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Using the recently derived Evans wave equation of unified field theory
the strong nuclear field is described with an SU(3) representation of
the gravitational field and the Gell-Mann color triplet is derived from
general relativity as a three-spinor eigenfunction of the Evans wave
equation.
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1. INTRODUCTION

Recently a wave equation for unified field theory has been derived [1-3]
from a lemma of Cartan-Riemann differential geometry [4, 5] and used
to give the first self consistent unified description of the gauge invariant
gravitational and electromagnetic fields. The former is the Riemann
form and the latter is the torsion form. One form is the Hodge dual
of the other. The theory has been shown [1-3] to reduce to all the
main equations of physics in the appropriate limits, these equations
include: the four Newton laws; the Schrödinger equation; the Dirac
equation; the d’Alembert equation; the Poisson equations of dynam-
ics and electrostatics; and the correct generally covariant form of the
Maxwell-Heaviside field equations. The latter are referred to as “O(3)
electrodynamics” because the symmetry group of the underlying gauge
field theory is O(3). The theory of O(3) electrodynamics has been ex-
tensively tested against experimental data, and found experimentally
to have numerous advantages over the Maxwell-Heaviside field theory
[6-8]. It has been inferred that in order to unify gravitation and elec-
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tromagnetism within the theory of general relativity, electrodynamics
must have a gauge symmetry higher than U(1) [6-8]. This inference
produces the fundamental Evans-Vigier magnetic field, which reaches
mega-gauss in the inverse Faraday effect [9] of under dense plasma,
and is now a routine observable. The theory reduces to two Maxwell-
Heaviside equations for transverse plane waves, but in addition gives
the observable Evans-Vigier field, governed by a third field equation
[6-8] not present in Maxwell-Heaviside theory. The unified field theory
therefore has all the hallmarks of a major paradigm shift in physics.
The inter-relation between the gravitational and electromagnetic field
is given, for example, by the first and second Bianchi identities of differ-
ential geometry. These identities inter-relate the Riemann and torsion
forms, which are defined in terms of the spin connection and the tetrad
by the second and first Maurer-Cartan structure relations, respectively.
It has been inferred that the Riemann form is the Hodge dual of the
torsion form, and that spin connection is the Hodge dual of the tetrad.
In the condensed notation of differential geometry the first and second
Maurer-Cartan structure relations are, respectively:

T a = D ∧ qa, (1)

Ra
b = D ∧ ωa

b , (2)

where Ra
b is the Riemann form and T a the torsion form. The symbol D∧

denotes exterior covariant derivative, and ωa
b and qa are, respectively,

the spin connection and the tetrad. The first and second Bianchi identi-
ties are the homogeneous field equations of unified field/matter theory
and are, respectively:

D ∧ T a := 0, (3)

D ∧Ra
b : −0. (4)

The first and second Evans duality equations state that there exist the
Hodge duality relations

Ra
b = εa

bcT
c, (5)

ωa
b = εa

bcq
c, (6)

where εa
bc is the appropriate Levi-Civita symbol in the well defined [4,5]

orthonormal space of the tetrad.
In this notation, the Maxwell-Heaviside field theory is described

by
F = d ∧ A, (7)

d ∧ F := 0, (8)

where F is the gauge invariant electromagnetic field (a scalar-valued
two-form), and where A is the potential field (a scalar-valued one-
form). In generally covariant unified field theory [1-3] F becomes di-
rectly proportional to the torsion form T a (a vector valued two form)
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and A becomes directly proportional to the tetrad qa (a vector-valued
one-form). The exterior derivative d∧ becomes the covariant exterior
derivative D∧. The inhomogeneous Maxwell-Heaviside field equation
is

d ∧∗ F = J, (9)

where ∗F is the Hodge dual of F and where J is a scalar-valued three-
form, the current form. In unified field theory, Eq. (9) is developed
into the first and second Evans inhomogeneous field equations

D ∧∗ T a = Ja, (10)

D ∧∗ Ra
b = Ja

b , (11)

where Ja is a vector valued three form, and Ja
b is a tensor-valued three

form, where ∗T a is the Hodge dual of T a, defined by

∗T aµν =
1

2
εµνρσT a

ρσ, (12)

and where ∗Ra
b the Hodge dual of Ra

b , defined by

∗Ra µν
b =

1

2
εµνρσRa

bρσ. (13)

Equations (10) and (11) govern the interaction of the gauge invari-
ant fields ∗T a and ∗Ra

b , respectively, with matter fields in unified field
theory.

