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Abstract

Einstein Cartan Evans (ECE) field theory is used to show that in general rela-
tivity the structure of the laws of electricity, magnetism and electromagnetism
is changed fundamentally. This result is demonstrated analytically and nu-
merically with the Coulomb Law. In ECE theory the electromagnetic field is
spinning space-time, characterised by the spin connection of Cartan geometry.
The spin connection is shown in this paper to change the Poisson equation into
a differential equation capable of giving resonance. Off resonance, the standard
Poisson equation is observed, and the standard Coulomb Law. At space-time
resonance the scalar potential in volts is greatly amplified with fundamental
consequences in the natural, engineering and life sciences.

Keywords: Einstein Cartan Evans (ECE) field theory, generally covariant uni-
fied field theory, electricity, magnetism, electromagnetism, classical electrody-
namics, Coulomb Law, space-time resonance.

9.1 Introduction

The need for objectivity in the natural, engineering and life sciences means that
all the fundamental laws of physics must be laws of general relativity, where
objectivity is represented by geometry. This includes the laws of classical elec-
trodynamics, the laws of electricity, magnetism and electromagnetism. General
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9.1. INTRODUCTION

relativity means that these laws must be generally covariant, must retain their
form under any type of coordinate transformation. They must therefore be laws
of a generally covariant unified field theory. Recently [1]– [19] the Einstein Car-
tan Evans (ECE) theory has been developed along these well known guidelines.
Objectivity in ECE field theory is maintained through the use of standard Car-
tan geometry [20]. The electromagnetic field is represented as the Cartan torsion
within a scalar factor A(0). Here cA(0) is a primordial voltage. This procedure
follows a well known suggestion by Cartan to Einstein that the electromagnetic
field be the Cartan torsion form, a vector valued two-form of differential geom-
etry [1]– [20]. ECE theory applies Cartan’s suggestion systematically to all the
laws of physics.

The well known Maxwell Heaviside (MH) field theory is used in the standard
model [21] to represent the laws of electricity, magnetism and electromagnetism.
The MH theory is a nineteenth century theory of special relativity and is neither
generally covariant nor unified with other fundamental fields such as gravitation.
It is a Lorentz covariant theory in which the electromagnetic field is considered
to be an entity separate from the frame of reference in a Minkowski space-time.
The latter is often referred to as flat space-time, because it has neither curvature
nor torsion. It is also a static space-time. The laws of gravitation on the other
hand are described in the standard model by the Einstein Hilbert (EH) field
theory of general relativity [1]– [20] and the gravitational field is the frame it-
self, not something separate from the frame as in MH theory. EH space-time has
curvature but no torsion, and is a dynamic space-time. Objectivity in EH field
theory is based on Riemann geometry with a Christoffel connection. This as-
sumption implies a zero torsion tensor [20] and means that gravitation cannot be
unified with electromagnetism in EH theory. As we have argued, electrodynam-
ics cannot be unified with gravitation in MH theory. In ECE theory [1]– [19] a
unified description of all fields has been developed straightforwardly using ECE
space-time in which curvature and torsion are simultaneously non-zero. The
generally covariant unified field of ECE theory is the frame itself, as required
by general relativity and objectivity. Gravitation is described by curvature,
the electromagnetic, weak and strong fields by torsion using the appropriate
representation spaces (respectively O(3), SU(2) and SU(3)). The two Car-
tan structure equations and the two Bianchi identities of differential geometry
control all the laws of physics [1]– [19], including those of quantum mechanics
through the tetrad postulate [20]. The latter is the fundamental requirement
that the complete vector field in n dimensions be independent of the compo-
nents and basis elements chosen to represent it. Thus ECE theory has unified
quantum mechanics with general relativity and provides a generally covariant
unified field theory. ECE theory has therefore been accepted as mainstream
physics [22].

In Section 9.2, the Coulomb law of electricity is developed with the spin
connection incorporated as required by general relativity, by the fact that the
complete electromagnetic field is spinning space-time. A spinning of space-time
means a spinning of the frame of reference itself. This means that the spin
connection must always be non-zero.

The Coulomb Law is derived in ECE theory [1]– [19] from the first Cartan
structure equation and the first Bianchi identity. Use of vector notation and
some simplifying assumptions [1]– [19] lead to the initial equations of Section
9.2. These give a resonance equation whose properties are developed analytically
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CHAPTER 9. THE RESONANT COULOMB LAW OF EINSTEIN . . .

to give the required resonance solution. The latter is fundamentally important
in the natural, engineering and life sciences because the Coulomb law is the
basis of all quantum chemistry, and therefore the basic law of computational
quantum chemistry.

In Section 9.3, numerical solutions of the resonance Coulomb law are de-
veloped to illustrate a novel space-time resonance spectrum. Off resonance
the standard Coulomb Law is recovered. The standard Coulomb law is well
known [21] to be among the most precise laws of physics, so it must be re-
covered from ECE theory in a given limit. This is achieved by identifying the
radial spin connection as the one that gives the standard Coulomb law off res-
onance. In the off resonant condition the spin connection effectively doubles
the value of the electric field, so its presence cannot be detected experimentally.
At space-time resonance however the scalar potential in volts of the Coulomb
Law is greatly amplified, leading to a surge in voltage that cannot be explained
by MH theory. This phenomenon has been reported experimentally by several
independent groups [23]. If this resonant amplification of the scalar potential
occurs inside an atom or molecule, electrons may be released by ionization. In
this Section the process is illustrated by the radial wave-functions of the hydro-
gen atom in anticipation of the systematic development of density functional
code incorporating the resonant Coulomb law of ECE theory. A short review of
density functional methods is also given in this section. Finally a discussion is
given of how to induce space-time resonance in circuits and materials.

9.2 The Resonant Coulomb Law

In the simplest instance [1]– [19] the Coulomb law in ECE theory is given by:

∇ ·E =
ρ

ε0
(9.1)

where
E = − (∇ + ω)φ. (9.2)

Here φ is the scalar potential in volts, ω is the vector spin connection in inverse
meters, E is the electric field strength in volts m−1, ρ is the charge density in
Cm−3, and ε0 is the S. I. vacuum permittivity:

ε0 = 8.854× 10−12J−1C2m−1. (9.3)

Thus:
∇ · ((∇ + ω)φ) = − ρ

ε0
(9.4)

i.e.
∇2φ+ ∇ · (φω) = − ρ

ε0
(9.5)

If there is no spin connection, Eq.(9.5) is the Poisson equation [21] of the stan-
dard model. Otherwise:

∇2φ+ ω ·∇φ+ (∇ · ω)φ = − ρ

ε0
(9.6)

which is an equation capable of giving resonant solutions [1]– [19], [24] from the
spin connection vector. The Poisson equation does not give resonant solutions.
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9.2. THE RESONANT COULOMB LAW

Eq.(9.6) is first developed in one (Z) dimension of the Cartesian coordinate
system, and then for the radial component of the spherical polar coordinate
system [25].

