function has already been
interpreted as the field, the fundamental tetrad field of general relativity [17].
So the required multi particle interpretation is inherent in the ECE theory from
the outset. The Pauli exclusion principle, for example, or Fermi-Dirac and
Bose-Einstein statistics, then emerge from the multi-particle interpretation.

It is always possible to write Eq.(3.43) as the classical:

qa
µRq

µ
a = R (3.50)

By using Eq.(3.46) in Eq.(3.50) we obtain:

R = qµ
a�qa

µ (3.51)

which is an operator equation indicating that R is the expectation value of the
d’Alembertian operator �. Here qµ

a is the inverse tetrad. Thus:

�qa
µ = Rqa

µ (3.52)
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�qµ
a = R1q

µ
a (3.53)

where R1 is to be defined. It follows from Eq.(3.53) that:

R = qµ
a�qa

µ = qµ
aRq

a
µ (3.54)

R1 = qa
µ�qµ

a = qa
µR1q

µ
a (3.55)

In quantum mechanics [19], Hermitian operators are used, because their eigen-
values are real-valued and thus physical. In Dirac bracket notation [19] a Her-
mitian system is defined by:

〈m|Ω|n〉 = 〈n|Ω|m〉∗ (3.56)

where ∗ denotes complex conjugate. A Hermitian matrix [20] is a square matrix
unchanged by taking the transpose of its complex conjugate, e.g. if:

A =
[

1 1 + i
1− i 3

]
, A∗ =

[
1 1− i

1 + i 3

]
(3.57)

then
Ã∗ = A (3.58)

Eq.(3.8) translates into:

qa
µ�qµ

a =
(
qµ

a�qa
µ

)∗ (3.59)

which implies:
R1 = R∗ (3.60)

This means that the tetrad must be a Hermitian matrix. The eigenvalues of the
tetrad eigenfunction are real-valued and physical. Now denote:

R = R
′
+ iR” (3.61)

R∗ = R
′
− iR” (3.62)

to obtain:
R

′
=

1
2
(
qµ

a�qa
µ + qa

µ�qµ
a

)
(3.63)

R” =
−i
2
(
qµ

a�qa
µ − qa

µ�qµ
a

)
(3.64)

Single particle relativistic equations in the limit of special relativity are regained
using the correspondence principle of Einstein as follows:

|R
′
| →

(mc
~

)2

(3.65)

|R”| → 0 (3.66)

In this limit it is self-consistently apparent that:

R =
1
2
(
qµ

a�qa
µ + qa

µ�qµ
a

)
=

1
2

(R+R) = R′ = −
(mc

~

)2

(3.67)

The Klein Gordon equation [8] is regained in the zero spin limit:

φ = q00 = q11 = q22 = q33 → 1 (3.68)
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so that the ECE wave equation reduces to:(
� +

(mc
~

)2
)
φ = 0 (3.69)

where φ is a scalar eigenfunction without spin. Eq.(3.69) is:((
1
c2
∂2

∂t2
−∇2

)
+
(mc

~

)2
)
φ = 0 (3.70)

The contra-variant and covariant four-momenta are defined as:

pµ =
(
E

c
,p
)
, pµ =

(
E

c
,−p

)
(3.71)

Eq.(3.70) becomes the classical Einstein equation of special relativity:

pµpµ = m2c2 (3.72)

if the operator equivalence of quantum mechanics is used:

E → i~
∂

∂t
, p→ −i~∇ (3.73)

In the non-relativistic limit Eq.(3.72) becomes the Newtonian kinetic energy:

E =
1
2
p2

m
=

1
2
mv2 (3.74)

Using Eq.(3.73) in Eq.(3.74) gives the time-dependent Schrödinger equation of
non-relativistic quantum mechanics:

~2

2m
∇2φ = −i~∂φ

∂t
(3.75)

This is a single particle equation because the kinetic energy (3.74) is that of one
free particle. The Klein Gordon equation is therefore a single particle equation
of special relativistic quantum mechanics. In this case the free particle has zero
spin and is defined by the properties (3.68) of the tetrad.

