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Abstract

The fundamental chirality and spin vectors of ECE theory are identified using
the basic definition of the tetrad field as the rank two mixed index tensor that
links two column vectors. The chirality vector defines the direction of spin (left
or right handedness or chirality) and the spin vector indicates the existence of
spin through a phase factor. The tetrad tensor is therefore made up of both
handedness and spin, for example the components of the electromagnetic poten-
tial field are components of the tetrad tensor within a scalar factor A(0) where
cA(0) is the primordial voltage of ECE theory. Similarly the fermion field is de-
fined by a chirality two-spinor and a spin two-spinor. For the fermion, the tetrad
field is a 2×2 mixed index tensor. The weak and strong fields can be developed
similarly in terms of fundamental chirality and spin column vectors. Each field
can be represented using inter-convertible representation spaces, for example
the space part of the electromagnetic field can be represented by the O(3) or
SU(n) groups, were n = 2, .., n. The SU(2) representation of the electromag-
netic field is the Majorana representation. This allows for field unification in
any representation space.

Keywords: Einstein Cartan Evans (ECE) field theory, handedness, chirality,
spin.
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16.1. INTRODUCTION

16.1 Introduction

In Einstein Cartan Evans (ECE) field theory [1]– [8] the fundamental field is
the tetrad, which is a rank two mixed index tensor [9] that transforms as such
under the general coordinate transformation, and is thus generally covariant.
Therefore the fundamental fields of physics are tetrads of various kinds: the
gravitational, electromagnetic, weak , strong and matter fields. The tetrad is
defined as follows:

V a = qa
µV

µ (16.1)

where V a and V µ are column vectors which are also generally covariant. The
tetrad field is therefore defined by the way in which V a and V µ are related
geometrically, and the tetrad in turn defines the torsion tensor T a

µν . In ECE
theory the electromagnetic field for example is defined by the ansatz:

Aa
µ = A(0)qa

µ (16.2)

F a
µν = A(0)T a

µν (16.3)

where cA(0) is the primordial voltage, c being the speed of light in vacuo and
A(0) the potential magnitude of the electromagnetic field. The gravitational
field is also defined by the tetrad, the symmetric metric being:

gµν = qa
µq

b
νηab (16.4)

where ηab is the metric in the tangent spacetime of Cartan geometry [1]– [9]
at point P in the base manifold. In Section 16.2, V a is defined as the chirality
vector, and V µ as the spin vector for the electromagnetic and fermion fields. The
electromagnetic tetrad Aa

µ is therefore made up both of chirality (handedness)
and spin - it can be left or right circularly polarized for example. Components
of the tetrad tensor Aa

µ are denoted [1]– [9] A(1)
X , and so on, and are components

of the electromagnetic potential field. The electromagnetic field tensor is then
defined by the first Cartan structure equation:

F a
µν = (d ∧Aa)µν + (ωa

b ∧Ab)µν (16.5)

where ωa
b is the spin connection. For free rotation [1]– [8], the spin connection

is dual to the tetrad:
ωa

µb = −κ
2
εabcq

c
µ (16.6)

and the spin connection can therefore be identified as being itself a potential field
component. In this special case of pure rotation the spin connection becomes
a generally covariant mixed index tensor (a tetrad tensor). In general however
the spin connection is not a tensor [9]. Similarly the Christoffel connection
of Riemann geometry is not a tensor in general because it does not transform
covariantly under the general coordinate transformation. The tetrad in contrast
always transforms covariantly because it is a rank two mixed-index tensor [9].
In general relativity any quantity with this property of general covariance may
be a physical quantity (for example the Riemann tensor and the metric). In
the standard model in contrast the electromagnetic potential field is a vector
(i.e rank one tensor) Aµ and is developed with gauge theory in which it is not
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CHAPTER 16. CHIRALITY AND SPIN VECTORS IN ECE THEORY