In one Z dimension Eq.(9.6) becomes:

∂2φ

∂Z2
+ ωZ

∂φ

∂Z
+
(
∂ωZ

∂Z

)
φ = − ρ

ε0
(9.7)

The spin connection in Eq.(9.7) must be:

ωZ =
2
Z

(9.8)

in order to recover the standard Coulomb law off resonance. This is because:

φ =
−e

4πε0Z
,

∂φ

∂Z
=

e

4πε0Z2
= −ωz

2
φ (9.9)

in the off resonant condition, giving Eq.(9.8). In the off resonant condition the
role of the spin connection is to change the sign of the electric field according to
Eq.(9.9). The way in which the field E and potential φ are related is changed,
but this has no experimental effect since E is effectively replaced by −E. With
the spin connection (9.8) Eq.(9.7) becomes:

∂2φ

∂Z2
+

2
Z

∂φ

∂Z
− 2
Z2

φ = − ρ

ε0
(9.10)

Now assume that the charge density is initially oscillatory:

ρ = ρ (0) cos (κZ) (9.11)

where κ is a wave-number. Thus:

∂2φ

∂Z2
+

2
Z

∂φ

∂Z
− 2
Z2

φ = −ρ (0) cos (κZ) (9.12)

Since φ depends only on Z the partial derivatives can be replaced by total
derivatives to give an ordinary differential equation [24], [26]:

∂2φ

∂Z2
+

2
Z

∂φ

∂Z
− 2
Z2

φ = −ρ (0) cos (κZ) (9.13)

using the well known Euler method [24], [26] this equation can be reduced to
an undamped oscillator equation that has resonant solutions. Define a change
of variable [24], [26] by:

κZ = eiκx (9.14)

Thus:
dx

dZ
= − i

κZ
(9.15)

Now use:
dφ

dZ
=
dφ

dx

dx

dZ
= − i

κZ

dφ

dx
(9.16)

and construct the second derivative:

d2φ

dZ2
=

i

κZ2

dφ

dx
− i

κZ

d

dZ

(
dφ

dx

)
(9.17)
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Isotropy means that:

d

dZ

(
dφ

dx

)
=

d2φ

dZdx
=

d2φ

dxdZ
=

d

dx

(
dφ

dZ

)
(9.18)

so
d2φ

dZ2
=

i

κZ2

dφ

dx
− 1
κ2Z2

d2φ

dx2
. (9.19)

Thus:

Z
dφ

dZ
= − i

κ

dφ

dx
, (9.20)

Z2 d
2φ

dZ2
=
i

κ

dφ

dx
− 1
κ2

d2φ

dx2
. (9.21)

Now substitute Eqs.(9.20) and (9.21) in Eq.(9.13) to give:

d2φ

dx2
+ 2κ2φ =

ρ (0)
ε0

Real
(
e2iκx cos

(
eiκx

))
(9.22)

which the undamped oscillator equation [24], [26]:

d2φ

dx2
+ 2κ2φ =

ρ (0)
ε0

(cos (2κx) cos (cos (κx)) cosh (sin (κx))

+ sin (2κx) sin (cos (κx)) sinh (sin (κx))) .
(9.23)

Assume that the particular integral of this equation is:

φp (x) =
Aρ (0)
ε0

(
cos (κ′x)
2κ2 − κ′2

)
(9.24)

where κ′ is defined by the identity:

A cos (κ′x) := Real
(
e2iκx cos

(
eiκx

))
(9.25)

where A is a function of κ and x in general.
From Eqs.(9.22) to (9.25) it is found that:

d2f

dx2
+ 2κ2f = cosκ′x (9.26)

where:

f =
cosκ′x

2κ2 − κ′2
(9.27)

Eq.(9.27) is, self-consistently, the solution of Eq.(9.26), Q.E.D.
Therefore Eq.(9.24) is a valid particular integral of Eq.(9.23) if κ′ is defined

by:

κ′ =
1
x

cos−1

(
1
A

Real
(
e2iκx cos

(
eiκx

)))
(9.28)

At resonance:
2κ2 = κ′

2 (9.29)
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9.2. THE RESONANT COULOMB LAW

and φp theoretically infinite. For a given A, resonance in φ occurs when x is
defined by:

A cos
(√

2κx
)

= cos (2κx) cos (cos (κx)) cosh (sin (κx))

+ sin (2κx) sin (cos (κx)) sinh (sin (κx))
(9.30)

It is seen that A can be greater than unity because cosh y and sinh y can be
greater than unity.

Secondly consider the radial component r in three dimensions of the spherical
polar coordinate system. In this system [24]:

∇2φ =
∂2φ

∂r2
+

2
r

∂φ

∂r
,

ω ·∇φ = ωr
∂φ

∂r
, (∇ · ω)φ =

φ

r2
∂

∂r

(
r2ωr

)
 (9.31)

so Eq.(9.6) becomes:

∂2φ

∂r2
+
(

2
r

+ ωr

)
dφ

dr
+
φ

r2

(
2rωr + r2

dωr

dr

)
= − ρ

ε0
(9.32)

Now choose a radial spin connection:

ωr = −1
r

(9.33)

to obtain:
∂2φ

dr2
+

1
r

∂φ

∂r
− 1
r2
φ = − ρ

ε0
(9.34)

This equation has the same mathematical structure as Eq.(9.13), and since φ is
a function only of r can be written as an ordinary differential equation:

∂2φ

dr2
+

1
r

∂φ

∂r
− 1
r2
φ = − ρ

ε0
(9.35)

Assume now that the initial charge is oscillatory as follows:

ρ = ρ (0) cos (κrr) (9.36)

and use the change of variable:

κrr = eiκrR (9.37)

to obtain the undamped oscillator equation:

d2φ

dR2
+ κ2

rφ =
ρ (0)
ε0

Real
(
e2iκrR cos

(
eiκrR

))
(9.38)

where
R =

1
κr

cos−1 (κrr) (9.39)