The Klein Gordon, Schrödinger and Newton equations have been obtained
from Cartan geometry using the correspondence principle and operator equiva-
lence (3.68):

pµ = i~∂µ (3.76)

The minus sign in Eq.(3.14) is a convention. In the Born interpretation [19] the
probability density of the Schrödinger equation is proportional to:

ρ = φ∗φ (3.77)

where φ is a complex-valued quantity. The probability current [8] of the Schrödinger
equation is defined as:

j = − i~
2m

(φ∗∇φ− φ∇φ∗) (3.78)
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In order to make these definitions relativistic, define the four-current:

jµ = (ρ, j) (3.79)

By Noether’s Theorem, this four-current must be conserved in a continuity
equation:

∂µj
µ = 0 (3.80)

This is true as follows for the Schrödinger equation:

∂ρ

∂t
+ ∇ · j =

∂

∂t
(φ∗φ)− i~

2m
(
φ∗∇2φ− φ∇2φ∗

)
= φ∗

(
∂φ

∂t
− i~

2m
∇2φ

)
+ φ

(
∂φ∗

∂t
+

i~
2m
∇2φ∗

)
= 0

(3.81)

In the Klein-Gordon equation however, ρ must be defined as the time-like com-
ponent of the four-current jµ:

ρ =
i~
2m

(
φ∗
∂φ

∂t
− φ∂φ

∗

∂t

)
(3.82)

Thus [8]:

∂µj
µ =

i~
2m

(φ∗�φ− φ�φ∗) = 0 (3.83)

In ECE theory Eq.(3.83) becomes:

R−R1 = qµ
a�qa

µ − qa
µ�qµ

a (3.84)

For a Hermitian qa
µ :

R1 = R∗ (3.85)

and the continuity equation of ECE theory becomes:

∂µq
µ =

i~
2m

(
qµ

a�qa
µ − qa

µ�qµ
a

)
(3.86)

For real and physical scalar curvature:

R = R∗ (3.87)

and
∂µq

µ = R−R∗ = 0 (3.88)

as required by Noether’s Theorem.
The Klein Gordon equation in this single particle interpretation was aban-

doned in favor of the single particle Dirac equation as is well known. The Klein
Gordon equation gives a negative ρ from Eq.(3.82), a negative probability makes
no sense. In order to make sense of the Klein Gordon equation φ must become
a field [8], leading in the standard model to second quantization. Therefore in
ECE theory the multi-particle interpretation automatically gives a physically
sensible probability current for a spin-less particle because the tetrad is both
the wave-function and the quantized field whose commutators are always well
defined. This is illustrated for the electromagnetic field in Section 3.3, and in
the remainder of this Section, the Dirac spinor wave-function is introduced on
the single particle level.
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The Dirac equation is a limit [1]– [7] of the ECE wave equation using
Eq.(3.15), but the Dirac wave-function has a half integral spin whose single par-
ticle interpretation defines the fermion as is well known [8]. The Dirac spinor is
a tetrad in SU(2) representation space [1]– [7]. The Dirac equation is therefore:(

� +
(mc

~

)2
)
qa

µ = 0 (3.89)

where the a and µ labels represent the four components of the Dirac spinor:
qR

1 , qR
2 , qL

1 and qL
2 . The Pauli spinors are:

φR =
[
qR

1

qR
2

]
, φL =

[
qL

1

qL
2

]
(3.90)

and the Dirac spinor is:

qa
µ =

[
φR

φL

]
. (3.91)

In standard quantum field theory [8] [9] the Dirac spinor is denoted by ψ and
the convention c = ~ = 1 is used. So Eq.(3.89) becomes:(

� +m2
)
ψ = 0 (3.92)

which may be written [8] as:

(iγµ∂µ −m)ψ = 0 (3.93)

where γµ is the Dirac matrix and where:

γµ∂µ = γ0∂0 + γi∂i (3.94)

Written out in full, Eq.(3.93) is:(
iγµ∂µ −

(mc
~

)2
)
qa

µ = 0 (3.95)

Using the shorthand notation (3.93) the Hermitian conjugate equation is
defined [8]:

ψ+
(
−iγ0←−∂0 + iγi←−∂i −m

)
= 0 (3.96)

and the adjoint spinor is defined as:

ψ = ψ+γ0 (3.97)

Here:
γiγ0 = −γ0γi (3.98)

so that:
ψ
(
iγµ←−∂µ +m

)
= 0 (3.99)

The conserved four-current is thus defined naturally as:

jµ = ψγµψ (3.100)
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and is conserved as follows:

∂µj
µ =

(
∂µψ

)
γµψ + ψγµ (∂µψ)

=
(
imψ

)
ψ + ψ (−imψ) = 0

(3.101)

The probability density of the Dirac equation is thus rigorously positive-valued:

j0 = ψγ0ψ = ψ+ψ = |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2 > 0 (3.102)

and is the Born probability of the free fermion or free Dirac particle. Only one
fermion is being considered here so the Pauli exclusion principle and Fermi-
Dirac statistics have not yet been deduced. To achieve that in the standard
model requires second quantization [8].