It can be seen that there is no longer a distinction between
the gravitational and electromagnetic fields and they are unified with
differential geometry. The potential field (Feynman’s “universal influ-
ence” [10]) is developed into the tetrad, which is in turn governed by
the Evans lemma of differential geometry:

DD = dD := �−R, (14)

where � is the d’Alembertian operator in Euclidean spacetime, and
where R is scalar curvature in differential geometry. The lemma (14)
is the subsidiary proposition which leads to the Evans wave equation
of differential geometry, the eigenequation

�qa = Rqa, (15)

(� + kT )qa = 0. (16)

Combining Eq. (15) with the Evans field equation [1-3]

Rqa = −kTqa (17)
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gives the Evans wave equation (16) of generally covariant unified field
theory. Equation (16) completes Einstein’s theory of general relativ-
ity of the gravitational field and develops it into a generally covariant
unified field theory of all known radiation and matter fields.

The torsion form is the commutator of tetrads [1-3]:

T c = Rqa ∧ qb; (18)

and, using Eq. (5), the Riemann form is also defined in terms of a
commutator of tetrads:

Ra
b = εa

bcdRqc ∧ qd. (19)

In this paper, we use Eq. (16) to derive the Gell-Mann quark
color triplet from differential geometry in non-Euclidean spacetime,
thus unifying the theory of the strong field and the theory of the grav-
itational field.

2. DERIVATION OF THE QUARK COLOR TRIPLET

It is well known that the quark Lagrangian is invariant under the SU(3)
transformation [10], where q is the quark color triplet

q →Mq, (20)

q =

qR

qW

qB

 (21)

and a three spinor. In unifying the gravitational and strong fields it is
shown in this section that q is a manifestation of differential geometry,
an eigenfunction of Eq. (16). Therefore the equation governing the
strong force is

(� + kT )q = 0, (22)

and q is the gluon wavefunction, the eigenfunction of the quantized
strong field. The corresponding wave equation for the gravitational
field is

(� + kT )qa
µ = 0, (23)

where qa
µ is the tetrad. Therefore, if we can express Eq. (22) in terms

of Eq. (23), we can unify the strong and gravitational fields.
In order to achieve this unification, note that M in Eq. (20) is a

unitary, orthogonal matrix of the SU(3) group representation of space,
a 3 × 3 generalization of the 2 × 2 complex Pauli matrices [10] of the
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SU(2) group representation of space. Only unitary, orthogonal matri-
ces form groups; Hermitian matrices do not form groups [10]. Therefore
M must be either an O(3) or SU(3) representation of space [10]. The
two representations are representations of the same base manifold, so
there must be relations between elements of SU(3) (components of the
three spinor) and those of O(3) (components of the tetrad). In the
unified field theory summarized in Sec. 1, this geometrical relation uni-
fies the strong and gravitational fields, and shows that the strong field
is simply the gravitational field in an SU(3) representation of space.
Quarks have not yet been observed individually, so it remains to be
seen whether the SU(3) representation has a physical meaning akin to
the half integral spin of a fermion in the SU(2) representation. In other
words the gravitational field can always be represented mathematically
in SU(3) form, but it remains to be seen whether this has any meaning
in physics, because individual quarks have never been observed. In-
deed the standard model goes so far as to suggest that quarks cannot
be observable, and “self-destructs” because quarks cannot be physical
if they are unobservable. The major inference in Eq. (22) is that the
quark color triplet is derived from a tetrad, and it should be noted
that Eq. ( 22) is valid in non-Euclidean spacetime, and is a generally
covariant description of the strong field.