gauge invariant. A great deal of confusion results in the standard model for this
reason, because it is held that a quantity that is not gauge invariant is not a
physical quantity, a view that predates quantum theory and relativity and goes
back to Heaviside. Faraday and Maxwell in contrast regarded Aµ as physical. At
the same time in the standard model, Aµ is considered physical in the minimal
prescription. The standard model is therefore self-inconsistent, in that Aµ is
at once non-physical and physical, and is also incomplete, because it is special
relativity, i.e. Lorentz covariant but not generally covariant as required by
Einsteinian general relativity. ECE theory clears up this confusion by regarding
Aµ as a generally covariant tetrad field, which is always a physical field. In ECE
theory the tetrad is also the gravitational field, and in the latter, a is the index
that defines the Minkowski or flat tangent spacetime of Cartan geometry [1]–
[9] and µ is the index of a curving base manifold. As seen in Eq.(16.4), the
symmetric metric of gravitational theory is made up of two tetrads multiplied
together. The tetrad is therefore the fundamental gravitational field, and not
the symmetric metric. The gravitational tetrad is therefore defined as the rank
two tensor that links the flat spacetime column four-vector V a with the curved
spacetime column four-vector V µ. These are four-vectors because there are four
dimensions, time and three space dimensions. The gravitational tetrad therefore
has 16 components. In the well known Einstein Hilbert (EH) theory there is no
consideration given to torsion, only to curvature. For this reason EH is not a
unified field theory as is well known. ECE is a unified field theory in the well
defined sense that it is governed not by Riemann geometry without torsion, but
by Cartan geometry with inclusion of both the Riemann or curvature form Ra

b

and the Cartan torsion form T a. These are governed by the two well known
Cartan structure equations:

T a = D ∧ qa := d ∧ qa + ωa
b ∧ qb (16.7)

Ra
b = D ∧ ωa

b := d ∧ ωa
b + ωa

c ∧ ωc
b (16.8)

and the two Bianchi identities of Cartan (i.e. differential) geometry:

D ∧ T a := Ra
b ∧ qb (16.9)

D ∧Ra
b := 0 (16.10)

It is seen that the curvature and torsion are inter-related ineluctably by the
basic geometry. The EH theory is the limit:

T a = 0 (16.11)

In Section 16.2 therefore the electromagnetic and fermion fields are developed as
tetrad fields governed by Eqs.(16.7) to (16.10), and thus linked to the gravita-
tional field by these equations of Cartan geometry, thus synthesizing a generally
covariant unified field theory as required by the basic philosophy of objectivity
(Bacon) and relativity (Einstein and others). In so doing, Section 16.2 defines
the index a of the electromagnetic and fermion fields as that of chirality and
the index µ of these fields as that of spin. Therefore the same overall method is
used for the gravitational, electromagnetic and fermion fields, in that the tetrad
definition links one column vector to another. For the fermion field, the SU(2)
representation space is used as is well known, and so the column vectors have
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16.2. DEFINITION OF THE CHIRALITY AND SPIN VECTORS

two entries, i.e. are two-spinors. The spinor field is therefore a 2×2 tetrad with
four components. The tetrad is therefore one two-component row vector super-
imposed on another. If each row vector is transposed to a column two-vector,
the result is a column four-vector, the Dirac spinor [1]– [8] made up of two Pauli
spinors. It is shown in Section 16.2 that the a index of the tetrad in this case
represents handedness (right or left fermion) and the µ index represents spin.
The Dirac spinor contains chirality (referred to in this case as helicity). The
effect of any other field on the fermion field is then governed by the geometry of
Eqs.(16.7) to (16.10) and by the minimal prescription. Finally Section 16.3 is a
discussion of how these concepts can be extended to the weak and strong fields
using the appropriate representation spaces, and how fields can be inter-related
using ECE theory using any representation space such as O(3) or SU(n).