Now define:
A cos (κ′R) := Real

(
e2iκrR cos eiκrR

)
(9.40)
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to obtain the particular integral:

φρ (R) =
Aρ

ε0

cos (κ′R)
κ2

r − κ′2
(9.41)

Resonance occurs at:
κr = κ′ (9.42)

where:

A cos (κrR) = cos (2κrR) cos (cos (κrR)) cosh (sin (κrR))
+ sin (2κrR) sin (cos (κrR)) sinh (sin (κrR))

(9.43)

The particular integral of Eq.(9.38) may be obtained by first assuming that the
solution has the form:

φ =
Aρ (0)
ε0

Real
(
e2iκrR cos

(
eiκrR

))
(9.44)

where A is to be determined. Substituting Eq.(9.44) in Eq.(9.38) gives:

A =
Real

(
e2iκrR cos

(
eiκrR

))
κ2 (−3e2iκrR cos (eiκrR) + 5e3iκrR sin (eiκrR) + e4iκrR cos (eiκrR))

=
r2 cos (κrr)

κ4
rr

4 cos (κrr) + 5κ3
rr

3 sin (κrr)− 3κ2
rr

2 cos (κrr)

(9.45)

Therefore the particular integral is:

φ =
ρ (0)
ε0

(
κ2

rr
4 cos2 (κrr)

κ4
rr

4 cos (κrr) + 5κ3
rr

3 sin (κrr)− 3κ2
rr

2 cos (κrr)

)
(9.46)

which has the correct S.I. units of volts = JC−1. Resonance occurs in the scalar
potential in volts of Eq.(9.46) when:

κ4
rr

4 cos (κrr) + 5κ3
rr

3 sin (κrr) = 3κ2
rr

2 cos (κrr) (9.47)

If
x := κrr (9.48)

the structure of Eq.(9.47) is as follows:(
x2 − 3

)
cosx+ 5x sinx = 0,

i.e. tanx =
3− x2

5x

 (9.49)

and in general will show peaks as a function of x. The analytical solution (9.46)
also shows many sharp peaks (Section 9.3), all of which denote surges in voltage
(scalar potential). These peaks in voltage can be used in the equivalent circuits
of Eqs.(9.35) or (9.38) to produce new power.

φ −→∞ or maximized (9.50)

These equations are analyzed numerically in Section 9.3. To obtain this result
it has been assumed that the initial driving charge density oscillates according
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to a cosinal function on the right hand side of Eq.(9.36). A more complicated
initial driving function may be used according to circuit design or similar. The
important result is that resonance occurs in the voltage, and this surge in voltage
is caused by the spin connection of space-time. The voltage obtained in this
way may be used for new energy.

In the limit:
r →∞, (9.51)

κ = constant, (9.52)

Eq.(9.35) reduces to the Poisson equation:

d2φ

dr2
= − ρ

ε0
(9.53)

used in the standard model. Eq.(9.46) may be rewritten as:

φ =
ρ (0)
ε0

cos2 (κr)(
κ2 cos (κr) +

5κ
r

sin (κr)− 3
r2

cos (κr)
) (9.54)

and in infinite r limit this equation becomes:

φ −−−−→r →∞ ρ (0)
ε0

(
cos (κr)
κ2

)
(9.55)

so that:
d2φ

dr2
=
−ρ (0)
ε0

cos (κr) =
−ρ
ε0

(9.56)

Q.E.D. In this limit is known that the scalar potential is [21]:

φ =
1

4πε0

∫
ρ (r′)
|r− r′|

d3r′ (9.57)

so: (
cos (κr)
κ2

)
−−−−→r →∞ 1

4πρ (0)

∫
ρ (r′)
|r− r′|

d3r′ (9.58)

This is a mathematical check on the self-consistency of the analytical solution
(9.46) of the resonance equation (9.35). Physically however the spin connection
cannot vanish unless r becomes the radius of the universe. This is because the
electromagnetic field is always spinning space-time in ECE theory. Similarly, the
gravitational field is always curving space-time. MH theory (standard model)
has no conception of the spin connection.

For multi electron systems and in three space dimensions, consider the equa-
tion:

E = −∇φ = −ωφ (9.59)

The electric field from this equation is [21]:

E (r) = − 1
4πε0

∇
∫

ρ (r′)
|r− r′|

d3r′ (9.60)

and the scalar potential is:

φ =
1

4πε0

∫
ρ (r′)
|r− r′|

d3r′ (9.61)
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Thus: ∫
∇φd3r′ =

∫
φωd3r′ (9.62)

where:

−∇
(

1
|r− r′|

)
=

r− r′

|r− r′|3
(9.63)

so:
r− r′

|r− r′|3
= − ω

|r− r′|
(9.64)

and the three dimensional spin connection for an n electron system is:

ω = − (r− r′)
|r− r′|2

(9.65)

The resonance equation for n electrons is therefore:

∇2φ+ ω ·∇φ+ (∇ · ω)φ = − ρ

ε0
(9.66)

where the spin connection is given by Eq.(9.65) and where the charge density
is defined in terms of the three dimensional Dirac delta function [21] as follows:

ρ (r) =
n∑

i=1

qiδ (r− ri) (9.67)

The electric field is [21]:

E (r) =
1

4πε0

n∑
i=1

qi
(r− r′)
|r− r′|3

=
1

4πε0

∫
ρ (r′)

(r− r′)
|r− r′|3

d3r′
(9.68)

If ∆q is the charge in a small volume

d3r = ∆x∆y∆z (9.69)

then:
∆q = ρ (r′) ∆x∆y∆z (9.70)

so the three dimensional resonance equation for n electrons is:

∇2φ+
(r− r′)
|r− r′|2

·∇φ+

(
∇ · (r− r′)
|r− r′|2

)
φ = − 1

ε0

(
n∑

i=1

qiδ (r− ri)

)
(9.71)

where the spin connection is:

ωi = − (r− r′)
|r− r′|2

(9.72)

Therefore each electron and proton in an atom or molecule has its spin connec-
tion.
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9.2. THE RESONANT COULOMB LAW

In order to clarify the meaning of these equations prior to coding in density
function packages (Section 9.3), some detail is given as follows. To prove the
vector equation [21]:

−∇
(

1
|r− r′|

)
=

(r− r′)
|r− r′|3

(9.73)

write it as:
−∇ (|r− a|)−1 =

r− a

|r− a|3
(9.74)

where

|r− a| =
(
(x− ax)2 + (y − ay)2 + (z − az)

2
)1/2

(9.75)

and

−∇
(

1
|r− a|

)
= − ∂

∂x

(
1

|r− a|

)
i− ∂

∂y

(
1

|r− a|

)
j− ∂

∂z

(
1

|r− a|

)
k (9.76)

Consider terms such as:
∂

∂x

(
(x− ax)2 + (y − ay)2 + (z − az)

2
)1/2

= − (x− ax)(
(x− ax)2 + (y − ay)2 + (z − az)

2
)3/2

(9.77)

to find Eqs.(9.73) and (9.74), Q.E.D. In the resonance equation (9.71) there
occurs the term:

f (r) = ∇ · (r− ri)
|r− ri|2

(9.78)

and this may be developed as follows. Write:

f (r) = ∇ · (r− a)
|r− a|2

(9.79)

where:
|r− a|2 = (x− ax)2 + (y − ay)2 + (z − az)

2 (9.80)
and

r− a = (x− ax) i + (y − ay) j + (z − az)k (9.81)
so:

f (r) =
∂

∂x

(x− ax)
|r− a|2

+
∂

∂y

(y − ay)
|r− a|2

+
∂

∂z

(z− az)
|r− a|2

=
∂

∂x

(x− ax)
(x− ax)2 + (y − ay)2 + (z − az)

2 + · · ·
(9.82)

Using the rules of differentiation:

f (r) =
(
(x− ax)2 + (y − ay)2 + (z − az)

2
)−2

− 2 (x− ax)2(
(x− ax)2 + (y − ay)2 + (z − az)

2
)2 + · · ·

=
1

|r− a|2
− 2
|r− a|2

=
−1
|r− a|2

(9.83)
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Therefore:

∇ · (r− ri)
|r− ri|2

= − 1
|r− ri|2

(9.84)

so the resonance equation is:

∇2φ+
(r− ri)
|r− ri|2

·∇φ− 1
|r− ri|2

φ = − 1
ε0

(
n∑

i=1

qiδ (r− ri)

)
(9.85)

This can be written as:

|r− ri|2∇2φ+ (r− ri) ·∇φ− φ =
−1
ε0
|r− ri|2

n∑
i=1

qiδ (r− ri) (9.86)

and incorporated in density functional code for the Coulomb potential. In
Eq.(9.86) the Dirac delta function is defined as usual [21] by:

δ (r− r1) = δ (x1 −X1) δ (y1 − Y1) δ (z1 − Z1) (9.87)

and the charge density is defined by:

ρ (r) =
n∑

i=1

eiδ (r− ri) (9.88)

Using:
r− ri = (x− xi) i + (y − yi) j + (z − zi)k (9.89)

and:
|r− ri|2 = (x− xi)

2 + (y − yi)
2 + (z − zi)

2 (9.90)

the spin connection in Eq.(9.72) an be developed as:

ωi = − ((x− xi) i + (y − yi) j + (z − zi)k)
(x− xi)

2 + (y − yi)
2 + (z − zi)

2 (9.91)

With these definitions the resonance equation in three dimensions and for n
electrons and protons in an atom or molecule is therefore:

∇2φ+
(r− ri)
|r− ri|2

·∇φ− 1
|r− ri|2

φ = − 1
ε0

n∑
i=1

qiδ (r− ri) (9.92)

The potential in volts from this equation can be used to build up the Hartree
term in density functional code. This term describes electron electron repulsion
through the Coulomb interaction and is (Section 9.3):

V =
1

4πε0

∫
e2ns (r)
|r− r′|

d3r′ (9.93)

where ns (r) is a number density. Therefore the scalar potential in volts is:

φH =
e

4φε0

∫
ns (r)
|r − r′|

d2r′ (9.94)
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When there are peaks in φH , the effect is to greatly amplify the number density
and to greatly increase the electron-electron repulsion, resulting in ionization of
the atom or molecule into free electrons which can be used for new energy.

The most direct method for acquiring new energy from the spin connection
is to construct the circuits equivalent to Eqs.(9.35) or (9.38). The type of
circuit needed for Eq.(9.38), whose analytical solution is Eq.(9.46), is that of
the undamped oscillator. The simplest undamped oscillator equation [24] is:

mẍ+ kx = F (9.95)

where m is mass, x is displacement, k is Hooke’s constant and F is driving force.
Its equivalent circuit equation is [24]:

Lq̈ +
q

C
= E (9.96)

where q is charge, L is inductance, C is capacitance and E is electromotive
force. Eq (9.96) describes an electromotive force in series with a capacitor
and induction coil. A material may be incorporated inside the induction coil.
Therefore the circuit equivalent to the undamped oscillator (9.38) is the same
design, but the electromotive force is synthesized to be the same as the right
hand side of Eq.(9.38), i.e. made up of circular and hyperbolic functions. The
exact solution (9.46) shows many sharp peaks of voltage (Section 9.3), so the
equivalent circuit also shows many sharp peaks of voltage for a small initial
electromotive force. These peaks of voltage can be used for new power and fed
to the grid from a power plant.

9.3 Numerical results and discussion

In the following we present numerical results for the resonance equations and
the application of the resonant Coulomb law to the Hydrogen atom. Then we
discuss the general applicability to solid state physics and electrical engineering.

9.3.1 Graphs of resonance effects

As described in Section 9.2, the solution of the ECE Coulomb law (see Eq.(9.12)
for Cartesian or Eq.(9.34) for spherical coordinates) shows up resonances. This
can be seen in general from the particular integral (9.46). This particular solu-
tion is plotted in Fig. 9.1 for four κ values. The higher κ, the more resonances
are seen in a certain range of the radial coordinate r. The resonances appear in
form of poles of the particular integral, i.e. where the denominator approaches
to zero. In general these are the roots of the denominator equation (9.49). These
are computed numerically and listed in Table 9.1

Since the variable x in Eq.(9.49) is the product κr, the coordinate r corre-
sponds directly to x in case κ = 1. This can be seen from Fig. 9.1: For the
second κ value the zeros come to lie at the x values of Table 9.1.