In the standard model the SU(3) group is chosen to represent
the strong field for experimental reasons [10], but these reasons do not
include the observation of individual quarks. The SU(3) symmetry
matrix M is the unitary complex 3 × 3 matrix with unit determinant
defined by

MM † = 1, det M = 1. (24)

It follows that M is 3 × 3 matrix with eight independent parameters,
which are the eight group generators denoted [10] by λn/2. The cor-
responding generators in the SU(2) representation are the three Pauli
matrices. Elementary particles in the standard model are thought to
be composite states of quarks, and there are thought to be six quarks:
u, d, s, c, t, and b. Each quark has spin half. Baryons and mesons
are composite states of quarks, and in the standard model only these
composite states are thought to be observable as elementary particles.
Pions, for example, are thought to be three members of a supermulti-
plet of eight, and the strong interaction is thought to be an interaction
between quarks mediated by a massless gluon field. All this is in the
context of special relativity. There is no concept in the standard model
of the strong field being derivable from the gravitational field, and so
the strong field is not generally covariant, a major weakness of the stan-
dard model. In the unified field theory represented by Eqs. (22) and
(23) the strong field is a manifestation of the gravitational field using
SU(3) representation for the base manifold. The quark color triplet
is simply a three spinor equivalent of the tetrad used to describe the
gravitational field. The index of the orthonormal tangent space of the
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tetrad becomes the internal index of the SU(3) gauge group represen-
tation of the strong field. In the standard model the tangent space is
a physical space but the internal space of gauge theory is an abstract
space. In the unified field theory outlined in Sec. 1 the hitherto ab-
stract internal space of gauge theory is given a physical meaning for
the first time. Despite the fact that quarks are unobservable in the
standard model, they are thought to possess a quantum number with
three degrees of freedom, and these are the components of the three
spinor (21): red, white and blue.

(Similarly the weak nuclear field in the standard model is
thought to derive from a SU(2) symmetry gauge field theory. However
the theory of the weak nuclear field is again a theory of special relativity,
and spontaneous symmetry breaking is needed to provide the bosons of
the weak field with mass. Unification of the weak and electromagnetic
fields is standard-modeled in such a way that the electromagnetic field
photons remain massless. This is essentially an empirical model with
adjustable parameters. There is no experimental evidence for the Higgs
boson for example, and so there is no evidence for spontaneous symme-
try breaking, a cornerstone of the standard model. In the unified field
theory of Sec. 1, the weak field is the electromagnetic field in SU(2) rep-
resentation, and the mass of the three weak field bosons is represented
by the limit of T in special relativity, a mass density. Each boson of
the weak field has its individual mass, determined experimentally.)

Therefore, in order to describe quarks in general relativity, non-
Euclidean space-time must be expressed in SU(3) representation using
the tetrad as a starting point. Similarly the tetrad is used [4,5] as the
starting point for the recent derivation [11] of the Dirac equation from
the more general Evans wave Eq. (16). The quarks (albeit unobservable
by hypothesis in the standard model) of the strong nuclear field and
the bosons of the weak nuclear field both become quanta of the unified
field from the Evans wave equation. Ultimately the quarks are SU(3)
representations of quantized gravitation from Eq. (16), and the weak
nuclear field bosons are SU(2) representations of the electromagnetic
field. Both the gravitational and the electromagnetic field spring from
the tetrad, so we have built field unification with differential geometry.

The eight SU(3) matrices [10] are generalizations of the familiar
Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(25)

as follows:

σ1 → λ1 =

0 1 0
1 0 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , (26)
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σ2 → λ2 =

0 −i 0
i 0 0
0 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , (27)

σ3 → λ3 =

1 0 0
0 −1 0
0 0 0

 , λ8 =
1√
3

1 0 0
0 0 0
0 0 −1

 ,+

0 0 0
0 1 0
0 0 −1

 .