16.2 Definition of the chirality and spin vectors

We first review the development [1] of the Cartesian vector:

R = Xi + Y j + Zk (16.12)

in the SU(2) basis, giving:

R = σ ·R = Xσ1 + Y σ2 + Zσ3 =

=
[

Z X − iY
X + iY −Z

]
(16.13)

Thus:

R2 = X2 + Y 2 + Z2 =
[

1 0
0 1

]
(16.14)

The SU(2) group is that of the unitary, unimodular matrices:

UU+ = 1, det U = 1 (16.15)

which have the general form:

U =
[

a b
−b∗ a∗

]
(16.16)

with
aa∗ + bb∗ = 1 (16.17)

Define the two component spinor with complex valued elements:

ζ =
[
ζ1
ζ2

]
(16.18)

with hermitian conjugate:
ζ+ = [ζ∗1 , ζ∗2 ] (16.19)

We obtain the invariant:

X2 + Y 2 + Z2 = ζ1ζ
∗
1 + ζ2ζ

∗
2 (16.20)
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CHAPTER 16. CHIRALITY AND SPIN VECTORS IN ECE THEORY

and therefore a relation between the Cartesian O(3) elements and the SU(2)
elements. The chirality column vector in SU(2) representation is defined as:

V a =
[
ζ1
ζ2

]
=
[
eR

eL

]
(16.21)

with elements:
ζ1 = ζ∗2 =

1√
2
(1− i) (16.22)

The spin column vector in SU(2) representation is defined as:

V µ = e−iφ

[
1
1

]
(16.23)

where φ is the phase of the fermionic field. The chirality and spin column vectors
are related by the SU(2) tetrad field qa

µ :

V µ = qa
µV

µ (16.24)

i.e.

qa
µ =

eiφ

√
2

[
1 −i
1 i

]
(16.25)

The tetrad (16.25) is a simple example of a right or left handed spinning field.
It can be seen that:

ζ1ζ2 = 1 =
1√
2
(1− i) 1√

2
(1 + i) (16.26)

so the origin of chirality, or left and right handedness, is the factorization in
Eq.(16.26). If the phase is defined for a fermionic field propagating for conve-
nience along the Y axis:

φ = ωt− κY (16.27)

it is seen that:
�qa

µ = 0 (16.28)

and this is the equation of the hypothetically massless fermion, the Weyl equa-
tion. If the two rows of the tetrad matrix in Eq.(16.25) are transposed into
column vectors:

ψ =
eiφ

√
2


1
−i
1
i

 (16.29)

The four-spinor ψ consists of two Pauli spinors:

φR =
eiφ

√
2

[
1
−i

]
, φL =

eiφ

√
2

[
1
i

]
(16.30)

and obeys the equation:
�ψ = 0 (16.31)

If the Y Pauli matrix is denoted by:

σY =
[

0 −i
i 0

]
(16.32)
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16.2. DEFINITION OF THE CHIRALITY AND SPIN VECTORS

the Weyl equations can be expressed as:

σY φ
R = −φR (16.33)

σY φ
L = −φL (16.34)

ie: [
0 −i
i 0

] [
1
−i

]
=
[
−1
i

]
= −

[
1
−i

]
(16.35)[

0 −i
i 0

] [
1
i

]
=
[

1
i

]
(16.36)

The helicity eigenvalues in Eqs.(16.35) and (16.36) are ± 1. The eigenfunctions
are the right and left Pauli spinors φR and φL and the eigen-operator is σY .
Therefore the Pauli spinors φR and φR are those of a massless fermion prop-
agating along Y . This is a simple example of how chirality or helicity can be
built up from two types of column vector, one static and representing the sense
of handedness (right or left) of the spin, and the other the spin itself. The re-
sulting tetrad is therefore a combination of right and left spin, and for a phase
of the type (16.27), propagates along Y . This is an example in special rela-
tivity because the Weyl equations are the massless Dirac equations. In general
relativity [1]– [8]: [

eR

eL

]
=
[
qR
1 qR

2

qL
1 qL

2

] [
q1

q2

]
(16.37)

and:
(� + kT )qa

µ = 0 (16.38)

where:

qa
µ =

[
qR
1 qR

2

qL
1 qL

2

]
(16.39)

If we define:

ψ =


qR
1

qR
2

qL
1

qL
2

 (16.40)

then the ECE wave equation is:

(� + kt)ψ = 0 (16.41)