The most interesting curve is the resonance behaviour of true solutions of
the resonant Coulomb law (9.34). The equation has been transformed by the
Euler method to the form of Eq.(9.38) without approximations. This form is
easier to solve numerically and it can directly be seen that it is an equation of
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n zero(rad) zero(degrees)
1 0.660310 37.832983
2 2.807011 160.829901
3 5.502118 315.248163
4 8.409624 481.835945
5 11.416981 654.144835
6 14.474251 829.313494
7 17.558761 1006.042917

Table 9.1: First seven zero values of Eq.(9.49)

a forced oscillation. The “driving term” is the right-hand side of Eq.(9.38). For
obtaining the resonance curve the value of κr at the left hand side has been
kept fixed and the κ value of the driving force has been varied as suggested
by Eq.(9.40). The results are shown in Fig. 9.2. The maximum amplitude
difference after 15 oscillations has been plotted against the wave number κ of
the driving force. In case of the pure cosine term the resonance occurs for κ = κr

as expected (we used κr = 1). In principle this is an undamped resonance with
infinite resonance amplitude, but since we have restricted the calculation to 15
wavelengths the curve remains bounded. The same holds for the exact driving
force. There are two sharp resonances at κ = 0.5 and κ = 0.25 and a smaller
third at κ = 0.166. The curve scales with κr which was set to unity here.
This resonance behaviour is a consequence of the spin connection which is only
present in ECE theory, not in standard Maxwell-Heaviside theory.

The resonant increase of the solution Φ of Eq.(9.38) can be studied from
Fig. 9.3 where the curve Φ(R) is presented for four different κ values. The
first two κ’s were chosen to be the resonance values of Fig. 9.2. Both lead to
increasing amplitudes with R. The other two κ values are off resonance, the
maximum amplitude does not change with R. The driving force (right-hand
side of Eq.(9.38)) is presented in Fig. 9.4. There are two maxima and one
minimum per period. Decreasing κ only means a broadening of the form. This
driving force is required for experimental construction of equivalent circuits of
spin connection resonance, therefore we have calculated the Fourier spectrum
(Fig. 9.5). As already seen in Fig. 9.4, changing the κ value does not change
the wave form, i.e. the Fourier spectrum remains unaltered for abscissa values
of κ = 2π/λ, only the right end varies with λ. The three significant peaks of
Fig. 9.2 are directly represented in the spectrum. In particular one can see that
the first and second resonance peak differ in phase (sign of Fourier coefficient).
The phase difference between both amplitudes is 180 degrees as can directly be
observed from Fig. 9.3.

So far we have inspected the numerical solution Φ(R) in the transformed
coordinate R as given by Eq.(9.39). The question is how the original function
Φ(r) behaves. We have to perform the back-transformation R → r which is
given by

r =
1
κr

cos(κrR) (9.97)

Since the value range of the cosine function is restricted to [−1, 1] we have to
provide a rule how to obtain r values for κrr greater than unity. The proposed
solution is to shift the values according to the number of full periods 0 ≤ κrR <
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π contained in the argument. Additionally the result is transformed in a way
to give a continuous function as is depicted in Fig. 9.6. The back-transformed
potential Φ(r) can be seen in Fig. 9.7 (it corresponds to the left-most part of Fig.
9.3). Φ(r) has to be interpolated if one wants to have equidistant abscissa values
as for example was required for the calculation of the H spectrum. Obviously
the cosine function leads to a deformation of Φ where r(R) approaches the
horizontal asymptote.

9.3.2 Results for the Hydrogen atom

The energy eigenvalues and radial wavefunctions of atomic Hydrogen have been
calculated numerically in presence of a small oscillatory charge density serving as
“driving force”. The ECE Coulomb potential of the driving force has been added
to the proton core potential of the H atom. This is the same proceeding as had
already been applied earlier [11]. In that case an approximate method was used
to calculate the ECE Coulomb potential with a constant radius parameter. Here
we use the numerical solution of Eq.(9.38) as discussed in the preceding section.
The value of κr was set to 0.5 to obtain a r range in the backtransformation
which was broad enough compared to the atomic radius. We used a maximum
value of r = 3.5. As can be seen from Fig. 9.3, the stationary oscillatory
behaviour develops after a certain initial R range which is dominated by initial
value effects [24]. To avoid these initial value dependences we have taken the
solution Φ(R) for R ≥ 26.5 and shifted the range to the coordinate origin of r.
For this operation one has to observe that the boundaries of the transformation
range shown in Fig. 9.6 are not exceeded in order not to obtain unphysical
jumps in Φ. In Fig. 9.8 the total atomic potential is shown for three κ values,
two in resonance and one in off-resonance. Because we have chosen κr = 0.5 the
resonances come to lie at κ = 0.175 and κ = 0.225. In the first resonance the
potential is shifted from smaller to greater radii; it takes strongly repulsive values
in the second resonance. The third κ value is in off-resonance. The potential
leads to the resonance graph presented in Fig. 9.9. There is an oscillating shift
of atomic energies with a remarkable lifting of all values at the main resonance
peak of κ = 0.225. This is a more complicated resonance structure compared
with our earlier calculation [11] where the analytical form of the particular
integral of the resonance equation for a fixed radius was used.

The radial dependence of some orbitals is depicted in Figs. 9.10–9.12. The
orbitals are calculated for κ values already discussed with Fig. 9.8. The potential
shift in the first case (A) leads to a shift of the 1s and 2p orbitals to the core
because mainly the decrease in potential has an effect for these orbitals. In
case of the repulsive resonance (B) all orbitals are significantly pushed outward.
In particular the 1s orbital is strongly delocalized and is in a transition to
an unbound state. This supports the former assumptions on the ionization
mechanism. Nevertheless the particular angular momentum character of the
orbitals (sign and number of zeros) remains valid.