In ECE theory:

ψ+ → qµ+
a , ψ → qµ+

aγ
0 = qµ

b, jµ = qν
aγ

µqa
ν (3.103)

and the conserved current is generally covariant as required. Second quanti-
zation of the Dirac spinor is inherent in ECE theory from the outset, as ar-
gued already, so ECE automatically theory gives the Pauli exclusion principle
and Fermi-Dirac statistics from the required multi-particle interpretation of the
tetrad field/wave-function. When applied to bosons, ECE theory automati-
cally gives the Bose Einstein statistics for the same reason. The photon is well
known to be an integral spin boson, and electrons and quarks are examples of
half-integral spin fermions. ECE theory also gives the required multi particle
interpretation of gravitons for the same reason, and so forth for any quantized
field, the generally covariant, unified and quantized field of any spin, including
zero spin. All other fields are limits of this field.

The negative energy states of the Dirac equation come from the fact that the
spin 1

2 particles obey the Pauli exclusion principle. Negative energy states are
completely filled, so the exclusion principle prevents any more electrons entering
the Dirac sea, made up of negative energy states. The Dirac sea is the vacuum in
this picture, a vacuum made up of negative energy electrons, protons, neutrinos,
neutrons and other fermions. If there is a vacancy or “hole” in the fermion sea,
with energy − |E|, an electron with energy E fills it, emitting energy 2E:

e− + hole→ energy (3.104)

The hole has charge e+ and positive energy, and is called a positron. The energy
difference is:

∆E = E − (−|E|) = 2E (3.105)

Eq. (3.104) in particle theory is:

e− + e+ = 2γ (3.106)

and this means that an electron and positron mutually annihilate to give two
photons. In ECE theory the Dirac sea is defined by tetrads obeying the Pauli
exclusion principle. The latter is understood by regarding the tetrad as a field
and wave-function as argued already.

Quantities such as pµpµ are understood in ECE theory through the momen-
tum tetrad [1]– [7]:

pa
µ = p(0)qa

µ (3.107)
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Planck/Einstein/de Broglie quantization is given by:

pa
µ = ~κa

µ = eAa
µ = eA(0)qa

µ (3.108)

The Heisenberg commutator equation is understood using the structure invari-
ants of Cartan geometry ( pp. 140 ff. of ref [1]):

xa =
∫

s

T a (3.109)

θa
b =

∫
s

Ra
b (3.110)

and the Heisenberg equation is:

[xa, pb] = iJa
b = ~θa

b (3.111)

where
θa

b =
i

~
Ja

b (3.112)

Thus:
[xa, pb] = ~

∫
s

Ra
b (3.113)

where
Ra

b = −κ
2
εabcT

c (3.114)

appropriate to spinning spacetime unaffected by curvature. Here T c is Cartan
torsion.

3.3 Second quantization of the tetrad field

As argued, the tetrad in ECE field theory is both the field and the wave-function.
Therefore the generally covariant quantum field is defined by commutators in-
herent in Cartan geometry. In this section the position and conjugate momen-
tum tetrads are defined from the appropriate Lagrangian density. Then the
field tetrad is expanded in a Fourier series in order to define the creation and
annihilation operators of the field. The number operator of the field is defined
from the creation and annihilation operators and a multi-particle interpretation
developed.

