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ABSTRACT

The Larmor radius is calculated for an electron ensemble in a circularly polarized

electromagnetic field. This radius is part of the inverse Faraday effect and is calculated from a

well defined limit of the Einstein Cartan Evans (ECE) wave equation when it reduces to the

relativistic Hamilton Jacobi equation. The radius is calculated under the experimental

conditions proposed to detect the inverse Faraday effect in an electron ensemble.
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1. INTRODUCTION

Recently, a unified theory of fields has been proposed based on Cartan
geometry {1-12} and is known as Einstein Cartan Evans (ECE) field theory. This theory
unifies general relativity and wave mechanics by deriving a wave equation from the
fundamental tetrad postulate {13} of Cartan geometry, the fundamental requirement that a
complete vector field be independent of its components and basis elements. The tetrad
postulate is true for any application in physics, and so therefore is the ECE wave equation. In
well defined limits the latter reduces to the well known wave equations of physics, notably
the Dirac and Proca equations for the electron and photon respectively. In Section 2 the Dirac
equation is derived from the ECE wave equation and expressed as the well known Einstein
equation of special relativity using the fundamental operator rules of wave mechanics. The
Einstein equation governs the special relativistic classical dynamics of an electron. The
interaction of this electron with a circularly polarized electromagnetic field is then developed
form the minimal prescription and the relativistic Hamilton Jacobi equation {1-12, 14}. The
results are used to calculate the Larmor radius of an electron in a circularly polarized
electromagnetic field, part of the inverse Faraday effect. The latter is due to the ECE spin
field ECJ? and this produces a different motion of the electron from that produced by a static

magnetic field of the standard model.

2. RELATIVISTIC CALCULATION OF THE LARMOR RADIUS.

The starting point is the ECE wave equation:
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where q is the Cartan tetrad, k is Einstein’s constant and T is the index reduced canonical

M

energy momentum density. In the limit éf a free electron this equation reduces to the Dirac
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where m is the mass of the electron occupying a finite volume V, and where the Compton

wavelength of the electron is:
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Here41/ is the reduced Planck constant and c is the speed of light in vacuo. Using the

fundamental operator definition of wave mechanics:
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the Dirac equation becomes the Einstein equation of special relativity:
A 23
(g o~
where: _ <6>
- © 0 )
f < =

is the four-momentum of the electron. Here E is the relativistic energy and p the relativistic
momentum. Eq. ( 5 ) describes the special relativistic motion of the electron in classical

physics. The interaction of the electron with an electromagnetic field is given by the minimal
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where A is the four-potential of the electromagnetic field:

prescription:
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where 7; is the scalar potential and A the vector potential. Eq. (7 Q. ) is the relativistic
Hamilton Jacobi equation of motion of the electron in a classical electromagnetic field.

In previous work {1-12} this equation has been solved for the dynamics of the
system adopting a method originally given by Landau and Lifshitz {14}. The Larmor radius

of the electron in a circularly polarized electromagnetic field is defined by:
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where v is the orbital linear velocity of the electron and where .Q is its angular frequency.

These quantities are given from Eq. ( 1 Q) as follows:
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Here @ s the angular frequency of the applied electromagnetic field and B is the

magnitude of its flux density in tesla. . The power density in watts per square meter of the

applied electromagnetic field is {1-12}:
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where /A o is the S.I. vacuum permeability. So the Larmor radius may be calculated in terms
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of (@ and —E and may be detected experimentally using a detector of given radius, such as
a Faraday cup. Experimental conditions may be adjusted such that the Larmor radius is less
than that the radius of the Faraday cup detector, when a large signal should become

detectible. The experimental conditions are such that:
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in which case the Larmor radius is defined by the limit: v/
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At an applied frequency of 2.5 G Hz:

-LT”JC ~(6
\.3ax e — ™

il

(L

So the power density I must be adjusted using this equation in order that the Larmor radius [:S
less than that of the Faraday cup detector.

It is emphasized that the dynamics of the electron in a circularly polarized
electromagnetic field are different entirely from the dynamics of an electron in a static

magnetic field in the standard model. The latter are well known to be described by the
interaction hamiltonian {1-12}:
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The standard model static magnetic field is described by:
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and by:
A - v boxe “<\8>

where r is a radius vector defining the angular momentum:
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The relevant interaction term is: -

H

using the vector property:
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The hamiltonian is usually expressed as:
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where m is the magnetic dipole moment: ( >
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is the gyromagnetic ratio. In this non-relativistic calculation the kinetic energy is the

Newtonian kinetic energy: 5 .
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and the angular frequency is: ( l
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The angular momentum is therefore:
P _ A}l

L

'

and the Larmor radius is:
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This result is evidently dif)ferent from Eq. ( o\ ). There are several reasons for this
3
difference, primarily,_]_B_ is a radiated field due to circularly polarized electromagnetic

radiation, and B is a static field of a magnet. We emphasize this difference as follows, in

(3)
order to avoid confusion between the concepts of B and B.
In classical special relativity:
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This equation reduces in the absence of an electromagnetic field to:

\Z) _ C)(’) + €°) ____(ll)

- Yo = n\c) - (>)>

is the rest energy. In these equations p is the relativistic momentum:
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This equation is proven to be the same as Eq. (}\ ) as follows. From Eq. (33 ):
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Here, the relativistic energy is:
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and the relativistic kinetic energy is:
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Under the condition:

we regain the Newtonian kinetic energy as follows:
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This result is sufficient to describe the inverse Faraday effect when the electronic v << c. If

we average over many cycles of the applied electromagnetic field:
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so the extra effect of the electromagnetic field is, on average:
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Now use the fundamental properties of the electromagnetic field in free space {1-12}:
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This is the induced rotational energy in the limit v <<c¢: (
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where J 1s the induced orbital angular momentum of the electron:
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The induced magnetic dipole moment is
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is the ECE spin field.

This result can be cross checked for internal self-consistency by using the

angular momentum calculated from Eq. (_[ a) {1-12}:
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Eq. ( S2) becomes Eq. ( W), Q.E.D. In the opposite limit:
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giving the induced magnetic dipole moment:
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The one electron susceptibility i fdefined by: _
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and the one electron hyper-magnetizability by:
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(}) It is seen that there are basic differences between the motion of an electron in the
B and B fields. In the presence of the electromagnetic field, the complete momentum of the

electron is {1-12, 14}:
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In the presence of an electromagnetic field, p in Eq. ( é\ ) is defined by Eq. ( Sa ), SO

after averaging over many cycles:
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This is the special relativistic energy of an electron to second order in the electromagnetic

field. Eq ( 61 ) bears a resemblance to Eq. ( S 1). If it is assumed that:
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then
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which is Eq. ( "\'(7 ). Therefore Eq. ( “3 ) means that the electronic velocity is v <<c¢. In

this limit: 3 és
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if v << . In this limit the total energy and rest energy are about equal, so T is very small and

this limit corresponds to Eq. ( Sz ).
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