In Fig. 9.13 some control parameters are shown as was also done in [11].
The resonance potential takes its extrema near to the resonant κ values. The
potential integrates out to zero for large r which indicates that charge neutrality
is conserved and the calculations are made on a reasonable basis. The overall
results are similar to those obtained in [11].
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9.3.3 Application to solid state physics and engineering

The resonance effect in Hydrogen was investigated because it serves as a model
system for the huge class of atomic, molecular and solid state physics. Reso-
nances in solids are particularly important because the electronic structure of
solids is the basis of modern electronic chip design which can be extended to
resonant devices on a microstructure scale. The most used method for computa-
tion of electronic properties of solids is Density Functional Theory. Therefore we
give a short introduction into the theory as contributed by Lothar Fritsche [27].
The method, which in practical applications presupposes the validity of the
Born-Oppenheimer approximation (fixed atomic nuclei), is as follows:

1. The interacting N-electron system (ground-state wavefunction
Ψ̂0(x1,x2, · · · ,xN )) is reduced to a non-interacting N-particle system
(wavefunction Φ0(x1,x2, · · · ,xN ) = Slater determinant)
by adiabatically switching off the electron-electron interaction while keep-
ing the oneparticle density ρ(r) fixed. The latter means

ρ(r) =N
∑

σ

∫
| Ψ̂0((r, σ),x2, · · · ,xN |2 d4x2 · · · d4xN =

N
∑

σ

∫
| φ0((r, σ),x2, · · · ,xN |2 d4x2 · · · d4xN

(9.98)

Note that the coordinate x stands collectively for (r;σ) where σ = ±1
denotes the spincoordinate.
If the nuclear Coulomb potential resulting from all atoms of the system is
denoted by Vext(r) the original Hamiltonian has the form (a.u.: energy:
Hartree, length: aB)

Ĥinteract =
N∑

k=1

[
−1

2
∇2

k + Vext(rk)
]

+
1
2

N∑
k=1,l 6=k

1
| rk − rl |

(9.99)

In the intermediate state when the electron-electron interaction is not yet
completely switched off, the Hamiltonian attains the form

N∑
k=1

[
−1

2
∇2

k + Vext(rk) + V̂ext(λ, rk)
]

+
λ

2

∑
k,l 6=k

1
| rk − rl |

(9.100)

where λ controls the strength of the electron-electron interaction, i. e. 0 ≤
λ ≤ 1. Furthermore, V̂ext(λ, r) denotes the additional potential that has
to be switched on at coupling strength λ to ensure the conservation of the
original interacting density ρ(r). If this potential exists, it is unique, as has
been shown by Hohenberg and Kohn (1964). However, the actual existence
can only be shown for densities that are defined on a lattice of points in
real-space [28]. The Hamiltonian of the non-interacting substitute system
derives from Eq.(9.100) for λ = 0:

Ĥsubstitute =
N∑

k=1

[
−1

2
∇2

k + Vext(rk) + V̂ext(rk)
]

(9.101)

where V̂ext(r) ≡ V̂ext(λ = 0, r).
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2. The Schrödinger equation associated with the substitute
Hamiltonian (9.101) can be decomposed into N one-particle equations

[
−1

2
∇2 + Vext(r) + V̂ext(r)

]
ψi(r) = εiψi(r) (9.102)

which represent the so-called “Kohn-Sham equations”. It can be shown
that the non-interacting wavefunction Φ0(x1, x2, · · · , xN ) which can be
cast as a Slater determinant has to be formed from the N energetically
lowest lying solutions ψi(r). Hence one has from Eq.(9.98)

ρ(r) =
N∑

i=1

| ψi(r) |2 (9.103)

3. By using the Hellmann-Feynman theorem it is easy to show that the total
energy E0 of the actual interacting system can be cast as

E0 = 〈φ0 |
N∑

k=1

[
−1

2
∇2

k

]
| φ0〉︸ ︷︷ ︸

≡T0

+
∫
ρ(r)Vext(r)d3r + 〈Ve−e〉 (9.104)

where

T0 =
N∑

i=1

∫
ψ∗i (r)

[
−1

2
∇2

]
ψi(r)d3r , ρ(r) =

N∑
i=1

| ψi(r) |2 (9.105)

and

〈Ve−e〉 =
∫∫

ρ2(r′, r)
| r′ − r |

d3r′d3r (9.106)

with ρ2 denoting the electronic pair density averaged over the coupling
strength:

ρ2(r′, r) =
∫ 1

0

ρ2(λ, r′, r)dλ (9.107)

where

ρ2(λ, r′, r) =

N(N − 1)
∑
σ′,σ

∫
| Ψ̂0(λ,x′,x,x3, · · · ,xN ) |2 d4x3 · · · d4xN

(9.108)

and Ψ̂0(λ,x′,x,x3, · · · ,xN ) solves the Schrödinger equation associated
with the Hamiltonian (9.99) and ground-state energy E0.

4. Eqs.(9.102) and (9.104) define the framework of density functional theory.
At this stage it is still equivalent to a rigorous (non-relativistic) N-electron
theory since no approximations have been made so far. But in practice
it is useless in this form, because the density conserving extra potential
V̂ext(r) and ρ2 are unknown. However, exploiting universal properties of
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the wavefunction Ψ̂0(x,x2, · · · ,xN ), in particular its antisymmetry giv-
ing rise to “Fermi-holes” in the pair-density ρ2(r′, r), one arrives at a
surprisingly simple approximation to 〈Ve−e〉:

〈Ve−e〉 =
1
2

∫∫
ρ(r′)ρ(r)
| r′ − r |

d3r′d3r −
∫

3
4

(
3
π

)1/3

[ρ(r)]4/3
d3r (9.109)

For details see [29]. More advanced expressions account for contributions
of the gradient of ρ(r) (“Generalized Gradient Approximation”, “GGA”)
see [30].

If one inserts the expression (9.109) in Eq.(9.104) and uses Eq.(9.103),
E0 becomes a functional of the orbital set {ψi(r)}. Requiring E0 to be
stationary against variations of these orbitals one arrives at

δE0 =
Nσ∑
i=1

∫
δψ∗i (r)

[
−1

2
∇2+

Vext(r) + VH(r) + VXC(r, σ)
]
ψi(r)d3r + c.c. = 0

(9.110)

Here VH(r) and Vxc(r) denote, respectively, the so-called Hartree- and
exchange-correlation potential which derive from the respective two con-
tributions on the right-hand side of Eq.(9.109). They have the form

VH(r) =
∫

ρ(r′)
| r′ − r |

d3r′

and

VXC(r) = − 3
π

1/3

[ρ(r)]1/3

(9.111)

Eq.(9.110) is obviously fulfilled if

V̂ext(r) = VH(r) + VXC(r) (9.112)

The DFT-scheme is now fully defined and easily accessible to applications.
In case of ECE resonances the potentials VH(r) and VXC(r) have to incorporate
the spin connection effects via the modified charge density ρ(r). This in turn
is determined from Eqs.(9.103) and (9.102) where the spin connection terms of
Eq.(9.92) have to be respected.