Eq.(3.46) may be derived [1]– [3] from an Euler Lagrange equation. For
example if:

∂L
∂qν

a

= −∂µ

(
∂L

∂ (∂µqν
a)

)
(3.115)

and

L = −c
2

κ

(
1
2

(∂µq
a
ν ) (∂µqν

a) +
R

2
qa

νq
ν
a

)
(3.116)

the Eq.(3.46) follows. There is a freedom of choice in the Lagrangian density, it
is chosen to give the ECE Lemma (3.46) through the Euler Lagrange equation
(3.115). Define the position and conjugate momentum tetrads by:

xa
ν = x(0)qa

µ (3.117)
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pa
µ = p(0)qa

µ (3.118)

The conjugate momentum is related to the position by:

pa
µ =

1
c

∂L
∂
(
∂νxa

µ

) (3.119)

Eq.(3.119) is a canonical equation in the sense that it generalizes the well known
classical result [20]:

pi =
∂L
∂ẋi

(3.120)

Classical dynamics [20] can be developed with the Lagrange equation of motion:

d

dt

(
∂L

∂q̇j

)
=
∂L

∂qj
(3.121)

and the Hamilton equations of motion, the canonical equations:

q̇k =
∂H

∂pk
, −ṗk =

∂H

∂qk
(3.122)

where H is the Hamiltonian. These well known equations are found in any
textbook on classical dynamics. Note that Eq.(3.119) is an equation of general
relativity, whereas Eqs.(3.120) to (3.122) are non-relativistic.

The Cartan torsion is defined [1]– [7], as argued already in this paper, by:

T a = d ∧ qa + ωa
b ∧ qb (3.123)

and if
ωa

b = −κ
2
εabcq

c (3.124)

then:
T a = d ∧ qa − κqb ∧ qc (3.125)

i.e.
T 1 = d ∧ q1 − κq2 ∧ q3

et cyclicum (3.126)

T 0 = d ∧ q0 − κq2 ∧ q1 (3.127)

Eqs.(3.125) and (3.127) indicate the existence of commutators (wedge products).
These appear on the classical level therefore in generally covariant unified field
theory. In regions where the fundamental field is non-zero but where the torsion
is zero:

d ∧ qa = κqb ∧ qc (3.128)

In tensor notation, Eq.(3.128) is a commutator equation:

[∂µ, q
a
ν ] = κ

[
qb

µ , q
c
ν

]
(3.129)

For the position tetrad:
[∂µ, x

a
ν ] = κ

[
qb

µ , x
c
ν

]
(3.130)

Multiply both sides of Eq.(3.130) by p(0) to obtain:

p(0) [∂µ, x
a
ν ] = κ

[
pb

µ, x
c
ν

]
(3.131)
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This is an equation of classical general relativity but it contains the commuta-
tor of position and conjugate momentum. This commutator is fundamentally
important to quantum mechanics as is well known. Second quantization [8] [9]
proceeds by setting up the equal time commutators for position and momentum:
in the Heisenberg equation the position and conjugate momentum are defined
at the same instant in time. Eq.(3.131) shows that the momentum tetrad pb

µ,
and the partial derivative operator ∂µ play the same role. This observation
leads to the fundamental operator equivalence (3.76) of quantum mechanics. In
ECE theory this operator equivalence is derived as in Eq.(3.131) from Cartan
geometry in a generally covariant context.

In the de Broglie limit:
p(0) = ~κ (3.132)

and [
pb

µ, x
c
ν

]
= ~ [∂µ, x

a
ν ] (3.133)

Eq.(3.133) in the complex circular basis [1]– [3] is:[
p(b)

µ, x
(c)

ν

]
= i~

[
∂µ, x

(a)∗
ν

]
(3.134)

and is equivalent to the angular momentum commutator relations [1]– [14]:[
J (b)

µ , J
(c)

ν

]
= i~J (a)∗

µν (3.135)

where:
J (a)

µν = iJ (0)
[
∂µ, x

(a)∗
ν

]
(3.136)

In vector notation:
J(1) × J(2) = i~J(3)∗

et cyclicum
(3.137)

In general relativity, Eq.(3.131) gives:

p(0) =
([
pb

µ, x
c
ν

]
/ [∂µ, x

a
ν ]
)
κ (3.138)

so the Planck constant has been identified as the limit:[
pb

µ, x
c
ν

]
→ ~ [∂µ, x

a
ν ] (3.139)

or, in the complex circular basis:[
p(b)

µ, x
(c)

ν

]
→ i~

[
∂µ, x

(a)∗
ν

]
(3.140)

The Planck constant is therefore defined by a particular type of Cartan geometry
(Eq.(3.114)) in a well defined limit form the correspondence principle. Having
recognized that Eq. (3.131) leads to quantization, its fully quantized form is:

[
pb

µ, x
c
ν

]
qd

ρ =
(
p(0)