It is known experimentally that this equation must reduce to the Dirac equation
for the free single fermion uninfluenced by any other type of field:(

� +
(mc

~

)2
)
ψ = 0 (16.42)

In this limit:

kT =
m2c2

~2
(16.43)

Eq.(16.43) is an example of the equivalence principle. The effect of gravitation,
or any other type of field, or combination of fields, on a fermion is given by
Eq.(16.41). Thus Eq.(16.41) describes for example the gravitational interaction
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CHAPTER 16. CHIRALITY AND SPIN VECTORS IN ECE THEORY

between two fermions such as electrons. The electric interaction between two
electrons is of course described by the Coulomb Law, which can also be expressed
in terms of general relativity using ECE theory [1]– [8]. The electromagnetic
field is described in ECE theory by the 4× 4 tetrad defined by:

V a = qa
µV

µ (16.44)

where V a is the chirality vector of electromagnetism, and V µ its spin vector. In
general:

a = (0), (1), (2), (3) (16.45)

and
µ = 0, X, Y, Z (16.46)

The space indices of a are those of the complex circular basis and those of
µ are in the Cartesian basis. It was discovered experimentally by Arago in
1811 that the electromagnetic field is left (L) or right (R) circularly polarized.
Therefore each index (1) has L and R components and similarly for (2). The
(3) index is longitudinal and is similarly defined for L and R. The (0) index
is time-like. Therefore the left handed circularly polarized transverse potential
field component is:

A
(1)
L =

A(0)

√
2

(i− ij)eiφ (16.47)

and the right handed circularly polarized transverse component is:

A
(1)
R =

A(0)

√
2

(i + ij)eiφ (16.48)

where φ is the electromagnetic phase and where ∗ denotes complex conjugate [1]–
[8]. The complex conjugates of (16.47 ) and (16.48) are found by reversing the
sign of i:

A
(2)
L =

A(0)

√
2

(i + ij)e−iφ (16.49)

A
(2)
R =

A(0)

√
2

(i− ij)e−iφ (16.50)

The complex circular unit vector basis has O(3) symmetry and is:

e(1) × e(2) = ie(3)∗ (16.51)

where:
e(1) = e(2)∗ =

1√
2
(i− ij) (16.52)

e(3) = k (16.53)

For left circular polarization the chirality and spin column vectors appropriate
to the transverse potential vector (16.47) to (16.50) can therefore be defined by:

V
(1)
L =

1√
2


0
1
−i
0

 , V µ =


0
1
1
0

 e−iφ (16.54)
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16.2. DEFINITION OF THE CHIRALITY AND SPIN VECTORS

and the tetrad is therefore:

q
(1)
Lµ =

1√
2


0 0 0 0
0 1 0 0
0 0 −i 0
0 0 0 0

 eiφ (16.55)

with individual scalar components:

q
(1)
LX =

1√
2
eiφ,

q
(1)
LY =

−i√
2
eiφ,

(16.56)

The complete transverse tetrad vector is:

q
(1)
L =

1√
2
(i− ij)eiφ (16.57)

and from the ansatz (16.2) the electromagnetic potential’s transverse vector is:

A(1)
L = A(0)q(1)

L =
A(0)

√
2

(i− ij)eiφ (16.58)

In right circular polarization:

V
(1)
R =

1√
2


0
1
i
0

 , V µ =


0
1
1
0

 e−iφ (16.59)

giving:

q
(1)
Rµ =

1√
2


0 0 0 0
0 1 0 0
0 0 i 0
0 0 0 0

 eiφ (16.60)

and:
q
(1)
R =

1√
2
(i + ij)eiφ (16.61)

A(1)
R = A(0)q(1)

L =
A(0)

√
2

(i + ij)eiφ (16.62)

The complex conjugates of index (2) are obtained straightforwardly from these
equations of index (1) by reversing the sign of i wherever it occurs. It is seen
that:

q
(1)
0 = q

(1)
Z = q

(2)
0 = q

(2)
Z = 0 (16.63)