(28)
The matrices are characterized by:

[(1/2)λa, (1/2)λb] = (i/2)jabcλc, (29)

where
Cabc := ijabc (30)

are the group structure constants of SU(3) [10]. The structure con-
stants of SU(2) are

Cabc = iεabc. (31)

It can be seen that λ2, λ5, and λ7 are O(3) rotation generator
matrices, cyclically related by

[(1/2)λ2, (1/2)λ5] = (i/2)j257λ7; (32)

and this is a representation of three-dimensional Euclidean space with
O(3) group rotation generators. Similarly, −iλ1,−iλ4,−iλ6 are three
O(3) symmetry rotation generator matrices related cyclically by

[(1/2)λ1, (1/2)λ4] = (i/2)j146λ6. (33)

Finally, the matrices λ3 and λ8 are also rotation generator matrices
related cyclically by

[(1/2)λ3, (1/2)λ8] = (i/2)j38cλc, (34)

where c = 1, 2, 4, 5, 6, or 7.
Therefore a rotation in three-dimensional space in SU(3) repre-

sentation is given by

q′ = exp

(
i
λa

2
εa

)
q, (35)

an SU(3) transformation with

q =

qR

qW

qB

 . (36)
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Similarly a rotation in Euclidean, three-dimensional space (the base
manifold) can be represented by the SU(2) transformation

q′ = exp

(
i
σi

2
εi

)
q, (37)

where

q =

(
q1

q2

)
(38)

is the Pauli two-spinor representation of the base manifold using a
two-dimensional representation space. In Eq. (36), q is a three-spinor
representation of Euclidean three dimensional space.

In order now to represent the strong nuclear field in general rel-
ativity, the group indices a, b, c in Eq. (29) are recognized as indices
of the orthonormal space of the tetrad, so that Eq. (29) becomes an
equation of differential geometry, valid in any spacetime, and indepen-
dent of the details of the base manifold geometry [4,5]. Similarly, in
order to represent the weak nuclear field in general relativity, the in-
dices a, b, c of Eq. (31) become indices of differential geometry. Thus
both equations (29) and (31) can be written as

(1/2)λa ∧ (1/2)λb = (i/2)jabcλc, (39)

that is,
(1/2)qa ∧ (1/2)qb = (i/2)jabcqc, (39a)

i.e., become valid in non-Euclidean spacetime as equations of differ-
ential geometry. In wedge product notation of differential geometry,
Eqs. (30) and (31) define cyclically symmetric relations between wedge
products in respectively an SU(3) and SU(2) representation of the or-
thonormal space of the tetrad. In the SU(3) representation for the
strong nuclear field in general relativity the tetrad is defined by the
equation

qa = qa
µq

µ : SU(3) (40)

between a metric three-spinor qa in the orthonormal space labeled a and
a metric three-spinor qµ in the non-Euclidean base manifold, labeled µ.
Similarly the tetrad in the SU(2) representation for the weak nuclear
field in general relativity is defined by

qa = qa
µq

µ : SU(2), (41)

where qa is a metric two-spinor in the orthonormal space and where qµ

is a metric two-spinor in the base manifold. In both cases the Evans
wave equation is an equation in the tetrad

(� + kT )qa
µ = 0; (42)
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and in this notation takes the same form for gravitation and for elec-
tromagnetism. For both gravitation and electromagnetism, the tetrad
is defined by

qa = qa
µq

µ : O(3), (43)

where qa is a metric four vector in the orthonormal space and where
qµ is a metric four-vector in the base manifold.

It is seen that the strong and weak nuclear fields and the gravi-
tational and electromagnetic field share a common origin in the concept
of tetrad, and that the Evans wave equation in all cases is an equation
in the tetrad. The nuclear weak field is essentially an SU(2) repre-
sentation for the electromagnetic field, and the nuclear strong field an
SU(3) representation of the gravitational field. The Dirac equation is
derived [11] from the Evans equation with an SU(2) representation of
the gravitational field.

Finally the quark color triplet is a field, so must be a manifes-
tation of the tetrad field. In the standard model only an empirical
representation of the color triplet is given, i.e., it is not derived from
general relativity and is not identified as a manifestation of a tetrad, the
matrix that relates the metrics in the orthonormal space and the base
manifold. For each label a of the tetrad, it is a generally covariant ob-
ject, i.e., a generally covariant four-vector, three-spinor or two-spinor,
so the equation governing the gluon field (and all other fields) in general
relativity is the Evans equation for each upper index a.
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