κ

)
[∂µ, x

a
ν ] qd

ρ (3.141)

where it has been recognized that the commutators act on the tetrad field/wave-
function qd

ρ . We may write:

δa
µν = [∂µ, x

a
ν ] (3.142)
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In shorthand notation, Eq.(3.142) is:

(p ∧ x) q =
(
p(0)

κ

)
(d ∧ x) q (3.143)

where it is emphasized that q is both the wave-function and the field. So in
this sense a rigorous quantum field theory emerges automatically from Cartan
geometry. The commutators of Eq.(3.141) are between tetrads, i.e. field com-
mutators as required. This conclusion is true for all fields of physics, including
for example the electromagnetic potential field:

[
Aa

µ, a
b
ν

]
=
A(0)2

κ
[∂µ, κ

a
ν ] (3.144)

Eq.(3.137) is a cyclic relation between tetrads:

q(1) × q(2) = iq(3)∗

et cyclicum
(3.145)

Following the usual development of quantum field theory [8] [9] Eqs.(3.32) can
be expressed as:

[qx, qy] = iqz

et cyclicum
(3.146)

The raising and lowering or creation and annihilation operators [19] are:

q+ = qx + iqy (3.147)

q− = qx − iqy (3.148)

These are similar to the complex circular tetrads:

q(1) =
1√
2

(qx + iqy) (3.149)

q(2) =
1√
2

(qx − iqy) (3.150)

The commutator properties of Eqs.(3.147) and (3.148) are [19]:[
q+, qz

]
= −q+ (3.151)[

q−, qz
]

= q− (3.152)[
q+, q−

]
= 2qz (3.153)

The creation tetrad operator is then defined by:

q+|n〉 = c+n |n+ 1〉 (3.154)

and the annihilation tetrad operator by:

q−|n〉 = c−n |n− 1〉 (3.155)
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In quantum electrodynamics for example, q+ increases the state |n > to |n+ 1 >.The
electromagnetic field is described by an infinite number of harmonic oscillators,
one for every point in space. In this case:

q−|n〉 = n1/2|n− 1〉 (3.156)

q+|n〉 = (n+ 1)1/2 |n+ 1〉 (3.157)

The number operator is:
N = q+q− (3.158)

so that:
N |n〉 = n|n〉 (3.159)

The hamiltonian is:

H = ~ω
(
N +

1
2

)
= ~ω

(
q+q− +

1
2

)
= ~ω

(
n+

1
2

)


(3.160)

giving the zero point energy:

H0 =
1
2

~ω (3.161)

The fundamental tetrad field is expanded in a Fourier series [8]:

q =
∑

κ

(
q+κe

−iκ·r + q−κe
iκ·r) (3.162)

which may be developed into an integral in a volume V :

q = V

∫ (
q+κe

−iκ·r + q−κe
iκ·r) d3κ (3.163)

3.4 Electromagnetic Aharonov Bohm effect and
field commutators

The electromagnetic Aharonov Bohm (EAB) effect is defined [1]– [7] by:

d ∧Aa + ωa
b ∧Ab = 0, (3.164)

ωa
b 6= 0 (3.165)

it is important to note that the spin connection ωa
b must be non-zero, this is a

fundamental requirement of general relativity because the electromagnetic field
is a spinning frame, the gravitational field a curving frame. The ECE spin field
shows this to be true experimentally [1]– [7]. In order to obtain solutions of
Eq.(3.164) the spin connection must be given an analytical form. The Faraday
law of induction is contained in the approximation [1]– [7]:

d ∧ F a = 0 (3.166)
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The Faraday law of induction is accurate under most laboratory applications,
so in this approximation:

ja = 0, (3.167)

implying Eq.(3.124). The proportionality constant −κ/2 in Eq. (3.124) [1]– [7]
has been assumed to be a scalar, the minus sign and the factor half have been
chosen as a convention. More generally, the proportionality factor in Eq.(3.124)
can be a tensor with different components. Its units are inverse meters, those
of wave-number. Use the ECE Ansatz (3.10) to find that:

ωa
b = −g

2
εabcA

c (3.168)

where:
g =

κ

A(0)
(3.169)

Therefore the EAB effect is described by wedge products or commutators of
potential, those used on canonical quantization. Eq.(3.167) is defined to an
excellent approximation in most applications by the Faraday Law of induction.
Under resonance conditions however [1]– [7] the homogeneous current ja may be
amplified by many orders of magnitude [1]– [7]. Eq. (3.164) may be expanded
in terms of its components as [1]– [7]:

d ∧A1 = gA2 ∧A3

et cyclicum
(3.170)

d ∧A0 = −d ∧A3 (3.171)

and the EAB effect is described by solutions to these four simultaneous equa-
tions.