The chiral and spin vectors in longitudinal polarization are defined by:

V
(3)
R =


0
0
0
1

 , V (3)
L =


0
0
0
−1

 , V µ =


0
0
0
1

 (16.64)
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CHAPTER 16. CHIRALITY AND SPIN VECTORS IN ECE THEORY

and
q
(3)
Z = ±1, A(3) = ±A(0)k (16.65)

The sign change depends on whether the field is left or right circularly polarized.
The time-like polarizations are given by:

V (0) =


1
0
0
0

 = V µ (16.66)

and:

q(0)µ =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (16.67)

ie.
q
(0)
0 = 1, A(0)

0 = A(0)q
(0)
0 (16.68)

and are the same for both senses of polarization.
It can be seen that: A

(1)
R , A

(1)
L , A(3) and A(0) are solutions of the ECE wave

equation [1]– [8] in the approximation:(
� +

(mc
~

)2
)
Aa

µ = 0 (16.69)

where m is the mass of the photon. It is known that m is very tiny so to an
excellent approximation:

�Aa
µ = 0 (16.70)

which is a generally covariant form of the d’Alembert equation. For finite photon
mass free of any other field such as gravitation we obtain a generally covariant
form of the Proca equation:

(� + kT )Aa
µ = 0, kT =

(mc
~

)2

(16.71)

In ECE theory both the d’Alembert and Proca equations of special relativity
(the standard model) are made generally covariant as required by the most basic
principle of general relativity, the principle of general covariance of any equation
of physics. The standard model is not generally covariant and breaks this prin-
ciple. Another problem occurs in the standard model because there the Proca
equation is not gauge invariant [10], and is therefore unphysical, conflicting dia-
metrically with photon mass theory in the standard model. Photon mass theory
is at the root of the bending of light by gravity, proven experimentally to an
accuracy of 1: 100,000 by NASA Cassini. So the standard model is hopelessly
self-inconsistent because in one part of it, Einstein Hilbert theory, the photon
mass is proven with this accuracy, and in another part, gauge theory, the photon
mass is unphysical because the Proca equation is not gauge invariant. The fault
lies with the gauge principle because of its abstract and ad hoc introduction of
a fibre bundle by Yang and Mills. In fibre bundle theory there is no geometrical
interpretation of the a index, as required by general relativity.
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16.3. THE FUNDAMENTAL CHIRAL ELEMENTS AND FIELD . . .

The origin of circular polarization of the electromagnetic field on ECE the-
ory are therefore the chirality (or helicity) vectors V (1)

L and V (1)
R . These are four

vectors, representing one time-like and three space-like polarization. The elec-
tromagnetic potential field is the tetrad field within A(0), and the tetrad links
the chirality and spin vectors. For the fermion field the tetrad superimposes the
chirality and spin vectors to give the Dirac spinor in the limit of a free fermion.
In this case:

a = L, R (16.72)

µ = 1, 2 (16.73)

but the overall method is the same, indicating that ECE is a unified field theory.
Indeed, the electromagnetic field can be described [2] in the same way as the
fermion field by defining the chiral and spin vectors of the electromagnetic field
by:

V a =
1√
2

[
1− i
1 + i

]
, V µ =

[
1
1

]
e−iφ (16.74)

giving the space-like part of the electromagnetic tetrad:

qa
µ =

eiφ

√
2

[
1 −i
1 i

]
(16.75)

The upper and lower row vectors of the tetrad are transposed to column vectors
giving:

ψem =
eiφ

√
2


q
(1)
XR

q
(1)
Y R

q
(1)
XL

q
(1)
Y L

 (16.76)

This is a column four-vector analogous to the Dirac spinor, and the electromag-
netic potential in this massless approximation obeys:

�Aa
µ = 0 (16.77)

where:
Aa

µ = A(0)ψem (16.78)

It is seen that equation (16.77) is the same for the 2× 2 square matrix (16.75)
or the column vector (16.76). This shows that the electromagnetic field’s trans-
verse components [11] can be put into SU(2) representation as first shown by
Majorana in the nineteen twenties.