It should be observed, however, that the rigorous version requires the pair
density ρ2(λ, r′, r), averaged over the coupling strength to be known. This, in
turn, implies the availability of Ψ̂0(λ,x′,x,x3, · · · ,xN ) for all values of λ, which
means one has to solve the N-electron Schrödinger equation associated with the
Hamiltonian (9.100). Hence, if the DFT-scheme is defined by the property to
solve the N-electron problem without determining the N-electron wavefunction,
it constitutes always an approximate theory.

Finally we give some hints how the resonant Coulomb law can be used in
electrical engineering. At the end of Section 9.2 it was already stated that
the circuit equivalent of Eq.(9.35) or (9.38) is an undamped electrical oscillator.
This is a connection in series of an induction coil and a capacitor (see Fig. 9.14).
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The differential equation for the oscillating charge q in this circuit is (according
to Eq.(9.96)

q̈ + ω2
0q = Uemf (9.113)

with
ω0 = 2πν0 =

1√
LC

(9.114)

being the resonance frequency (ν0) and resonance angular frequency (ω0). Uemf

is the driving voltage representing the electromotive force. According to conven-
tional Maxwell Heaviside theory, resonance occurs if Uemf is a harmonic A.C.
voltage of the form

Uemf = U0 cos(ω0t) (9.115)

with an amplitude U0. In order to activate a spin connection resonance we have
to apply the driving force given at the right hand side of Eq.(9.38) which has
been graphed in Fig. 9.4. In the equivalent circuit the length coordinate has
to be replaced by time and the spatial resonance frequency κr (wave number)
by the time frequency ω0. In the same way the varying wave number of the
driving force κ is to be changed to a frequency ω. From Fig. 9.5 we know that
there are only three significant frequency contributions in the Fourier spectrum
of the driving term. We can compose it by adding three single voltages for a
given frequency ω:

Uemf = U0(0.997 cos(2ωt)− 0.503 cos(4ωt) + 0.040 cos(6ωt)) (9.116)

This Fourier synthesis is graphed in Fig. 9.17. There is no visible difference to
the exact form using all Fourier coefficients. Spin connection resonance should
occur when ω is chosen in the ratio to ω0 w.r.t. the resonance frequencies found
from Fig. 9.2:

ω1 =
1
2
ω0

ω2 =
1
4
ω0

ω3 = 0.166ω0

(9.117)

In particular the first and strongest resonance is obtained if

U
(1)
emf = U0 (0.997 cos(ω0t)− 0.503 cos(2ω0t) + 0.040 cos(3ω0t)) (9.118)

The voltage enhanced by resonance should occur then at the components of
the equivalent circuit and can be tapped at the positions denoted by Ures1 and
Ures2 in Fig. 9.14. The question remains how the mechanism for spin connection
resonance in the circuit works. Some of the circuit material has to be brought
to Coulomb resonance so that the material is ionized and electrons are emitted
making up the additional current and voltage. How this is achieved has to be
found experimentally. The material of the capacitor plates (or foils) could be
this as well as the dielectric in-between. Alternatively a suitable material may
be incorporated in the induction coil. Then the free electrons would appear
in this material and could be extracted by a small voltage (see Fig. 9.15). In
addition a feedback loop could be established by connecting the ends of the coil
core with Uemf (dashed lines in Fig. 9.15). Since the voltage at the coil has a
phase shift compared to the exciter emf, some phase shifting elements have to be
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added (denoted symbolically by P in Fig. 9.15). After having been started by a
small initial voltage, such a machine would run by its own. From Eq.(9.118) it
is seen that Uemf consists of harmonics of the conventional resonance frequency
ω0. This means that the driving force is “compatible” with the circuit and could
be enhanced by resonance without impairing its function.

As a last example we present an advanced circuit design suggested by Dou-
glas Mann [31], see Fig. 9.16. The capacitor has been replaced by a secondary
coil made by a bifilar wire. This special construction suppresses its own magnetic
field nearly completely. Interaction with the inner induction coil is by electric
fields of the wires, building a capacity. Thus both elements of the equivalent
circuit are present and the resonant medium consists of the wires exclusively.
The emf can be applied magnetically by a further induction coil with few wind-
ings which surrounds the two other coils. It is expected that devices similar like
this will be able to deliver energy from spacetime in the near future.
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Appendix 1: Analytical solutions of the undamped
oscillator

Consider the basic undamped oscillator equation (see text):

dφ2

dR2
+ κ2φ =

ρ (0)
ε0

f (κR) (A-1)

where:
f (κR) = e2iκR cos

(
eiκR

)
(A-2)

If f (κR) satisfies the Dirichlet condition, i.e. is single valued and continuous in
an interval such as π < f (κR) ≤ π it can be expanded in a Fourier series:

f (κR) =
a0

2
+

∞∑
d=1

(aα cos (ακR) + bα sin (ακR)) (A-3)

where:

a0 =
1
π

∫ π

−π

f (κR) d (κR)

aα =
1
π

∫ π

−π

f (κR) cos (ακR) d (κR)

bα =
1
π

∫ π

−π

f (κR) sin (ακR) d (κR) .


(A-4)

These integrals can be computed straightforwardly to any required precision in
any interval, the latter is not necessarily constrained to π < f (κR) ≤ π, the
latter is used for illustration. Therefore Eq.(A-1) becomes:

d2φ

dR2
+ κ2φ =

ρ (0)
ε0

(a0

2
+ a1 cos (κR) + a2 cos (2κR)

+ · · ·+ b1 sin (κR) + b2 sin (2κR)
+ · · · )

(A-5)

Assume a solution of the type:

φ =
ρ (0)
ε0

(
A0

a0

2
+A1a1 cos (κR) +A2a2 cos (2κR) +

· · ·+B1b1 sin (κR) +B2b2 sin (2κR) + · · · )
(A-6)

Substituting Eq.(A-6) in Eq.(A-5) and comparing terms by term:

κ2A0
a0

2
=
a0

2
A1κ

2 (1− a1) cos (κR) = cos (κR)

A12κ2 (1− 4a1) cos (κR) = cos (κR)
...

Bnκ
2
(
1− n2bn

)
sin (nκR) = sin (nκR) .