Writing out Eq.(3.170) in tensor notation gives:

∂µA
3
ν − ∂νA

3
µ = g

(
A1

µA
2
ν −A1

νA
2
µ

)
et cyclicum

(3.172)

or in the complex circular basis:

∂µA
(3)

ν − ∂νA
(3)

µ = −ig
(
A(1)

µA
(2)

ν −A(1)
νA

(2)
µ

)
et cyclicum

(3.173)

Eq.(3.173) is for example:

∂xA
(3)

y − ∂yA
(3)

x = κA(0) (3.174)

However:
A(3)

y = A(3)
x = 0, A(0) 6= 0 (3.175)

so the only solution is:
κ = 0 (3.176)

Similarly, Eq.(3.173) gives:

∂0A
(3)

z − ∂zA
(3)

0 = −ig
(
A

(1)
0A

(2)
z −A(1)

zA
(2)

0

)
(3.177)
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and again Eq.(3.176) is the only solution because:

A(2)
z = A(1)

z = 0, A(0) 6= 0 (3.178)

In order to obtain a self consistent solution to the simultaneous equations (3.170)
to (3.171) it must be assumed that κi is a tensor:

κi =

 κ 0 0
0 κ 0
0 0 κ

 (3.179)

so Eqs.(3.170) to (3.171) become:

d ∧A1 = gA2 ∧A3 (3.180)

d ∧A2 = gA3 ∧A1 (3.181)

d ∧A3 = −d ∧A0 = 0, A1 ∧A2 6= 0 (3.182)

The solutions are:

A(1) =
A(0)

√
2

(i− ij) ei(ωt−κz) (3.183)

A(2) =
A(0)

√
2

(i + ij) e−i(ωt−κz) (3.184)

Thus:
∇×A(1) = κA(1) (3.185)

A(1) ×A(2) = iA(0)2k (3.186)

∇×A(1)∗ = −igA(2) ×A(3) (3.187)

∇×A(2)∗ = −igA(3) ×A(1) (3.188)

∇×A(3)∗ = 0 (3.189)

Eqs.(3.183) to (3.189) are tetrad equations, with:

A(3) = A(0)k (3.190)

Thus:
A0 = −A(0) (3.191)

The complex circular basis is defined by the tetrad equations:

q(1) × q(2) = iq(3)∗

et cyclicum
(3.192)

where
q(1) = q(2)∗ =

1√
2

(i− ij) ei(ωt−κt) (3.193)

q(3) = q(3)∗ = k (3.194)

These tetrads are the mechanism for defining the Cartan torsion and spinning
space-time responsible for electromagnetic potential fields.
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The EAB effect is caused by A(1), A(2) and A(3) in regions where

Ea = 0, Ba = 0 (3.195)

The EAB effect occurs in regions outside a laser or radar beam. The A(1) and
A(2) components are rapidly oscillating, so on average:

〈A(1)〉 = 〈A(2)〉 = 0 (3.196)

but
A(1) ×A(2) = iA(0)2k (3.197)

and is non-zero on average. The electromagnetic field components in these
regions are zero, for example:

B(1)∗ = ∇×A(1)∗ + igA(2) ×A(3) = 0 (3.198)

B(2)∗ = ∇×A(2)∗ + igA(3) ×A(1) = 0 (3.199)

Therefore the beam intensity or power density (watts per square meter) is also
zero:

I = − ic
µ0
|B(1) ×B(2)| = 0 (3.200)

The power density I of the radar or laser beam is non-zero if and only if the
oscillating electric and magnetic fields making up the beam are non-zero. Obvi-
ously, outside the beam there is no power density or beam intensity measurable
experimentally. However the conjugate product or commutator A(1)×A(2) still
exists outside the beam because in these regions:

A(1) = A(2)∗ 6= 0 (3.201)