16.3 The fundamental chiral elements and field
unification

The right and left handed spins in the chirality column vector:

V a =
1√
2

[
1− i
1 + i

]
(16.79)
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are the most fundamental elements of the fermion field. The well known Pauli
spinors are constructed from the tetrad as follows:

(φR)T = [1 0]qa
µ (16.80)

(φL)T = [0 1]qa
µ (16.81)

where the superscript T denotes “transpose” [12]. Thus:

(φR)T = [1 0]
[
qR
1 qR

2

qL
1 qL

2

]
=
[
qR
1 qR

2

]
(16.82)

and:

φR =
[
qR
1

qR
2

]
(16.83)

Similarly:

(φL)T = [0 1]
[
qR
1 qR

2

qL
1 qL

2

]
=
[
qL
1 qL

2

]
(16.84)

and:

φL =
[
qL
1

qL
2

]
(16.85)

Thus:
φR = (

[
1, 0

]
qa
µ)T (16.86)

φL = (
[

0, 1
]
qa
µ)T (16.87)

and the Dirac spinor is:

ψ =
[
φR

φL

]
(16.88)

It follows from the ECE equation:

(� + kT )qa
µ = 0 (16.89)

that:
(� + kT )ψ = 0 (16.90)

For a free fermion unaffected by any other type of field:

kT =
(mc

~

)2

(16.91)

and we recover the Dirac equation [1]– [8]:(
� +

(mc
~

)2
)
ψ = 0 (16.92)

or (
� +

(mc
~

)2
)
qa
µ = 0 (16.93)

It is seen that the most fundamental elements of ψ are V a and V µ, and that
generally covariant Dirac equation is:

(� + kT )ψ = 0 (16.94)

269
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where:

ψ =
[
qR

qL

]
=


qR
1

qR
2

qL
1

qL
2

 (16.95)

The tetrad is therefore:

qa
µ =

[
(φR)T

(φL)T

]
(16.96)

and the Dirac spinor is:

ψ =
[
φR

φL

]
(16.97)

For Eqs.(16.82) and (16.84):

qa
µ =

[
1
0

]
(φR)T +

[
0
1

]
(φL)T (16.98)

i.e.: [
qR
1 qR

2

qL
1 qL

2

]
=
[

1
0

] [
qR
1 qR

2

]
+
[

0
1

] [
qL
1 qL

2

]
=
[
qR
1 qR

2

0 0

]
+
[

0 0
qL
1 qL

2

] (16.99)

Eq.(16.98) shows that the tetrad can be analyzed as te sum of two transposed
Pauli spinors. Therefore the fundamental Pauli spinors are made up of elements
of Cartan geometry, the chirality column vector V a and the spin column vector
V µ.

Now define the state spinors:

ζ1 =
[

1
0

]
, ζ2 =

[
0
1

]
(16.100)

which are inter-convertible by the parity inversion operator P̂ :

P̂ ζ1 = ζ2 (16.101)

and so may be considered as fundamental states of handedness or chirality. The
analysis has been carried out for the fermion field with SU(2) symmetry. The
SU(2) group is the unitary unimodular group of matrices such as:

S =
1√
2

[
1 −i
−i 1

]
(16.102)

whose hermitian transpose is:

S+ =
1√
2

[
1 i
i 1

]
(16.103)

so that:

SS+ =
1
2

[
1 −i
−i 1

] [
1 i
i 1

]
=
[

1 0
0 1

]
(16.104)
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and det S = 1. Eq.(16.79) can be developed into the sum:

V a =
1√
2

([
1
1

]
− i(ζ1 − ζ2)

)
(16.105)

and so the chirality vector is made up of the real part:

Re V a =
1√
2
1 :=

1√
2

[
1
1

]
(16.106)

and the imaginary part:

Im V a =
1√
2
(ζ2 − ζ1) (16.107)

These can be regarded as the fundamental elements of chirality or handedness.
The unitary unimodular matrix S is made up of two Pauli matrices:

S =
1√
2
(σ0 − iσ1) (16.108)

where:

σ0 =
[

1 0
0 1

]
, σ1 =

[
0 1
1 0

]
(16.109)

The other two Pauli matrices are:

σ2 =
[

0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
(16.110)

The related matrix:

ζ =
1√
2

[
1 −1
1 1

]
(16.111)

has the orthoganility [12] property:

ζζT =
[

1 0
0 1

]
(16.112)

and so:
S =

1√
2
(1 + i(ζ2 − ζ1)) (16.113)

is unitary and unimodular [12] while:

ζ =
1√
2

[
1 ζ2 − ζ1
1

]
=

1√
2

[
1 ζ2 − ζ1

]
(16.114)

is orthogonal. The SU(2) matrix:

S =

[
q
(1)
X q

(1)
Y

−iq(1)X −iq(1)Y

]
e−iφ (16.115)

where:
q
(1)
X =

1√
2
eiφ, q

(1)
Y =

−i√
2
eiφ (16.116)
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and
A(1) = A(1)q(1) = A(0)(q(1)X i + q

(1)
Y j) (16.117)

give and SU(2) representation of the electromagnetic field. Using the further
development: [

1
1

]
=
[

1
0

]
+
[

0
1

]
(16.118)

it is found that the chirality vector is made up of the elements ζ1 and ζ2 as
follows:

V a =
1√
2
(ζ1 + ζ2 − i(ζ1 − ζ2)) (16.119)

and that the spin vector is made up of the same elements as follows:

V µ = (ζ1 + ζ2)e−iφ (16.120)

So it is concluded that the fermion field’s most fundamental elements are:

ζ1 =
[

1
0

]
, ζ2 =

[
0
1

]
(16.121)

together with the phase factor e−iφ. We define ζ1 and ζ2 as the chiral elements
of the field. These elements also define the electromagnetic field’s transverse
elements as follows:

V
(1)
L =

1√
2

 0
ζ1
0

− i
 0
ζ2
0

 (16.122)

V µ =
1√
2

 0
ζ1
0

+

 0
ζ2
0

 e−iφ (16.123)

and are therefore unifying elements of the fermionic and electro-magnetic fields.
The tetrad elements of the electromagnetic field can be put in SU(2) form by
using:

q(1) · q(2) + q(2) · q(1) + q(3) · q(3) = q1q
∗
1 + q2q

∗
2 (16.124)

For circular polarization:

q(1) =
1√
2
(i− ij)eiφ = q(2)∗,

q(3) = k

(16.125)

and so:
q1q

∗
1 + q2q

∗
2 = 3 (16.126)

A possible solution is:

q1 =

√
3
2
eiφ, q2 = −

√
3
2
eiφ (16.127)

Geometrically, the electromagnetic field has the same origin as the fermionic
field, as shown by Eq.(16.124).
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Finally in this section the minimal prescription as used for example by Dirac
to define the well known half integral spin of the fermion in ESR or NMR is
defined for use in ECE theory. The ECE Lemma is [1]– [8]

�qa
µ = Rqa

µ (16.128)

where R is a well defined [1]– [8] scalar curvature and where:

� = ∂µ∂
µ = γµγν∂µ∂ν (16.129)

Here γµ is a Dirac matrix. The d’Alembertian operator has been isolated in
Eq.(16.128) from an analysis [1]– [8] of the tetrad postulate. The minimal
prescription is a momentum addition which describes the effect of the electro-
magnetic field on the fermion field in Dirac’s original analysis [1]– [8]. In gauge
theory it is the result of the gauge invariance principle [9], but that is an abstract
procedure which as we have argued already, leads to a diametric self inconsis-
tency in the standard model. In ECE theory (general relativity) the minimal
prescription is developed as in the original intent - a momentum addition.