(A-7)
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Thus:

φ =
ρ (0)
ε0κ2

(
a0

2
+

cos (κR)
(1− a1)

+
cos (2κR)
(1− 4a2)

+ · · ·

+
sin (κR)
(1− b1)

+
sin (2κR)
(1− 4b2)

+ · · ·
) (A-8)

Infinite resonances occur at:

an = 1/n2, n = 1, · · · ,m,
bn = 1/n2, n = 1, · · · ,m

}
(A-9)

In general these resonances occur at:

Real
(

1
π

∫ π

−π

e2iκR cos
(
eiκR

)
cos (nκR) d (κR)

)
=

1
n2

(A-10)

and:

Real
(

1
π

∫ π

−π

e2iκR cos
(
eiκR

)
sin (nκR) d (κR)

)
=

1
n2

(A-11)

This analysis can be repeated straightforwardly for any driving term:

f (κR) = e2iκRf1
(
eiκR

)
(A-12)

A constrained particular integral of Eq.(A-1) can be obtained for any driving
function f (κR). In this case the undamped oscillator is:

d2φ

dR2
+ κ2φ =

ρ (0)
ε0

e2iκRf
(
eiκR

)
(A-13)

Assume a solution of the type:

φ =
Aρ (0)
ε0

e2iκRf
(
eiκR

)
(A-14)

subject to the constraint:
dA

dR
= 0 (A-15)

Then:
dφ

dR
= iκ

Aρ (0)
ε0

(
2e2iκRf + e3iκRf ′

)
(A-16)

and:
d2φ

dR2
= −κ2Aρ (0)

ε0

(
4e2iκRf + 5e3iκRf ′e4iκRf ′′

)
(A-17)

So the particular integral is:

φ = −φ (0)
ε0

(
r2f2

3f + 5κrf ′ + κ2r2f ′′

)
(A-18)

subject to the constraint:
dφ

dr
= 0 (A-19)
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A solution of Eq.(A-19) is the general resonance condition:

3f + 5κrf ′ + κ2r2f ′′ = 0 (A-20)

To explain the notation in Eq.(A-20) consider for example a cosine driving term:

f = cosx, x = κr (A-21)

Then the notation means:

f ′ = − sinx, f ′′ = − cosx (A-22)

The resonance condition (A-20) then becomes:

tanx =
3− x2

5x
(A-23)

to which there is an infinite number of solutions. For a driving term:

f = e−x, f ′ = −e−x, f ′′ = e−x (A-24)

the resonance condition is:
x2 − 5x+ 3 = 0 (A-25)

and there are two solutions at

x = 4.3028, 0.6972 (A-26)

For a driving term:
f = e−x cosx

f ′ = e−x (cosx− sinx)

f ′′ = −2e−x sinx

 (A-27)

the resonance equation is:

tanx =
3 + 5x

x (5− 6x)
(A-28)

and there are again an infinite number of solutions.
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Appendix 2 : Simultaneous equations for φ and
ω

The general resonance equation for the Coulomb Law is:

∇2φ+ ∇φ · ω + (∇ · ω)φ = − ρ

ε0
(B-1)

The limit of the standard model is reached when:

∇φ = ωφ (B-2)

i.e.
∇2φ = ∇φ · ω + (∇ · ω)φ (B-3)

and
φ =

−e
4πε0r

(B-4)

Therefore:
ω = −1

r
er (B-5)

where er is the radial unit vector of the spherical polar coordinate system. So:

ωr = −1
r

(B-6)

Eq.(B-3) is a limiting case or boundary value of the general resonance equation
(B-1). There is not sufficient information in Eq.(B-1) alone to completely deter-
mine φ and ω under all conditions, because there are two variables and only one
equation. In the text of the paper it has been assumed in order to proceed that
Eq.(B-6) holds under all conditions, so Eq.(B-1) becomes (in spherical polar
coordinates):

∂2

∂r2
+

1
r

∂φ

∂r
− 1
r2
φ = −ρ (0)

ε0
cos (κr) (B-7)

Eq.(B-7) has been developed in the text into the undamped oscillator:

d2φ

dR2
+ κ2R =

ρ (0)
ε0

e2iκR cos
(
eiκR

)
(B-8)

and Eq.(B-8) has been solved numerically and analytically to show the presence
in general of an infinite number of resonant voltage peaks of theoretically infinite
amplitude at which the voltage becomes infinite.

More information can be obtained about φ and ω by using the ECE Faraday
Law of induction:

∇×Ea +
∂Ba

∂t
= µ0ja (B-9)

where ja is the homogeneous current density of ECE theory. When there is no
magnetic field present (as in the Coulomb Law) Eq.(B-9) becomes the electro-
static law:

∇×Ea = µ0ja (B-10)

Since Eq.(B-10) holds for all a it can be written simply as:

∇×E = µ0j (B-11)
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where:
E = − (∇ + ω)φ (B-12)

From Eqs.(B-11) and (B-12):

∇× (∇φ+ ωφ) = −µ0j (B-13)

Using the vector relations:
∇×∇φ = 0 (B-14)

∇× (φω) = φ∇× ω + ∇φ× ω (B-15)

Eq.(B-13) becomes:
φ∇× ω + ∇φ× ω = −µ0j (B-16)

Thus Eqs.(B-1 and B-16) are the two simultaneous equations needed to solve
for φ and ω under all conditions in general.

If it is assumed that gravitation has no effect on electromagnetism the ho-
mogeneous current disappears:

j = 0 (B-17)

so that Eq.(B-16) simplifies to:

φ∇× ω + ∇φ× ω = 0 (B-18)

Eq.(B-1) and (B-18) must be solved simultaneously by computer in general to
find the class of solutions for the spin connection that gives resonance. In the
far off resonance condition they reduce to the Poisson equation:

∇2φ = − ρ

ε0
(B-19)

and thus to the Coulomb potential (B-4) and spin connection (B-5). The latter
is a valid solution of Eqs. (B-1) and (B-19) because from Eq.(B-5):

∇× ω = 0 (B-20)

so Eq.(B-18) reduces to:
∇φ× ω = 0 (B-21)

If:
∇φ = ωφ (B-22)

Eq.(B-21) is true identically. Also, if consideration is restricted to the radial
component:

∇ =
∂

∂r
er (B-23)

in the spherical polar coordinate system, then Eq.(B-21) is valid for any radial
spin connection of the type:

ω = ωrer (B-24)

because
er × er = 0 (B-25)

So Eq.(B-18) is true for any radially directed spin connection. The one that
gives the standard model as a limit is Eq.(B-5), Q.E.D.
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