Similarly, the color of the laser beam is due to its non-zero electric and magnetic
fields. Outside the laser beam there is no color visible, but Eq.(3.201) is still
true. For a static magnetic field (Chambers experiment) B is non-zero inside the
iron whisker or solenoid, but outside B is zero and A non-zero [1]– [7], causing
the well known magnetic (original) Aharonov Bohm effect. So the experiment to
detect the EAB for the first time must be set up to observe the inverse Faraday
effect [1]– [7] in regions outside the laser or radio frequency beam, i.e. in regions
where I is zero as discussed already. As described in Appendix F of Vol. 3 of
ref [12] the inverse Faraday effect in a gas of N electrons occupying a volume V
produces in the sample a magnetic flux density (in Tesla):

B(3)
sample =

N

V

µ0e
3c2

2mω2

(
B(0)

√
m2ω2 + e2B(0)2

)
B(3)

beam (3.202)

where −e is the charge on the electron, m is its mass, µ0 is the vacuum per-
meability in S.I., ω is the angular frequency of the beam, B(0) is its magnetic
flux density magnitude and B

(3)
beam is its free space ECE spin field. Eq.(3.202)

is the result of the Hamilton Jacobi equation [12] in the limit of special relativ-
ity and where the electromagnetic field has been assumed independent of the
gravitational field. In off-resonance conditions in the laboratory this is true to
an excellent approximation. At visible frequencies (laser beam):

|B(3)
sample| →

N

V

(
µ0e

3c2

2m2ω3

)
B(0)2 (3.203)
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and at radar frequencies:

|B(3)
sample| →

N

V

(
µ0e

2c2

2mω2

)
B(0) (3.204)

In terms of intensity I Eq.(3.203) is:

|B(3)
sample| →

N

V

(
µ2

0e
3c

2m2

)
I

ω3
(3.205)

For an intensity I = 5.5 × 1012Wm−2 and a Nd − Y aG frequency of 1.77 ×
1016rads1 then

∣∣B(3)
∣∣ ∼ 10−9Tesla assuming the Avogadro number of electrons

in the volume V of one cubic meter, i.e. This calculation is in excellent agreement
with experimental data on the inverse Faraday effect [12].

The EAB effect at laser frequencies is, from Eq.(3.205), the magnetization of
an electron gas due to A(1)×A(2) in regions where I is zero experimentally, but
where the commutator A(1) ×A(2) is not zero. The EAB is given by the same
equation (3.205) but the interpretation of I is different. It is the intensity of
the laser beam transmitted to regions outside the beam by the spin connection,
i.e. by the spinning of space-time itself. Similarly the B field of an iron whisker
is transmitted to regions outside by the spinning of space-time [1]– [7]. All AB
effects are therefore experimental evidence for the spinning of space-time and
thus for ECE theory. The AB effects are all effects of the generally covariant
electromagnetic field and its commutators used in canonical quantization as
already argued. The latter is always defined (indexless shorthand notation [1]–
[7]) by:

F = D ∧A (3.206)

The EAB experiment therefore has to accurately reproduce the conditions:

F = D ∧A = 0, A 6= 0 (3.207)

This is done for the static magnetic field in the Chambers experiment, and in
various other designs that reproduce this experiment. The electric and grav-
itational AB effects have also been observed, but the EAB has not yet been
observed. The AB experiments define what is meant by a field in generally
covariant electrodynamics. It is a field of force accompanied by kinetic energy.
When the field of force is zero the potential energy may still be non-zero, and
there is a potential for the creation of a field of force. In the magnetic AB effect
for example there is no magnetic force field outside the iron whisker, but there
is still a potential for the creation of a magnetic field of force. This potential
is generated by the spinning of space-time itself. The gravitational AB effect is
due to the potential for force generated by the curving of space-time. In regions
of zero gravity, i.e. locally zero Riemann curvature:

R = D ∧ ω = 0, ω 6= 0 (3.208)

and the spin connection still exists. So the usual properties of an electromag-
netic beam for example are due to non-zero force fields (in this case oscillating
electric and magnetic force fields). These properties include intensity (heat),
color (spectrum), transmission of signals form transmitter to receiver, and so
on. In ECE theory there exists a property of an electromagnetic field hitherto
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unmeasured, the EAB effect due to the potential for the creation of a field of
force in regions where the field itself is zero. The potential is the tetrad, the
properties that create the EAB effect are the spin connection and the commu-
tator needed for canonical quantization.
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