In ECE the quantum operator equivalence is used in the same form as special
relativity, because the partial four-derivative in ECE is the same as in special
relativity [1]– [9]:

pµ = i~∂µ (16.130)

where:

pµ =
(
En

c
,p

)
, ∂µ =

(
1
c

∂

∂t
,−∇

)
(16.131)

as usual. Now define:

Aµ := A(0)
µ +A(1)

µ +A(2)
µ +A(3)

µ (16.132)

so that all four states of polarization of Aa
µ are accounted for. The semi-classical

minimal prescription in ECE theory is then defined as:

pµ → pµ + eAµ (16.133)

pµ → pµ + eAµ (16.134)

This means that:
∂µ → ∂µ − i

e

~
Aµ (16.135)

∂µ → ∂µ − i e
~
Aµ (16.136)

and
� = ∂µ∂

µ →
(
∂µ − i

e

~
Aµ

)(
∂µ − i e

~
Aµ
)

(16.137)

i.e.

�′ := �− i e
~

(Aµ∂
µ +Aµ∂µ)− i e

2

~2
AµA

µ (16.138)

The wave equation that defines the interaction of the Dirac spinor ψ and Aµ is
therefore

(�′ + kT )ψ = 0 (16.139)
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In the absence of gravitation, this becomes:

(�′ +
mec

~
)ψ = 0 (16.140)

Eq.(16.140) produces all the familiar half integral spin magnetic effects such as
the Stern Gerlach experiment, the Zeeman effect, ESR, NMR and MRI, and for
the electromagnetic field, RFR [1]– [8]. The overall effect in these phenomena
is described by:

�→ �′ (16.141)

Any type of field interaction can be described in this way. If for example we wish
to describe the effect of gravitation on interacting electromagnetic and fermionic
fields Eq.(16.139) must be used. Both the fermion and electromagnetic fields
in this case are affected by gravitation through the Cartan geometry defined in
Eqs.(16.7) to (16.10). The gravitational field is represented by the Riemann or
curvature form. The fermion field in these equations is the tetrad qa

µ in SU(2)
representation, a 2 × 2 matrix. If Eqs.(16.7) to (16.10) are then developed
in SU(2) representation there is an SU(2) symmetry torsion and curvature
which interact with each other. The interaction of the fermion and gravitational
fields is then governed in this way - again by Cartan geometry. The minimal
prescription used in Eq.(16.139) is semi-classical - the fermion field is quantized
but the electromagnetic field is classical. The next level is a fully quantized
theory in which the electromagnetic field is governed by the ECE wave equation:

(� + kT )Aa
µ = 0 (16.142)

From Eqs.(16.133) and (16.134) and conservation of momentum, the photon
momentum is changed by the electron momentum and vice versa in such a
way that the total momentum (photon plus electron) before and after collision
is the same but the individual momenta of photon and electron are changed.
If the electron momentum is for example increased by a collision, the photon
momentum must be decreased as follows [1]:

Aµ → Aµ −
1
e
pµ (16.143)

Thus Eq.(16.142) is changed to:

(�′′ + kT )Aa
µ = 0 (16.144)

where:
�′′ = � +

i

~
(pµ∂

µ + pµ∂µ)− pµp
µ

~2
(16.145)

If there is no gravitation present:

kT =
(mpc

~

)2

(16.146)

where mp is the photon mass. Therefore the problem is to solve simultaneously
the following equations: (

�′ +
(mpc

~

)2
)
ψ = 0 (16.147)
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and (
�′′ +

(mpc

~

)2
)
Aa

µ = 0 (16.148)

The electron mass me is many orders of magnitude greater than the photon
mass, perhaps as many as forty orders of magnitude greater. Therefore in
most textbook treatments of for example the Compton effect, the energy of the
electron is represented in the classical special relativistic limit by the Einstein
equation:

En = (m2c4 + p2c2)
1
2 (16.149)

but the photon is represented as a pure wave with no mass using the de Broglie
equation:

En = hv, p =
hv

c
(16.150)

In Feynman’s quantum electrodynamics, exchange of a virtual photon is
used. However, in general relativity Eqs.(16.147) and (16.148) must be used
and solved simultaneously with sufficient numerical precision to give the experi-
mentally known effects of quantum corrections, such as the anomalous magnetic
moment of the electron in the Lamb shift, and the Casimir effect.
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